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ABSTRACT

Recent advances in Very-Large-Scale-Integration (VLSI) fabrication technologies have 

demonstrated the feasibility o f three-dimensional (3-D ) circuits in a single chip. Due to the abil

ity and flexibility to connect non-adjacent circuits using the third dimension, the cost o f mapping 

non-planar circuits to two-dimensional (2 -D ) systems can be reduced. In this paper, we examine 

the complexities in volume and maximum wire length o f mapping circuits represented as 

undirected graphs to 3-D systems. Tighter bounds than those previously known are shown for 

various families o f graphs, in both the one-active-layer and the unrestricted layouts. Finally, we 

develop a cost model to reflect the cost o f implementation in the third dimension and present an 
optimization model on the number o f layers to minimize the overall cost.

Index term s: Cost, graph embedding, one-active-layer layout, separator, three-dimensional lay

out, undirected graph, unrestricted layout, VLSI com plexity, volume, wire length.
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1. BSTTRODUCTION
The increasing demands for faster processors in scientific as w ell as commercial computations 

indicate the need for tremendous computing capacity, in terms o f speed and volume. One w ay to 

achieve this is to build chips w ith more active devices. To increase the number o f devices in a sin

gle chip while maintaining a reasonable yield, the transistor size should be decreased. There exist 

problems with decreasing transistor size, such as the short-channel effect and the nonstatistical 

behavior o f transistors that span only a few  hundred or a few  thousand silicon atoms [15]. How

ever, long before these problems become important, the problem o f reduced driving capability o f 

smaller transistors w ill have an equally profound impact on the layout o f VLSI chips, since the 

average wire length grows linearly w ith the number o f transistors. As a result, a lim it w ill be 

reached at which the size o f a transistor cannot be decreased any more without affecting its ability 

to correctly transmit a signal to another transistor.
Recently, 3-D  VLSI circuits have been shown to be feasible. 3-D VLSI circuits are more flexi

ble than their corresponding 2-D  counterparts because wire routing is easier and more systematic, 
the runs o f wires are shorter, and the volume o f a 3-D realization may be less [19]. Wise has 
demonstrated this phenomenon in a tw o-layer layout o f the Banyan/FFT networks: however, his 

work was directed towards the printed-circuit level rather than the VLSI-chip level [22]. W ith 
increased flexibility in placing devices in a 3-D circuit, the com plexity o f the resulting circuit can 
be reduced, hence, the driving capability o f a transistor and the overall power requirement can be 
reduced. Dr. Gibbons, the president o f Texas Instruments, predicted the feasibility o f such chips 
in the earlier 1990s [3], Examples o f current implementations include IBM’s "m odestly”  three- 

dimensional Thermal Conduction Module (TCM ) circuit package [2] and Hughes’ 32-by-32 3-D 
cellular computer to be finished in 1987 [15]. Nudd, Etchells, and Grinberg has proposed a cellu
lar machine employing 3-D technology to perform image understanding operations [4 ,15].

The feasibility o f 3-D VLSI technology is still plagued by four major problems. One prob
lem is the alignment o f the corresponding positions in successive layers o f a chip. Another prob
lem is the creation o f truly cylindrical holes. Due to effects like diffraction, scattering, and nonun
iform  exposure to solvents, the holes tend to be accentuated at the top or at the bottom  [5]. 

Recent work on X -ray beam and refined optical lithography [19] suggested that this issue w ill be 
less o f a problem in the future. The third problem is that placing active devices in MOS technol

ogy deep inside a 3-D volum e w ould require multiple layers o f monocrystalline silicon to be depo

sited, and subsequent processing o f the chip would destroy the crystal structure o f the m onocry

stalline silicon. Recent work at Texas Instruments [6] and IBM [21] suggested that fu ll layers o f 
the monocrystalline silicon are not needed, and transistors can be fabricated on islands o f mono
crystalline silicon that reside on a sea o f oxide. The fourth problem is the heat generation and the 
cooling o f such chips. However, due to shorter wire lengths, the heat generated w ill be less than
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the corresponding 2-D  circuits. Moreover, the problem is less severe in a one-active-layer chip in 

which active devices exist in one layer, and the rest o f the volum e is used for wire rout
ing [19.18].

In this paper, we show improved bounds on volum e and maximum wire length o f 3-D lay

outs. in both the one-active-layer and unrestricted models. In Section 2, we present a model for 

3-D layouts. In Sections 3 and 4, we develop tighter lower and upper bounds on volum e and max

imum wire length and propose layouts for the various families o f undirected graphs. Finally, we 

present an optimization model to minimize the overall cost o f the design.

2. A  MODEL OF 3-D  VLSI CIRCUITS

In this section, we describe the model used to obtain the lower and upper bounds o f mapping 

various families o f undirected graphs in 3-D circuits. W e w ill also briefly describe other attempts 
in 3-D layouts.

