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ABSTRACT 

We consider the problem of finding an optimal assignment of task modules with a 
precedence relationship in a distributed computing system. The objective of task 
assignment is to minimize the task turnaround time, i.e., the total time required to finish 
the execution of a task. This problem is known to be NP-complete for more than three 
processors. To solve the problem, a well-known state space reduction technique, 
branch-and-bound-with-underestimates, is applied, and two underestimate functions are 
defined. Through experiment, their effectiveness is shown by comparison with both 
Wang and Tsai’s algorithm and the A* algorithm. Parameters considered in the 
experiment include the number of modules, the number of processors, the ratio of 
average intermodule communication time to average module execution time, and the 
shapes of task graphs. Statistical data about the number of search nodes, maximal 
queue length, and execution time are collected for performance evaluation. 

1. INTRODUCTION 

The rapid progress of microprocessor technology has made distributed 
computing systems economically attractive for many computer applica- 
tions. In a distributed computing system, a task (program) may be dis- 
tributed among processors to speed up execution by taking advantage of 
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system computation abilities and resources. However, the overall system 
performance is dependent on many factors; among them, the most crucial 
one is the assignment of task modules to processors. In general, a task can 
be suitably divided into a set of interdependent tusk modules (modules, for 
short) that can be executed on the processors of the distributed computing 
system. The cost of executing a module may vary from processor to 
processor. During task execution, some control messages and intermediate 
data are required to be transmitted among modules. Two communicating 
modules that are executed on different processors consume a system’s 
communication resource, and thus incur a communication cost because of 
the overheads due to the communication protocols and transmission delays 
in the communication subnetwork. Here, cost values are defined in terms 
of a single unit, time. Hence, the total time, called the tusk turnaround 
time, required to finish the execution of the entire task is composed of the 
module execution time (MET), intermodule communication time (ZCT), and 
processor idle time (PIT 1. 

Our attention for task assignment is focused on finding an optimal 
assignment that minimizes the task turnaround time. To achieve this 
objective, we need to balance the computation loads of the processors, and 
at the same time minimize the intermodule communication overheads. 
This problem for more than three processors is known to be NP-complete 
[2]. Solution methods already suggested for the problem can be roughly 
classified into four categories: graph-theoretic approaches [ill, [151, [16], 
integer O-l programming approaches [5], [12], [13], [19], heuristic 
approaches [61,[81, and simulated annealing approaches [18]. Stone [151 has 
solved the problem by partitioning the processor-module flow graph using 
a max-flow min-cut algorithm. Modeling the problem as a combinatorial 
optimization problem, integer O-l programming approaches use mathe- 
matical optimization techniques to search for an optimal assignment. 
Instead of pursuing an optimal solution, heuristic approaches find near- 
optimal solutions by applying some heuristic strategies. Simulated anneal- 
ing approaches use stochastic search criteria to refine an initial solution to 
a globally optimal solution in finite iterations. 

Wang and Tsai [19] formulated the task assignment problem as a graph 
matching problem, and then presented an A* algorithm [lo] to search for 
an optimal assignment. Their algorithm has worse performance when the 
intermodule communication time is relatively small (compared with 
the module execution time). In this paper, we propose a new algorithm 
for the task assignment problem that behaves very well in that case. In our 
algorithm, a well-known state space reduction technique, brunch-and- 
bound-with-underestimates (BZ?U), is applied, and two underestimate func- 
tions, fMETu and far”, are defined. To show the effectiveness of our 
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algorithm, statistical data about the number of search nodes, maximal 
queue length, and execution time are generated. Parameters considered in 
our experiment include the number of modules, the number of processors, 
the shapes of task graphs (defined in the next section), and the ratio of 
average intermodule communication time to average module execution 
time. 

The remainder of the paper is organized as follows. In Section 2, system 
assumptions are stated and the task assignment problem is formulated. In 
Section 3, two underestimate functions, fMETLT and fATLI, are defined and 
a BBU algorithm is proposed. In addition, an initial feasible solution is 
suggested for our algorithm, and some state space reduction rules are 
introduced. They can fathom more search nodes during the state space 
search. Experimental results are shown in Section 4. Finally, concluding 
remarks are given in Section 5. 

2. ASSUMPTIONS AND PROBLEM STATEMENT 

2.1. ASSUMPTIONS 

The task assignment problem we consider in this paper has the same 
assumptions as Wang and Tsai have made in [19]. 

(1) The processors in the distributed computing system are heteroge- 
neous. 

(2) All processors can communicate with each other through the com- 
munication subnetwork. 

(3) All communication links are symmetric. That is, transmission on 
both directions of a communication link takes the same time. But, trans- 
mission on different communication links may take different times. 

(4) Synchronization between two communicating processors is neces- 
sary before starting message transmission (i.e., message transmission and 
module execution cannot be overlapped). This means that the two commu- 
nicating processors spend the same amount of communication time, but 
one of them may incur additional idle time. 

(5) There exists a precedence relationship among modules. It speci- 
fies the feasible execution sequences of modules. No cyclic precedence 
relationship is allowed among modules. 

2.2. PROBLEM STATEMENT 

There are m modules M,, M2, . , . , Mm contained in a given task. The 
task can be conveniently represented by an acyclic directed graph, called 



4 G-H. CHEN AND J-S. YUR 

the tusk graph, as follows. Each module of the task is uniquely represented 
by a vertex of the task graph, and there is an arc from Mi to Mj if and 
only if message transmission is needed from M, to Mj (i.e., Mi precedes 
Mj) during the task execution. Again, the task graph can be represented by 
an m x m adjacency matrix TSK; TSK(i, j) = 1 if there is an arc from Mi 
to Mj and TSK(i, j) = 0 otherwise. If the modules are arranged in a 
topological order [7] according to their precedence relationship, then TSK 
is an upper triangular matrix. In subsequent discussion, we consider TSK 
upper triangular. 

If there exists a path from M, to Mj in the task graph, then Mi is called 
a predecessor of M,, and Mj is called a successor of Mi. If there exists an 
arc from Mi to Mj, then IV, is called an immediatepredecessor of Mj, and 
Mj is called an immediate successor of Mi. A module without any successor 
is called a sink module, and a module without any predecessor is called a 
source module. A module is not allowed to start execution until all of its 
immediate predecessors have finished execution. 

