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NUMERICAL SOLUTION OF A'S + SA +Q =0 T

Per Hagander

ABSTRACT

A survey of possible techniques to solve ATs + sa + Q=0

is presented and the best algorithms are coded and tested
on a batch of examples. Two general purpose methods (one

of which is supposed to be new) are recommended depending
on the order of the matrices and the computer storage avail-
able.
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1. INTRODUCTION

In recent time [2,4,6,10,14] great attention is drawn to the

numerical treatment of the matrix equation

ATs + sa+q=g0 (1)

solved for S. Q is symmetric and thus also the solution S.

This equation plays a very central role in the linear theory

of stability, both in the qualitative criterium (Routh - Hur-
wite ete)[17], as in the more quantitative ones: Liapunov func-
tions [13] and eigenvalue calculations. It is also valuable for
the pole assignment problem and fundamental for evaluating loss
functions in optimal control and covariance matrices in filtering

and estimation.

The more general equation:

ATS + SA + Q - SBQ;'B'S = 0 (2)

essential in the spectral factorization problem [1] and in opti-
mal control [21],has been solved by iteration of (1), [12].

In many of the applications above it is necessary to solve (1)
many times. We therefore state that the equation (1) is worth
severe numerical interest and almost as important as a usual
matrix inversion. It is my intention to give a survey of possible
methods and to present algorithms. These algorithms are used on
a set of examples, and their accuracy and computing time are com-

pared. All programming is done in Fortran for a CD-3600.

It can be said as a result that it is valuable to have the origin
of eq. (1) in mind; in what form the data is obtainable etc. Very
important is also the computing facilities available and the or-
der of the system, dictating the memory requirements. Sometimes

the calculation of S is made parallel to other routines which gives
side results that are useful to the ATS + SA + Q =0 - calculation
and perhaps makes different algorithms most favourable. This is
for instance the case when eigenvalues and eigenvectors are calcu-

lated.



2. REVIEW OF POSSIBLE TECHNIQUES.

2.1. Simple finite algebraic methods.

2.1.1. Solution of n(n+1)/2 linear equations.

Inspecting the equation:

Als +sa+Q=0 (1)

we find that we have n(2+l) unknown and therefore it is very

natural to rewrite (1) as n(n+l)/2 linear equations and solve
these straight forward.

2.1.2. Eigenvalue, Eigenvector methods.

The method above is not necessarily the best one. When we solve
the big system of linear equations with the general method, we
are applying too strong a tool. These equations have very much
"structure" in them, and it might be better to use that, at least

to some extent, by transformation techniques.

One way of doing this is transforming A and AT to diagonal form
[10] .Since this is no easy matter and by no means completely

solved, it seems to be no promising attack to the problem. How-
ever, the information obtained from the eigenvalues might be so
valuable for the further analysis that the method must be taken

into consideration.

Eigenvectors can also be used to solve eq. (1) and even the more
general eq. (2) in the following way [16], [18]:

Form:
-1.T . .
A - BQ,B (in the special case (1)
- - A" BQ;'B' = 0)



and calculate the eigenvectors:

b bn b2n
1y eeey |

1 n c2n

Pick out of these the ones that correspond to the n eigenvalues

with negative real part. Then S is obtained by:

8= (e vees )by, wens bn)_l

2.1.3. Companion form methods

Other structures that might be useful are the companion form
(phase variable form), the Schwartz's canonical form and trans-
formations related to these, based upon the Cayley - Hamilton
theorem for matrices [2,10,14]. The companion form or equivalently
the transfer function is basic also for the recursive algorithm

in 2.3.

These methods are quite useful, especially the one in 2.3., if
the matrix A is already on e.g. companion form, but they are out
of the question as general methods, because the transformation to

companion form is time-consuming and not accurate for large systems.

2.2. Integration algorithm

The other type of algorithms proposed arise from the fact that the
solution S to (1) can be expressed as [3, p 231]:

T
A (t—s)Q Alt-8) 4 (3)

that is the steady state solution to the equation:

9§=ATS+SA+Q (W)
dt



if the matrix A is stable.

It is therefore possible to obtain S by integrating the diff.
eq. (4) to steady state.

Different methods of integration, containing various degrees

of approximation, are possible.

2.2.1. Runge-Kutta and other direct methods.

A simple U4th order Runge-Kutta algorithm is briefly examined,

and the method to use the Euler fundamental matrix I:

T -1
-A 0 pX L [2 ] 0
2(t) =expd t » ol 7= T B (5)
QA L1 Ipp 71 Z99

is also used straight forward:
S = lim [5.-(£) + 5,,(t) S(O)| £o (t) = lim £, (t) 5o, (t)

21 22 22 21 22

Tt tow

i.e. lterate:

_ T
S(k « h) = {221(h) + 222(h) S(kh - h)} zzz(h) (6)

to stationarity [11], [16], [19].

2.2.2. Davison's algorithm

Davison and Man in 1968 published a quite promising algorithm [6]
based upon numerical integration of the expression (3) by the
very simple Euler approximation. It can also be understood as
equation (6) with instead of 221(h) Zgz(h) the first term of
its series expansion, Q « h. The algorithm also contains a smart

way of successively increasing the sampling interval.



2.2.3. New algorithm.

This has been adopted in a new algorithm, which uses the full
eq. (6). Call ¢ = Zp,(h) and Q = 1,)(h) £, (h); then

S0 = Q

_ T
51 % ¢ Sgo * S

T3 3 T2 2 T

S, = (67)7 Sge~ + (¢7)" Spe” * ¢ Sy * 5y =

_ . T2 2

= (9707 510" *+ 5

k k
_ . T2 2

Sice1 (¢7) §4° * S
and
S = 1im S

Koo IS

Two' methods can be used for calculating é and ¢; The one described

above in 2.2.1. using

-A 0
£(h) = exp{h - T
Q A

and another one calculating é by direct series expansion of

A:s As

e Qe™ ds

o

and ¢ from

¢ = exp{A « h}.



2.3. Finite transfer function method

The interest in ATS + SA + Q = 0 often arises when the incremen-
tal covariance matrix Vdt is to be calculated for the output y

from the system:

dx = Alxdt + Bdw

(8)
y = Cx

where w is a Wiener process with incremental covariance matrix
equal to Idt.

Then we have:

v=cCcscr (9)

and Q has a natural rank factorization

Q=B pl (10)

B is supposed to have linear independent columns, or else the

number of noise sources could be decreased.

By calculating the transfer function G(s) from %%“to y in (8) we
get V as:

= T
Vv = 2—_"1' —im G(s) G (-s) ds (11)

and it is possible to evaluate this integral by use of the recur-
sive algorithm developed by K.J. Astrtm [21].



3. COMPUTATIONAL AND PROGRAMMING ASPECTS.

3.1. Simple finite algebraic methods

Different methods are proposed in the literature to rewrite

the equation:

ATs +sa+ Q=0 (1)
to

n(n+l)/2

linear equations, [4], [2b], etc.

The main difference is found to be if the algorithm uses logi-
cal operations (ATPPAQ) or indexing vectors (KJATP) (see appen-
dix). K.J. Astrém has suggested the latter method, which is
slightly more efficient.The algorithm for arbitrary systems of
linear equations is chosen with reference to Forsythe - Moler
[7]-

The algorithms are quite easily coded and are very straight for-
ward. It can be proved that "the big matrix" is always regular
if A is regular, which is necessary to assure the existence of
a unique solution; A and —A? must not have eigenvalues in common
[9, p 225]. Errors are only introduced in the solvation of the
linear equations, and this can be done to machine accuracy by
the routine IMPRUV, if only the big matrix is not very illcondi-
tioned (and thus also A).

The main disadvantage with this attack is the rapid increase of
n(n+l)/2 as n goes up. The memory requirements are soon overwhel-
ming. For n = 20 45k words core memory would be necessary, with
IMPRUV, 90 k, which is totally out of sight for a standard method.
Matrix operations are time-consuming if the whole matrix is not

in core at the same time, so that is no solution either.

The eigenvalue, eigenvector algorithms are complicated. The simp-
liest to code is the one proposed by Potter [18] and Martensson
[16], EIGATP, that computes the 2n eigenvalues and eigenvectors to:



and then obtains the matrix S as the solution to a system of

n linear equations with n right hand side vectors. However,
since A generally is not symmetric, the eigenvalues and eigen-
vectors will be complex and the equations to be solved are con-
sequently complex, which increases the number of operations to
be done about six times. It also introduces a lot of new error
sources. The methods used, subroutine CLES, refer to Frdberg
[8, p 103].

