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ABSTRACT 

In this paper two cost-optimal parallel algorithms are presented for constructing a 
B-tree for a sorted list of N keys. These two parallel algorithms are designed on the 
shared-memory SIMD computer: one, based on the EREW model, uses N/loglog N 
processors and requires O(loglog N) time; the other, based on the CREW model, uses 
N processors and requires O(1) time. 

1. INTRODUCTION 

Search trees [3, S], such as binary search trees, m-way search trees, 2-3 
trees, and B-trees are efficient data structures to store a sorted list of keys 
(here keys may denote records). Search, insertion, and deletion with 
respect to a balanced search tree of N keys can be done in worst-case 
time O(log N). The problem of constructing a balanced search tree for a 
sorted list of N keys is to create a balanced search tree with minimal 
height to store the sorted list. To create such a tree, the keys within each 
node must be determined and the links between nodes must be set up 
properly. 
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Optimal sequential algorithms for constructing balanced binary search 
trees can be found in [4] and [6]. Based on the EREW (exclusive read, 
exclusive write) shared-memory model, Moitra and Iyengar 19, 101 have 
designed parallel algorithms that use N processors to construct balanced 
binary search trees in O(1) time. When there are too many keys to be kept 
in the main memory, they must be saved as an external file. In such a 
situation, it is helpful to keep more than one key in each node in order to 
balance key processing time and file accessing time. Therefore, m-way 
search trees are suitable data structures for storing a large number of keys. 
In [7], also based on the EREW shared-memory model, Dekel et al. have 
designed parallel algorithms that use N processors to construct balanced 
m-way search trees. The time complexities of Dekel et al.‘s algorithms are 
O(1) under an assumption that computing the kth, 0 <k < log N, power of 
m takes O(1) time. 

The main disadvantage of the m-way search tree is that it may become 
unbalanced when it is not static [l, 81, and thus logarithmic access time 
cannot be guaranteed. For example, let us consider a sequence of update 
operations such as insertion and deletion on a balanced m-way search 
tree. The tree may become unbalanced after these operations are com- 
pleted and then the access time of the tree may become proportional to 
the tree size in the worst case. Therefore, periodic rebalancing is indis- 
pensable to an m-way search tree after some update operations are 
performed on it. This leads to the unsuitability of on-line processing of the 
m-way search tree, especially when it is stored in the auxiliary memory. As 
an alternative to the m-way search tree, some other trees have been 
proposed, for example, AVL tree [8], weight-balanced tree [8], and B-tree 
12, 51. Among them, the B-tree, which was originally proposed by Bayer 
and McCreight [2], is the most attractive one for a number of reasons. 
First, periodic rebalancing is unnecessary. Second, logarithmic access time 
is guaranteed for on-line processing. Third, insertion and deletion to the 
B-tree are quite simple. Fourth, as compared with the AVL tree and the 
weight-balanced tree, the B-tree is free of keeping additional information 
for maintaining itself balanced. Finally, in addition to being an alternative 
representation of a sorted list, the B-tree has the capabilities of concate- 
nating and splitting lists. A more recent description of B-trees and some of 
their variations can be found in [5]. 

Recently, Wang and Chen [ll] designed parallel algorithms for con- 
structing 2-3 trees, which are B-trees of order 3 (explained in the next 
section). In this paper, as an extension of their results, we present two 
cost-optimal parallel algorithms for constructing B-trees of arbitrary order 
m. The two parallel algorithms are designed on the shared-memory SIMD 
(single instruction stream, multiple data stream) computer: one, based on 
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the EREW model, uses N/loglog N processors and requires O(loglog N) 
time; the other, based on the CREW (concurrent read, exclusive write) 
model, uses N processors and requires O(1) time, where N is the number 
of keys stored in the B-tree. Like [7], [9], [lo], and [ll], we assume that 
computing the logarithm of a number k takes O(l) time. 

The rest of this paper is organized as follows. In the next section, 
notation and definitions that are used throughout this paper are intro- 
duced. In Section 3, the shape of the B-tree to be constructed for a given 
value of N is uniquely specified. Also, some properties that are relevant to 
our construction algorithms are described. Then, in Section 4, the two 
parallel construction algorithms are presented. Finally, concluding remarks 
are given in Section 5. 