There are n processors P,, P2,. . . , P,, in the distributed computing 
system. Let MET(i, j) denote the module execution time required for 
executing M, on P,, and let ZCT(a, b, i, j) denote the intermodule commu- 
nication time required for the pair of modules M, and Mb when they are 
assigned to Pi and Pj, respectively. Since symmetric communication links 
are assumed, ZCT(a, b, i, j) = ZCT(a, b, j, i). Moreover, it is also assumed 
that ZCT(a, b, i, j) = 0 if i = j. 

Let PT(i) denote the processor turnaround time of Pi, which is the 
total time consumed on Pi. When the task finishes its execution, the 
maximal processor turnaround time is the task turnaround time. The task 
assignment problem is to find a mapping from the task graph to the 
distributed computing system which minimizes the task turnaround time 
subject to the precedence constraint. 

During the execution of our algorithm, processor turnaround times are 
updated whenever a module, say M,, is assigned to a processor, say Py. 

Suppose M,,,,, M,,,,, . . . , M,,,, are immediate predecessors of M,, and they 
are arranged in nondecreasing order of processor turnaround times. 
That is PT(A(mi)) Q PT(A(mj)) for 1 <i <j G k, where A(mi) 
denotes the processor to which M,,,, is assigned. PT(A(m,)), 
PT(A(m,)), . . . , PT(A(m,)) need to be updated when M, is assigned 
to Py. The updating proceeds in the order of PT(A(m,)), 
PT(A(m,)), . . . , PT(A(m,)). To update PT(A(mi)), 1 <i <k, processors 
P, and A(mi) are first synchronized, and then spend the same amount of 
time for message transmission. Finally, after finishing the updating of 
PT(A(mi))‘s, i = 1,. . . , k, PT(P1) is increased by the module execution time 
of M, on P,. The detailed procedure is shown in Algorithm 1. 
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Algorithm 1 

/* Update the processor turnaround time. */ 

Step 1. /* Suppose that Mm1,Mm2,. .., Mm, are arranged in nonde- 
creasing order of processor turnaround time, i.e., PT(A(m,)) <PT(A(mj)) 
for 1~ i <j G k, and A4, is assigned to PY. */ 

for (i=l; i<=k; i-t+) 

I 
PTMm,N =mdPT(y), PTMm,)N + 

Kmm,, x, A(mJ y); 
PT(y) = PTL4bq)); 

Step 2. PT(y) = PT(y) +MET(x, y). 

Algorithm 1 takes O(k) time. In Figure 1, the execution of Algorithm 1 
is illustrated by an example. 

3. STATE SPACE SEARCH REDUCTION 

In this section, a branch-and-bound-with-underestimates (BBU) algo- 
rithm is presented to find an optimal solution for the task assignment 
problem. The state space graph of a BBU algorithm is a search tree whose 
nodes each, except for the root node, correspond to an assignment of a 
module to a processor. Associated with each node x in the search tree is a 
partial assignment A, that consists of all of the module-to-processor 
assignments of the nodes along the path from the root to X. By A,(i) = j 
we denote that module Mi is assigned to processor Pj in the partial 
assignment A,. Associated with each node x is also an underestimation 
f(x) =g(x) +/z(x) of the minimal task turnaround time caused by the 
complete assignments that include A, as a part. The value g(x) is the 
maximal processor turnaround time caused by A,, and h(x) is an underes- 
timation of the minimal processor turnaround time that will be incurred 
from node x to a goal node. A goal node is a node that represents a 
complete assignment. One simple, but inaccurate, way to compute f(x) is 
to let h(x) = 0. The accuracy of h(x) greatly affects the efficiency of a 
BBU algorithm. Besides, an upper bound cost (UC) is associated with 
a BBU algorithm, and it represents an upper bound on the minimal task 
turnaround time. The value UC is set infinity initially, and is updated to 
min{UC,f(z>) whenever a goal node z is reached. 
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(8) M,,,, ad M,,,,m immediate prtxiwc~ oft, . 

A(mJ A(mz) 5 

I H 
(b) Bcforc updating. 

(d) Afm updating pT(AC2)). (e)P?‘(pY ) is incrwcd by MW(xy). 

Fig. 1. The updating of processor turnaround times. 

A list, called the u~~~a~ded &, is necessary for a BBU algorithm to 
store all unexpanded search nodes from which it is still possible to find an 
optimal assignment. Initially, the unexpanded list is empty. The BBU 
algorithm begins with placing the root node into the unexpanded list. The 
root node corresponds to the null state (no modules assigned). During the 
state space search, a search node x with minimal underestimation f(x) is 
always selected from the unexpanded list to be expanded next. Let those 
unassigned modules whose predecessors have all been assigned be referred 
to as ready modules. If x is not a goal node, n possible assignments Mi to 
z$j=l,..., n, for each ready module Mi are checked for their feasibilities 
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(it will be seen later in this section that some constraints may be derived 
during the state space search), and a child node is generated for each of 
the feasible assignments. Then, for each generated child node y, the 
underestimation f(y) is computed. If f(y) < UC, node y is inserted into 
the unexpanded list. Otherwise, node y is fathomed since further expan- 
sion form it will not lead to an optimal solution. All nodes in the 
unexpanded list are maintained in nondecreasing order of underestima- 
tions. If the selected node x is a goal node, the algorithm terminates since 
it is impossible to find a better solution from the other nodes. 

In the rest of this section, we first briefly review Wang and Tsai’s 
algorithm [19], and then introduce two underestimate functions f,,,sro and 

f ATU’ 

3.1. A BRIEF REVIEW OF WANG AND TSAI’S ALGORITHM 

The essence of Wang and Tsai’s algorithm [19] is to underestimate the 
minimal task turnaround time from the viewpoint of the bottleneck proces- 
sor. The bottleneck processor is the processor with the maximal processor 
turnaround time. In their algorithm, the minimal task turnaround time is 
underestimated for each partial assignment by summing up the minimal 
time required for each of the unassigned modules that need to communi- 
cate with those modules that have been assigned to the current bottleneck 
processor. 

For a partial assignment A,, let us define the following notations: 

Pb: the bottleneck processor; 
Li: the set of modules assigned to processor Pi; 

Q: the union of Li’s, i.e., the set of all assigned modules; 
Q’: the set of all unassigned modules; 

S: the set of modules in Q’ that communicate with modules in L,. 