The eigenvalue, eigenvector calculations are done in an up to
date subroutine package, EIGENPAK, coded by K. Martensson.
Although this seems to be about the best there is, quite a lot
of problems are connected with this calculation. Eigenvalues
very alike causes difficulties and considerable errors, espe-

cially when n increases.

The diagonalization method described by e.g. Jameson [10] has the
advantage of less memory requirement. Instead of eigenvectors of

a 2n x 2n matrix only eigenvectors of two n x n matrices (A and

AT) are needed, but it is on the other hand necessary to solve

two systems of complex equations and to perform two complex mat-
rix multiplications and one division of a complex matrix with a
complex number, so no gain in computation rate and accuracy is
achieved. It is also remarkable and disadvantageous for both the
eigenvector algorithms that it seems impossible to use the symmetry
of Q (and S) to any extent.

The companion form methods give short and neat coding, but they
contain procedures that are not very numerically accurate and
quite slow. No good transformation to companion form exists!

The one based on the Newton identities, [20, p 50], the so called
Leverriere's algorithm, gives a short program, TOBSKAN, but bad
accuracy for large matrices. If, however, this step is already
done or still has to be done, this attack to use the full struc-

ture is tempting (see 3.3).



Jameson's method has been coded but found slow and inaccurate
for large n and no better than KJATP for small n. No attempt
was therefore done to use the symmetry to reduce the number

of operations and the already quite small memory requirement (an).

None of the Barnett - Storey algorithms [2a - c¢] are coded or tes-

ted on the examples in chapter 4.

3.2. Integration algorithms

The Runge-Kutta integration in 2.2.1. was done with a fast rou-
tine, described in CACM [5] in Algol. Especially when A has
widely spread eigenvalues or eigenvalues with low damping the
step size has to be chosen short to assure sufficient accuracy,

and the number of iterations to steady state can be large.

The step size can be made larger for the direct method with
Euler matrix, but there is still the problem of widely spread
eigenvalues and eigenvalues with low damping. The routine is
considerably faster than the Runge-Kutta method. However, the
memory requirement is larger because of the exponentiation of

a 2n x 2n matrix. MEXP7T, the subroutine used for this, written
by K. Martensson [15], is perhaps wasting a little with memory
in order to gain speed,but it is fast, general and accurate, and

uses all the advantages of scaling and zero-shift.

Since the methods below have made the convergence much faster by
successively increasing the step length without introducing any
further errors, the 2.2.1.-algorithms are not further examined on
the examples in chapter 4. One possible use of them, especially
the Runge-Kutta integration, is, however, to improve an approxi-

mative solution.

The Davison algorithm [6] was coded straight forward and examined
in seme examples.No advantage was taken of the symmetry. The fact
that it converged in quite a few steps was verified, but the limit
value was not the correct solution if the step length was not cho-

sen very small. The truncation error in the Euler approximation of



10.

the integral, or equivalently, in the series expansion of
(h) Z ( h), has considerable effect. A very short step
size on the other hand results in a ¢ = 222(h) very near the

unit matrix, and thus a loss of numerical significance.

Davison also recammends the Crank - Nicholson method for the
calculation of ¢ = exp Ah. This has not been adopted since

MEXP7T is more accurate and more general; the Crank - Nichol-
son method contains solution of a system of linear equations

with a matrix, which is not necessarily regular.

All these complaints about the Davison algorithm inspired to
the new algorithm in 2.2.3., which is using most of the advan-

tages of the former.

kT k (2)

2
) Sk ¢ I

Sep = (¢

The new algorithm is still very easily coded because of the use
of iterative and recursive methods. A great deal of the work

is done in MEXP7T, the routine menticned above.

One variant, PHATPE, of the algorithm uses MEXP7T for determin-
ing both ¢ and Q (see 2.2.3.), the other variant, PHATP, only
for the ¢ calculation. § is then calculated in a special sub-

routine (QKRULL) using the series expansion:

. 2 .3
Q=0q-h+aTq+oar+ & (D% + 2aToa + %y + ...

leading to the algorithm:

Tl - Q . h
_h h T
Tk+l X+ 1 {AT +T A} X+1 {(TkA) + TkA}
(3)
Sl = Tl
S =5 +T

k+1 k kt+1



11.

with the stop condition:

N 17118 1 <10 or x> 3

1

The numbers 35 and 10~ i depend on the word length of the com~

puter.

The choice between PHATP and PHATPE is quite hard. The main dis-
advantage of PHATPE is the largermemory requirement (35 resp.

12 % n2 words in matrices). It also contains quite a lot of mea-
ningless multiplications with zero. The only favour is the smar-
ter use of scaling in MEXP7T than in QKRULL. This makes PHATPE
more fool proof. Less care has to be taken of the choice of the
step size h. It can be difficult to choose h to get the best ba-
lance between the errors from algorithm (2) and algorithm (3) as
well as to get the optimal computing time without deap knowledge

of the matrix A and its eigenvalues.

There may be better methods for the computing of é. Numerical in-

tegration of:

by Simpson's method for instance is not investigated, and it is
possible to use the better scaling of PHATPE without needing the
2n x 2n exponentiation with a lot of zero multiplications, if that

scaling is specially coded.

Another difficult point is the stopping condition for the itera-
tion (2). This is linked together with the question:'When is a

solution accurate enough?"

There are mainly two possibilities:

1. Stop when S, ., - S is small, i.e. when the iteration has con-

verged.

2. Stop when the ATSk + 5 A+ Q is sufficiently small, i.e. when

Sk has come close to the real solution.



12,

The condition 1. is the only realistic alternmative. It is no
good to continue to iterate if no change is to be expected
other than that, caused by numerical inaccuracy. But 1. is
hard to relate to the wanted accuracy based upon the errors

in A and Q. A large change in S might not effect the sum of
ATS + SA + Q and it would then not be reasonable to require

S to be very accurate. The problem is analogue to that in usual
linear equations: Is the exactness of the solution to Ax =D

to be measured in b or in x? The condition number of A, which
can vary very much, is the proportion factor between the two

measures.

In the algorithms 1. is used, but alarm is given if 2. is not
fulfilled. Consequently, it is possible that the iteration could be
stopped earlier with sufficient resulting accuracy and a little
waste of time is thinkable.

It is also possible that the limit value does not satisfy the
equation very well, because of bad conditioning or because of

poor numerical accuracy.

In that case an improvement algorithm would be valuable; some
sort of iterative procedure with no or at least very small er-
rors (no first stage computions like ¢ and é), that takes ad-
vantage of a good starting value. The Runge-Kutta algorithm is
possible-to use for this purpose, but there are probably simpler
methods that also can guarantee convergence.Further research is

recommended.

For the PHATP and PHATPE routines it is necessary that A is stable
for convergence,and full advantage of the symmetry is perhaps not
taken.
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3.3, Finite transfer function method

In ref.[21] the variance calculation is described for a system
with single input, single output given as a transfer function.
This is easily generalized to get the covariance between two out-
puts from a single input system and also to get the covariance of
a multi input, multi output system. COLOMU (see appendix) performs
the latter calculation. An important fact is that common factors

in the transfer functions do not effect the result.

COLOMU contains very little internal storage; The only problem is
the inefficient way of storing a system as a multi-variable
transfer function. Fields with three indices are necessary. The
number of operations seems to be minimized in COLOMU, but it might
be possible that difficulties with accuracy arise. The algorithm
contains a lot of adding-subtracting operations where numerical
significance could be lost. Favourable is, however, that the terms

in the final addition [21].

I

1]
o

0

I

2
kT D1 OB

are positive.

The accuracy is often a problem in the recursive algorithms com-

pared with the iterative ones.

COLOMU also tests if the denominator polynomial is stable. If not,

no result is obtained.

If the system is given in the state variable form, S(A, B, C), the
transfer function must be computed before COLOMU is applicable.
This can be done by TOBSMVS, a Leverriére algorithm, the whole of
which is administrated by NEKABC. When only a few of the variance
or covariance elements are wanted, the computation can be greatly
simplified by a proper choice of the C matrix. Noteworth is that
TOBSMVS, which has considerable accuracy problems, computes the
first coefficients of the transfer function with the smallest er-
rors. The error increases fast in the last few coefficients. COLO-
MU, on the other hand, uses the last coefficient only once, but the

first coefficients several times. The two routines are in balance
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with respect to accuracy. No multiplicative error propagation

seems to appear.