The model used here is an extension o f Thompson’s 2-D  model into three dimensions [20]. 
The model consists o f a 3-D grid o f width W , length L, and height H, respectively (Figure 1). A 
vertex in this grid, 0* ,y j  ). where 0 <  x <  W . 0 <  y <  L  , and 0 < z <  H „ denotes the location 
where devices can reside. An edge in the grid represents a wire in the circuit. It is assumed that 
three m utually perpendicular lines in the grid can pass through one point without physically 

touching each other. As a special case, the traditional 2-D circuit with tw o levels o f metalization 

can be considered as a one-layer 3-D circuit because the two levels o f metallic conductor can cross 
without touching each other. It is further assumed that any active device w ill require a unit 

volume, that the cross section o f a wire is a unit area, and that the separation between the wires in 

any direction is o f unit length. These assumptions are not over-restrictive as we are evaluating the 
order-of-m agnitude asymptotic complexities.

To find the upper bounds o f mapping an undirected graph G =  (V  where V is a set o f 
vertices and E  is a set o f edges connecting the vertices, it is necessary to find a one-to-one mapping 
between the set o f vertices o f the graph and the set o f nodes o f the grid and, at the same time, a 
one-to-one mapping between the set o f edges in the graph and the set o f disjoint paths o f the grid. 
The volume o f the layout is the minimum volume o f a parallelepiped containing the layout, while 
the maximum wire length is the maximum run o f a wire without encountering any active device.

Rosenberg proposed tw o models o f 3-D layouts [18,19]. The first model is the one-active- 
layer model in which active devices are allowed to reside in either the top or the bottom  layer, and 

the other layers w ill be used for the routing o f wires. The second model is the unrestricted model 

in which active devices can be placed anywhere in the volume. In general, the one-active-layer 
model requires more volume and longer wires than its unrestricted counterpart.
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W

Figure 1. A  3-D grid.

Rosenberg proved that there is an unrestricted 3-D realization o f the n-input rearrangeable 
permutation network that consumes 9(n  3/2) volume and that there is a one-active-layer 3-D reali
zation o f the same network with 9 ( /i3/2log n ) volume* [18,19]. Preparata proposed a layout for 
the cube-connected-cycles and developed the upper and lower bounds using the VT3/2 and VT 
measures, where V  is the volume, and T is the computation time [17]. He pointed out that the 
VT3/2 measure is suitable for the unrestricted layout, while the VT measure is suitable for the 
one-active-layer layout. Leighton and Rosenberg have found lower and upper bounds for the lay
out o f various fam ilies o f undirected graphs [8, 12].

In the next tw o sections, we w ill develop improved lower and upper bounds to map an 

undirected graph to a 3-D grid for the one-active-layer and the unrestricted layouts and compare 

our bounds to previously known results. The undirected graphs considered are classified into fam 
ilies as characterized by their separators, which define the relationship between the area or volume 

o f layout and the connectivity o f the graph. An N-node graph G is said to have /  (A/ ) separator if 
(a) G can be partitioned into two graphs, each with N  /2  nodes, by cutting no more than /  (AO 

edges; and (b ) both o f the tw o N  /2-node subgraphs have /  (N  /2 ) separators. Lipton and Tarjan 
proved that any N-node planar graph has O (y/N ) separator [14]. Note that the above result is an 
upper bound, hence, it is possible for planar graphs to have separators less than © (V a T ) and for

* 0  indicates the set o f  functions with the same order-of-magnitude complexity; O  indicates the set o f
functions with the upper-bound order-of-magnitude complexity; i l  indicates the set o f  functions with 
the lower-bound order-of-magnitude complexity.



- 5 -

non-planar graphs to have 0(> /N  ) separators. The relationship between the separator and the 

corresponding area o f layout was first observed by Thompson [20], who showed that the low er- 

bound area to lay out a graph with separator to is iK<o2). Leighton obtained low er and upper 
bounds on the area and maximum wire length to lay out the various fam ilies o f graphs with 

© (N* ) separator, where q <1/2. q =1/2, and q >1/2. and the fam ily o f planar graphs using 2-D 
technologies [10].

3. LOWER BOUNDS ON VOLUME AND M AXIM UM  WIRE LENGTH
In this section, we develop improved lower bounds for the various families o f undirected 

graphs in the one-active-layer model. To prove the lower bounds on embedding the various fami

lies o f undirected graphs in a 3-D grid, it is necessary to find a representative graph in each fam ily 

such that this graph w ill have the greatest lower bound. W e did not find any improvement in 

lower bounds for the unrestricted model because the existing lower bounds on volum e w ill be 

shown equal to the improved upper bounds in Section 4.2, except for graphs w ith 0 (iV 2/3) separa

tor, and, hence, are already tight. Table 1 summarizes the existing lower bounds on volum e and 

maximum wire length for the unrestricted model [19 .12 .11 ].

Graph

Separator /  (N  ) Volume

Maximum 

W ire Length

6 C/V* ). 0 « ?  « 2 /3 O Q V) [1 9 .1 2 .11 ] a (N m / log-W ) [19]

Planar Q (AO  [19 .12 .11 ] CliN1'3/log N )  [19]

e W O . 2/3 < ?  « 1 DCV3* '2) [19] ilC V */2/ lo g N )  [19]

Table 1. Lower bounds on volume and maximum wire 
length for the unrestricted model. (Note that a 
lower bound is intended to mean the largest known 
lower bound for a graph in the given fam ily.)