Wang and Tsai’s algorithm computes h(x) as the summation of Hg for 
all M4 in S, where 

H,=min{t,t’}, 

t=Mx(q,b) + c ~Cqbq>~,(r),q, 
rEQ-Lb and 
TSK(r,q)= 1 
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t’= min 
p=l,...,n 

i 
c ZCT(r,q,b,p) 

rsL, and 
TSK(r,q)= 1 

The computation of t assumes that Mg is assigned to Pb, and the 
computation of t’ assumes that Mg is not assigned to Pb. In essence, 
Wang and Tsai’s algorithm computes h(x) from the viewpoint of proces- 
sors, which is the main reason for a poor underestimation as the intermod- 
ule communication time is relatively small (compared with the module 
execution time). It thus motivates us to revisit the problem from the 
viewpoint of modules. 

3.2. MINIMAL EXECUTION TIME UNDERESTIMATE (METU) 

Given a task graph, the task starts execution from source modules and 
terminates after all sink modules are finished. A directed path from a 
module Mi to a sink module Mj is called an execution path, and is called a 
complete execution path if Mi is a source module. The execution time of an 
execution path from Mj to Mj is defined to be the time length from the 
time when Mi starts execution to the time when Mj finishes execution. 
The execution time of an execution path contains the module execution 
times, the intermodule communication times, and the processor idle times 
that must be spent to finish the execution of the execution path. There 
may be a number of complete execution paths contained in the task graph. 
With respect to a mapping from the task graph to the set of processors, we 
define the critical complete execution paths as those complete execution 
paths whose execution times are equal to the task turnaround time. In 
Figure 2, an example is shown where the given task graph [see Figure 2(a)] 
contains three complete execution paths [see Figure 2(c)]: (M,,M,, M,), 
(M,,M,,M,), and (M,,M,,M,). Also, note that for any two modules, 
uniform intermodule communication times are assumed in Figure 2. That 
is, for two communicating modules n/r, and Mb, ZCT(a, b,i,jYs are the 
same for any i #j. For the assignment M, to P,, M2 to P.,, M3 to P,, M4 
to P2, and M5 to P3, the execution time of each of the three complete 
execution paths is 276 [see Figure 2(d)], which is the task turnaround time. 
So, they are all critical complete execution paths with respect to the 
designated assignment. 

Based on the concept of execution paths, two underestimate functions, 

f METU and fAT" (fATi is defined in the next subsection), are therefore 
proposed. 
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M, 

Ml 

M3 

M4 

MS 

1 69 76 

16 89 92 

71 88 84 

86 98 24 

63 16 38 

(a) A task graph and the intermodule (b) Module execution times (c) Three complete execution paths. 

Yime Processor P, I Processor P 2 Processor P, Time 

.187 

.214 

.238 

276 

(d) The schedule of the task execution with nspect to the assignment : 
Mt’OP,,M2to~,M~tOl;,Uq~~,and~~toP,. 

Fig. 2. An illustrative example. 

For an arbitrary execution path CM,,, M+. . . , Mi,> extended from M,,, 
the summation 

,$ ,=yJ n IMWi,J+} 
, 1 

is an underestimation of the execution time for the execution path. For 
each module M,, we define MAXET(1’) to be the maximum of the underes- 
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timated execution times for all of the execution paths that are extended 
from the immediate successors of Mi. Clearly, if Mi is a sink module, 
MAXET(i) = 0. Otherwise, MAXET(i) is computed recursively as 

max 
M, is an immediate 

S”CCeSSOr of M, 

All of the values MAxET(i) are determined prior to the execution of 
the BBU algorithm. The time complexity for computing all MAXET(i)‘s 
are @en), where e is the number of arcs in the task graph. In Table 1, we 
show the values of MAXET(i)‘s for the example of Figure 2. For example, 
MAxET(2) = mux{MAXET(3) + 71, MAxET(4) + 24) = mux{87,40) = 87. 

Let us consider a partial assignment A, that is associated with a search 
node x during the execution of the BBU algorithm. With respect to A,, as 
before, denote the set of all assigned modules by Q and the set of all 
unassigned modules by Q’. Since the value MAxET(i) is an underestima- 
tion of the time required to finish the execution of all successors of Mi, we 
can define an underestimate function f&, as follows: 

f ifmu = mux 
Mi is in Q and all 

{PT(A,(i)) +MAXET(i)). 

immediate successors of 
M, are in Q’ 

In the above formula, PT(A,(i)) is the current processor turnaround 
time of the processor where Mi is resident. It also represents the time 
when the execution of Mi and all of its predecessors is finished. The 
computation of fhETrr (x) is to underestimate the task turnaround time 
with respect to the partial assignment A, by underestimating the time 
required to finish the execution of all successors of Mi as MAXET(i). 
Note that since MAXET is defined for all immediate successors of Mi, 
they must be not yet assigned with respect to the partial assignment A,. 

TABLE 1 

The values of MAxET(i)‘s for the example of Figure 2 

i 1 2 3 4 5 

MAXET(i) 87 87 16 16 0 



OPTIMAL ASSIGNMENT OF TASK MODULES 11 

Also note that the computation of &r&l ignores the processor 
synchronization and the intermodule communication time caused by M, 
and its immediate successors. To obtain a more accurate estimation of the 
task turnaround time, we have to take these two factors into consideration. 
Hence, the assignment of the immediate successors of Mi should be 
considered. The resulting underestimate function is f,,,,(x), which is 
defined as follows: 

f MEW(X) = ma 
M, is in Q 

i 

{m~{PT(A,(i)),PT(p)} 

+ZCT(i, j,A,(i),p) +MET(j,p) +~ZWi)}) 
i 
. 

In the above formula, the term mux{PT(A,(i)),PT(p)) indicates the 
synchronization between the two communicating processors where Mi and 
Mj are assigned, respectively, and its value represents the time when 
Mi and iVj are allowed to start message transmission. Since the execu- 
tion of Mi and all of its predecessors is finished by this time, the 
value min,=,,,,, ,{mm{PT(A&)), PT(p)} + ZCT(i, j, A,(i), p) + MET 
(j, p) + MET( ‘11 J is an underestimation of the time required to finish 
the execution of all predecessors of Mi, Mi, Mj, and all successors of Mj. 
The computation of fMsTu (x) is completed by calculating this value for 
each Mi in Q and each immediate successor Mj of Mi, and then taking 
the maximum as an underestimation of the task turnaround time with 
respect to the partial assignment A,. If it4, is a sink module, the value of 
the term mux{min{max(. ..) + -*e)) is computed as PT(A,(i)). 

Assume that there are k modules in Q, and that they contain 
r1,r2,..., r,, respectively, immediate successors in Q’. The time complexity 
of computing f,,,,<x> is O((r, + r2 + +-- +r,>n). 

