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Abstract� The problem of matching nuts and bolts is the following 
 Given
a collection of n nuts of distinct sizes and n bolts such that there is a one�
to�one correspondence between the nuts and the bolts� �nd for each nut
its corresponding bolt	 We can only compare nuts to bolts	 That is we can
neither compare nuts to nuts� nor bolts to bolts	 This humble restriction
on the comparisons appears to make this problem very hard to solve	 In
fact� the best deterministic solution to date is due to Alon et al � ��
 and
takes ��n log� n� time	 Their solution uses �e�cient� graph expanders	 In
this paper� we give a simpler O�n log� n� time algorithm which uses only a
simple �and not so e�cient� expander	

� Introduction

In ���� page ��	� Rawlins posed the following interesting problem 


We wish to sort a bag of n nuts and n bolts by size in the dark� We can
compare the sizes of a nut and a bolt by attempting to screw one into the
other� This operation tells us that either the nut is bigger than the bolt� the
bolt is bigger than the nut� or they are the same size �and so �t together��
Because it is dark we are not allowed to compare nuts directly or bolts
directly�
How many �tting operations do we need to sort the nuts and bolts in the
worst case�

As a mathematician �instead of a carpenter� you would probably prefer to see
the problem stated as follows ��
�� 


Given two sets B � fb�� � � � � bng and S � fs�� � � � � sng� where B is a set
of n distinct real numbers �representing the sizes of the bolts� and S is
a permutation of B� we wish to �nd e	ciently the unique permutation
� � Sn so that bi � s��i� for all i� based on queries of the form compare
bi and sj� The answer to each such query is either bi � sj or bi � sj or
bi � sj�
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The obvious information theoretic lower bound shows that at least ��n log n�
comparisons are needed to solve the problem� even for a randomized algorithm� In
fact� there is a simple randomized algorithm which achieves an expected running
time of O�n log n�� namely Quicksort 
 Pick a random nut� �nd its matching bolt�
and then split the problem into two subproblems which can be solved recursively�
one consisting of the nuts and bolts smaller than the matched pair and one con�
sisting of the larger ones� The standard analysis of randomized Quicksort gives
the expected running time as stated above �see for example �	���

Unfortunately� it is much harder to �nd an e�cient deterministic algorithm�
The only one known to us is the algorithm by Alon et al� �
� which is also based
on Quicksort� To �nd a good pivot element which splits the problem into two
subproblems of nearly the same size� they run log n iterations of a procedure which
eliminates half of the nuts in each iteration while maintaining at least one good
pivot� since there is only one nut left in the end� this one must be a good pivot�
This procedure uses the edges of a highly e�cient expander of degree ��log� n�
to de�ne its comparisons� Therefore� �nding a good pivot takes ��n log� n� time�
and the entire Quicksort takes ��n log� n� time�

In this paper� we propose a simpler algorithm to �nd a good pivot �see Section
	 for details�� First� we connect the set of nuts with the set of bolts via some
expander of constant degree and compare each nut to all the bolts to which it
is connected by an edge of the expander� We discard all nuts which are only
connected to smaller bolts or only connected to larger bolts� Then we play a
simple knockout tournament on the remaining nuts �where in each round half of
the nuts are eliminated� which guarantees that the winner of the tournament is a
good pivot� Since we can play each round of the tournament in O�n� time� we can
�nd a good pivot in O�n log n� time� Therefore� we can solve the nuts and bolts
matching problem in O�n log� n� time�

Alon et al� �
� mention two potential applications of this problem
 the �rst is
local sorting of nodes in a given graph ���� and the second is selection of read only
memory with a little read�write memory ����

In the next section� we describe the Quicksort algorithm more formally and
recall some facts about expanders� In Section 	� we show how we can e�ciently
�nd a good pivot� And we conclude with some remarks in Section ��

� Basic De�nitions

Let S � fs�� � � � � sng be a set of nuts of di�erent sizes and B � fb�� � � � � bng be a
set of corresponding bolts� For a nut s � S de�ne rank�s� as jft � B j s � tgj� The
rank of a bolt is de�ned similarly� For a constant c � �

� � s is called a c
approximate
median if cn � rank�s� � �
 � c�n � Similarly� de�ne the relative rank of s with

respect to a subset T � B as rankT �s� 
�
jft � T j s � tgj

jT j � If T is a multiset

then the relative rank of s with respect to T is de�ned analogously� where each
t � T is counted according to its multiplicity in T �
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The algorithm for matching nuts and bolts works as follows�

�
� Find a c�approximate median s of the n given nuts �we will determine
c later��

��� Find the bolt b corresponding to s�

�	� Compare all nuts to b and all bolts to s� This gives two piles of nuts
�and bolts as well�� one with the nuts �bolts� smaller than s and one
with the nuts �bolts� bigger than s�

��� Run the algorithm recursively on the two piles of the smaller nuts and
bolts and the two piles of the bigger nuts and bolts�

In the next section� we will show how to �nd a c�approximate median in
O�n log n� time� where c is a small constant� Then our main result follows imme�
diately�

Theorem�� We can match n nuts with their corresponding bolts in O�n log� n�
time�

Proof� The correctness of the algorithm above follows immediately from the cor�
rectness of Quicksort� For the running time observe� that each subproblem has size
at most �
�c�n� hence the depth of the recursion is only O�log n�� and in each level
of the recursion we spend at most O�n log n� time to compute the c�approximate
median and O�n� time to split the problem into the two subproblems� ut

We now recall some facts about expanders �see for example ��� if you want
to learn more about expanders�� Let � � 	 � �

�
and 	c � 
� An �n� k� 	� c�


expander is a k�regular bipartite graph on vertices I �inputs� and O �outputs��
where jIj � jOj � n� such that every subset A � I of size at most 	n is joined by

edges to at least jAj
�

 � c�
� jAj

n
�
�

di�erent outputs� The constant c is called

the expansion factor of the graph�

Theorem� �Alon� Galil� and Milman ���� Cor� ��	
� If n � m� for some
integer m� then we can construct an �n� �� ��� ���
�
expander in O�n� time�

Corollary 	� Let � � 
 � �
� and �� � ����

�������� Then there exists an integer q�

such that for any n� where n � m� for some integer m� we can construct an
�n� q�� 
� ���
expander in O�n� time� In such an expander� any subset of the inputs
of size 
n is connected to at least �

�
n di�erent outputs�

Proof� We take a series of the expanders of Theorem � and identify the outputs
O� of the �rst one with the inputs I� of the second one� the outputs O� of the
second one with the inputs I� of the third one� and so on� Then there is an integer
k� �independent of n� such that any set of 
n inputs of I� is connected to at least



�

n

�
di�erent outputs of Ok� and hence to at least �
� ����

�
�n
�
� �

�
n di�erent outputs

of Ok�	�� We can easily calculate k� by computing the series de�ned by a� 
� 


and ai	� 
� ai �
 � ���
�
 � ai��� then k� is the smallest index i such that ai � �
�
�

Hence� to get the desired bipartite graph� we only have to connect each node
v of I� to all nodes w of Ok�	� which can be reached from v by traversing a path
which uses exactly one edge from each of the k��
 expanders� Then the degree of
any node is clearly at most q� 
� �k�	�� To make the graph q��regular we can add
arbitrary dummy edges without destroying the expansion property� Further� the
expansion factor of the graph is at least �� because �
 � ���
 � 
�� 
n � �

�
n �note

that subsets of the inputs of size smaller than 
n are even better expanded�� ut

� Finding a c�Approximate Median

Our algorithm to �nd a c�approximate median is based on a knockout tournament
played on some subset of the nuts� We start with a subset S� � S of the nuts
where each nut s � S� has a set T��s� of two bolts associated with it� for all s�
the sets T��s� need not be disjoint� but every bolt may appear only in a constant
number of them� We describe later how S� is constructed�

We then play dlog jS�je rounds of the tournament� where in each round half the
nuts survive for the next one� Intuitively� we take any two nuts together with their
sets of associated bolts� determine which nut splits the union of both sets of bolts
less equally� eliminate that nut� and give both sets of bolts to the surviving nut�
Unfortunately� pairing the nuts arbitrarily does not quite work� i�e�� the winner of
the tournament would not necessarily be a c�approximate median� but there is a
simple way to overcome that di�culty�

In general� let Si be the set of nuts before we start round i� For each nut s � Si

let Ti�s� be the multiset of bolts associated with s and let ri�s� 
� rankTi�s��s� be
the relative rank of s with respect to its set of bolts Ti�s�� Let S�

i 
� fs � Si j
ri�s� � �

�g and S�
i 
� fs � Si j ri�s� � �

�g�
We play the knockout tournament as follows�

i 
� 
�
while jSij � � do

�
� Pair the nuts of S�
i arbitrarily� If jS�

i j is odd then we eliminate the
single nut without a partner�

��� Let �s�� s�� be a pair of nuts from S�
i � Compute the relative ranks

of s� and s� with respect to the multiset T 
� Ti�s�� � Ti�s��� Note
that it is su�cient to compare s� with all bolts in Ti�s�� and s� with
all bolts in Ti�s��� because rankT �sj� �

�
��ri�sj� � rankTi�s��j��sj���

for j � 
� � �here we use Observation � �c���
Whichever nut s has relative rank closer to �

� survives in Si	� and is
associated with the multiset Ti	��s� 
� T �



�

�	� Repeat steps �
� and ��� with S�
i instead of S�

i �

od

Let l be the value of i after the while�loop terminates� i�e�� jSlj � �� We
claim that if S� was su�ciently large then every nut in Sl is a c�approximate
median� where c is a small constant �see Lemma ��� But �rst we make a few
simple observations�

Observation �� Assume we play the tournament starting with some set S� of
nuts� Then

�a� dlog jS�je � 
 � l � dlog jS�je�
�b� Sl 	� 
�
�c� For i � 
� � � � � l and all s � Si� jTi�s�j � �i� In particular� jTl�s�j � jS�j