If COLOMU is to be used to solve the general

AP+ PA+ Q=0 (L

equation, one more nontrivial step has to be performed. The

matrix Q must be rank factorized into:
BB! = Q
This can be done with the routine DECOMSYM [7 , p 114]. The

rank of Q gives the number of independent noise sources e; in
the model:

X = ATx + Be
y = x (C=1)

i.e. the number of columns in the matrix B.

This solution of (1) is administrated from the subroutine NEKATP.
An additional ENTRY to the routine is provided for the case when
the rank factorization is already done (but still C = I).

The method does not work for unstable A matrices and needs a po-
sitive semidefinite Q matrix, but takes full advantage of the sym-

metry of (1).
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4, COMPARISON OF THE RESULTS ON A SAMPLE OF TEST EXAMPLES.
RECOMMENDATIONS.

4.1. Description of the test examples.

1) n=2
(-3 0
A=
| O -2 | 1 1
=> S =
(6 5 ) 1 1
Q:
L5 B
Eigenvalues: - 3, - 2, stable
Infinite Q
2) n=2
(-2 -3
A =
§ =g =i 21,0833 ...  0.333 ...
= § =
(1 0 0,333 ... -0.1500
Q:
0o -1

Eigenvalues: -~ 6 ¢ 31 = - 11.56 ..., - 0.4k ... stable

Negative definite Q.

3) n=2
(-1 2 )
A=
kO _2J l 0
:>S=
PP 0 1
Q:
[ -2 o
Eigenvalues: -1, -2 stable

Positive definite Q.



(~0.1 1.0
A=1|0 0

(1 0
Q=|0 1
0

Eigenvalues: - 0.01, - 0.1 ¢+ 1.5 i

| 0 -2.26 -0.2

16.

Positive definite Q.

5 n=3
(-1 0
A= |-3 -3
L 0 0
(16 7
Q=] 7 6
20 -1

Eigenvalues: - 1, - 2, - 3

Indefinite Q.

6) n=3
f-1 0
A= |-3 -3
| 0 0
(1 0
Q=10 1
0 0

0
1.0
50.0... 4.641 704 6108 22.103 355 289
=> S = 9.710 185 8710 2.275 090 5357
0 13.875 452 678
0
1
stable
-3
n
=2 5 3
=> S = |1
20 3 2
-1
26
stable
I
-2 0.875 -0.125 ~1.25
=> P = [-0.125 0.16667 0.20833...
0 -1.25 0.20833... 2.541667
1

Eigenvalues: - 1, - 2, - 3

Positive definite Q



7 n=2yu
(-10 -7 -8 - 7)
A= |7 -5 -6 -5
- 8 -6 -10 -9
- 7 -5 -9 -10/
(152 82 124 131)
Q- 82 38 L9 52
124 L9 68 71
(131 52 71 76,
- 0.010 150 05
Eigenvalues: 0.843 107 15
- 3.858 057 45
-30.288 685 33
Q is indefinite.
8) n==~o
(- 0.1 0 0 0 0
1 -1.0 0 0 0
& 0 0 -2.010 10
0 3 0 -3.0 1
7 2 0 0 -10
[ 32 15 0 0 100
(-127.6 -31 0 0
-31 +2 -3
0 0 4 -10
Q:
0 -3  -10 6
-207 -2 -10 -1
| -59.8 -75 -5 0
Eigenvalues: -0.1, -1.0, -2.0, -3.0,

Q is indefinite.

17.

o o o O O

~50,

-207

-500

FEEN VN N

=> P =
-59.8)
~75
-5
0
~500
500 |

o O +H N

N O O O O N

~10.0, -50.0

O H O w

o O o o P o

o O O = O O

H O o F

o o +H O o o

o B O O O O




9) n=6

A is the same as in ex. 8.

18.

Q is the unit matrix (positive definite).

(1498, 5525
90,1989
2.3057
12.2917
7.3134
0.2488

10) n=38

o O O o o o

O oo N W
O O O © O o N

Eigenvalues: -1

Q is indefinite.

90.1989
21.1272
0.9204
4.5048
2.8109
0.0994

100 L
0.3 ©

o+ O

-10

o o o

2.3057
0.9204
0.2500
0.5000
0.4503
0.02u40

0
-3 -1
0
0
-0.1
0
0

0
00
0
0
0

-0.011

0

12.2917
4.5048
0.5000
1.8333
1.2698
0.0517

-0.5

=>

o O O o o o o K

+10 i, -2, -5, -10, -0.1, -0.01,

7.3124
2.8108
0.4503
1.2698
1.2580
0.0631

O O O o o o H+H o

-0.5

o O o o o H+H O O

O 0O 0O o O o o

O O O N O O O O

o O ©c o o o

OO O v O O O o O

.2488)
.099Yy
.0240
.0517
.0631
.0124

O N O O O O o o
N O O O O o o o

L

-




11) n =38

A is the same as in ex. 10.

Q is the unit matrix (pos.

-0.596
0.225
-0.205
0.408
0.566
0.065
-1.967
-1.080

0.037
0.314
-0.168
-0.207
0.225
0.146
1.266
-0.128

0.054
0.146
-0.661
-38.933
0.065
23.754
1020.775
1734.203

19.

def.).

0.123
-0.168
0.435
4.903
-0.205
-0.661
~17.567
-6.717

3.0u43
1.266
-17.567
-68663.982
-1.967
1020.775
173283.105
341093.451

-0.186
-0.207
4.903
27233.797
0.408
-38.933
-68663.982
-135574.,474

0.302 )
-0.128
-6.717

-135574. 474
-1.080
1734,203
341093.451
682191.932 |
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4.3. Recommendations

KJATP is the best general method if the computer is not very
small.

Very large systems are difficult to handle. Best routine seems
to be PHATP.

If eigenvalues, eigenvectors or transfer function have to be
camputed although use of this might be valuable.

Improvement routine would be useful if an exact answer is re-

quired.
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APPENDIX

Description of the following routines, available from the

library of Regleringsteknik, LTH.

page
ATPPAQ 1
KJATP
DECOM
SOLVE
IMPRUV
CLES
EIGENPAK
EIGATP
TOBSKAN
PHATP
QKRULL
MEXP7T
PHATPE
NEKABC
COLOMU
TOBSMVS
NEKATP
DECOMSYM

O W W ~3 3 OO0 O g o F O F w NN NN

Computer used: CD-3600, wordlength u48bit, cycle time 1.0us
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SUBRONTINE ATPPAQCA,UP,N,IFAIL,1A)

SOLVEe THE EQUATION (A)ToX+XeA=-Q» WHERE X AND Q ARE SYMMETRIC
MATRIAES,AND A 1S REQUIRED TO HAVE EIGENVALULS WITH NEGATIVe
REAL oART.,

AUTHOR,K« MORTENSSON 05/06-608.

A-MATRIX OF ORDER NXN(MAX 8X8).
QP-SYNMETRIC MATRIX OF ORDER NXN,WHEN CALLING ATPPAQ,QP SHOULD
CONTAIN Q,UPON RETURN QP CONTAINS FHE SOLUT1ON X.
IFAIL-RETURNED 0 IF THE ROUTINE HAS EXECUTED CURRECTLY,1 IF NUT.
1A-DIMENSION PARAMETER.
SUBRONTINE REQUIRED

MIART

DfMENqION P(36,37)sACTA,1A),QPCIA,1A),IBETACSH)»JBETACSIT)

SUBROUTINE KJATP  (AsQPsNsIFAILsIA)

SOLVES THE EQUATION A(TRANSPOSED)*P + P#A = -Qy WHERE P AND Q ARE
SYMMETRIC MATRICESs AND A IS REQUIRED TO HAVE EIGENVALUES WITH
NEGATIVE REAL PART.

REFERENCEy KJ ASTROEM,

AUTHORs PER HAGANDER 16/3-69

A- MATRIX OF ORDER NXN (MAX 8X8) |
QP- SYMMETRIC MATRIX OF ORDER NXN « WHEN CALLINGs QP SHOULD
CONTAIN Qs AT RETURN QP CONTAINS THE SOLUTION P.