3.3. ASSIGNMENT TREE UNDERESTIMATE (4 TU) 

The underestimate function fMsTu does not fully consider the inter- 
module communication time that will be spent along an execution path. 
We take this factor into consideration in the underestimate function fATU. 
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In essence, fAru determines how to assign the modules along a complete 
execution path such that the sum of the module execution time and the 
intermodule communication time is minimized. Thus, finding an optimal 
assignment of modules along each complete execution path forms the 
central part of the fAru function. 

Before defining the f’ru function, we describe the construction of 
execution trees from a task graph. The execution trees are rooted at sink 
modules and grow upward. Each node of an execution tree represents 
(probably not uniquely) a module. Module A4, is an immediate predecessor 
of module Mj in the task graph if and only if there is a node corresponding 
to A4, which is a child node of a node corresponding to Mj in the 
execution trees. Thus, each path from a leaf node to a root node in 
the execution trees forms a complete execution path, and all complete 
execution paths appear exactly once in the execution trees. There is the 
same number of execution trees as sink modules. The execution trees for 
the example of Figure 2 are shown in Figure 3. Note that module M2 is 
represented by two nodes in Figure 3. 

Based on the execution trees, we can build assignment trees. Each 
assignment tree is built from an execution tree by considering the assign- 
ment of the corresponding modules of the nodes in the execution tree. 
Each node of an assignment tree contains n subnodes consisting of the n 
possible assignments of its corresponding module. Each edge in the 
execution trees is replaced by n in links in the assignment trees. These 
links represent all possible assignments of two communicating modules. In 
Figure 4, a part [corresponding to the complete execution path (1,3,5)] of 
the assignment tree built from Figure 3 is shown, where the notation 
“i -j” represents “assigning module M, to processor Pj.” For example, the 
dashed line connecting nodes 7 and 9 means that M3 and M5 are assigned 
to P3 and P2, respectively. The bold lines in Figure 4 represent the 
assignment of M, to P,, M2 to P2, M3 to P,, M4 to P2, and M5 to P3. 

Fig. 3. The execution tree for the task graph of Figure 2. 
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Associated with each node in the assignment trees are some variables 
which are necessary in defining the underestimate function fATU. For the 
convenience of the description, we collect these variables in a C-type data 
structure as follows. 

typedef struct node 
1 

int module; 
int no-child; 
unsigned exe_time[ NO_PROC][ NOJ’ROC]; 
unsigned min_exe_time[ NO_PROC]; 
struct node *parent; 
INODE; 

The identifier NO-PROC is a constant denoting the number of proces- 
sors in the distributed computing system. The identifier module is a 
variable denoting the module represented by the node. The module M, is 
considered a dummy module, and a node representing a dummy module 
is considered a dummy node. For example, node 1 in Figure 4 is a dummy 
node. The dummy node acts as the head of a complete execution path. The 
identifier no-child is a variable giving the number of child nodes (equal to 
the number of immediate predecessors of the associated module). The 
identifier parent is a pointer to the parent node. A node representing a 
sink module has its parent equal to NULL. The identifiers exe-time and 
min.-exe-time will be explained later. 

From Figure 4, it is seen that the assignment trees consider all possible 
assignments of modules along each complete execution path. Therefore, a 
specific assignment of modules along a complete execution path corre- 
sponds to a path from a dummy node to a root node in the assignment 
trees. Links of the assignment trees are weighted with intermodule com- 
munication times, and their nodes are weighted with module execution 
times. Ah links incident to a dummy node have their weights equal to zero. 
Unlike the execution time of an execution path in the task graph, let 
us define the execution time of a path from a node to a root node in 
the assignment trees as the sum of the module execution times and the 
intermodule communication times along that path, exclusive of the module 
execution time of the starting node. For example, in Figure 4, the execution 
time of the path (O-3,1-3,3-3,5-2) is O+MET(1,3)+O+MET(3,3)+ 
ICT(3,5,3,2) +MET(5,2) = 188, and the execution time of the path 
(2-2,3-3,5-2) is ZCT(2,3,2,3) + MET(3,3) + ZCT(3,5,3,2) + ME7’(5,2) = 
139. 

Consequently, determining an optimal assignment of modules along a 
complete execution path which minimizes the sum of the module execu- 
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tion times and the intermodule communication times is equivalent 
to determining a shortest path from a dummy node to a root node in 
the assignment trees, which can be done by aid from the values 
min_exe_time[i]‘s and exe_time[i][jj’s that are stored in nodes of the 
assignment trees. 

For each node in Figure 4, the values in parentheses represent the 
variables e.xe_time[i][j]. They denote the execution times of the shortest 
paths from the node to the root node if the associated module and the 
module associated with its parent node are assigned to Pi+ i and Pj+ 1, 
respectively (note that the array index of C language starts from 0). Also 
in Figure 4, the values in square brackets represent the variables 
min_Rue.-time[i]. They denote the execution times of the shortest paths 
from the node to the root node if the associated module is assigned to 

pi+,* Clearly, mia_ere_time[i] = minj= O,_.,,r? _ ,{~e-~~~~[~][~]]. For example, 
node 4 in Figure 4 considers the assignment of module M, along the 
complete execution path (1,3,5). The value 136 in the parentheses under 
l-l is the content of exe_time[O][l], and it represents the execution time of 
the shortest path from node 4 to the root node if M1 and its immediate 
successor N, are assigned to P, and Pz, respectively. The value 99 in the 
square brackets is the content of min_exe_time[O], and it represents the 
execution time of the shortest path from node 4 to the root node if M, is 
assigned to P,. Recall that the module execution time of the starting node 
is excluded in the execution time of a path in the assignment trees. 

The assignment trees are established before the BBU algorithm starts 
execution. By applying Bokhari’s shortest tree algorithm [2], the values 
min_exe_time[i] and exe_time[i][j] can be computed. These values can be 
used to find a shortest path from an arbitrary node to a root node in the 
assignment trees (equivalent to determining an optimal assignment of 
modules along an execution path), which is the most essential step in 
computing f,,,(x). 

Since the assignment trees are obtained from the execution trees, they 
also retain the precedence relationship among modules. Let us consider a 
complete execution path in the task graph. Assigning modules along 
the complete execution path can be regarded as choosing a path from a 
dummy node to a root node in the assignment trees. A complete (partial) 
assignment along the complete execution path corresponds to a traveling 
tour that contains the entirety (a part) of the corresponding path in the 
assignment trees. Here, a complete (partial) assignment along a complete 
execution path refers to an assignment of all (a subset of) the modules 
contained in the complete execution path. 