The follow ing theorem proves the necessary area for a 3-D circuit to be converted into a 2-D 
circuit. This theorem is an improvement over the one proved by Leighton and Rosenberg [12] and 

shows that the area required is 4BH2 instead o f 9BH2 and that the degree o f the graph can be six

instead o f four.
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Theorem  1: A ny 3-D layout o f volume V , base area B , and height H  can be transformed into a 

2-D layout o f area A  =  ABH2. If the maximum wire length in the 3-D layout is W M . then the 

maximum wire length in the 2-D  layout is < 2m ax  ( H , 3>W 3<i.

Proof: W ithout loss o f generality, we w ill transform a 3-D grid o f base area B =  WL and height 
H  into a 2-D  grid o f area A  =  AWLH2. Consider the 3-D grid in Figure 2a. Assume that the 
nodes o f this grid are located in the Cartesian coordinates (x  .y a  ). where O ^x < W . O ^y < L , 
O ^z < H . Point (x  ,y ,z ) in the 3-D  grid is mapped to point (x  \y ')  in the 2-D  grid such that

x ' =  Hx +  z ; y ' =  Hy +  z ( 1)

Note that the width and length o f the 2-D  grid are W  — HW  and L' =  HL  , respectively.

Figure 2b shows the mapping o f the 3 -by-3 -by-3  grid into a 9 -by-9  grid, where solid lines 

represent connections in the first plane in Figure 2a, dashed lines represent connections in the 

second plane, dotted lines represent connections in the third plane, and diagonal lines represent 

connections across different planes. The effect o f this mapping is that tw o nodes in a straight line 

in the x or y  direction in the 3-D grid are mapped into tw o nodes in a straight line in the same 

direction in the 2-D grid, but the distance between them is multiplied by H . As an illustration, 

a lfl and a 1>3 are separated by a distance o f tw o units and are in the x  direction in Figure 2a. 

These tw o points are separated by a distance o f six units (H  = 3 ) and are also in the x direction in 

Figure 2b. Note that nodes in a straight line in the z direction are mapped to nodes in a straight 

line in the diagonal direction in the 2-D  plane. Since most models in 2-D  VLSI layouts do not 

allow connections in the diagonal direction, the problem can be circumvented by m ultiplying the 

area by four and mapping diagonal connections to a sequence o f horizontal and vertical connec

tions. Figure 2c shows a generic node connected to its six neighbors, where the distance between 
adjacent nodes in the x  or y  direction is unity. Figure 2d shows the same set o f nodes after dou
bling the distance between tw o nodes and quadrupling the area o f each node, hence, m ultiplying 

the total area by four. Here, a diagonal connection is altered to be a horizontal segment follow ed 
by a vertical segment and finally a horizontal segment. As a result, the area is

A = A(JTW X ffL  ) =  AiWLH2) (2 )

To prove the result on the maximum wire length, note that a wire connecting any tw o nodes 
in the 3-D layout is composed o f wires running in the x . y , and z directions. The length o f wires 
in the x or y direction is multiplied by 2H  during the transformation, while the length o f wires 
in the z direction is multiplied by a constant less than six. It is straightforward to show that

W 2d <  2*max( H , 3>W M . 

which proves the theorem. □

(3 )
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X

A
2 - .
1

0 1~~2

Ca) (b )

Cc) (d )
Figure 2. The mapping o f a 3-by-3-by-3  grid into a 9-by-9 

grid. Ca) a 3-D grid; (b ) a mapping o f the 3-D grid 
in (a) to a 2-D grid; (c ) a section o f the 2-D  grid 
w ith diagonal connections; (d ) an expanded sec
tion o f the 2-D grid without diagonal connections.

In the follow ing theorem, the mesh o f trees is considered as an example in the fam ily o f 
graphs with 0(>/5v ) separator, while the tree o f meshes is considered as an example in the fam ily 
o f planar graphs. These tw o example graphs were used by Leighton in proving the lower bound o f 
2-D layouts [7 .10 ].
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The mesh o f trees is defined as follow s [10, 7]. Starting w ith an n-by-n  matrix o f nodes (n  is 
assumed to be a power o f 2) and adding nodes wherever necessary, a complete binary tree is con

structed using nodes in each row  and column o f the matrix as leaves. Hence, each node in the 

mesh is a leaf o f tw o orthogonal binary trees, one for the binary tree encompassing nodes in the 

row containing this node and another for the tree encompassing nodes in the column. (Orthogonal 

trees is another name for the mesh o f trees.) An example o f the mesh o f trees is shown in Figure 3.

The tree o f meshes is defined as follow s [7 ,10 ]. In a complete binary tree, each node is 
replaced by a mesh and each edge by several edges that connect the meshes together. The root is 
replaced by an n -by-n  mesh (n  is assumed to be a power o f 2), its children are replaced be n /2-  
by-n meshes, whose children are replaced by n /2 -by -n /2  meshes. This continues until the leaves 

o f the original binary tree are replaced by 1 -b y -l meshes. Figure 4 shows a 4-by-4  tree o f meshes.

