
INFORMATION SCIENCES 7&l-34 (1993)

Optimal Assignment of Task Modules with Precedence in Distributed
Computing Systems

GEN-HUEY CHEN

Department of Computer Science and Information Engineering,
National Taiwan University Taipei, Taiwan, Republic of China

and

JYH-SHIARN YUR

Institute of Information Engineeting Tatung Institute of Technology,
Taipei, Taiwan, Republic of China

ABSTRACT

We consider the problem of finding an optimal assignment of task modules with a
precedence relationship in a distributed computing system. The objective of task
assignment is to minimize the task turnaround time, i.e., the total time required to finish
the execution of a task. This problem is known to be NP-complete for more than three
processors. To solve the problem, a well-known state space reduction technique,
branch-and-bound-with-underestimates, is applied, and two underestimate functions are
defined. Through experiment, their effectiveness is shown by comparison with both
Wang and Tsai’s algorithm and the A* algorithm. Parameters considered in the
experiment include the number of modules, the number of processors, the ratio of
average intermodule communication time to average module execution time, and the
shapes of task graphs. Statistical data about the number of search nodes, maximal
queue length, and execution time are collected for performance evaluation.

1. INTRODUCTION

The rapid progress of microprocessor technology has made distributed
computing systems economically attractive for many computer applica-
tions. In a distributed computing system, a task (program) may be dis-
tributed among processors to speed up execution by taking advantage of

Correspondence to Prof. Gen-Huey Chen.

OElsevier Science Publishing Co., Inc. 1993
655 Avenue of the Americas, New York, NY 10010 0020-0255,‘93/$6.00

2 G-H. CHEN AND J-S. YUR

system computation abilities and resources. However, the overall system
performance is dependent on many factors; among them, the most crucial
one is the assignment of task modules to processors. In general, a task can
be suitably divided into a set of interdependent tusk modules (modules, for
short) that can be executed on the processors of the distributed computing
system. The cost of executing a module may vary from processor to
processor. During task execution, some control messages and intermediate
data are required to be transmitted among modules. Two communicating
modules that are executed on different processors consume a system’s
communication resource, and thus incur a communication cost because of
the overheads due to the communication protocols and transmission delays
in the communication subnetwork. Here, cost values are defined in terms
of a single unit, time. Hence, the total time, called the tusk turnaround
time, required to finish the execution of the entire task is composed of the
module execution time (MET), intermodule communication time (ZCT), and
processor idle time (PIT 1.

Our attention for task assignment is focused on finding an optimal
assignment that minimizes the task turnaround time. To achieve this
objective, we need to balance the computation loads of the processors, and
at the same time minimize the intermodule communication overheads.
This problem for more than three processors is known to be NP-complete
[2]. Solution methods already suggested for the problem can be roughly
classified into four categories: graph-theoretic approaches [ill, [151, [16],
integer O-l programming approaches [5], [12], [13], [19], heuristic
approaches [61,[81, and simulated annealing approaches [18]. Stone [151 has
solved the problem by partitioning the processor-module flow graph using
a max-flow min-cut algorithm. Modeling the problem as a combinatorial
optimization problem, integer O-l programming approaches use mathe-
matical optimization techniques to search for an optimal assignment.
Instead of pursuing an optimal solution, heuristic approaches find near-
optimal solutions by applying some heuristic strategies. Simulated anneal-
ing approaches use stochastic search criteria to refine an initial solution to
a globally optimal solution in finite iterations.

Wang and Tsai [19] formulated the task assignment problem as a graph
matching problem, and then presented an A* algorithm [lo] to search for
an optimal assignment. Their algorithm has worse performance when the
intermodule communication time is relatively small (compared with
the module execution time). In this paper, we propose a new algorithm
for the task assignment problem that behaves very well in that case. In our
algorithm, a well-known state space reduction technique, brunch-and-
bound-with-underestimates (BZ?U), is applied, and two underestimate func-
tions, fMETu and far”, are defined. To show the effectiveness of our

OPTIMAL ASSIGNMENT OF TASK MODULES 3

algorithm, statistical data about the number of search nodes, maximal
queue length, and execution time are generated. Parameters considered in
our experiment include the number of modules, the number of processors,
the shapes of task graphs (defined in the next section), and the ratio of
average intermodule communication time to average module execution
time.

The remainder of the paper is organized as follows. In Section 2, system
assumptions are stated and the task assignment problem is formulated. In
Section 3, two underestimate functions, fMETLT and fATLI, are defined and
a BBU algorithm is proposed. In addition, an initial feasible solution is
suggested for our algorithm, and some state space reduction rules are
introduced. They can fathom more search nodes during the state space
search. Experimental results are shown in Section 4. Finally, concluding
remarks are given in Section 5.

2. ASSUMPTIONS AND PROBLEM STATEMENT

2.1. ASSUMPTIONS

The task assignment problem we consider in this paper has the same
assumptions as Wang and Tsai have made in [19].

(1) The processors in the distributed computing system are heteroge-
neous.

(2) All processors can communicate with each other through the com-
munication subnetwork.

(3) All communication links are symmetric. That is, transmission on
both directions of a communication link takes the same time. But, trans-
mission on different communication links may take different times.

(4) Synchronization between two communicating processors is neces-
sary before starting message transmission (i.e., message transmission and
module execution cannot be overlapped). This means that the two commu-
nicating processors spend the same amount of communication time, but
one of them may incur additional idle time.

(5) There exists a precedence relationship among modules. It speci-
fies the feasible execution sequences of modules. No cyclic precedence
relationship is allowed among modules.

2.2. PROBLEM STATEMENT

There are m modules M,, M2, . , . , Mm contained in a given task. The
task can be conveniently represented by an acyclic directed graph, called

4 G-H. CHEN AND J-S. YUR

the tusk graph, as follows. Each module of the task is uniquely represented
by a vertex of the task graph, and there is an arc from Mi to Mj if and
only if message transmission is needed from M, to Mj (i.e., Mi precedes
Mj) during the task execution. Again, the task graph can be represented by
an m x m adjacency matrix TSK; TSK(i, j) = 1 if there is an arc from Mi
to Mj and TSK(i, j) = 0 otherwise. If the modules are arranged in a
topological order [7] according to their precedence relationship, then TSK
is an upper triangular matrix. In subsequent discussion, we consider TSK
upper triangular.

If there exists a path from M, to Mj in the task graph, then Mi is called
a predecessor of M,, and Mj is called a successor of Mi. If there exists an
arc from Mi to Mj, then IV, is called an immediatepredecessor of Mj, and
Mj is called an immediate successor of Mi. A module without any successor
is called a sink module, and a module without any predecessor is called a
source module. A module is not allowed to start execution until all of its
immediate predecessors have finished execution.