Since any node x in the search tree represents a partial assignment A,, 
we can associate an array of pointers, named trace!, with the node x to 
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represent the traveling tours that correspond to A,. Moreover, since A, 
can be regarded as a union of all of the partial assignments consistent with 
A, along all complete execution paths in the task graph, the length of 
travel is equal to the number of complete execution paths, and each 
pointer in trauel is responsible for keeping track of a traveling tour of a 
dummy node to root node path in the assignment trees. In our BBU 
algorithm, each pointer in travel always points to the frontier of a traveling 
tour, that is, the node (of the assignment trees) whose associated module 
was assigned last along a dummy node to root node path. For example, let 
us consider the example of Figure 2. If three modules, M,, M2, and M4, 
have been assigned in the partial assignment A,, then the pointers in 
travel of node x point to nodes 4, 5, and 8, respectively, in Figure 4. 

At the beginning of the BBU algorithm, the pointers in travel of the 
root node point to the dummy nodes of the assignment trees because all 
modules are not yet assigned. During the execution of the BBU algorithm, 
whenever a search node x corresponding to, for example, the assignment 
of module MO to processor Pb is generated, the array travel of node x is 
constructed as follows. First, a copy of travel is gotten from the parent 
node of X. Then, a pointer in travel is moved down to the next node (in the 
assignment trees> toward the root node if the module associated with the 
next node is M,. If multiple pointers point to the same node, only one of 
them is kept. For example, let us consider the example of Figure 2 again. 
Suppose three modules, M,, M2, and iW4, are assigned in the partial 
assignment A,, and the pointers in travel of node x point to nodes 4, 5, 
and 8, respectively, in Figure 4. If a node y that corresponds to the 
assignment of M3 is generated as a child node of x during the execution of 
the BBU algorithm, then the array travel of node y is constructed as 
follows. First, a copy of travel is gotten from node x. Then the two pointers 
to nodes 4 and 5, respectively, are moved down to node 7 because the 
module associated with node 7 is M3. Further, since they both point to the 
same node after movement, only one of them is kept. The pointer to node 
8 remains unchanged. 

A more detailed description of constructing the array travel for a newly 
generated search node x is shown in Algorithm 2. 

Algorithm 2 

/* Construct the array travel for a newly generated search node X. 
Assume that the node x corresponds to the assignment of module it4, to 
processor Pb. The variable t saves the number of pointers in travel. The 
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array no_pred is a global variable, and no_pred[i] denotes the number of 
immediate predecessors of module Mi. */ 

for(i=l,j=O; i<=t; i++) 

1 
next = truvel[il - >parent; 
if (next ! = NULL && next - > module == a) 

next - > no-child - - ; 
/* Are there multiple pointers to the node next? */ 
if (next - > no-child > = 1) continue; 
traveZ[ i 1 = next; 
/* Restore the value of no-child */ 
next - > no-child = no_pred[ next - > module]; 

/* Pack the pointers */ 
traveZ[ ++jl = traveZ[iI; 

t =j. 

The time complexity of Algorithm 2 is O(t). Now, based on the above 
discussion, we define an underestimate function f;,,(x) for a partial 
assignment A, that is represented by a search node x: 

fLTv( x) = i=yx 
,...,f 

{PT( A,( trauel[ i] - > module)) 

+travel[i] ->min_exe_time[ A.(travel[i] ->module) - 11). 

In the above formula, the value t denotes the number of valid pointers 
in travel, and decreasing the index of min_txe_time by 1 is due to the 
array index of C language starting from 0. If travel[i] - >module is a 
dummy module, then PT(A,(travel[i] - >module)) is set to 0, and 
A,(truvel[i] - > module) can be any of 1,2,. . . , It. If truvel[i] - > module is 
not a dummy module, say Mk, then PT(A,(R)) is the time when Mk and 
its immediate successors can start message transmission (i.e., the time 
when the execution of Mk and all of its predecessors is finished). The 
value truvel[i] - > min_exe_time[ A,(k) - 11 is taken as an underestimation 
of the time required to finish the execution of all successors of Mk along 
the path from the node pointed at by travel[i] to the root node. The value 
f;,,(x) underestimates the task turnaround time with respect to the 
partial assignment A, by taking travef[il - > min_exe_time[ A,(k) - 11 as 
an underestimation of the execution time of the path from the node 
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pointed at by truuel[i] to the root node. For example, let us consider 
Figure 4 again. If only module M3 and all of its predecessors have been 
assigned, then there is a pointer, say truvel[i], to node 7. Now, 
PT(A,(truuel[i] - > module)) =PT(AX(3)) is the time when the execution 
of iVfJ and all of its predecessors is finished, and truuel[i] - > 
min_exe_time[A,(3) - l] is an underestimation of the time required 
to finish the execution of M,. Thus, PT(A,(3)) + truvel[i] - > 
min_exe_time[A.(3) - l] is an underestimation of the time required to 
finish the execution of all predecessors of M,, M3, and M,. 

Note that the computation of f& (x1 ignores the processor synchro- 
nization and the intermodule communication time caused by the module 
truvel[i] - > module and its immediate successor truuel[ i] - >purent - > 
module. To make a more accurate estimation of the task turnaround time, 
we have to take these two factors into consideration. Hence, the assign- 
ment of the module truuel[ i] - >purent - > module should be considered. 
The resulting underestimate function is fAT&x), which is defined 
follows: 

fAT”(X) 

= max ( min { mux PT A 
i=l,..., f p=l,..., n 

{ ( x( trauel[i]->module)),PT(p)} 

+truuel[ i] - > exe_time[ A,( truuel[ i] - > module) - 

[P-q). 

as 

11 

In the above formula, Pp is the processor where the module travel 
[i] - >purent - >module is attempted to be assigned. The term mux 
(PT( A,(truvel[i] - > module)), PT( p)} indicates the synchronization 
between the two communicating processors where the module truvel[i] - 
> module and the module truuel[ i] - >purent - > module are resident, and 
its value represents the time when the two modules can start message 
transmission. If truuel[i] - > module is a dummy module, then PT(A, 
(truuel[i] - > module)) is a set to 0 and A,(truuel[ i] - > module) can be any 
of 1,2,..., n. If truvel[i] - > module is a sink module, then no immediate 
successor of it exists and PT(p) is set to 0. The value truvel[i] - > 
ae_time[ A,(truuel[i] - > module) - l>][ p - 11 is taken as an underestima- 
tion of the time required to finish the execution of all successors of the 
module truuel[i] - > module along the path from the node pointed at by 
truuel[i] to the root node. The value fATu(x) underestimates the task 
turnaround time with respect to the partial assignment A, by taking 
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truuel[i] - > exe_time[ A,(truuel[ i I- > module) - l][ P - 11 as an underesti- 
mation of the execution time of the path from the node pointed at by 
truuel[i] to the root node. 