Theorem  2: (a ) Any 3-D one-active-layer layout o f the mesh o f trees w ill require Cl(N log A )  
volume and n (V jv" /  log log N  ) maximum wire length, (b ) Any 3-D one-active-layer layout o f 
the tree o f meshes w ill require Q,(N Vlog N  ) volume and /  log N  ) maximum wire length.

Proof: We w ill prove these lower bounds by contradiction. Leighton proved that any 2-D layout 
o f the N-node mesh o f trees w ill require Cl (N  log2 N ) area, and that this layout must have 
0 ( n/]v " log N  /  log log N') maximum wire length [10]. He also proved that any 2-D layout o f the 

N-node tree o f meshes w ill require ilQ V log iV ) area, and that this layout must have 
Cl(y/~N/V log N  ) maximum wire length.
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For the mesh o f trees, let us assume the existence o f a 3-D one-active-layer layout w ith a 
volume V < Q(N  log N  )  and maximum wire length W < 9 ( n/ aT /  log log N  ). The base area o f this 

one-active-layer layout should be fl(iV ), as it should be large enough to accommodate the N nodes 
o f the graph. Therefore, the height o f this layout is H  < 0 (  log N  ). According to Theorem 1, this 
3-D circuit can be transformed into a 2-D layout with area A < Q(N log2N  ) and maximum wire 
length W 2d < 9 (J n  log ./V/ log log A  ), which contradict Leighton’s results [10]. Thus, any 3-D  

one-active-layer layout o f the mesh o f trees w ill require £l(N  log N ) volum e and 
/  log log N') maximum wire length.

For the tree o f meshes, assume the existence o f a 3-D one-active-layer layout with volume 
V <Q(N  VlogiV ) and maximum wire length W < 9 (V a ~ /  log N  ). Since the base o f this layout 

should have il(iV ) area, the height o f this layout is H  < 0 (V log  N  ). Using Theorem 1. we can 
transform this layout into a 2-D layout with area A <Q(N  log N ) and maximum wire length 

W 2d < 9 (> /aF /V log N  ). which contradict Leighton’s results. Hence, any 3-D one-active-layer 
layout o f the trees o f meshes should have Cl(N \/logN  ) volume and / l o g N )  maximum
wire length. □

The upper-bound volume o f the fam ily o f undirected graphs with Q(.Nq ) separator, 
H2<q  ^  1, w ill be shown in Section 4.1 to be O CNqJrl,2r). As the base area has Cl(N ) com plexity, 

the height o f this layout has O (iV ?“ 1/2) com plexity. Leighton has proved the lower-bound max
imum wire length for the fam ily o f undirected graphs with Q(Nq ) separator, 1/2 <q  ^  1, in a 2-D
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layout to be Cl(Nq )  [10]. From. Theorem 1, the maximum wire length in the 3-D  one-active-layer 
layout should be /Nq~m } -  £l('JW ).

For the fam ily o f graphs w ith Q{Nq ), < 1 /2 , separator, Paterson, Ruzzo, and Snyder

have proved the lower-bound maximum wire length in a 2-D  layout o f a binary tree to be 
aF /  log N  ) [16]. In a one-active-layer 3-D layout, a similar argument can be made such that 

nodes o f a binary tree are in one layer, and that the maximum distance between tw o nodes 
separated by 2 log N  edges is ). Hence, the lower bound in the 3-D  case is the same as that

of the 2-D case.

Table 2 summarizes the low er bounds obtained for the one-active-layer layout and compares 
them with previously known results.

Graph 

Separator 

f ( N )

Volume Maximum W ire Length

Previous New Previous New

e o v » ) .
0<q  < 1/2

D C V ) [12] O (iV ) [12] constant [12] adVN  / l o g N )  
[16]

Planar D O V) [12] Cl(N V logN  ) constant [12] Cl(y/N /  log N )

q(.Jn  ) i l ( V )  [12] n o v  lo g # ) constant [12] i l ( yÌN /  log log N )

e (A /« ).
1/2 <q<1

Q (iV »+1/2)  
[12 ,19]

O 0 v *+1/2) 
[12.19]

n o v * - ! /2)

[12]
)

Table 2. Lower bounds on volume and maximum wire 
length for the one-active-layer model. (Note that a 
lower bound is intended to mean the largest known 
lower bound for a graph in the given fam ily.)

4. UPPER BOUNDS

Before introducing the results on upper bounds, we review the necessary mathematical back
ground behind the theory o f layouts. Thompson introduced the idea o f the minimum bisection 
width o f an undirected graph and proved a relation between the minimum bisection width and the 

minimum area required to lay out the given graph [20]. Lipton and Tarjan introduced the idea o f 
separator for a fam ily o f undirected graphs and proved that the fam ily o f planar graphs has a
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OC' f i v )  seParator [14]. They also proposed a linear time algorithm to compute this separator. 
Bhatt and Leighton introduced the ideas o f bifurcators and decomposition trees [l]. An N-node 

undirected graph has (F .a ) bifurcator if it can be decomposed into tw o subgraphs. G i and G 2. by 

removing no more than F  edges. Both G i and G 2 can further be decomposed into tw o subgraphs 
by removing no more than F  /a edges. In general, any subgraph in level i can be decomposed into 

two subgraphs by removing no more than F  /a* edges. This decomposition can be represented by 
the decomposition tree in Figure 5.