There are n processors P,, P2,. . . , P,, in the distributed computing
system. Let MET(i, j) denote the module execution time required for
executing M, on P,, and let ZCT(a, b, i, j) denote the intermodule commu-
nication time required for the pair of modules M, and Mb when they are
assigned to Pi and Pj, respectively. Since symmetric communication links
are assumed, ZCT(a, b, i, j) = ZCT(a, b, j, i). Moreover, it is also assumed
that ZCT(a, b, i, j) = 0 if i = j.

Let PT(i) denote the processor turnaround time of Pi, which is the
total time consumed on Pi. When the task finishes its execution, the
maximal processor turnaround time is the task turnaround time. The task
assignment problem is to find a mapping from the task graph to the
distributed computing system which minimizes the task turnaround time
subject to the precedence constraint.

During the execution of our algorithm, processor turnaround times are
updated whenever a module, say M,, is assigned to a processor, say Py.

Suppose M,,,,, M,,,,, . . . , M,,,, are immediate predecessors of M,, and they
are arranged in nondecreasing order of processor turnaround times.
That is PT(A(mi)) Q PT(A(mj)) for 1 <i <j G k, where A(mi)
denotes the processor to which M,,,, is assigned. PT(A(m,)),
PT(A(m,)), . . . , PT(A(m,)) need to be updated when M, is assigned
to Py. The updating proceeds in the order of PT(A(m,)),
PT(A(m,)), . . . , PT(A(m,)). To update PT(A(mi)), 1 <i <k, processors
P, and A(mi) are first synchronized, and then spend the same amount of
time for message transmission. Finally, after finishing the updating of
PT(A(mi))‘s, i = 1,. . . , k, PT(P1) is increased by the module execution time
of M, on P,. The detailed procedure is shown in Algorithm 1.

OPTIMAL ASSIGNMENT OF TASK MODULES 5

Algorithm 1

/* Update the processor turnaround time. */

Step 1. /* Suppose that Mm1,Mm2,. .., Mm, are arranged in nonde-
creasing order of processor turnaround time, i.e., PT(A(m,)) <PT(A(mj))
for 1~ i <j G k, and A4, is assigned to PY. */

for (i=l; i<=k; i-t+)

I
PTMm,N =mdPT(y), PTMm,)N +

Kmm,, x, A(mJ y);
PT(y) = PTL4bq));

Step 2. PT(y) = PT(y) +MET(x, y).

Algorithm 1 takes O(k) time. In Figure 1, the execution of Algorithm 1
is illustrated by an example.

3. STATE SPACE SEARCH REDUCTION

In this section, a branch-and-bound-with-underestimates (BBU) algo-
rithm is presented to find an optimal solution for the task assignment
problem. The state space graph of a BBU algorithm is a search tree whose
nodes each, except for the root node, correspond to an assignment of a
module to a processor. Associated with each node x in the search tree is a
partial assignment A, that consists of all of the module-to-processor
assignments of the nodes along the path from the root to X. By A,(i) = j
we denote that module Mi is assigned to processor Pj in the partial
assignment A,. Associated with each node x is also an underestimation
f(x) =g(x) +/z(x) of the minimal task turnaround time caused by the
complete assignments that include A, as a part. The value g(x) is the
maximal processor turnaround time caused by A,, and h(x) is an underes-
timation of the minimal processor turnaround time that will be incurred
from node x to a goal node. A goal node is a node that represents a
complete assignment. One simple, but inaccurate, way to compute f(x) is
to let h(x) = 0. The accuracy of h(x) greatly affects the efficiency of a
BBU algorithm. Besides, an upper bound cost (UC) is associated with
a BBU algorithm, and it represents an upper bound on the minimal task
turnaround time. The value UC is set infinity initially, and is updated to
min{UC,f(z>) whenever a goal node z is reached.

6 G-H. CHEN AND J-S. YUR

(8) M,,,, ad M,,,,m immediate prtxiwc~ oft, .

A(mJ A(mz) 5

I H
(b) Bcforc updating.

(d) Afm updating pT(AC2)). (e)P?‘(pY) is incrwcd by MW(xy).

Fig. 1. The updating of processor turnaround times.

A list, called the u~~~a~ded &, is necessary for a BBU algorithm to
store all unexpanded search nodes from which it is still possible to find an
optimal assignment. Initially, the unexpanded list is empty. The BBU
algorithm begins with placing the root node into the unexpanded list. The
root node corresponds to the null state (no modules assigned). During the
state space search, a search node x with minimal underestimation f(x) is
always selected from the unexpanded list to be expanded next. Let those
unassigned modules whose predecessors have all been assigned be referred
to as ready modules. If x is not a goal node, n possible assignments Mi to
z$j=l,..., n, for each ready module Mi are checked for their feasibilities

OPTIMAL ASSIGNMENT OF TASK MODULES 7

(it will be seen later in this section that some constraints may be derived
during the state space search), and a child node is generated for each of
the feasible assignments. Then, for each generated child node y, the
underestimation f(y) is computed. If f(y) < UC, node y is inserted into
the unexpanded list. Otherwise, node y is fathomed since further expan-
sion form it will not lead to an optimal solution. All nodes in the
unexpanded list are maintained in nondecreasing order of underestima-
tions. If the selected node x is a goal node, the algorithm terminates since
it is impossible to find a better solution from the other nodes.

In the rest of this section, we first briefly review Wang and Tsai’s
algorithm [19], and then introduce two underestimate functions f,,,sro and

f ATU’

3.1. A BRIEF REVIEW OF WANG AND TSAI’S ALGORITHM

The essence of Wang and Tsai’s algorithm [19] is to underestimate the
minimal task turnaround time from the viewpoint of the bottleneck proces-
sor. The bottleneck processor is the processor with the maximal processor
turnaround time. In their algorithm, the minimal task turnaround time is
underestimated for each partial assignment by summing up the minimal
time required for each of the unassigned modules that need to communi-
cate with those modules that have been assigned to the current bottleneck
processor.

For a partial assignment A,, let us define the following notations:

Pb: the bottleneck processor;
Li: the set of modules assigned to processor Pi;

Q: the union of Li’s, i.e., the set of all assigned modules;
Q’: the set of all unassigned modules;

S: the set of modules in Q’ that communicate with modules in L,.

Wang and Tsai’s algorithm computes h(x) as the summation of Hg for
all M4 in S, where

H,=min{t,t’},

t=Mx(q,b) + c ~Cqbq>~,(r),q,
rEQ-Lb and
TSK(r,q)= 1

8

and

G-H. CHEN AND J-S. YUR

t’= min
p=l,...,n

i
c ZCT(r,q,b,p)

rsL, and
TSK(r,q)= 1

The computation of t assumes that Mg is assigned to Pb, and the
computation of t’ assumes that Mg is not assigned to Pb. In essence,
Wang and Tsai’s algorithm computes h(x) from the viewpoint of proces-
sors, which is the main reason for a poor underestimation as the intermod-
ule communication time is relatively small (compared with the module
execution time). It thus motivates us to revisit the problem from the
viewpoint of modules.