�
for all

s � Sl�

�d� Each round needs O�jS�j� time�

Proof�

�a� In each round� we eliminate half of the nuts which could be paired� and at most

two unpaired nuts� i�e�� jSi	�j � jSij��
�

� We stop if at most two nuts remain� It
is easy to show by induction on jS�j that l must be at least log�jS�j� ��� 
�
This proves the �rst inequality�
The second inequality follows directly from jSi	�j � jSij

�
�

�b� We never eliminate all nuts�

�c� By induction on i�

�d� Observe that in each round� every bolt is involved in at most one comparison
�in step ����� Since there are a total of �jS�j bolts in the �rst round and we
never let additional bolts enter the game� we do at most �jS�j comparisons
in each round� Further� pairing the nuts� computing the relative ranks� and
merging two multisets of bolts do not increase the asymptotic complexity� ut

Lemma�� Let S� � S and � � jS�j
n
� Suppose� each nut s � S� lies between the two

bolts in T��s�� i�e�� blow�s� � s � bhigh�s� if T��s� � fblow�s�� bhigh�s�g� and every
bolt appears at most q times in the sets T��s�� Then any s � Sl is a c
approximate
median� where c � �


q �

Proof� Before the �rst round� we have r��s� �
�
� for all s � S�� and hence �

� �
r��s� � �

� for all s � S�� We now prove by induction� that this inequality holds
after each round�

Assume we know that �
� � ri�s� � �

� for all s � Si� Let �s�� s�� be a pair from
S�
i � where w�l�o�g� s� � s�� Let T be the multiset Ti�s�� � Ti�s��� Since s� is larger



�

than half of the bolts in Ti�s��� it must be larger than a quarter of the bolts in T �
On the other hand� it is smaller than a quarter of the bolts in Ti�s�� and smaller
than a quarter of the bolts in Ti�s�� �because it is smaller than s��� hence it is
smaller than a quarter of the bolts in T � Therefore� the inequality holds for s��
and we only eliminate s� if the relative rank of s� with respect to T is even closer
to �

��

Let s � Sl� Since Tl�s� contains at least �n

�
bolts by Observation � �c�� we

conclude from the inequality above that s is larger than �n



bolts and smaller

than another �n



bolts� Since each bolt may have up to q copies in Tl�s��

�n


q
�

rank�s� � �
� �


q
�n� i�e�� s is a �


q
�approximate median� ut

Now we can give our algorithm to �nd a c�approximate median�

�
� If n is not the square of an integer� then add at most �
p
n dummy

nuts and bolts to make n the square of an integer�

��� Let B � I and S � O be the sets of vertices of the �n� q� �
�� �

���
�� ��

expander of Corollary 	� We compare each bolt with all the nuts to
which it is connected by an edge of the expander�
Let S� be the set of nuts which are compared to at least one smaller
bolt and at least one larger bolt� For all s � S�� pick arbitrarily one
of the smaller and one of the larger bolts and put them into the set
T��s��

�	� Now play the knockout tournament starting with S�� Let Sl be the set
of �at most two� winners of the tournament� Choose any s � Sl as a
good pivot�

Theorem
� This algorithm computes in O�n log n� time a c
approximate me

dian� where c � �


�q is a small constant not depending on n�

Proof� Construction of the expander and hence of set S� takes O�n� time �note
that enlarging n slightly in step�
� does not increase the asymptotic complexity of
the following steps�� And the tournament takes O�jS�j log jS�j� � O�n log n� time
by Observation ��

It remains to show that we really compute a c�approximate median for some
constant c� First� observe that jS�j � n

��
� To see this� let B� be the set of bolts

with rank at most n

�� and B� be the set of bolts with rank at least ��
��n� Since the

expander connects any subset of B of size n

�� to at least �
�n di�erent nuts in S�

there must be a set of at least n

� nuts which are connected to bolts in both B�

and B�� But then at least n
� � � � n

�� �
n
�� of the nuts must have rank between n

��

and ��
��n� which means they are in the set S��



�

Next� observe that each bolt appears in at most q of the sets T��s� because the
expander connects each bolt to exactly q nuts� Hence by Lemma �� any s � Sl is
a c�approximate median� where c � �


�q
� ut

� Conclusions

We have presented an O�n log� n� time deterministic algorithm for matching nuts
and bolts� This improves the �rst O�n�log n�O�����time solution of this problem�
given by Alon et al��
�� by a factor of log� n� As already mentioned in �
�� the
methods described in this �and their� paper seem not to be su�cient to reduce
the complexity below O�n log� n��

Unfortunately� the constants hidden in our O�notation are incredibly large �far
beyond the constant 
�
 in �
��� This is mainly due to the iterative construction
in Corollary 	 which produces an expander of enormous� but still constant� degree
�a short calculation shows that the degree is q �

��

� �� because we must build

the expander from � copies of the simple expander of Theorem��� On the other
hand� the standard counting argument shows that there is a family of bipartite
���regular graphs on �n nodes which connect any subset of the inputs of size n

�

to at least �

n di�erent outputs� Using these graphs in the construction of the set

S� would give us an algorithm with fairly reasonable constants� However� we do
not know an explicit construction for them� But it is clear that any improvement
to our Corollary 	 can drastically reduce the running time of our algorithm �and
make it more practical��
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