G

G ! is decomposed into 
G 10 and G n  by removing 

F
no more than —  edges 

a
li

A  decomposition tree is said to be a fu lly  balanced decomposition tree if 

Cl) when decomposing any subgraph into two smaller subgraphs, the number o f nodes in the tw o 
smaller subgraphs are equal; and

(2) when decomposing any subgraph into tw o smaller ones, the number o f edges connecting this 

subgraph to the rest o f the original graph is divided into two equal sets that are distributed in 
the tw o decomposed subgraphs.

Bhatt and Leighton also proved that any graph with CF .a) bifurcator has a fu lly  balanced decom
position tree with (F '.a ) bifurcator. where F ' is related to F  by a constant. Leighton showed that 
if F =N ‘i . then the total number o f edges connecting any subgraph with N  /  2* nodes in level i o f
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the decomposition tree to the rest o f the original graph is k QV /  2* y , where k is a constant [9], 
As a result, a graph with N * separator has QV?, 2? ) bifurcator.

In the rest o f this section, we show upper bounds for the various fam ilies o f undirected 
graphs in both the one-active-layer and the unrestricted models.

4.1. O ne-A ctive-Layer Layouts

The follow ing theorems prove the upper bounds for the various fam ilies o f undirected graphs 

in the one-active-layer 3-D layouts. The fam ily o f planar graphs is treated in the same w ay as the 
fam ily o f graphs w ith 8 (V aT ) separator here.

In the follow ing theorem, the upper bounds for graphs with 8 (V a ~ ) separator are proved. 

Although Leighton and Rosenberg have proved the same bounds before, they have assumed in 
their proof the existence o f a layout o f an n-node subgraph in which the ports o f this subgraph 
“ are sufficiently sparse that the routing is guaranteed to be possible’* [12]. W e w ill assume in the 

follow ing proof that the ports o f a subgraph are equally spaced along one side o f its layout. In 

connecting tw o n-node subgraphs into a 2n-node subgraph, a complete crossbar switch w ill be used 

to perform the routing, and the ports in the resulting subgraph w ill also be equally spaced along 

one side o f the resulting layout. The above model allows us to prove a better upper bound on 
volume for the fam ily o f graphs w ith 0 0 V* ) separator. This w ill be shown in Theorem 4.

Theorem  3: A ny undirected graph with 8 (>/jV ) separator has a 3-D one-active-layer layout with 
0  (N  log N  )  volum e and O ('J~N ) maximum wire length.

Proof'. We assume that the balanced decomposition tree o f the graph is known. The proof is by 

induction on a graph with n nodes. The case for n—1 is trivial. For the induction hypothesis, 

assume that an n-node graph can be mapped into a parallelepiped w ith volume V (n ) ,  height 
H in'), and a square base o f side L (n )= &c yfn , where £ is a constant. It is further assumed that 

the c yfn ports to connect any node in this subgraph to another node outside this subgraph are 

aligned and equally spaced along one side o f the top layer o f this layout (see Figure 6, where the 

ports are represented by circles). In the induction step, consider the volume needed to lay out four 
n-node subgraphs. W e w ill combine these four layouts to produce one 4n-node layout with 
volume V (4n ), height I f  (4n ), a square base o f side L  (An )=kc V S T , and that the c V JT  ports o f 

the 4n-node subgraph are aligned and equally spaced along one side o f the top layer. This w ill be 

done by first showing that one additional layer is needed to accommodate the necessary intercon
nections when two n-node subgraph layouts are combined to form  one 2n-node subgraph layout.

Consider two n-node layouts placed side by side as shown in Figure 6. Figure 7 shows the 
additional top layer that is created when the two n-node subgraph layouts are combined. We have 
(a) to create c 'J'ln ports in the 2n-node subgraph layout; and (b ) to connect a maximum o f c 'fn 
ports in one o f the n-node subgraphs to a maximum o f c \fn ports in the other n-node subgraph.
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kcVn
c V/T ports on one

Figure 6. Two n-node subgraph layouts with 0(Vn~) 
separator. (The c vn  ports o f each layout are 
represented as circles and are aligned on one side 
o f the top layer.)

Since we have assumed that the subgraph has a balanced decomposition tree, half o f the c y/2n 
ports in the combined layout w ill be connected to ports in the first layout, while the other half 
w ill be connected to ports in the second layout.