3.2. MINIMAL EXECUTION TIME UNDERESTIMATE (METU)

Given a task graph, the task starts execution from source modules and
terminates after all sink modules are finished. A directed path from a
module Mi to a sink module Mj is called an execution path, and is called a
complete execution path if Mi is a source module. The execution time of an
execution path from Mj to Mj is defined to be the time length from the
time when Mi starts execution to the time when Mj finishes execution.
The execution time of an execution path contains the module execution
times, the intermodule communication times, and the processor idle times
that must be spent to finish the execution of the execution path. There
may be a number of complete execution paths contained in the task graph.
With respect to a mapping from the task graph to the set of processors, we
define the critical complete execution paths as those complete execution
paths whose execution times are equal to the task turnaround time. In
Figure 2, an example is shown where the given task graph [see Figure 2(a)]
contains three complete execution paths [see Figure 2(c)]: (M,,M,, M,),
(M,,M,,M,), and (M,,M,,M,). Also, note that for any two modules,
uniform intermodule communication times are assumed in Figure 2. That
is, for two communicating modules n/r, and Mb, ZCT(a, b,i,jYs are the
same for any i #j. For the assignment M, to P,, M2 to P.,, M3 to P,, M4
to P2, and M5 to P3, the execution time of each of the three complete
execution paths is 276 [see Figure 2(d)], which is the task turnaround time.
So, they are all critical complete execution paths with respect to the
designated assignment.

Based on the concept of execution paths, two underestimate functions,

f METU and fAT" (fATi is defined in the next subsection), are therefore
proposed.

OPTIMAL ASSIGNMENT OF TASK MODULES 9

M,

Ml

M3

M4

MS

1 69 76

16 89 92

71 88 84

86 98 24

63 16 38

(a) A task graph and the intermodule (b) Module execution times (c) Three complete execution paths.

Yime Processor P, I Processor P 2 Processor P, Time

.187

.214

.238

276

(d) The schedule of the task execution with nspect to the assignment :
Mt’OP,,M2to~,M~tOl;,Uq~~,and~~toP,.

Fig. 2. An illustrative example.

For an arbitrary execution path CM,,, M+. . . , Mi,> extended from M,,,
the summation

,$,=yJ n IMWi,J+}
, 1

is an underestimation of the execution time for the execution path. For
each module M,, we define MAXET(1’) to be the maximum of the underes-

10 G-H. CHEN AND J-S. YUR

timated execution times for all of the execution paths that are extended
from the immediate successors of Mi. Clearly, if Mi is a sink module,
MAXET(i) = 0. Otherwise, MAXET(i) is computed recursively as

max
M, is an immediate

S”CCeSSOr of M,

All of the values MAxET(i) are determined prior to the execution of
the BBU algorithm. The time complexity for computing all MAXET(i)‘s
are @en), where e is the number of arcs in the task graph. In Table 1, we
show the values of MAXET(i)‘s for the example of Figure 2. For example,
MAxET(2) = mux{MAXET(3) + 71, MAxET(4) + 24) = mux{87,40) = 87.

Let us consider a partial assignment A, that is associated with a search
node x during the execution of the BBU algorithm. With respect to A,, as
before, denote the set of all assigned modules by Q and the set of all
unassigned modules by Q’. Since the value MAxET(i) is an underestima-
tion of the time required to finish the execution of all successors of Mi, we
can define an underestimate function f&, as follows:

f ifmu = mux
Mi is in Q and all

{PT(A,(i)) +MAXET(i)).

immediate successors of
M, are in Q’

In the above formula, PT(A,(i)) is the current processor turnaround
time of the processor where Mi is resident. It also represents the time
when the execution of Mi and all of its predecessors is finished. The
computation of fhETrr (x) is to underestimate the task turnaround time
with respect to the partial assignment A, by underestimating the time
required to finish the execution of all successors of Mi as MAXET(i).
Note that since MAXET is defined for all immediate successors of Mi,
they must be not yet assigned with respect to the partial assignment A,.

TABLE 1

The values of MAxET(i)‘s for the example of Figure 2

i 1 2 3 4 5

MAXET(i) 87 87 16 16 0

OPTIMAL ASSIGNMENT OF TASK MODULES 11

Also note that the computation of &r&l ignores the processor
synchronization and the intermodule communication time caused by M,
and its immediate successors. To obtain a more accurate estimation of the
task turnaround time, we have to take these two factors into consideration.
Hence, the assignment of the immediate successors of Mi should be
considered. The resulting underestimate function is f,,,,(x), which is
defined as follows:

f MEW(X) = ma
M, is in Q

i

{m~{PT(A,(i)),PT(p)}

+ZCT(i, j,A,(i),p) +MET(j,p) +~ZWi)})
i
.

In the above formula, the term mux{PT(A,(i)),PT(p)) indicates the
synchronization between the two communicating processors where Mi and
Mj are assigned, respectively, and its value represents the time when
Mi and iVj are allowed to start message transmission. Since the execu-
tion of Mi and all of its predecessors is finished by this time, the
value min,=,,,,, ,{mm{PT(A&)), PT(p)} + ZCT(i, j, A,(i), p) + MET
(j, p) + MET(‘11 J is an underestimation of the time required to finish
the execution of all predecessors of Mi, Mi, Mj, and all successors of Mj.
The computation of fMsTu (x) is completed by calculating this value for
each Mi in Q and each immediate successor Mj of Mi, and then taking
the maximum as an underestimation of the task turnaround time with
respect to the partial assignment A,. If it4, is a sink module, the value of
the term mux{min{max(. ..) + -*e)) is computed as PT(A,(i)).

Assume that there are k modules in Q, and that they contain
r1,r2,..., r,, respectively, immediate successors in Q’. The time complexity
of computing f,,,,<x> is O((r, + r2 + +-- +r,>n).

3.3. ASSIGNMENT TREE UNDERESTIMATE (4 TU)

The underestimate function fMsTu does not fully consider the inter-
module communication time that will be spent along an execution path.
We take this factor into consideration in the underestimate function fATU.

12 G-H. CHEN AND J-S. YUR

In essence, fAru determines how to assign the modules along a complete
execution path such that the sum of the module execution time and the
intermodule communication time is minimized. Thus, finding an optimal
assignment of modules along each complete execution path forms the
central part of the fAru function.

Before defining the f’ru function, we describe the construction of
execution trees from a task graph. The execution trees are rooted at sink
modules and grow upward. Each node of an execution tree represents
(probably not uniquely) a module. Module A4, is an immediate predecessor
of module Mj in the task graph if and only if there is a node corresponding
to A4, which is a child node of a node corresponding to Mj in the
execution trees. Thus, each path from a leaf node to a root node in
the execution trees forms a complete execution path, and all complete
execution paths appear exactly once in the execution trees. There is the
same number of execution trees as sink modules. The execution trees for
the example of Figure 2 are shown in Figure 3. Note that module M2 is
represented by two nodes in Figure 3.