IFAIL- RETURNED 0s IF THE ROUTINE HAS EXECUTED CORRECTLYsELSE 1 OR
2. NOTE THE ACCURACY MIGHT BE LOW IF THE EQUATION 1S ALMOST
SINGULARs AND THAT A SINGULARITY MIGHT BE COVERED BY NUMERICAL
INACCURACY., | ¥ i i

IA- DIMENSION PARAMETER.

MATRIX A IS NOT DESTROYED.

SUBROUTINES REQUIRED.
DECOM
SOLVE

DIMENSION B(36936) s IND(8) 9X(36) 9HL (36)
DIMENSION A(1AyIA) 90P(IA9 1A)

SUBROUTINE DECUM (NN,A»UL,ISING»IA)

REFERENS FORSYTHE,MOLER CcOMPUTER SOLUTION OF
LINEAR ALGEBRAIC SYSTEMS
AUTHOR,PER HAGANDER 5/9 68.
COMPUTES TRIANGULAR MATRICES L AND U AND PERMUTATIONMATIRIX P
SO THAT LU = PA,
- USING GAUSSIAN ELIMINATION wlTH PARTIAL PIVOTING,
. IPS=-VECTUR OF ORDER 50, RETURNED CONTAINING ROWINDICES,
A-MATRIX OF ORDER NNXNN (MAX(NN)» = 50),
UL-MATRIX OF ORDER WNNXNN (MAX(NN)=50),RETURNED CUNTAINING
THE TR1ANGULAR MATRICES L-1I AND U
ISING=ISING IS RETURNED 1 I¥F ANY OF THE RUWS OF A 1S ZERU
2 IF A IS OTHERWISE SleULAR
THE MATRIX A IS NOT DESTROYED.
DIMENSION ACIA,TA), ULCIASTA)
DIMENSION SCALES(50)
COMMON/BLOCKU/ 1PS(50)
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SUBRQUTINE, goLVE (NN,UL»BsX>»1A)

REFERENS FORSYTHE»MOLER cOMPUTER SOLUTION OF

LINEAR ALGEBRAIC SYSTEMS

AUTHOR,PER HAGANDER 5/9 68

SOCVES AX=8 USING UL FROM DECOM,

UL~-MATRIX OF ORDER NNXNN, FROM DECOM

[PS-VECTOR OF URDER NN CONTAINING PERMUTED ROWINDICES,

FROM DECOM. '

3-VECTUR OF ORDER NN, CONTAINING THE RIGHT-HAND VECTOR OF

THE SYSTEM OF EQUATIONS TO BE SOLVED. '

X-VECTOR OF ORDER NN, RETURNED CONTAINING THE SOLUTION,
MAX(NN) = 50, MIN(NN) = 2.

THE MATRIX UL AND THE VECTORS B AND IPS ARE .NOT DESTROYED.

DIMENSION ULCIA,1A), BCIA), X(IA)
COMMON/BLOCKU/ IPS(50):

SUBROUTINE IMPRUV (NN, A» UL, B» X»ISINGsIA)

IMPROVES AN APPROXIMATE SOLUTION TO MACHINE ACCURACY USING SOLVE,
AND UL FROM DECOM,

A-MATRIX OF ORDER NN,

UL-MATRIX OF ORDER NNXNN,» FROM DECOM,

B-VECTOR OF ORDER NN,

X-VECTOR OF ORDER NN» CONTAINING THE APPROXIMATE SOLUTION»
MOSTLY FROM SOLVE,

RETURNED CONTAINING THE MORE ACCURATE SOLUTI]ION.
ISING-ISING IS RETURNED 3 IF IMPRUV DOES NOT CONVERGE,
THAT IS IF A IS ALMOST SINGULAR,

MAX(NN) = S50, MINC(NN) = 2,

THE MATRICES A AND UL AND THE VECTOR B8 ARE NOT DESTROYED,

NEEDED SUBROUTINES
SOLVE

DIMENSION ACIA»IA)s ULCLIA,IA)» BCIA)» X(IAD)» R(50),» DX(50)
DOUBLE PRECISION SUM
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SUBROUTINE EIGENPAK(AnN;lAanEVR:EVInVECR:VECl:lNDlC)

THIS SUBROUTINE FINDS ALL THE EIGENVALUES aND THE EIGENVECTORS OFfF
A REAL GENERAL MATRIX p OF ORDER N.FIRST IN THE SUBROUTINE SCALE
THE MATRIX IS SCALED SO THAT CORRESPONDING ROWS AND COLUMNS ARE
AppROXIMATELY BALANCED AND THEN THE MATRIX Is NORMALISED sO THAT
THE VALUE OF THE EUCLIDIAN NORM OF THE MaTRIx 1S gQUAL TO ONE,
THE EIGENVALUES ARE COMPUTED BY THE OR DOUBLE-STEP METHOD IN THE
SUBROUTINE HESQR,THE EIGENVECTORS ARE COMPUTED BY INVERSE ITERA-
TION IN THE SUBROUTINE REALVE»FOR THE. REAL EIGENVALUES,OR IN THE .
SUBROUTINE COMPVE»FOR THE COMPLEX EIGENVALUES.
REFERENGCE»ALG«243,CACM»VOL115NUMBW12,68,

AUTHOR»K «MORTENSSON 21/03-69.

A-MATRIx OF ORDER NXN (N MAX 20).
IA-DIMENSION PARAMETER,

. T_NUMBER OF BINARY DIGITS IN THE MaNTISSp OF SINGLE PRECISION
 FLOATING=-POINT NUMBER.(FOR CDC=-3600 T=36).

EVR-VECTOR OF DIMENSION N,»CONTAINING THE REAL PARTS OF THE EIGEN-

VALUES. . .
EVI-VECTOR OF DIMENS]ON N»>CONTAINING THE CORRESPONDING IMAGINARY

PARTS OF THE EIGENVALUES.
VECR-MATRIX OF OFDER NXN,CONTAINING THE REAL PARTS OF THE NORMA=
L1ZED EIGENVECTORS,EIGENVECTOR NUMBER I IS FOUND IN THE FIRST N

POSITIONS OF COLUMN 1,
VECI-MATRIX OF ORDER NXN,CONTAINING THE CORRESPONDING IMAGINARY

PARTS OF THE EIGENVECTORS.
INDIC=-VECTOR OF DIMENSION N INDICATING THE SUCCESS OF THE SUgROU~

TINE AS FOLLOWS.
VALUE OF INDIC(I) EIGENVALUE I~ EIGENVECTOR I

0 NOT FOUND NOT FOUND
1 FOUND NOT FOUND
2 FOUND FOUND

THE REAL EIGENVECTOR IS NORMALISED SO THAT THE SUM OF/LHE'SQUARES
OF THE COMPONENTS IS EQUAL TO ONE e | [

THE COMPLEX EIGENVECTOR IS NORMALISED SO THAT ]ngcoMPONENT WITH
THE LARGEST VALUE 1IN MODULUS HAS 1T7S REAL PART EQUAL TO0 ONE AND
THE IMAGINARY PART EQUAL TO ZERO. e

THE ORIGINAL MATRIX A IS DESTROYED IN THE SUBROUTINE,

SUBROUTINE REQUIRED
SCALE
HESQR
REALVE
COMPVE

DIMENSION A(IA»IA),VECR(IA,IA),VECI(IA,1A),EVR(IA),EVICIA),

1INDICC(1A)

DIMENSION IHORK(?O):LOCAL(QO)pPRFACT(20):SUBDIA(20):HORK1(20):

1#0RK2(20),WORK(20)

JOUBLE PRECISION D1,D2,D3,PRFACT
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DIMENSION A(1A,]A)

AL,

SHRWOTINE B st (AR eN s [FAT] o« TAY

SGLUTTLON 0F ACTHANSHOSE D) %+ pPn + () = U HY USE OF EIGENVALUES
Nodth FLOGENMYECTOWS, (S YMedbE T C .

EEEREMSE o Ky A0 T NS SN,

ATH R e 2 HAGARI R A2 /85 Y,

B AR LR OF e DE = NXN e NOT DESTROYED o

Wiv= MATI X OF ORDFER NXNy KETURNED CONTAINING THE SOLUTION P,

[ A= DT NS T O e N amb Jiie,

MAX (N =10

SUBROUTINE TOBSKAN(NN,A,C,T,P,S,1A)
AUTHOR PER HAGANDER 30/10 68
THIS SUBROUTINE COMPUTES FOR A GIVEN :SYSTEM S(A,B,C,D) THE

TRANSFORMATIONMATRIX 'TO OBSERVABLE CANONICAL FORM. |
THE COEFFICIENTS OF THE CHARACTERISTIC ‘EQUATION ARE 'COMPUTED '100.