2. NOTATION AND DEFINITIONS 

DEFINITION 1. A B-tree of order m, ma 3, is a tree satisfying the 
following properties. 

1. Every node has at most m children. 
2. Every node, except for the root, has at least [m/21 children. 
3. The root has at least two children. 
4. All leaves are on the same level. 
5. A node with w children contains w - 1 keys. 

For the convenience of description, we use notation (i, j) to denote the 
jth node from the left at the ith level (see Figure 1). For example, the root 
node is denoted by (1,l) and its left child is denoted by (2,l). A node 
(t, j) with w keys and w + 1 pointers can be represented as 

where Kci,j) I <Kci,jj 2 < .*a <Kci,j),w denote the w keys, Pci,j) 1 points to 
the subtree ‘whose keys are smaller than Kci,j),l, Pci,j),l., 1 <u <w + 1, 
points to the subtree whose keys are between Kci,j),L._l and Kci,j),L,, and 
P cr,,j,w+l points to the subtree whose keys are greater than Kci,jl,,,. If 
node (ii, j, ) and node ( i,, j2 ) are contained, respectively, in two subtrees 
pointed by Pci,j),l, and Pci,j),l,+l, 1 <V dw, then the key Kli,j),l. is said to 
be the split key of node (ii, j, ) and node (i,, j, ). For example, let us 
consider Figure la, where P(2,2),, = (3,4), Pc2,2),2 = (3,5), and Pc2,21,3 = 
(3,6). The split key of nodes (4,4) and (4,5) is 12. 
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<4,1> <4,2> <4,3> <4,4> ~4s.52 <4,6> <4,7> <4, X> <4,9> <4,10> ~4.1 l> <4,12> 

(b) 

Fig. 1. Two different B-trees of order 3 that store the sorted list f 1,2,3,. . . ,26,27). 

Note that more than one B-tree of order m can store a given sorted list. 
For example, Figure 1 shows two different B-trees of order 3 that can store 
the sorted list (1,2,3 , . . . ,26,27X Thus, before presenting the parallel con- 
struction algorithms, it is helpful to specify the exact one that our algo- 
rithms will construct for a given sorted list. For a given sorted list of size 
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N, the unique B-tree of order m to be constructed has the following 
properties: 

1. It has the minimal height n = [log,@/ + 1>1- 1. 
2. The root owns r = [(N + 1)/m” - 11 keys. Note that m” <N < mn+ ’ - 

1; hence, 1 Grgrn - 1. 
3. There exists a unique integer c, 1 <c <rz + 1, such that all the nodes, 

except the root, above the cth level own m - 1 keys and all the nonleaf 
nodes on and below the cth level own [m/21 - 1 keys. 

4. Let s be the number of keys contained in the leaf node (II + 1, l), 
[m/21 f s G m - 1. Then, each of the other leaf nodes may own s or s - 1 
keys, but may not own more keys than the leaf nodes on its left. 

For example, the B-tree of order 3 that our algorithms will construct for 
the sorted list (1,2,3,.. . ,26,27) is shown in Figure la. In this example, 
n=3, r=l, c=3, and s=2. 

The existence and uniqueness of the B-tree with properties l-4 is 
shown in the next section. In the following, we define notations that are 
used throughout this paper: 