Based on the execution trees, we can build assignment trees. Each
assignment tree is built from an execution tree by considering the assign-
ment of the corresponding modules of the nodes in the execution tree.
Each node of an assignment tree contains n subnodes consisting of the n
possible assignments of its corresponding module. Each edge in the
execution trees is replaced by n in links in the assignment trees. These
links represent all possible assignments of two communicating modules. In
Figure 4, a part [corresponding to the complete execution path (1,3,5)] of
the assignment tree built from Figure 3 is shown, where the notation
“i -j” represents “assigning module M, to processor Pj.” For example, the
dashed line connecting nodes 7 and 9 means that M3 and M5 are assigned
to P3 and P2, respectively. The bold lines in Figure 4 represent the
assignment of M, to P,, M2 to P2, M3 to P,, M4 to P2, and M5 to P3.

Fig. 3. The execution tree for the task graph of Figure 2.

OPTIMAL ASSIGNMENT OF TASK MODULES 13

\
\
\
\
\
\

/
/

/
/

/

\
\
\
\

/ , \ \

14 G-H. CHEN AND J-S. YUR

Associated with each node in the assignment trees are some variables
which are necessary in defining the underestimate function fATU. For the
convenience of the description, we collect these variables in a C-type data
structure as follows.

typedef struct node
1

int module;
int no-child;
unsigned exe_time[NO_PROC][NOJ’ROC];
unsigned min_exe_time[NO_PROC];
struct node *parent;
INODE;

The identifier NO-PROC is a constant denoting the number of proces-
sors in the distributed computing system. The identifier module is a
variable denoting the module represented by the node. The module M, is
considered a dummy module, and a node representing a dummy module
is considered a dummy node. For example, node 1 in Figure 4 is a dummy
node. The dummy node acts as the head of a complete execution path. The
identifier no-child is a variable giving the number of child nodes (equal to
the number of immediate predecessors of the associated module). The
identifier parent is a pointer to the parent node. A node representing a
sink module has its parent equal to NULL. The identifiers exe-time and
min.-exe-time will be explained later.

From Figure 4, it is seen that the assignment trees consider all possible
assignments of modules along each complete execution path. Therefore, a
specific assignment of modules along a complete execution path corre-
sponds to a path from a dummy node to a root node in the assignment
trees. Links of the assignment trees are weighted with intermodule com-
munication times, and their nodes are weighted with module execution
times. Ah links incident to a dummy node have their weights equal to zero.
Unlike the execution time of an execution path in the task graph, let
us define the execution time of a path from a node to a root node in
the assignment trees as the sum of the module execution times and the
intermodule communication times along that path, exclusive of the module
execution time of the starting node. For example, in Figure 4, the execution
time of the path (O-3,1-3,3-3,5-2) is O+MET(1,3)+O+MET(3,3)+
ICT(3,5,3,2) +MET(5,2) = 188, and the execution time of the path
(2-2,3-3,5-2) is ZCT(2,3,2,3) + MET(3,3) + ZCT(3,5,3,2) + ME7’(5,2) =
139.

Consequently, determining an optimal assignment of modules along a
complete execution path which minimizes the sum of the module execu-

OPTIMAL ASSIGNMENT OF TASK MODULES 15

tion times and the intermodule communication times is equivalent
to determining a shortest path from a dummy node to a root node in
the assignment trees, which can be done by aid from the values
min_exe_time[i]‘s and exe_time[i][jj’s that are stored in nodes of the
assignment trees.

For each node in Figure 4, the values in parentheses represent the
variables e.xe_time[i][j]. They denote the execution times of the shortest
paths from the node to the root node if the associated module and the
module associated with its parent node are assigned to Pi+ i and Pj+ 1,
respectively (note that the array index of C language starts from 0). Also
in Figure 4, the values in square brackets represent the variables
min_Rue.-time[i]. They denote the execution times of the shortest paths
from the node to the root node if the associated module is assigned to

pi+,* Clearly, mia_ere_time[i] = minj= O,_.,,r? _ ,{~e-~~~~[~][~]]. For example,
node 4 in Figure 4 considers the assignment of module M, along the
complete execution path (1,3,5). The value 136 in the parentheses under
l-l is the content of exe_time[O][l], and it represents the execution time of
the shortest path from node 4 to the root node if M1 and its immediate
successor N, are assigned to P, and Pz, respectively. The value 99 in the
square brackets is the content of min_exe_time[O], and it represents the
execution time of the shortest path from node 4 to the root node if M, is
assigned to P,. Recall that the module execution time of the starting node
is excluded in the execution time of a path in the assignment trees.

The assignment trees are established before the BBU algorithm starts
execution. By applying Bokhari’s shortest tree algorithm [2], the values
min_exe_time[i] and exe_time[i][j] can be computed. These values can be
used to find a shortest path from an arbitrary node to a root node in the
assignment trees (equivalent to determining an optimal assignment of
modules along an execution path), which is the most essential step in
computing f,,,(x).

Since the assignment trees are obtained from the execution trees, they
also retain the precedence relationship among modules. Let us consider a
complete execution path in the task graph. Assigning modules along
the complete execution path can be regarded as choosing a path from a
dummy node to a root node in the assignment trees. A complete (partial)
assignment along the complete execution path corresponds to a traveling
tour that contains the entirety (a part) of the corresponding path in the
assignment trees. Here, a complete (partial) assignment along a complete
execution path refers to an assignment of all (a subset of) the modules
contained in the complete execution path.

Since any node x in the search tree represents a partial assignment A,,
we can associate an array of pointers, named trace!, with the node x to

16 G-H. CHEN AND J-S. YUR

represent the traveling tours that correspond to A,. Moreover, since A,
can be regarded as a union of all of the partial assignments consistent with
A, along all complete execution paths in the task graph, the length of
travel is equal to the number of complete execution paths, and each
pointer in trauel is responsible for keeping track of a traveling tour of a
dummy node to root node path in the assignment trees. In our BBU
algorithm, each pointer in travel always points to the frontier of a traveling
tour, that is, the node (of the assignment trees) whose associated module
was assigned last along a dummy node to root node path. For example, let
us consider the example of Figure 2. If three modules, M,, M2, and M4,
have been assigned in the partial assignment A,, then the pointers in
travel of node x point to nodes 4, 5, and 8, respectively, in Figure 4.

At the beginning of the BBU algorithm, the pointers in travel of the
root node point to the dummy nodes of the assignment trees because all
modules are not yet assigned. During the execution of the BBU algorithm,
whenever a search node x corresponding to, for example, the assignment
of module MO to processor Pb is generated, the array travel of node x is
constructed as follows. First, a copy of travel is gotten from the parent
node of X. Then, a pointer in travel is moved down to the next node (in the
assignment trees> toward the root node if the module associated with the
next node is M,. If multiple pointers point to the same node, only one of
them is kept. For example, let us consider the example of Figure 2 again.
Suppose three modules, M,, M2, and iW4, are assigned in the partial
assignment A,, and the pointers in travel of node x point to nodes 4, 5,
and 8, respectively, in Figure 4. If a node y that corresponds to the
assignment of M3 is generated as a child node of x during the execution of
the BBU algorithm, then the array travel of node y is constructed as
follows. First, a copy of travel is gotten from node x. Then the two pointers
to nodes 4 and 5, respectively, are moved down to node 7 because the
module associated with node 7 is M3. Further, since they both point to the
same node after movement, only one of them is kept. The pointer to node
8 remains unchanged.