'THE ROUTINE 'CAN BE ‘USED TC DETERMINE ‘THE TRANSFORMATIONMATRIX TO

THE CONTROLLABLE CANONI!CAL FORM. i

-
-~

A» T, S ARE MATRICES 'OF ORDER NNXNN.
C AND P ARE VECTORS ‘OF ORDER NN.
MAX(NN) = B0, y

T IS RETURNED :CONTAINING THE TRANSFORMATIONMATRIX.

'P IS RETURNED 'CONTAINING THE COEFFICIENTS OF THE CHARACTERISTIC

EQUATION== SweN & P{1)#Sse(Nr1) + ,...¢ P(N) ®m 0.

'S IS USED IN THE COMPUTATIONS AND THE RETURNED ELEMENTS ARE

A CHECK ON 'THE ROUND{NG OFF ERRORS, :S :SHOULD THEORETICALLY BE 0.

IF THE ACTUAL INPUT MATRIX IS A-TRANSPOSED INSTEAD 1OF .A; AND
THE ACTUAL INPUT VECTOR 18 B INSTEAD \OF .C, THEN ‘THE RESULTING
T 1S THE INVERTED, TRANSPOSED TRANSFORMATIONMATRIX ‘TO ‘TRE '‘CONTROL -~

LABLE CANONICAL FORM'

'THE MATRIX A AND THE 'VECTOR C ARE NOT DESTROYED,

TA)) 'CUIAY, TCIALIA), PCIAY,SCIASIA)
DOUBLE PRECISION X(50)
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SUBROUTINE PHATP (AsQPsNy IFAIL sHy IA)

INTEGRATES THE EQUATION DP/DT = A(TRANSP)#P + P#A .+ Q
TO STATIONARITY USING FI=EXPUlA#H) AND QKRULL.
AUTHORs PER HAGANDER 19/4 69.

A= MATRIX OF ORDER NXN INPUT NOT DESTROYED.
QP=-MATRIX OF ORDER NXN CONTAINING Q@ AS INPUT9 RETURNED CON=:

" TAINING THE SOLUTION P.
“MAX(N) = 20,

IA - DIMENSION PARAMETER.
H- IS THE STEPLENGTHs NOTE THE POSSIBILITY TO USE H FOR MATRIX
SCALING.
IFAIL=IF THE ROUTINE HAS EXECUTED CORRECTLY,
IFAIL IS RETURNED =0,
IF QKRULL WAS BADy IFAIL IS SET =1y AND RETURN TO CALLING
PROGRAM, ' ‘ :
NOTE THAT QP IS NOT CHANGEDs THUS DECREASE H AND CALL PHATP
AGAIN.
IF THE NORM OF THE CHANGE OF THE SOLUTION P AFTER 20
ITERATIONS STILL IS"MORE THAN E=7, IFAIL IS SET =10,
IF THE DIFFERENCE BETWEEN THE INPUT @ AND THE RESULTING Q
HAS A NORM GREATER’ THAN E=7y ~IFAIL ‘IS INCREASED BY 100,™ ~

SUBROUTINES REQUIRED _
NORM A
MEXPTT
QRKRULL

DIMENSION A(IAyIA)sQP(IAsIA)

DIMENSIO? S(ZOoZO)950(20020)9FI(20v20)qRR(20)

EPS =1.E~- :

SUBROUTINE QKRULL (AHsQHsSeNsIAsIFAIL)

INTEGRATES EXP (A T(TRANSP)) s Q 3 EXP(AT) OVER A SAMPLINGINTERVAL. H
BY SERIES EXPANSION. : ) ’
AUTHORs PER HAGANDER 19/4 69

AH=MATRIX OF ORDER NXN INPUT NOT DOESTROYED.

QH=MATRIX OF ORDER NXN INPUT NOT DESTROYED. A

© 5 -MATRIX OF ORDER NXN  OUTPUT. o
UKRULL(AH;QH;QH;N;IA,IFAIL) OVERWRITES QH BY S¢~

MAX (N) = 20 L ol

,11

IA =DIMENSIONPARAMETER.
IFAIL IS RETURNED =0 IF THE SERIES EXPANSION HAS CONVERGED IN
35 STEPSs OTHERWISE =1.

SUBROUTINES REQUIRED
NORM

DIMENSION AH(IA9IA) 9QH(IA9IA) 9S(IAsIA)
DIMENSION T(20920)95LASK(20’20)
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"iSUBROUTlNE!HEXP?T(A:B;N;IA}NOIR‘CE)
/COMPUTES B=EXP(A) BY ORIGIN SHIFT AND SERIES EKPANSION'US]NO 7

TERMS. ;
AUTHOR, K+ MORTENSSON 1571167+

A=-NXN=-MATRIX,
B-NXN=MATRIX,
IA-DIMENSION PARAMETER.

" _ NOTRACE=0 MEANS THAT NO TRACE:

:COMPUTATION WILL BE. PERFORHED..f

© 'MAXIMUM ORDER OF A AND 8=20.

THE MATRIX A IS DESTROYED. .

SUBROUTINE REQUIRED
NORM

DIMENSION ACLA,1A),BC1A»1A),C(7,20,20)

SUBROUTINE PHATPE (AsQeNsIFAILsHsIA)

INTEGRATES THE EQUATION DP/DT=A(TRANSP)#P + P*A -+ Q TO STATIONA=-
RITY USING THE EULERMATRICES.
AUTHORs PER HAGANDER 19/4 69.

A- MATRIX OF ORDER NXN INPUT  NOT DESTROYED. .
QP-MATRIX OF ORDER NXN CONTAINING @ AS INPUTs RETURNED
CONTAINING THE SOLUTION P. .

MAX(N) = 10,

IA=-DIMENSION PARAMETER.

H=- IS THE STEPLENGTH.

IFAIL-- IS RETURNED =0 IF THE ROUTINE HAS EXECUTED CORRECTLY.

SUBROUTINES REQUIRED
- MEXPTT
NORM

DIMENSION A(IA9IA)sQ(IA9IA)
DIMENSION S(10510)950(10910)sFI(10910)sRR(10)9EA(20920) sEB(20920)
EPS =1.E-7

v
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SUBROUTINE NERABC(AsHeConNaNBeaNCoaTaPeVeTIFAILeIAsaIH«IC)
COMPUTES THE COVARLANCE MATRIX OF THE OUTPUT OF THE SYSTEM
X(DOT)=A*X+BHE
Y= X
HY USE OF THE ROUTINE COLOMU, IF C IS THE IDENTITY MATRIX, USE
MNEKAB (ENTRY T0 NEKATRP) INSTEAD. IF THE TRANSFER FUNCTION IS
GIVENS USE COLOMU DIRECTLY.
ALUJTHOR s PER HAGANNDER 3/9 69

A IS MATRIX (OF ORDER NXN NOT DESTROYED

H IS MATRIX OF ORDER NXNH MOT DESTROYED,

C 1S MATRTIX OF ORDER NCXN NOT DESTROYED,

P IS VFECTOR OF ORDER N RETURNED CONTAING THE DENOMINATOR
OF THE TRANSFER FUNCTIUN G

' 1S MATRILX OF ORDER  NXNCXNK (DIMENSTUN IA«ICeIA) RETURNED
CONTAINING THE NUMERATOR OF THE TRANSFER FUNCTION 6=
B{loeae)tSHiE(N=1)+ +B{(Neasse)

SHIN+P ()11 H#SH% (N=] )+ saeecasanestP (IN)
[FATL TS RETURNED 0  IF A 1S STABLE
1 IF A IS UNSTABLE
MAX(N)=20 MAX (NH«NC) =N,
V IS MATRIX OF ORDER NCXNC RKETURNED CONTAINING THE COVARTANCE
MATRT X «
TA«IBLTC ARF DIMENSION PARAMETERS.

SUBROUTINES REQUIRED

NORM

TOBSMVS

COLOMU
DIMENSTON A(IA«IA) aB (1A B)sC(TICeIA)eT(TA§ICsLA)«V(IC,IC)4P(IA)
DIMENSTON Q(20)

SUBROUTINE COLOMU(AsBsNyNHBoNCoIFAIL sVealAsIC)

CALCULATES THE COVARIANCE MATRIX FOR THE SYSTEM WITH THE TRANSFER
FUNCTION G=

B(loese) #SH# (N=1)+0eesaoonca*B(Nogsso)

SHANFA (1) #S## (N=1)+*sesacoseetA(N)

REFERENCE Ko Jo ASTROEMs  STOCHASTIC CONTROL THEORY.