The time complexity of computing f&x) is 0(&z>, where t denotes 
the length of truuel. The space requirement depends on both the maximal 
length of the unexpanded list and the number of nodes in the assignment 
trees. 

3.4. AN INITIAL SOLUTION 

For a BBU algorithm, a good enough initial solution can save much 
computation and memory by fathoming nodes at the beginning of the state 
space search. For the task assignment problem, there is a trivial solution, 
i.e., assigning all modules to the same processor. In fact, our experiment 
shows that the trivial solution is almost an optimal solution when the 
intermodule communication time is much greater than the module execu- 
tion time. On the other hand, the trivial solution is bad when the module 
execution time is greater than the intermodule communication time. For 
the latter case, an algorithm using the concept fATU is applied to find a 
good enough initial solution. A similar algorithm using the concept of 

f METU can also be derived easily. 
Initially, let truuel[i]‘s point to dummy nodes. Associated with each 

truuel[il, let us define Hi) as follows: 

E(i) = p=ryin {mux{PT(A,(rruuel[i] ->module)),PT(p)} 
,...,a 

+truuel[i] ->exe_time[A,(truuel[i] ->module) -11 

[P--11}. 

In the above formula, Pp is the processor where the module travel 
[i] - >purent - >module attempts to be assigned. The value E(i) is an 
underestimation of the time required to finish the module fruuel[i] - > 
module, all of its predecessors, and its successors along the path from the 
node pointed at by truuel[i] to the root node. 

Also, let UG, b) denote mux{PTL4,hzuel[iI - > module)), PT(b)) + 
truuel[i] - > exe_time[ A,(truuel[il - > module) - l)l[b - 0, which is an un- 
derestimation of the time required to finish the module truuel[il- > 
module, all of its predecessors, and its successors along the path from the 
node pointed at by truuel[il to the root node, provided the module 
truuel[i] - >purent - > module is assigned to processor Pb. 
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The algorithm is an iterative procedure. In each iteration, the algorithm 
first determines the module truuel[ k] - >purent - > module to be assigned 
next by finding E(k) = mu+= ,,...,,IE(i)ltruvel[il->parent->module is 
a ready module}, where t is the number of pointers in travel. Then, 
the algorithm determines the processor P, where the module truueflk] - > 
parent - > module is to be assigned by choosing a value of r such that 
U(k,r)=min = b l,,,,,,{U(k, b)}. The algorithm terminates when all of the 
modules have been assigned. 

A more detailed description of the algorithm is shown in Algorithm 3. 

Algorithm 3 

/* Find an initial solution using the concept fATII. */ 

repeat 
Find E(k) = mari= ,,,,,,,(E(i)ltruvel[i]->purent->module is a 
ready module]; 
Assign the module truvel[ k] - >purent - > module to processor P, 
satisfying U(k, r) = min,= 1 ,_,,, ,,(U(k, b)]; 
Update processor turnaround time according to Algorithm 1; 
Update travel according to Algorithm 2; 

until all the modules have been assigned. 

Our BBU algorithm using the underestimate function fATLI chooses the 
better of the trivial solution and the solution obtained by Algorithm 3 as 
an initial solution, and sets its task turnaround time as the initial value of 
UC. The algorithm using the underestimate function fMera finds an initial 
solution similarly, with Algorithm 3 modified into the fMsru version. 

The time complexity of Algorithm 3 is bounded above by O(m(tn +e)), 
where e is the number of arcs in the task graph. 

3.5. ADDITIONAL STATE SPACE REDUCTION 

Two nodes in the search tree are said to be in equivalent stute if they 
represent the same partial assignment and have equal processor turnaround 
times for all processors. Clearly, the optimal assignments below them will 
have the same task turnaround time. Thus, it is necessary to keep only one 
of them in the unexpanded list. There is a simple approach to do so: we 
only accompany the INSERT operation with respect to the unexpanded 
list with a state-equivalence check. If two nodes are found to be equiva- 
lent, then only one is kept in the unexpanded list. 
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For a search node x in the state space search tree, if there is only one 
travel pointer associated with it, i.e., all execution paths of the execution 
trees converge to a single path, then the value fATU(~) is exactly the 
minimal task turnaround time of the complete assignments that include 
A, as a part. Hence, no further expansion on node x is necessary. This 
situation may occur for linear- and convergence-type task graphs 
(explained in Section 4). 

Besides, during state space search, some constraints may be gener- 
ated to reduce the search space. For a pointer truvel[i] associated with a 
search node X, if mu_x(PT(A,(truveZ[i] - > module)), PT( j)} + truveZ[i] - > 
exe_time[ A,(truvel[i] - > module) - l][j - l] 2 UC, then it is impossible 
to get a better solution below X, provided the module truvel[i] - > 
parent - > module is assigned to processor P,. As a result, the module 
truveZ[i] - >purent - > module is forbidden to be assigned to P, below x. 
The constraints imposed on the search node x are inherited by its child 
nodes. Accurate underestimation, a good initial solution, and the use of 
these constraints result in a considerable reduction on the search space. 

3.6. AN ILLlJSTRATII/E EXAMPLE 

We illustrate the execution of the BBU algorithm, using the underesti- 
mate functions fMETu and fATU, by the example of Figure 2. 

Figure 5 shows the resulting state space search tree with respect to 

f METu. The generation of the state space search tree begins with the initial 
node. Inside each search node x is the module-processor pair and the 
underestimate f,,,Eru (x). The node with the minimal underestimate is 
always chosen for node expansion. The number outside each node repre- 
sents its generation sequence. We illustrate the computation of fMETu(x) 
by node 4, which represents the partial assignment (2 - 1). The module M, 
has two immediate successors, M, and M4. The underestimate 103 is 
obtained by computing mu_x{min{l6 + 0 + 71+ 16, 16 + 27 + 88 + 16, 16 + 
27+84+16), ml’n{16+0+86+16, 16+15+98+16, 16+15+24+16)]= 
mux{min{l03,147,143), min(ll8,145,71]} = max(l03,71]. Node 41 is a goal 
node, from which an optimal assignment (l-1,2-1,4-3,3-1,5-2> with 
minimal task turnaround time 131 is obtained. Only 43 search nodes 
are generated in Figure 5. Compared with 1788, which is the maximal 
number of nodes in the state space search tree, a saving of 1745 nodes is 
attained for this example. 