A more detailed description of constructing the array travel for a newly
generated search node x is shown in Algorithm 2.

Algorithm 2

/* Construct the array travel for a newly generated search node X.
Assume that the node x corresponds to the assignment of module it4, to
processor Pb. The variable t saves the number of pointers in travel. The

OPTIMAL ASSIGNMENT OF TASK MODULES 17

array no_pred is a global variable, and no_pred[i] denotes the number of
immediate predecessors of module Mi. */

for(i=l,j=O; i<=t; i++)

1
next = truvel[il - >parent;
if (next ! = NULL && next - > module == a)

next - > no-child - - ;
/* Are there multiple pointers to the node next? */
if (next - > no-child > = 1) continue;
traveZ[i 1 = next;
/* Restore the value of no-child */
next - > no-child = no_pred[next - > module];

/* Pack the pointers */
traveZ[++jl = traveZ[iI;

t =j.

The time complexity of Algorithm 2 is O(t). Now, based on the above
discussion, we define an underestimate function f;,,(x) for a partial
assignment A, that is represented by a search node x:

fLTv(x) = i=yx
,...,f

{PT(A,(trauel[i] - > module))

+travel[i] ->min_exe_time[A.(travel[i] ->module) - 11).

In the above formula, the value t denotes the number of valid pointers
in travel, and decreasing the index of min_txe_time by 1 is due to the
array index of C language starting from 0. If travel[i] - >module is a
dummy module, then PT(A,(travel[i] - >module)) is set to 0, and
A,(truvel[i] - > module) can be any of 1,2,. . . , It. If truvel[i] - > module is
not a dummy module, say Mk, then PT(A,(R)) is the time when Mk and
its immediate successors can start message transmission (i.e., the time
when the execution of Mk and all of its predecessors is finished). The
value truvel[i] - > min_exe_time[A,(k) - 11 is taken as an underestimation
of the time required to finish the execution of all successors of Mk along
the path from the node pointed at by travel[i] to the root node. The value
f;,,(x) underestimates the task turnaround time with respect to the
partial assignment A, by taking travef[il - > min_exe_time[A,(k) - 11 as
an underestimation of the execution time of the path from the node

18 G-H. CHEN AND J-S. YUR

pointed at by truuel[i] to the root node. For example, let us consider
Figure 4 again. If only module M3 and all of its predecessors have been
assigned, then there is a pointer, say truvel[i], to node 7. Now,
PT(A,(truuel[i] - > module)) =PT(AX(3)) is the time when the execution
of iVfJ and all of its predecessors is finished, and truuel[i] - >
min_exe_time[A,(3) - l] is an underestimation of the time required
to finish the execution of M,. Thus, PT(A,(3)) + truvel[i] - >
min_exe_time[A.(3) - l] is an underestimation of the time required to
finish the execution of all predecessors of M,, M3, and M,.

Note that the computation of f& (x1 ignores the processor synchro-
nization and the intermodule communication time caused by the module
truvel[i] - > module and its immediate successor truuel[i] - >purent - >
module. To make a more accurate estimation of the task turnaround time,
we have to take these two factors into consideration. Hence, the assign-
ment of the module truuel[i] - >purent - > module should be considered.
The resulting underestimate function is fAT&x), which is defined
follows:

fAT”(X)

= max (min { mux PT A
i=l,..., f p=l,..., n

{ (x(trauel[i]->module)),PT(p)}

+truuel[i] - > exe_time[A,(truuel[i] - > module) -

[P-q).

as

11

In the above formula, Pp is the processor where the module travel
[i] - >purent - >module is attempted to be assigned. The term mux
(PT(A,(truvel[i] - > module)), PT(p)} indicates the synchronization
between the two communicating processors where the module truvel[i] -
> module and the module truuel[i] - >purent - > module are resident, and
its value represents the time when the two modules can start message
transmission. If truuel[i] - > module is a dummy module, then PT(A,
(truuel[i] - > module)) is a set to 0 and A,(truuel[i] - > module) can be any
of 1,2,..., n. If truvel[i] - > module is a sink module, then no immediate
successor of it exists and PT(p) is set to 0. The value truvel[i] - >
ae_time[A,(truuel[i] - > module) - l>][p - 11 is taken as an underestima-
tion of the time required to finish the execution of all successors of the
module truuel[i] - > module along the path from the node pointed at by
truuel[i] to the root node. The value fATu(x) underestimates the task
turnaround time with respect to the partial assignment A, by taking

OPTIMAL ASSIGNMENT OF TASK MODULES 19

truuel[i] - > exe_time[A,(truuel[i I- > module) - l][P - 11 as an underesti-
mation of the execution time of the path from the node pointed at by
truuel[i] to the root node.

The time complexity of computing f&x) is 0(&z>, where t denotes
the length of truuel. The space requirement depends on both the maximal
length of the unexpanded list and the number of nodes in the assignment
trees.

3.4. AN INITIAL SOLUTION

For a BBU algorithm, a good enough initial solution can save much
computation and memory by fathoming nodes at the beginning of the state
space search. For the task assignment problem, there is a trivial solution,
i.e., assigning all modules to the same processor. In fact, our experiment
shows that the trivial solution is almost an optimal solution when the
intermodule communication time is much greater than the module execu-
tion time. On the other hand, the trivial solution is bad when the module
execution time is greater than the intermodule communication time. For
the latter case, an algorithm using the concept fATU is applied to find a
good enough initial solution. A similar algorithm using the concept of

f METU can also be derived easily.
Initially, let truuel[i]‘s point to dummy nodes. Associated with each

truuel[il, let us define Hi) as follows:

E(i) = p=ryin {mux{PT(A,(rruuel[i] ->module)),PT(p)}
,...,a

+truuel[i] ->exe_time[A,(truuel[i] ->module) -11

[P--11}.

In the above formula, Pp is the processor where the module travel
[i] - >purent - >module attempts to be assigned. The value E(i) is an
underestimation of the time required to finish the module fruuel[i] - >
module, all of its predecessors, and its successors along the path from the
node pointed at by truuel[i] to the root node.

Also, let UG, b) denote mux{PTL4,hzuel[iI - > module)), PT(b)) +
truuel[i] - > exe_time[A,(truuel[il - > module) - l)l[b - 0, which is an un-
derestimation of the time required to finish the module truuel[il- >
module, all of its predecessors, and its successors along the path from the
node pointed at by truuel[il to the root node, provided the module
truuel[i] - >purent - > module is assigned to processor Pb.