AUTHORs PER HAGANDFR 24/6 69,

A IS THE DENOMINATOR POLYNOMIALs, VECTOR OF ORDER Ns DESTROYED.
B IS THE NUMERATOR MATRIX POLYNOMIALs MATRIX OF ORDER (NsNCsNB)
B IS ALSO DESTROYED.

V IS THE RESULTING COVARIANCE MATRIX s ORDER NCXNC.

MAX(NC)=20y NO LIMIT ON Ne¢ MAX(NB)=N,

IFAIL IS 0 [IF A STABLE.

IFAIL IS 1 IF A IS INSTABLE.

SUBROUTINES REQUIRED
NONE

DIMENSION A(TIA) oB(IASICoIA) sV (ICsIC) +BETA(204+20)
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SUBROUTINE TOBSMVS(A,C,NA,NC,T,P,SN,1A,IC)

AUTHOR, PER HAGANDER 8/12 68,

THIS SUBROUUTINE COMPUTES FOR A MULTIVARIABLE SYSTEM Stp»gscrD)
THE CUEFFICIENTS OF THE CHARACTERISTIC EUUATION, THAT IS THE
DENOMINATOR OF THk TRANSFER FUNCTION,

P IS RETURNED CONTAINING THESE COEFFICIENIS Su IHAI THE POLYNU-

MIAL 1S
SeoNA + P(i)uSﬂﬂ(NA—i) 4+ sec00essseccet P(NA=1)eS5 + P{NA)

MATRIX CONTAINING

T(1,15J9) = C(1sd)

TJ(25ese¢) = CoA + P(i)ecC

T(3,es¢) = CoAsA + P(1)eCoA + pP(2)9C
ETC. '

1S ALSO COMPUTED

THE NASNC RUWS OF THE COLUMN T( 1ses.)

T( 25090

0 008 0 000

T(NAI.).)
SPAN THE ORTHUGUNAL COMPLEMENT SPACE UF IHE NONOBSERVABLE SUg-
SPACE, THUS S(As8sCsD) IS 08SERVABLE IF THE RANK OF THIS MAIRIX
IS NA, (CF. SUBROUTINE OBSTEST,)

THE CUEFFICIENT MATRICES gl OF THE NUMERATOR POLYNUMIAL UF THt
"TRANSFERFUNCTION ARE EASY TO OBTAIN FROM Te.
(CF. KJA, REGLERTEORTI o)

B1(1,J) = TC 1gI»K)eB(K,J) » SUM OVER K,
BNCI,J) = T(NA»I»K)eB(K»J) » SUM OVER Ko
0BS.

THE TRANSFER FUNCTION THUS OBTAINED
Blasbq(NA’l)*.oo-cloooooo.oooooo..o.too*BN

[ ————————————— R A e

SeONA + P(1)8588(NA=1)40cessvsescesstP(NA)
MAY CONTAIN NOT CONTROLLABLE OR NOT OBSERVABLE MODLES,

IF A IS REPLACED BY A-TRANSPUSLD AND
C 1S REPLACED BY B-TRANSPOSED
THEN THE ROWS OF THE COLUMN MATR]X BUILT BY T SPAN THE

CONTRULLABLE SUBSPACE.
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NUMERICAL SOLUTION OF ATS + SA+ Q =0

Per Hagander

ABSTRACT

A survey of techniques to solve ATS + SA+ Q = 0 1is presented,
and nine algorithms are coded and tested on a batch of examples.
Which algorithm to be recommended depends mainly on the order

of the system.



1. INTRODUCTION

In recent time [2,4,5,6,9,13,14,19,20,21] great attention is

drawn to the equation
ATS + sA + Q = 0 (1)

solved for S with Q symmetric of order n x n and thus also the
solution S. . : ‘ 1. owu

This equation plays a central role in the theory of stability

for linear continuous systems. It also arises in the pole assign-
ment [11], in the sensitivity analysis [2d] and when evaluating
loss functions in optimal control and covariance matrices in fil-
tering and estimation for continuous systems.

The more general equation

ATs + sa + Q, - sBQ, 'B"s = 0 (2)

appearing in spectral factorization [1], estimation and optimal

control, has been solved by iteration of (1) [10].
Another generalization of (1) used in e.g. network theory
ATS + SB + Q =0 (3)

is possible to solve by slight modifications of some of the

methods indicated below.

The to (1) corresponding equation for discrete time systems
Y

¢TS¢ + Q=S5 (n)

has somewhat different properties and use has been made of trans-

formations between the two equations.

In many of the applications above it is necessary to solve (1)

many times. The equation is therefore worth severe numerical
interest.

It is my intention to give a survey of possible methods and to
present algorithms. These algorithms are coded and tested on a

set of examples and their accuracy and computing time are com-

pared. All programming was done in FORTRAN for Univac 1108.
The algorithms are grouped in three sections:

1) Direct methods: Solution of a large system of linear equa-

tions by use of general methods.



2) Transformation methods: Use of the structure can be taken
by similarity transformation of the A-matrix to some cano-

nical form (Jordan or diagonal form, companion form, Schwarz'
form). Some algorithms use the same technique with-

out explicitly performing the transformations.

3) Iterative methods: The basic idea for these methods is that
equation (1) is transformed to equation (4) either by samp-

ling or by introducing a bilinear transformation.
The equation

S .. = 65,4 + O (5)
k1 T ¢ PP T Q

is then iterated to stationarity by an accelerating formula.

2., COMPUTATIONAL AND PROGRAMMING ASPECTS

2.1. Direct methods

2.1.1. The equation (1) has n(n+1)/2 unknown variables. By orga-
nizing S and Q as vectors the system 1s rewritten as common |linear

equations

Hs = g (6)

and this can be solved by general methods, like Gauss elimination.
A can be formed from A either by use of logical operations [5]

or by use of an indexing matrix [4] or vector. The index vector

form is found slightly more efficient.

If X are the eigenvalues of A, then the eigenvalues of ./3 are
sums A;+h. . This implies that (6) certainly has a unique solution
if A is stable. If A is unstable, A might be illconditioned

or singular. The original equation (1) is however then also ill-
conditioned or singular. The equation can be solved for different
Q-matrices (g-vectors) with little extra effort without inver-
sion of A [8]. This can for instance be valuable when improving

a solution.

Algorithm 1 is utilizing these ideas. The programming is easily
done. The main disadvantages are that the memory requirement is
(n(n+l)/2)2 cells, and that the number of multiplicative opera-

tions for large n is of the order n6/24.



2.2 Transformation methods

2.2.1. By transforming A and AT to Jordan form it is possible to

express the solution S in the eigenvalues and eigenvectors of A

and AT [12]1. This is greatly simplified when A is diagonalizable:

Theorem 1 [12]
Let U and V be the matrices that diagonalize A and AT:

A = U lpy AT = vy ipy D = diag {xy, +v5 A}
~ _ _l ~ _ N
Then s = v 1sy (7)

This theorem is used in algorithm 2.1, thus requiring complex
arithmetic. Do 1o The main drawback is however the eigenvalue
eigenvector calculation for the nonsymmetric A. This is done in
an up-to-date QR-algorithm with inverse iteration, but close ei-
genvalues lead to overwhelming problems. No advantage of symme-
try can be taken. The appreach is out of the question in other
cases than when eigenvalues and eigenvectors are already obtained

or wanted.

2.2.2. Eigenvectors can also be used in another way applicable even

to the quadratic equation (2) [15,181.

Theorem 2 [18]
If jiL El
°1
are the n eigenvectors corresponding to the eigenvalues with ne-
gative real part of the 2n x 2n matrix:
-1.T
A —BQ2 B (8)

T
_Ql A

then the solution of (2) is

S = [eys wves 0 1By wuns bn]‘l (9)

The computational effort is simplified by the observation:



Corollary.
bet _{é = i for real eigenvalues Ai. and

&1 i
jﬁ; = Re j%ﬁ + Im ji_ and f}j{ = Re ji_ - Im Eb;
& i ©i Ei+1 i i
for pailrs of complex elgenvalues Ai, Ai+l’ (Al+l=ki),

-1

then S = [gy, +.n) gn}[fl, " @ 3 fn] (10)

Algorithm 3 is based on this corollary. Real arithmetic can be
used but otherwise the remarks on algorithm 2 still hold. A new
Q needs a recomputation of the whole eigenvalue problem. The
method is only of theoretical interest for equation (1) but is

reasonable for equation (2).