The resulting state space search tree with respect to fATu is shown in 
Figure 6. In Figure 7, the computation of fATU(x) is illustrated by node 8, 
which represents the partial assignment (l-1,2-2). Processor turnaround 
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times for P,, P,, and P3 are 1, 89, and 0, respectively. There are three 
trauel pointers to nodes 4, 5, and 6 of the corresponding assignment tree 
shown in Figure 4. The underestimate 193 is obtained by computing 
mau(min{l + 99, 89 + 136, 1 + 144}, min(89 + 126, 89 + 104, 89 + 1391, min 
I89 + 141, 89 + 114, 89 + 77}} =max{lOO, 193,166). For this example, only 
34 search nodes are generated, and a saving of 1754 nodes is attained. It 
can be observed from Figure 6 that for the example of Figure 2, at least 22 
search nodes are generated in order to reach a goal node. 

For the same example, 94 and 256 search nodes are generated, respec- 
tively, for Wang and Tsai’s algorithm and the A* algorithm with h(x) = 0. 

The schedule of the task execution with respect to the optimal assign- 
ment (l-1,2-1,4-3,3-1,5-2) is shown in Figure 8. The entire task termi- 
nates when M, is finished on processor P2. 

4. EXPERIMENTAL RESULTS 

In this section, we compare the performance of our algorithm with that 
of Wang and Tsai’s algorithm and the A* algorithm with h(x) = 0. The 
average number of search nodes, the maximal queue length of the unex- 
panded list, and the execution time are generated for performance evalua- 

Time Processor PI Processor Pz Processor P3 Time 

32 

idle / 

idle I17 
1 SendMRsageto 1 

32 

56 

: 1 idle 1 

idle 

I 

Fig. 8. The schedule of the task execution with respect to the optimal assignment 
(l-1,2-1,4-3,3-1,5-2). 
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tion. In general, the performance of our algorithm is affected by many 
factors. Among them, four factors are considered in the experiment: the 
number of processors, the number of modules, the ratio of average 
intermodule communication time to average module execution time (called 
the C: P ratio), and the shapes of task graphs. The shapes of task graphs, 
which was neglected in [19], reflect the precedence relationship among all 
modules, and they will affect the accuracy of the estimation made by an 
underestimate function. In order to investigate the effect of the shapes of 
task graphs on the performance of our algorithm, instead of generating 
tested task graphs randomly, we consider six types of task graphs in the 
experiment: linear, convergence, X-type, tree, ladder, and mesh (see 
Figure 9). 

A task graph is of the linear type if it forms a linear chain. In other 
words, if the precedence relationship among the modules is a total order 
then the corresponding task graph is of the linear type. A task whose 
execution consists of several serial phases has a linear-type task graph. A 
task graph is of the convergence type if it is a tree with the root downwards. 
A task has a convergence-type task graph it its modules can be partitioned 
into several disjoint subsets S,,S,,. ..,S, with ISrl>lS,l> a** a(S,I such 
that the precedence relationship only exists between Si and Si+ i, 1~ i Q 
r- 1. The tree-type tuskgruph is similar to the convergence-type task graph, 
except that the root of the tree is upwards. The X-type tusk graph and the 
mesh-type tuskgruph are two different combinations of the convergence-type 
task graph and the tree-type task graph. The ladder-type tuskgruph consists 
of two linear-type task graphs with some arcs between them. A task 
has a ladder-type task graph if its execution consists of two interreference 
execution paths. 

A task graph with a look similar to one of these six types of task graphs 
is expected to have similar experimental results. 

In our experiment, Wang and Tsai’s algorithm and the A* algorithm 
with h(x) = 0 are provided with the trivial initial solution (in [19], Wang 
and Tsai did not provide their algorithm with any initial solution). Addi- 
tional state space reduction rules that were introduced in the previous 
section are implemented in our algorithm. The intermodule communica- 
tion times are assumed uniform, that is, for two communicating modules 
M, and Mb, ZCT(u, b, i, j)‘s are the same for any i #j. Module execution 
times and intermodule communication times are generated randomly 
according to the given C : P ratios. The C : P ratios considered in our 
experiment are from 0.01 to 100 (or from - 2 to 2 using logarithmic values 
based 10). 

In the rest of this section, experimental results about initial solutions 
and execution time are shown. For the sake of space, we do not show here 
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Fig. 9. Six types of task graphs. 

the experimental results about the average number of search nodes and 
the maximal queue length. Interested readers can find them in [20]. The 
experiment is carried out for different numbers of processors, different 
numbers of modules, different C : P ratios, and different types of task 
graphs. For each tested case, 200 randomly generated instances are run. 
Experimental results about initial solutions versus log,,JC: P> give the 
average values of 200 tested instances. Experimental results about execu- 
tion time versus log,,(C: PI give the total execution times of 200 tested 
instances. 
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In addition, experimental results about the average execution times 
versus the number of processors are shown. The average is taken with 
log,,(C : P) ranging from -2 to 2 (including 21 tested cases and 4200 
tested instances in total). Experimental results about the average execu- 
tion time versus the number of modules can be found in [201. 

4.1. INITLAL SOLUTIONS 

Figure 10 shows the deviation of initial solutions from the optimal 
solution as a function of log,,(C: P), where the curves labeled with 
“Trivial” represent the deviation of the trivial initial solution, and the 
curves labeled with “ATU” and “METU” represent the deviation of the 
two nontrivial initial solutions derived from the concepts of fATU and 

f ,,,ETU, respectively. It is seen that the trivial initial solution is very close to 
the optimal solution as log,,(C : P) > 0.5 for almost all types of task graphs 
(except tree-type task graphs). The performance of the two nontrivial 
initial solutions depends on not only the C : P ratios, but also the shapes of 
task graphs. In general, the nontrivial initial solutions are satisfactory 
when the intermodule communication time is less than the module execu- 
tion time, and they are almost optimal for linear-, convergence-, ladder-, 
and X-type task graphs. However, the nontrivial initial solutions have a 
great deviation when the intermodule communication time is greater than 
the module execution time. Fortunately, the trivial initial solution performs 
well in this case. 