20 G-H. CHEN AND J-S. YUR

The algorithm is an iterative procedure. In each iteration, the algorithm
first determines the module truuel[k] - >purent - > module to be assigned
next by finding E(k) = mu+= ,,...,,IE(i)ltruvel[il->parent->module is
a ready module}, where t is the number of pointers in travel. Then,
the algorithm determines the processor P, where the module truueflk] - >
parent - > module is to be assigned by choosing a value of r such that
U(k,r)=min = b l,,,,,,{U(k, b)}. The algorithm terminates when all of the
modules have been assigned.

A more detailed description of the algorithm is shown in Algorithm 3.

Algorithm 3

/* Find an initial solution using the concept fATII. */

repeat
Find E(k) = mari= ,,,,,,,(E(i)ltruvel[i]->purent->module is a
ready module];
Assign the module truvel[k] - >purent - > module to processor P,
satisfying U(k, r) = min,= 1 ,_,,, ,,(U(k, b)];
Update processor turnaround time according to Algorithm 1;
Update travel according to Algorithm 2;

until all the modules have been assigned.

Our BBU algorithm using the underestimate function fATLI chooses the
better of the trivial solution and the solution obtained by Algorithm 3 as
an initial solution, and sets its task turnaround time as the initial value of
UC. The algorithm using the underestimate function fMera finds an initial
solution similarly, with Algorithm 3 modified into the fMsru version.

The time complexity of Algorithm 3 is bounded above by O(m(tn +e)),
where e is the number of arcs in the task graph.

3.5. ADDITIONAL STATE SPACE REDUCTION

Two nodes in the search tree are said to be in equivalent stute if they
represent the same partial assignment and have equal processor turnaround
times for all processors. Clearly, the optimal assignments below them will
have the same task turnaround time. Thus, it is necessary to keep only one
of them in the unexpanded list. There is a simple approach to do so: we
only accompany the INSERT operation with respect to the unexpanded
list with a state-equivalence check. If two nodes are found to be equiva-
lent, then only one is kept in the unexpanded list.

OPTIMAL ASSIGNMENT OF TASK MODULES 21

For a search node x in the state space search tree, if there is only one
travel pointer associated with it, i.e., all execution paths of the execution
trees converge to a single path, then the value fATU(~) is exactly the
minimal task turnaround time of the complete assignments that include
A, as a part. Hence, no further expansion on node x is necessary. This
situation may occur for linear- and convergence-type task graphs
(explained in Section 4).

Besides, during state space search, some constraints may be gener-
ated to reduce the search space. For a pointer truvel[i] associated with a
search node X, if mu_x(PT(A,(truveZ[i] - > module)), PT(j)} + truveZ[i] - >
exe_time[A,(truvel[i] - > module) - l][j - l] 2 UC, then it is impossible
to get a better solution below X, provided the module truvel[i] - >
parent - > module is assigned to processor P,. As a result, the module
truveZ[i] - >purent - > module is forbidden to be assigned to P, below x.
The constraints imposed on the search node x are inherited by its child
nodes. Accurate underestimation, a good initial solution, and the use of
these constraints result in a considerable reduction on the search space.

3.6. AN ILLlJSTRATII/E EXAMPLE

We illustrate the execution of the BBU algorithm, using the underesti-
mate functions fMETu and fATU, by the example of Figure 2.

Figure 5 shows the resulting state space search tree with respect to

f METu. The generation of the state space search tree begins with the initial
node. Inside each search node x is the module-processor pair and the
underestimate f,,,Eru (x). The node with the minimal underestimate is
always chosen for node expansion. The number outside each node repre-
sents its generation sequence. We illustrate the computation of fMETu(x)
by node 4, which represents the partial assignment (2 - 1). The module M,
has two immediate successors, M, and M4. The underestimate 103 is
obtained by computing mu_x{min{l6 + 0 + 71+ 16, 16 + 27 + 88 + 16, 16 +
27+84+16), ml’n{16+0+86+16, 16+15+98+16, 16+15+24+16)]=
mux{min{l03,147,143), min(ll8,145,71]} = max(l03,71]. Node 41 is a goal
node, from which an optimal assignment (l-1,2-1,4-3,3-1,5-2> with
minimal task turnaround time 131 is obtained. Only 43 search nodes
are generated in Figure 5. Compared with 1788, which is the maximal
number of nodes in the state space search tree, a saving of 1745 nodes is
attained for this example.

The resulting state space search tree with respect to fATu is shown in
Figure 6. In Figure 7, the computation of fATU(x) is illustrated by node 8,
which represents the partial assignment (l-1,2-2). Processor turnaround

22 G-H. CHEN AND J-S. YUR

Fi
g.

 6
.

St
at

e
sp

ac
e

se
ar

ch

tr
ee

us

in
g

fa
T

o.

G-H. CHEN AND J-S. YUR

OPTIMAL ASSIGNMENT OF TASK MODULES 25

times for P,, P,, and P3 are 1, 89, and 0, respectively. There are three
trauel pointers to nodes 4, 5, and 6 of the corresponding assignment tree
shown in Figure 4. The underestimate 193 is obtained by computing
mau(min{l + 99, 89 + 136, 1 + 144}, min(89 + 126, 89 + 104, 89 + 1391, min
I89 + 141, 89 + 114, 89 + 77}} =max{lOO, 193,166). For this example, only
34 search nodes are generated, and a saving of 1754 nodes is attained. It
can be observed from Figure 6 that for the example of Figure 2, at least 22
search nodes are generated in order to reach a goal node.

For the same example, 94 and 256 search nodes are generated, respec-
tively, for Wang and Tsai’s algorithm and the A* algorithm with h(x) = 0.

The schedule of the task execution with respect to the optimal assign-
ment (l-1,2-1,4-3,3-1,5-2) is shown in Figure 8. The entire task termi-
nates when M, is finished on processor P2.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of our algorithm with that
of Wang and Tsai’s algorithm and the A* algorithm with h(x) = 0. The
average number of search nodes, the maximal queue length of the unex-
panded list, and the execution time are generated for performance evalua-

Time Processor PI Processor Pz Processor P3 Time

32

idle /

idle I17
1 SendMRsageto 1

32

56

: 1 idle 1

idle

I

Fig. 8. The schedule of the task execution with respect to the optimal assignment
(l-1,2-1,4-3,3-1,5-2).

26 G-H. CHEN AND J-S. YUR

tion. In general, the performance of our algorithm is affected by many
factors. Among them, four factors are considered in the experiment: the
number of processors, the number of modules, the ratio of average
intermodule communication time to average module execution time (called
the C: P ratio), and the shapes of task graphs. The shapes of task graphs,
which was neglected in [19], reflect the precedence relationship among all
modules, and they will affect the accuracy of the estimation made by an
underestimate function. In order to investigate the effect of the shapes of
task graphs on the performance of our algorithm, instead of generating
tested task graphs randomly, we consider six types of task graphs in the
experiment: linear, convergence, X-type, tree, ladder, and mesh (see
Figure 9).