2.2.3. The companion feorm and its transformations lead to inte-
resting algebraic manipulations and probably also to the fewest

operations for large dimensions.

One method emanating from Nekolny and Benes [16] deals with the
transfer function (G) of the system S(AT,B,C). The covariance of

the output of the system for white noise input is

vV = CSCT (11)
if S is the solution of (1) with

Q = BBT (12)

Astrdm [23] has described this for single input, csimgle “outpub ,sys-

algorithm. These can be extended to the multivariable case and

used for solution of (1).

This is done in algorithm /%3 including decomposition of Q [8,
p 1141 and computation of G(s) for S(AT,B,I) by a Leverrier
algorithm [7].

Full advantage of symmetry is taken, but different Q matrices are

difficult to handle.



2.2.4. Other authors have. b _ = . used the companion
form to obtain an explicit solution without performing the trans-

formation.

Smith ¥23a] developed an expression in pobwers of A, and Miller
[14] used the matrices Ai from the Leverrier algorithm and

achieves a nice formula:

Theorem 3 [14]

Let s 1 - -
a ®e= g tr AAk—l a, = 1, Ao = T
Ak = AAk—l *al k= 1y was (13)
and let c be the solution of
1/2
He = 0 (1)
0
where H is the Hurwitz matrix, then
S = I «c. z (=1)" AT.QA,. . (15)
5=0 B 1%°2)-1

Note that Ai = 0 for i » n, because of the Cayley-Hamilton theorem.
From numerical point of view the formula is not a satisfactory

solution.

Jameson ([9] and [20]) developed and tested a procedure closely

related to theése Leverrier computations:

Theorem 4 [9]
Let L and G be defined by

6 = A - a AL+ (c1Baz (16)
il n

L=C +aC, 4 *+...7a ,C (17)

where

c, =

c, = alc,_; + a1 k= 2,...,n (18)

Then

s = g1 pf (19)



Algorithm 5# solves (1) by this theorem. It is sensitive to round
off errors, Jameson used triple precision accumulation in his
tests, and the main part of the computation must be redone for

new Q:s,

2.2.5. By using theDan}%Eyéki;algorithm [7], Molinari [13] re-
duced some of the difficulties with the companion form transfor-

mation.

Theorem 5 [13]

Let T transform A to the companion form A.
TAT T = A
and let
Q=17Ttar? f s=7Tgr?
Define the vector b by
1T K i=1 [ﬂ]
. =Ly s
l 2 k=1 2}_,35 2
bi = (20)
1294
1 2n ; 25 ( 1)k+l g 1= [%i%] +1 n
- . I '— — + - ,l..’
\ 2 =1 n+tl-k,21i-n-1+k 2
and x as the solution of
Hx = b

with H as the Hurwitz matrix.

Then the first column of S is obtained by

N _ i+l

8;1 = (-1) X (21)
and the other n-1 columns by the recursion for j=1,...,n-1:
sij+l = _qij + pjsil + pisjl = Si+1j 1=1,...,0-1

g . = - .+ . + .

Sn;j+l qnj P]Snl Pnsjl (22)

Algorithm 265 is based on this work, which is an improvement of the
foregoing. A general companion form might be used, not only the

canonical forms corresponding to the transfer function, and this



decreases the computation necessary and increases the pivoting
possibilities. New Q-matrices can be solved with reasonable ef-
fort and an improvement routine can be applied inside the com-

panion form transformation.

2.2.6. The Schwarz and Routh [2a,2¢,17,19] canonical forms have
been used in order to formalize the above algebra. The trans-
formations are usually done via the companion form, and show
the same difficulties. The solution is simple only for diagonal

Q and a few other special cases.

2.3 Iterative methods

2.3.1. The solution of (1) can for stable A be written as [3]

© L
s = 5 &t g o 4t (23)
o
Davidson and Man [6] integrated (23) by the simple Euler approxi-

mation and got
5. =20

= 78,4 + 0 (24)

n
where ¢ = exp{A:h} and Q = h*Q, or accelerated

s =G
N K k

. T
41 = (97 s + 5 (25)

S K ¢ K

and with || Siby = S I < 0% as a possible stopping conditien.

Algorithm 7 is used to test the above formula. The properties specified
in [6] can be verified but one important fact is lacking. S, does not
converge to the correct solution of (1) if h is not chosen very small.
The Euler approximation must be valid. On the other hand, the repre-
sentation of ¢ will then contain less information and large round off
errors will result. The iteration must be redone for new Q:s. Molinari

[13] refers to 7 as the commonly preferred algorithm.

2.3.2. It is also possible to view (25) as +the solution of

_QS.:AT3+SA+Q (26)

dt



which can be integrated either by Runge Kutta or other conven-

tional methods or by using the linearity for a fundamental matrix

approach.
-A 0 (>:22T)‘l 0
2(t) = exp t - T | = 27)
Q A a1 o2
; ) T
S0 = [555(0) + 5,,(0) 800 1,7 (0)] (28)
. ) T v T
Define ¢ = 1I,, (h) and Q = zzl(h) P (h) then (28) can be re-

written as (24).

Algorithm 8 is based on the accelerated version (25). ¢ is com-
puted by series expansion with 7 terms and automatic sealing.
v

Q is obtained by the iteration:

" _h T
Tl = Qh Tk+l = {(TkA) + (TkA) } (29)
k+1
Q = Ty Qeer & U ¥ T
. . . . v BhoaTe At
which is obtained by series expansion of Q = [f e Q e dt.
o)

No sealing is performed and the number of terms T, is maximied

to 35. The stopping condition foru29J is

-7
T 1710l < 10

Y]
Both the Q computation and the iteration must be redone for new
N

(30)

Q. Better methods for the Q computation might exist.

2.3.3. The two methods just described can be viewed as trans-

forming equation (1) to equation (4) by
A > ¢ = exp (Ah) (31)

Another possibility to go from (1) to (4) by introducing a one to
one transformation mapping the left half plane on to the unit
circle is the bilinear transform [2b,19,21b,22]

1

A~ ¢ = —(A+I-a)(A-TIa) (32)

Q is then transformed to

x 1

§ = (AT - ary loea-an)i/2a



Algorithm .9 wuses the acceleration formula to solve (4) obtained
in this way [21b].

The convergence rate of 8 and 9 depends on the choice of a
and h and on the spread of the eigenvalues of the matrix A. The
eigenvalues of $,2., are respectively:

hx. a + X
_ 1
Z. = e and Z., =

The absclute largest eigenvalue, A rax® times h is limiting for the con-
vergence of the a computation in 8, and the absolute smallest one, Anin?
times h determines the convergence of (25). This implies that smaller h
means better b but more iterations of (25).

. [y = “l..— . . . ' .
In algorithm 9 the choice a = VA . "+ A _ minimizes m?xl 74 |, for real

s thus leading to best convergence of (25).
The operations involved in . 9° are simpler than in 8, and rough
calculations with only real eigenvalues indicate that 9 mana-
ges a far larger : spread in the A-eigenvalues, i.e. more 1ll-
conditioned problems. A bad choice of a seems to be less critical than

a bad choice of h.
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3. THE NUMERICAL TEST
3.1. Test Examples

The algorithms are all tested for 17 different A matrices ranging in
order from 2 to 10. The sample contains both stable and unstable A,
as well as matrices with close eigenvalues and illconditioned matri-
ces with a large eigenvalue spread. Some of the matrices were used in
[2 b, 5, 13 or 20] but most of them are standard examples for matrix
inversion and eigenvalue calculation. A few of the algorithms are al-
so tested for matrices of order 20.

Six different easily generated Q matrices are used for each A matrix.
Some additional testing is done with Q matrices designed to give

simple; nteger valued S matrices.

The test batch is listed in Appendix 1.

3.2. Numerical Results

The results of the test are summarized in Table I. The accuracy is
measured by comparing the solution with the solution of algorithm 1

in double precision.

For n = 20 the accuracy was evaluated as the error obtained when the
camputed S was substituted into (1). The accuracy of algorithm 1 in

double precision is also estimated in this way.