Note that since the nontrivial initial solution derived from the concept 
of fATu is exactly an optimal solution to a linear-type task graph, any node 
expansion is unnecessary in this case. Therefore, experimental results with 
respect to the underestimate function fATU are not shown for the linear- 
type task graphs throughout this section. 

4.2. EXECUTION TIME 

The number of search nodes and the maximal queue length are two 
important criteria for evaluating the performances of a BBU algorithm 
because they are machine independent and program independent. How- 
ever, they do not take the computational complexity of the underestimate 
function into consideration. A heavy computation of the underestimate on 
each search node may offset the gains from reducing the search space. 
Hence, the execution time is the most reliable measure to prove the 
effectiveness of a BBU algorithm. In our experiment, all of the tested 
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Fig. 10. Deviation of the initial solutions from the optimal solution versus log,,(C : P). 

Cd) 

algorithms are programmed in C language to measure their execution 
times. The experimental results are shown in Figures 11-12. 

Figure 11 shows the execution time of 200 randomly generated instances 
as a function of log,,(C : P> for our algorithm, Wang and Tsai’s algorithm, 
and the A* algorithm with h(x) = 0. The curves labeled with “ATU” and 
“METU” represent the results of our algorithm using the underestimate 
functions fATU and fMETu, respectively. The curves labeled with “W&T” 
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Fig. 11. Execution time of 200 tested instances versus log,,(C: P). 

and “h(x) = 0” represent the results of Wang and Tsai’s algorithm and the 
A* algorithm with h(x) = 0, respectively. It is seen that our algorithm and 
Wang and Tsai’s algorithm are opposite in performance. 

It can be observed from Figure 11(a) that our algorithm performs better 
than the other two algorithms everywhere for the linear-type task graph of 
m = 5. Wang and Tsai’s algorithm has a bad performance, even worse than 
the A* algorithm with h(x) = 0, as log,,(C : P) < - 0.8. This is due to the 
potential weakness of their algorithm in estimating the minimal task 
turnaround time for a “slim” and “long” task graph. Also note that the 
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Fig. 12. Execution time of 200 tested instances versus number of processors. 

curve labeled with “W&T” drops drastically as the C: P ratio > -0.8, 
which is mainly due to the high accuracy of the trivial initial solution as the 
C: P ratio is high, and not Wang and Tsai’s algorithm itself. 

Figure 11(b) shows experimental results for the convergence-type task 
graph of m = 6. The curve labeled with “W&T” is higher than the curve 
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labeled with ‘%(x)=0” as log,,(C: P) < - 1. Our algorithm performs 
better than the other two algorithms as log,,(C : P) < 0.2. As log,,(C : P) > 
0.5, Wang and Tsai’s algorithm has the best performance. 

Figure 11(c) shows experimental results for the X-type task graph of 
m = 6. Our algorithm performs worst for the X-type task graph among 
all six types of task graphs. Even so, our algorithm has a satisfactory 
pe~o~ance as log,,fC : P> < 0. 

Figures 11(d)-(f) show experimental results for tree-, mesh-, and 
ladder-type task graphs, respectively. The reason for the ruggedness of 
Figure 11(d) is the random generation of tested instances in our experi- 
ment, Because of strict memory limitations in the experimental environ- 
ments, Figure 11(e) shows only partial curves of “h(x) = 0” and “W&T.” 
Our algorithm performs well for these three types of task graphs. More- 
over, it can be found that for all six types of task graphs but the X-type, 
the performance of our algorithm is stable for all C : P ratios. 

Figure 12 shows the execution time of 200 test instances for different 
numbers of processors. For each tested case, the result is obtained 
by taking an average on all log,,(C: P) values from - 2 to 2. Our algo- 
rithm has a better performance than Wang and Tsai’s algorithm in all 
tested cases. Because of memory limitations, experimental results for the 
mesh-type task graph are not shown here. 

Interested readers can find in 1201 experimental results about the aver- 
age execution time versus the number of modules. Like Figure 12, the 
average is taken with log,,(C :P) ranging from - 2 to 2. Our algorithm has 
a better performance than Wang and Tsai’s algorithm almost everywhere. 

5. CONCLUDING REMARKS 

In this paper, we have proposed a BBU algo~thm for the task assign- 
ment problem, which was considered by Wang and Tsai [19]. The essence 
of Wang and Tsai’s algorithm is to underestimate the minimal task 
tu~around time from the vie~oint of a bottleneck processor, This causes 
their algorithm to be a poor underestimation as the C: P ratio is low. On 
the other hand, our algorithm underestimates the minimal task turnaround 
time from the viewpoint of execution paths. E~erimental results provide 
us with a complete comparison among our algorithm, Wang and Tsai’s 
algorithm, and the A* algorithm with h(x) = 0. Our algorithm is stable in 
performance and has the best performance in most tested cases. Wang and 
Tsai’s algorithm degenerates rapidly as the C : P ratio decreases, and its 
instability in performance makes it less attractive in practical applications. 
The A* algorithm with h(x) = 0 acts as a benchmark (upper bound) for the 
BBU algorithm. 
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In order to investigate the effect of the shapes of task graphs on 
the performance of our algorithm, we consider six types of task graphs: 
linear, convergence, X-type, tree, ladder, and mesh in the experiment. 
Experimental results show that our algorithm is the most favorable to the 
execution of linear-type task graphs, but has a worse execution of X-type 
task graphs as the C: P ratio is high. Our algorithm, using the underesti- 
mate function fATU, can obtain an optimal solution to a linear-type task 
graph without any node expansion. 

A good initial solution can fathom many search nodes at the beginning 
of state space search. In our experiment, each of the tested algorithms is 
provided with an initial solution (no initial solution is suggested in [19] for 
Wang and Tsai’s algorithm). The trivial initial solution is almost an optimal 
solution as log,,(C : P) > 0.5 for linear-, convergence, X-type-, mesh-, and 
ladder-type task graphs. On the other hand, nontrivial initial solutions are 
almost an optimal solution as log(C : P) < - 0.5 for linear-, convergence-, 
X-type, and ladder-type task graphs. Moreover, the nontrivial initial 
solution using the concept of fATu is exactly an optimal solution to a 
linear-type task graph. 

In addition, some state space reduction rules were introduced to further 
reduce the search space. According to these rules, constraints may be 
generated during state space search for a search node. These constraints 
can cause more search nodes fathomed during execution. 

The authors are pleased to thank the anonymous referees for their valuable suggestions 
and comments. 
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