In Figure 7, the ports o f the tw o n-node subgraphs, each with c yfn ports, are represented by 
c yfn circles along the sides. The newly created c y/2n ports o f the 2n-node subgraph are 
represented by squares equally spaced along the top side. The objective is to route the c y/2n 
ports in the combined layout to ports in the tw o original layouts and to connect the 2c \fn ports 
in the original layouts together. This can be done by creating a track out o f each port in the origi

nal layout and extending it across the top layer in the new layout. These tracks are represented 
by the solid horizontal lines in Figure 7. Tracks are also created for each o f the c y/2n ports in 

the combined layout and extended across the top layer. These tracks are shown by the dotted 

vertical lines in Figure 7. These horizontal and vertical tracks allow  us to form  a complete 

crossbar switch that connects any port in the two n-node layouts to any port in the combined lay

out. To connect the c yfn ports in one o f the n-node layouts to the c  yfn ports in the other n- 

node layout, a maximum o f c yfn vertical tracks represented as dashed lines in Figure 7 are 

created to form  a complete crossbar switch. The above construction process is feasible for k ^ 2  in 
the induction hypothesis because the number o f horizontal tracks is 2c  yfn . which is less than 
kc yfn . and the maximum number o f vertical tracks is (c  V2/T +  c V/T ). which is less 2kc yfn .
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Figure 7. New layer on top that is created when tw o n-node 
subgraph layouts are combined to form  one 2n- 
node subgraph layout in the one-active-layer 
model. (Circles represent the c 'Jn ports in each 
n-node layout. Squares represent the c y/2n ports 
in the combined layout.)

In combining tw o n-node subgraph layouts to form  one 2n-node subgraph layout, an addi
tional layer is needed. The number o f layers in the resulting layout can be computed from  the 
follow ing recurrence.

H  (2n ) =
H (n )  +  1 
1

n >1
71 ^1 (4 )

Similarly, we can combine tw o 2n-node subgraph layouts to form  one 4n-node subgraph lay
out. In general, for an N-node subgraph layout, where N is a power o f two.

H  (N  ) *  log N  (5)

Since the base area o f an N-node layout is {kc \fN )2, the total volume w ill be

v ial QV ) =  k 2c 2N  log N  =  O (N  log N  ) (6)

In computing the volume, no constraint is put on the routing o f wires, hence, a wire can run 
along the log N  layers in a zig-zag fashion in the worst case. The maximum wire length is

n r I2 L kc-JJL\=0(.JN
i=o *  2*

(7 )
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According to the theory o f induction, the theorem is proved. □

Theorem  4: A ny undirected graph with ) separator, 1/2 <q  < 1 . has a 3-D one-active-layer 
layout with O QV*+1/2) volum e and O (VÎV ) maximum wire length.

Proof. The proof is similar to that o f Theorem 3 except that cnq edges connect any  n-node sub

graph to the rest o f the graph. Assume that there are tw o n-node subgraph layouts, each in the 

form  o f a parallelepiped with height H (n  ). square base w ith side kc V/T , and that the en? ports 

are arranged in the form  o f a rectangle o f width n *~1/2 and length c V/T in the top layer (see Fig

ure 8). In form ing a 2n-node layout, we have to create c (2n )* new ports and route them to a 

maximum o f 2cn* ports o f the tw o n-node layouts, and connect the ports o f the tw o n-node lay
outs together in a similar w ay as in the proof o f Theorem 3. W e w ill need n *“ 1/2 layers to form  a 

complete 3-D crossbar switch to perform  the routing between the c  (2n >  ports in the combined 

2n-node layout and the corresponding ports in the tw o n-node layouts. Another n *“ 1/2 layers are 
needed to form  a complete 3-D crossbar switch to connect the ports in the tw o n-node layouts.

* -i /2

H (n

additional layers are 
added in the combined layout

(n
H (2/i )

Figure 8. Two n-node-subgraph layouts with 0(JV? ), 
1/2 < £  < 1. separator.

The height o f the layout can be computed from  the follow ing recurrence.

tf(2n) =
# ( z t )  +  2/ i* -1/2 
1

n >1 
n ^1

In general, for an N-node layout, where N is a power o f 2,

q —1/2log jV
# G v ) =  £ 2

i=l
N

o Cn « - 1'2)

(8)

(9 )
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Since the base area o f the N-node layout is (Jcc y/N )2, the total volume is

V" XAL (N )  =  O (N »N* - 1/2)  =  O (N* +1/2)  ( 1 0 )

Using the same argument as in the fam ily o f graphs w ith 0(V^T ) separator, the maximum w ire 
length is

W\al ~ O {y/W )  ( n )

Note that the upper bounds on volume and maximum wire length are optimal because they are the 
same as the corresponding lower bounds (see Table 2). □

Table 3 shows the upper bounds in the one-active-layer model and compares t>w»m against 
previously known results [11 .12]. Note that the upper bounds on volume are tight in all cases 
except for the fam ily o f planar graphs.

Graph

Separator

/C A O

Volume Maximum W ire Length

Previous New Previous New

e c w o .
< 1/2

O G V ) [12] 0 (A O  [12] 0 ( J Ï Ï  /  log N  ) 

[12]
0 ( V w / l o g  iV) 

[12]

Planar 0 {N  log AT) [12] 0 (N  log AO o(V 5 v  ) [12] o (V 3 v  )

g (V n  ) 0(AT log AO [12] 0(.N  log AO 0 (VÂT ) [12] o ( n/ ïv" )

e o v » ) .

l / 2 < g « l
0 ( N i + m \o%N)

[12]
0(A T»+1/2) 0 (VÏV )  [12] 0 (s fN  )

Table 3. Upper-bound volume and maximum wire length 
for the 3-D one-active-layer layouts. (The previ
ous and new results may be the same but obtained 
by different methods.)
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4.2. U nrestricted Layouts

The next theorem proves the complexities o f layouts in the 3-D unrestricted model, in which 
devices can be placed anywhere in the 3-D volume.