When the two ways of measuring was compared for the low order systems
no great difference was found. Call the first method "accuracy in S"
and the second "accuracy in Q"! For illconditioned A matrices some
divergence could happen in the test batch mainly so that the "accu-
racy in S" was one or two digits better than "the accuracy in Q". For

the worst A matrices the difference could be even larger.

On the other hand for the specially designed Q matrices giving simple
integer valued S matrices the "accuracy in S" was often worse than the

"accuracy in Q".

When these differences occur they most often do it for all algorithms

at the same time.
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For fixed matrix order the results show considerable variation depending
on the actual A and Q. The figures in Table I represent an average for
the test batch. Matrices giving failure exit are not included in the

average.

It is not possible to draw general conclusions about new test examples.
The only ninth order A matrix tested is for instance very simple, resul-

ting in better accuracy than for the eighth order average.

Generally can be said, that equation (1) is difficult for very large
systems, especially if A is illconditioned, that is mostly if A has a
large spread in the eigenvalues. It also needs to be stated that diffe-

rent Q matrices can "hide" these difficulties to varying extent.

3.3. Discussion of the Results.

The described methods are tested as general purpose algorithms and as
such there only remains two, algorithms 1 and 9.

The eigenvalue algorithms are neither accurate nor fast, and they often
fail if two eigenvalues are close. Algorithm 3 is out of the question
although the computing time could be almost halfed: Instead of compu-
ting all eigenvalues and eigenvectors of the 2n x 2n matrix, it is suf-
ficient to compute only the n eigenvectors corresponding to the stable
eigenvalues. Algorithm 2 is probably the best of all methods if the
eigenvalues and eigenvectors of A are known or useful in the future

analysis.

Algorithm 5 has average properties, rather slow for small orders, pro-
portional to nL+ for large orders, memory requirement proportional to
n2 and with bad accuracy for the difficult large order problems. Algo-
rithm 1 is better for small orders and algorithm 9 for large orders.

Algorithm 4 has properties similar to those of algorithm 5. It has,
however, some advantages. If Q is not full rank the calculations are
considerably easier. Very favourable is also if G(s) is known or other-
wise wanted. Moreover, if V = cscl and not S is the quantity desired.
No other method should be thought of, especially if C is just a ve..c-

tor.

Algorithm 4 needs positive semidefinite Q and stable A.
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Algorithm 6 needs long code but small internal storage. Although there
are pivoting possibilities the achieved accuracy is too bad. Double
precision would make it possible to solve the equation (1) for higher
orders, but even in double precision large systems are impossible to
handle. The difficulties arise from the companion form representation.
The execution time is by far the shortest, proportional to n3. Noncyc-
lic matrices, like the ninth order example, are not possible to trans-
form to companion form, and failure exit of algorithm 6 results.

Algorithm 9 is always better than 7 and 8 both in accuracy and compu-
ting time. The figures presented are obtained for good values of the
parameters a and h respectively. It is found that with a minimum of
d priori knowledge of the system, both a and h can be estimated suf-
ficiently well to give only a slight increase in execution time and
round off errors. All the iterative methods give error indication for

unstable A matrices.

Algorithm 1 is the best and easiest for small systems, and no free pa-
rameter a or h has to be chosen. For large systems, however, the exe-
cution time is proportional to n® and the internal storage proportio-
nal to nu. It was not even possible to test for n = 20 on the big
Univac 1108 machine with more than 40k words available memory.

4. RECOMMENDATIONS

Simpliest and best method for small orders is the direct solution 1.
For large orders, say more than six or seven, other methods superseed
it, for instance the iteration method 9. The fastest algorithm is Mo-

linari's (6), which, however, is too sensitive to round off errors.
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6. APPENDIX:

The A matrices of the test batch were:

(eigenvalues below)

2%2 -3 0 -2 -3 -1 42
b 2
0 -2 -5 -10 0 =2
(-3,-2) (-11.56,-0.44)  (-2,-1)
3x3 -0.1 1 0 =1 6§ -3 -20 10 10
0 0 1 , 18 -2 Iy ; 18 17 22
0 -2.26 -0.2 o 0 -2 13 -13 -17
(-0.1#1.5i,~0.01) (-3,-2,-1) (-1,-0.5+0.871)
4l -10 -7 -8 -7 -8 1 0 © -4y 5 0 -3
-7 -5 -8 -5 19 0 1 0 0 -4 3 5
-8 -6 -10 -9 22 0 0 1 -5 3 -4 0
-7 -5 -9 -10 -1 0 0 O -3 0 55 -
(-30.3,-3.86,-0.84,-0.010)  (-5,-1#i,-1) (-12,-2,-1451)
= 1 —
6x6 0.1 0 O Q0 0 O 1 0 0 0 0 1
11 -1 0 0 0 O 1 1 0 0 0 -1
0 0 -2 10 10 5| -1 1 1 0o 0 1
0 3 0 -3 1 0 1 -1 1 1 o0 -1
7 2 0 0-10 0] -1 1 -1 1 +1 1
32 15 0 0 100 -50 1 -1 1 -1 1 -1
S ! T |- —
(-50,-10,-3,-2,-1,-0.1) (-3.03,+1.3121.201,+1.47+0.353,

+1.48)



8x8

(-1 -5 3 7 -9 -2 -8 0
20 -1 0 0 0 0 0 0
0 0 -2 2 -3 -100 -0.3
0 0 0 -5 0 0 0 0
0 0 0 0 -10 0 0 0o |’
0 0 0 3 0 -0.1 0 0
0 0 0 -2 00 0 -0.01 1
| O 0 0 0 0 0 0 -0.5)

(_10’ -5’ -2, _lti, —005, -0-1, —0101)

(-0.021516 -0.021516 O 0 ~0.001138 0.662 0 0
0.132  -0.1469 O 0 0 0 0 0
0 0 -0.4241 0 0 0 0 0.5561
0 0 -0.516 0 0 0 0 0
0 0 2.7073 0 -0.4995 0 0 0
0 0 0.5166 O 0 -1.834 0.1207 O
0 0 0.516 0 0 -1.332 0 0
| 0 0 -0.2346  0.0909 0 0 0 ~0.4546)
(-1.7, -0.50, -0.39+0.30i, -0.12, -0.11, -0.09, -0.05)
8x8.
(-0.15365 0.0040173 0.17786 =-0.99009 0.075158 O 0 I
1.2482 -2:8543 0 114324  0.72689 4.0383 0 0
0 1 0 0 0 0 0 0
0.56788 -0.27685 0 -0.28366 -2.0496 -0.13886 O 0
0 0 0 0 -10 0 0 0
0 o 0 0 -20 0 0
0 0 0 0 0 0 -3 -2
0 0 0 0 0 0 1 o |

(-20, —10, _2'79’ -2’ —l’ -002710.89i, +000336)



1.3333 0O

(-1.6667 O

-1.3333 O

0.16667 0

1.3333

0

-4.667
"2-5

-u.3333j

0.1667 0

0

(-6, -5, -4, -3, -3, -3, -2, -2, -1)

O'\

-10

(_25l58’ —14.76, -8005’ -3089, -1062, “0062, -0'26’ _0012’ _00065, '0.0“‘2)

31

(-1

-12
-16
=20
=24
-28
=32
=37
-36

12

15

10

-10
-12
-15
-12
-12
-12

18

12

21
24
26
25

13

11
14

14

-2

(-3’ —3’ -3, -3, -2, _2’ -2’ -2, "2’ -l)



20x20

aij = -2 1=
= 1 li-3] =1
= 0 otherwise
. . - _ LA
elgenvalues: )‘i = -2|1 - cos ——
20x20
=l = i = i+
aij 1 3 = 1+l
= -1.001 ) B
= —¢0.001)*" 3% j<i
= 0 otherwise
eigenvalues: A=l ,» i=1,...,[n/7]
= -1 - 0.004 « cos’ "(ln“\\[[?l/ﬂ), i=[n/2]+1,...,n
The six Q matrices were generated by:
4 i
; J,l 1=]
i) Q.. = pos.def.
= 0 i#]
2) Uy = -1 qi-j] =1 pos.def.
0 otherwise
1 i=]j
3) Qs: = pos .def.
*J 0.2 i#j
iy = 11 i,] os.semi.def.
4) ql] 1 a 1y b
5) qij = 0.999 all i,j pos .semi.def.
6) 434 ~ 2%max(i,j)-1 indef.