A task graph is of the linear type if it forms a linear chain. In other
words, if the precedence relationship among the modules is a total order
then the corresponding task graph is of the linear type. A task whose
execution consists of several serial phases has a linear-type task graph. A
task graph is of the convergence type if it is a tree with the root downwards.
A task has a convergence-type task graph it its modules can be partitioned
into several disjoint subsets S,,S,,. ..,S, with ISrl>lS,l> a** a(S,I such
that the precedence relationship only exists between Si and Si+ i, 1~ i Q
r- 1. The tree-type tuskgruph is similar to the convergence-type task graph,
except that the root of the tree is upwards. The X-type tusk graph and the
mesh-type tuskgruph are two different combinations of the convergence-type
task graph and the tree-type task graph. The ladder-type tuskgruph consists
of two linear-type task graphs with some arcs between them. A task
has a ladder-type task graph if its execution consists of two interreference
execution paths.

A task graph with a look similar to one of these six types of task graphs
is expected to have similar experimental results.

In our experiment, Wang and Tsai’s algorithm and the A* algorithm
with h(x) = 0 are provided with the trivial initial solution (in [19], Wang
and Tsai did not provide their algorithm with any initial solution). Addi-
tional state space reduction rules that were introduced in the previous
section are implemented in our algorithm. The intermodule communica-
tion times are assumed uniform, that is, for two communicating modules
M, and Mb, ZCT(u, b, i, j)‘s are the same for any i #j. Module execution
times and intermodule communication times are generated randomly
according to the given C : P ratios. The C : P ratios considered in our
experiment are from 0.01 to 100 (or from - 2 to 2 using logarithmic values
based 10).

In the rest of this section, experimental results about initial solutions
and execution time are shown. For the sake of space, we do not show here

OPTIMAL ASSIGNMENT OF TASK MODULES 27

Linear Convergence

*iijjI/ GYi$Y

m=3 m=4'm=5 m=6 m=l m=8 m=9 m=8 m=9

Tree X-type

AP&A xxx
m=3 m=4 m=S m=6 m=5 m=6' m=7

iihh& x
m=7* m=8 m=9 m=8 m=9

Ladder Mesh

!-!RH j$?
m=6 m=a * m=lO

Fig. 9. Six types of task graphs.

the experimental results about the average number of search nodes and
the maximal queue length. Interested readers can find them in [20]. The
experiment is carried out for different numbers of processors, different
numbers of modules, different C : P ratios, and different types of task
graphs. For each tested case, 200 randomly generated instances are run.
Experimental results about initial solutions versus log,,JC: P> give the
average values of 200 tested instances. Experimental results about execu-
tion time versus log,,(C: PI give the total execution times of 200 tested
instances.

28 G-H. CHEN AND J-S, YUR

In addition, experimental results about the average execution times
versus the number of processors are shown. The average is taken with
log,,(C : P) ranging from -2 to 2 (including 21 tested cases and 4200
tested instances in total). Experimental results about the average execu-
tion time versus the number of modules can be found in [201.

4.1. INITLAL SOLUTIONS

Figure 10 shows the deviation of initial solutions from the optimal
solution as a function of log,,(C: P), where the curves labeled with
“Trivial” represent the deviation of the trivial initial solution, and the
curves labeled with “ATU” and “METU” represent the deviation of the
two nontrivial initial solutions derived from the concepts of fATU and

f ,,,ETU, respectively. It is seen that the trivial initial solution is very close to
the optimal solution as log,,(C : P) > 0.5 for almost all types of task graphs
(except tree-type task graphs). The performance of the two nontrivial
initial solutions depends on not only the C : P ratios, but also the shapes of
task graphs. In general, the nontrivial initial solutions are satisfactory
when the intermodule communication time is less than the module execu-
tion time, and they are almost optimal for linear-, convergence-, ladder-,
and X-type task graphs. However, the nontrivial initial solutions have a
great deviation when the intermodule communication time is greater than
the module execution time. Fortunately, the trivial initial solution performs
well in this case.

Note that since the nontrivial initial solution derived from the concept
of fATu is exactly an optimal solution to a linear-type task graph, any node
expansion is unnecessary in this case. Therefore, experimental results with
respect to the underestimate function fATU are not shown for the linear-
type task graphs throughout this section.

4.2. EXECUTION TIME

The number of search nodes and the maximal queue length are two
important criteria for evaluating the performances of a BBU algorithm
because they are machine independent and program independent. How-
ever, they do not take the computational complexity of the underestimate
function into consideration. A heavy computation of the underestimate on
each search node may offset the gains from reducing the search space.
Hence, the execution time is the most reliable measure to prove the
effectiveness of a BBU algorithm. In our experiment, all of the tested

OPTIMAL ASSIGNMENT OF TASK MODULES 29

10

FM
cl

E

V Y) V

I I
A 40 A
T T

I 3o I

0 0
20

N N

10
% %

(e)

Fig. 10. Deviation of the initial solutions from the optimal solution versus log,,(C : P).

Cd)

algorithms are programmed in C language to measure their execution
times. The experimental results are shown in Figures 11-12.

Figure 11 shows the execution time of 200 randomly generated instances
as a function of log,,(C : P> for our algorithm, Wang and Tsai’s algorithm,
and the A* algorithm with h(x) = 0. The curves labeled with “ATU” and
“METU” represent the results of our algorithm using the underestimate
functions fATU and fMETu, respectively. The curves labeled with “W&T”

30 G-H. CHEN AND J-S. YUR

Fig. 11. Execution time of 200 tested instances versus log,,(C: P).

and “h(x) = 0” represent the results of Wang and Tsai’s algorithm and the
A* algorithm with h(x) = 0, respectively. It is seen that our algorithm and
Wang and Tsai’s algorithm are opposite in performance.

It can be observed from Figure 11(a) that our algorithm performs better
than the other two algorithms everywhere for the linear-type task graph of
m = 5. Wang and Tsai’s algorithm has a bad performance, even worse than
the A* algorithm with h(x) = 0, as log,,(C : P) < - 0.8. This is due to the
potential weakness of their algorithm in estimating the minimal task
turnaround time for a “slim” and “long” task graph. Also note that the

OPTIMAL ASSIGNMENT OF TASK MODULES 31

Numbu d Pro==-(n)
TypeLinear m.5

m
b

(dl

Fig. 12. Execution time of 200 tested instances versus number of processors.

curve labeled with “W&T” drops drastically as the C: P ratio > -0.8,
which is mainly due to the high accuracy of the trivial initial solution as the
C: P ratio is high, and not Wang and Tsai’s algorithm itself.

Figure 11(b) shows experimental results for the convergence-type task
graph of m = 6. The curve labeled with “W&T” is higher than the curve

32 G-H. CHEN AND J-S. YUR

labeled with ‘%(x)=0” as log,,(C: P) < - 1. Our algorithm performs
better than the other two algorithms as log,,(C : P) < 0.2. As log,,(C : P) >
0.5, Wang and Tsai’s algorithm has the best performance.