Theorem  5: A ny undirected graph with QdNq )  separator. 0 < 1 .  has a 3-D unrestricted layout 
with volume

V (iV ) =
OdN )
O d N lo fN )
O d N *'2)

0 < 2 / 3  
q =2/3 
2 / 3 < ? < l

with maximum wire length

(12)

WdN)  =
OdN1* )
O dN ^hogN )
OQV?/2)

< 2 /3  
?  =2/3 
2 /3 < ? < l

(13)

iVoo/: W e assume that the balanced decomposition tree o f the graph is known. The proof is by 

induction on a graph with n nodes. The case for n » l is trivial. For the induction hypothesis, 
assume that an n-node layout is in the form  o f a cube. Further, assume that the cn* ports o f this 

layout are arranged in the form  o f a square with side k yfcnJ in one o f the faces o f the cube, 
where k is a constant. In the induction step, we w ill show that eight n-node subgraphs can be 

combined into one 8n-node layout in the form  o f a cube, and the c (8n y  ports o f this layout are 
arranged in the form  o f a square o f side k V c  (8n y  .

The induction step is proved by first arranging the eight n-node layouts in the com ers o f a 
larger cube, such that ports o f the four upper cubes are directed downwards, while ports o f the 

four lower cubes are directed upwards (see Figure 9). We w ill first combine tw o n-node subgraph 
layouts to form  one 2n-node layout. We have (a) to create c (2n >  new ports for the 2n-node 

layout, and (b ) to connect the ports in the two n-node layouts. Figure 10 shows the 2dcnq ) ports 

o f the upper and lower layouts, each in the form  o f a square with side k 'J cnq , where £ is a con

stant. By adding 2q k yfcnJ layers between the upper and lower cubes in Figure 10, we can create
a complete 3-D crossbar switch to perform  the necessary routing between the new ly created 
c (2n y  ports and any o f the 2cnq ports in the two original n-node layouts. The new ly created 

c d2n y  ports are arranged in the form  o f a rectangle o f length k Vcn? and width 2q k y/cnJ. To 
perform the necessary connections between the tw o n-node subgraph layouts, each with a max

imum o f cnq ports, another complete 3-D crossbar switch with k Jen*  layers is created between 
the upper and lower layouts in Figure 10.
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Figure 9. Combining eight n-node layouts to form  one 8n- 
node layout.

In a similar w ay. we can combine four 2n-node layouts to form  tw o 4n-node layouts and 

two 4n-node layouts into one 8n-node layout. In each case, we have added 0 (V c n ? )  layers 

between the tw o layouts concerned. The height, length, and width o f the 8n-node layout can be 
computed from  the follow ing recurrences.

n >1
7i = l  (14)

71 > 1
n = l  (15)

71 > 1
n =1 (16)

where k k and k 3 are constants. Solving the last three equations, we get

H  (8ti ) =  

L (8n ) =  

D ( 8n )  =

2H  (71 ) +  k iVcn? 
1

2L  (71 )  +  k 2̂ cn q

2D (ti ) +  fc3Vc7t* 
1

D ( N )  = L ( N )  = H ( N )  =
O ( N 1/3 )
OQV1/3logiV)
0 ( N q/2)

O^q < 2 /3  
q =2/3 
2/3<q < 1 .

(17)

The volume o f the layout w ill be
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Figure 10. Combining tw o n-node layouts to form  one 2n- 
node layout in the unrestricted model.

V G V) =
O QV)
O (N  log3N  )
oC iv 3*/2)

O^q < 2 /3  
q =  2/3 
2 /3 < ? < l .

(18)

For the maximum wire length, note that the maximum wire length o f the 8n-node layout is 
equal to the maximum wire length o f the n-node layout plus <xL (8n ). where L  (8n ) is the length 
o f each side o f the 8n-node layout, and a  is a constant. (Due to the crossbar connection, we did 
not extend any port more than a length o f <xL (8n )). The maximum wire length can be computed 
from  the follow ing recurrence.

W (8n )  =  W M  + aLQSN).  r i(n

Substituting L  from  Eq. (17),

W (AO =
O O V173)
O (N 1/3\ogN) 
0 (N « '2)

0 <q  < 2 /3
9= 2 /3
2 / 3 < q ^ l .

(20)

According to the theory o f induction, the theorem is proved. □
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Table 4 shows the upper bounds obtained here for the volume and maximum wire length, 
respectively, and compares them with previously known results [8, 12, 11]. Comparing the upper 

bounds in Table 4 and the lower bounds in Table 1. all upper bounds on volum e obtained here are 
tight except for the fam ily o f graphs w ith 0 (N 2/3)  separator.

Graph 

Separator 
f ( N )

Volume Maximum W ire Length

Previous New Previous New

eovo.
O q̂ < 1/2

oa v) [ni 0 (A O 0 (W 1/3) [12] 0 (N1/3)

Planar O (N loginN ) [12] 0(.N) 0(N 1,3y/logN ) [12] 0 (iV 1/3)

0(>/F ) 0 (iV log3,2iV ) [12] OUV) O Q v W l o g W  ) [12] 0 (iV 1/3)

0 0 V* ). 
l / 2 < q < 2 / 3

O ( / / ?+1/2log3/2jV ) 
[12]

OÜV) O (Nit3+1/6\/logN ) 
[12]

o(w 1/3)

6 (iV2/3) O (N 7/6log3/2V  ) [12] OCVlog3# ) O (N 7,18y/lag N ) [12] O (V 1/3logiV)

e(jvo.
2/3 <q<1

0(Nq +1/2log3/2W ) 
[12]

OQV3* '2) O (.N* n + w ' / l0g N ) 
[12]

o Cv*/2)

Table 4. Upper-bound volume and maximum wire length 
for the 3-D unrestricted layouts. (The previous 
and new results may be the same but obtained by a 
different method.)

5. OPTIMIZATION OF TOTAL COST OF IMPLEMENTATION

Up to this point, we have considered the volume occupied by the components. In general, the 
volume is not directly related to the cost o f implementation because the cost o f running a wire or 
placing a device in a 3-D volum e may depend on its location in the chip. In contrast, in a 2-D 

implementation, the cost o f running a wire or placing a device is independent o f its location, and, 
hence, the area is related to the cost o f implementation by a constant. To compare the trade-off 
between 2-D and 3-D implementations, the criterion used must be based on costs.



-21  -

In this section, we assume the cost as a function o f the layer in the 3-D chip and minimize 
the total cost instead o f volume in a one-active-layer layout. In the follow ing discussion, planar 
graphs are treated in the same w ay as graphs with © ( V jv") separator, although planar graphs may 
have separators less than Q(\/~N ).

Consider the problem to lay out a graph with 0 (iV? ) separator. O^q < 1/ 2 . Since the com

plexities o f a 3-D layout is Q(N ), which is the same as that o f a 2-D  layout [10], the cost o f a 3-D 

implementation w ill differ from  that o f a 2-D  implementation by a constant factor.

To lay out a graph with Q(Nq), 1 / 2 ^ 1 ,  separator. Leiserson has proved that the area 
required for a 2-D  implementation is [13]

A = a N D 2( N ) .

where

iotiff
D ( N ) =  £

i =0
N_
2i

<?-l/2

(21)

(22)

a  is a graph-dependent constant, and N is a power o f 2. The i*th term in the summation in Eq. 
(22), (iV /  2* y* -1/2. is the increase in area to connect tw o CN /  2* )-node subgraphs together in a 2-D  
implementation. Recall from  Section 4.1 that 2(iV/2* )9-1/2 layers are needed in a 3-D implemen

tation to connect tw o (N /  2* )-node subgraphs together (one layer w ill be needed if q =0 .5). 
Hence, if the interconnections o f a set o f subgraphs are implemented in the third dimension, then 
the corresponding terms in Eq. (22) should be eliminated in computing the area o f the base, and 

the height o f the chip w ill be increased by the sum o f the terms eliminated. Note that this is an 
upper bound on the number o f layers, since we are assuming a crossbar connection to perform the 
routing. Suppose that h layers are used in the third dimension, then a number o f terms w ill be 
chosen from  Eq. (22) to sum up to h. The terms chosen w ill depend on the graph concerned and 

the cost o f implementation in the third dimension. The area o f the base o f the layout using h 
layers is

Bh = o c N [ D ( N ) - h  +  l ]2 (23)

where H is the maximum height. The maximum height can be computed from  Eq’s (5 ) and (9).

^  _  logiV for graphs with 0 (V n ~ ) separator
(3Nq~m  for graphs with 9 ( N q ), 1/2 <q  ^  1, separator

where j3 is a graph-dependent constant. The volume o f this chip is

Vh( N )  = Bhh — olN [D  ( N ) - h  +  l? h .

Let c (y ) to be the cost o f implementing layer y . then the total cost o f using h layers is

(25)
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costh =  a N [ D ( N ) - h  +  l ]2£ c ( y )  l ^ h  ^H.
j=i

(26)

Hence, to minimize the total cost o f implementation, it is necessary to solve the follow ing optimi
zation problem.

o f layers w ill be used.

6. CONCLUSIONS

In this paper, we have proved improved lower and upper bounds on volum e and maximum 

wire length in both the one-active-layer and unrestricted layouts. From the previously known 

bounds and our improved bounds, optimal complexities on the volum e o f layout have been found 
except for tw o cases: the layout o f planar graphs in the one-active-layer model and the layout o f 
graphs with 0 (iV 2/3)  separator in the unrestricted model. To compare between 2-D  and 3-D 

implementations, we have proposed a simple model to compute the total cost o f layout. Table 5 
summarizes the results obtained in this paper.
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