Figure 11(c) shows experimental results for the X-type task graph of
m = 6. Our algorithm performs worst for the X-type task graph among
all six types of task graphs. Even so, our algorithm has a satisfactory
pe~o~ance as log,,fC : P> < 0.

Figures 11(d)-(f) show experimental results for tree-, mesh-, and
ladder-type task graphs, respectively. The reason for the ruggedness of
Figure 11(d) is the random generation of tested instances in our experi-
ment, Because of strict memory limitations in the experimental environ-
ments, Figure 11(e) shows only partial curves of “h(x) = 0” and “W&T.”
Our algorithm performs well for these three types of task graphs. More-
over, it can be found that for all six types of task graphs but the X-type,
the performance of our algorithm is stable for all C : P ratios.

Figure 12 shows the execution time of 200 test instances for different
numbers of processors. For each tested case, the result is obtained
by taking an average on all log,,(C: P) values from - 2 to 2. Our algo-
rithm has a better performance than Wang and Tsai’s algorithm in all
tested cases. Because of memory limitations, experimental results for the
mesh-type task graph are not shown here.

Interested readers can find in 1201 experimental results about the aver-
age execution time versus the number of modules. Like Figure 12, the
average is taken with log,,(C :P) ranging from - 2 to 2. Our algorithm has
a better performance than Wang and Tsai’s algorithm almost everywhere.

5. CONCLUDING REMARKS

In this paper, we have proposed a BBU algo~thm for the task assign-
ment problem, which was considered by Wang and Tsai [19]. The essence
of Wang and Tsai’s algorithm is to underestimate the minimal task
tu~around time from the vie~oint of a bottleneck processor, This causes
their algorithm to be a poor underestimation as the C: P ratio is low. On
the other hand, our algorithm underestimates the minimal task turnaround
time from the viewpoint of execution paths. E~erimental results provide
us with a complete comparison among our algorithm, Wang and Tsai’s
algorithm, and the A* algorithm with h(x) = 0. Our algorithm is stable in
performance and has the best performance in most tested cases. Wang and
Tsai’s algorithm degenerates rapidly as the C : P ratio decreases, and its
instability in performance makes it less attractive in practical applications.
The A* algorithm with h(x) = 0 acts as a benchmark (upper bound) for the
BBU algorithm.

OPTIMAL ASSIGNMENT OF TASK MODULES 33

In order to investigate the effect of the shapes of task graphs on
the performance of our algorithm, we consider six types of task graphs:
linear, convergence, X-type, tree, ladder, and mesh in the experiment.
Experimental results show that our algorithm is the most favorable to the
execution of linear-type task graphs, but has a worse execution of X-type
task graphs as the C: P ratio is high. Our algorithm, using the underesti-
mate function fATU, can obtain an optimal solution to a linear-type task
graph without any node expansion.

A good initial solution can fathom many search nodes at the beginning
of state space search. In our experiment, each of the tested algorithms is
provided with an initial solution (no initial solution is suggested in [19] for
Wang and Tsai’s algorithm). The trivial initial solution is almost an optimal
solution as log,,(C : P) > 0.5 for linear-, convergence, X-type-, mesh-, and
ladder-type task graphs. On the other hand, nontrivial initial solutions are
almost an optimal solution as log(C : P) < - 0.5 for linear-, convergence-,
X-type, and ladder-type task graphs. Moreover, the nontrivial initial
solution using the concept of fATu is exactly an optimal solution to a
linear-type task graph.

In addition, some state space reduction rules were introduced to further
reduce the search space. According to these rules, constraints may be
generated during state space search for a search node. These constraints
can cause more search nodes fathomed during execution.

The authors are pleased to thank the anonymous referees for their valuable suggestions
and comments.

REFERENCES

1. S. H. Bokhari, Dual processors scheduling with dynamic reassignment, IEEE
Transactions on Software Engineering SE-5(4):341-349 (1979).

2. S. H. Bokhari, A shortest tree algorithm for optimal assignments across space and
time in a distributed processor systems, IEEE Transactions on Sofhvare Engineering
SE-7(6):583-589 (1981).

3. S. H. Bokhari, On the mapping problem, IEEE Transactions on Computers
C-30(3):207-214 (1987).

4. S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed comput-
ing, IEEE Transactions on Computers C-37(1):48-57 (1988).

5. M. S. Chern, G. H. Chen, and P. Liu, An LC branch-and-bound algorithm for
module assignment problem, Information Processing Letters 32(2):61-71 (1989).

6. K. Efe, Heuristic models of task assignment scheduling in distributed systems, IEEE
Computer 15:50-56 (1982).

7. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press,
Rockville, MD, 1976.

34 G-H. CHEN AND J-S. YUR

8.

9.

10.

11.

12.

V. M. Lo, Heuristic algorithms for task assignment in distributed systems, IEEE
Transactions on Computers C-37(1 1): 1384- 1397 (1988).
P. Y. R. Ma, E. Y. S. Lee, and J. Tsuchiya, A task allocation model for distributed
computing systems, IEEE Transactions on Computers C-31(1):41-47 (1982).
N. J. Nilsson, Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New
York, 1977.

13.

14.

1.5.

16.

17.

G. S. Rao and H. S. Stone, Assignment of tasks in a distributed processor system
with limited memory, IEEE Transactions on Computers C-28(4):291-299 (1979).
C. Shen and W. Tsai, A graph matching approach to optimal task assignment in
distributed computing systems using a minimax criterion, IEEE Transuctions on
Computers C-34(3):197-203 (1985).
J. B. Sinclair, Efficient computation of optimal assignments for distributed tasks,
Journal of Parallel and Distributed Computing 4:342-361 (1987).
J. B. Sinclair, Optimal assignments in broadcast networks, IEEE Transactions on
Computers C-37(5):521-531 (1988).
H. S. Stone, Multiprocessor scheduling with the aid of network flow algorithms,
IEEE Transactions on Software Engineering SE-3(1):85-93 (1977).
H. S. Stone, Critical load factors in two-processor distributed systems, IEEE
Transactions on Software Engineering SE-4(3):254-258 (1978).
L. C. Thomas and G. K. Jon, A taxonomy of scheduling in general-purpose
distributed computing systems, IEEE Transactions on Software Engineering
SE-14(2):141-154 (1988).

18.

19.

20.

P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and
Applications, Kluwer Academic Publishers, 1987.
L. Wang and W. Tsai, Optimal assignment of task modules with precedence for
distributed processing by graph matching and state-space search, BIT 28:54-68
(1988).
J. S. Yur, Optimal assignment of task modules with precedence in distributed
computing systems, Master’s Thesis, Dept. of Information Engineering, Tatung
Institute of Technology, Taipei, Taiwan, 1989.

Received 19 May 1991; revised I October 1992