m 

N 

T N,m 

n 

r 

C 

V N,m 
L N,m 

W N,m 

s 

The order of the B-tree to be constructed. Note that 
m a 3 is a constant. 
The number of keys in the given sorted list. We 
assume N > m. 
The B-tree of order m to be constructed for a sorted 
list of N keys. 
The height of TN,,,, which is defined as the number 
of levels of TN,m. Note that IZ = llog,(N + 111 - 1. 
The number of keys that are contained in the root of 
T N,m. Note that r = [(N + 1)/m” - 11. 
The marked level of TN,m. That is, in TN, ,,,, all the 
nodes, except the root, above the cth level own m - 1 
keys and all the nonleaf nodes on and below the cth 
level ownIm/2]-1 keys. Note that l<c<n+l. 
The number of nodes m TN, m. 
The number of leaf nodes in TN,,,. Note that, accord- 
ing to the construction of TN,m, L,, m = (r + 
l)* mce2 *[m/21n-c+1. 
The total number of keys that are contained in the 
leaf nodes of TN,,,. Note that L,,, *([m/21 - 1)-t 1 
<WN,<LN,*(m-I). 
The number’ of keys that are contained in the leaf 
node (n+l,l> of TN,m. Note that [m/21 <s <rn - 1. 
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The number of leaf nodes in TN,m that own s keys. 
The rank of the key Kci,j),u in the given sorted list. It 
equals the number of keys (inclusive of Kci, j),U itself) 
that precede Kci,j),G in in-order traversal of TN,,,. 
Note that if node (i, j> contains w keys, 
R4NKN,,(K,i,j,,,.> is undefined for u > w. 
The number of leaf nodes in TN,,, that precede the 
key Kci, jj,c in in-order traversal of TN,,,. Note that if 
node (i,j> contains w keys, PRZXN,,(K~i,j,,,) is 
undefined for v > w. 

For example, let us consider Figure la again; where m = 3, N= 27, 
n =3, r= 1, c =3, V,, 3 =21, L,, 3 = 12, W,, 3 = 16, s =2, LL,, 3 =4, 

~NK~,,~(K~~,,~,, >=6, ‘RANK,,&,,,),,)= Ii, PREC,,&z,1),;)=2, 

3. SOME PROPERTIES 

Two graphs G and G’ are said to be isomorphic if there is a one-to-one 
correspondence between their vertices and between their edges such that 
the incidence relationship is preserved. In other words, suppose that edge 
e is incident on vertices u1 and v2 in G; then the corresponding edge e’ in 
G’ must be incident on the vertices vi and v; that correspond to vi and 
u2, respectively. In this section, considering all isomorphic B-trees equiva- 
lent, we prove that TN m uniquely exists. In addition, we introduce some 
properties of TN,,,, which are the kernel of our construction algorithms. 

LEMMA 1. The B-tree TN,,, is uniquely specified by a pair of c and W,, m, 
where l<c<n+l andL,,,*(lm/2]-l)+lgW,,gLN,,*(m-11). 

Proof. Clearly, according to the construction of TN,,,, TN,,, is uniquely 
specified by a triplet of c, s, and LL, m, where 1 < c Q n + 1, [m/21 Q s <rn 
- 1, and LL N,m B 1, because the height of TN,,, is n = [log,(N + 1>1- 1 
and the number of keys that are contained in the root is r = [(N + 1)/m” - 
11. Given a pair of c and W,,,, where 1 <c in + 1 and L,,, *([m/21 - 1) 
+ I < w,., <L,., *(m - l), the values of s and LL,,, are uniquely 
determined, namely, 

s= mv,m/LAJ,m1 

Note that Tm/21<ssg - 

and LL,,, = W,,, -(s- 1) *L,,,. 

1 and LL N,m & 1. Therefore, the lemma follows. 
0 
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LEMMA 2. For N > m, 1 < log,,,,,J((N + l>* m)/((r + 1) 
*Im/2]“+‘))<n+l. 

Proof. Since r = I( N + 1)/m” - 11, we have r 2 (N +- 1)/m” - 1. It is not 
difficult to prove that 

log ,/r,/21(((N+l)*m)/((~+l)*lm/21”~’))~~+l. 

On the other hand, to prove 1 <log,,,,,,,(((N+ l)* m>/((r+ 11 
*[m/21”+‘>> for N > m is equivalent to proving 

m/Fm/21 <((N+ 1) * m)/(( r+ 1) *[m/21’+‘) 

for N > m. 
In the following we consider three cases, m <N < 2 * m - 1, 2 * m 

m2 - 1, and m2 G N, to complete the proof. 

CASE 1 (m<N<2*m-1). In this case, n=l and r=l. We have 

((m+l)*m)/((r+l)*[m/2]“+‘) 

<((N+l)*m)/((r+l)*[m/21’ 

for N >m. The left-hand side of (1) equals 

((m+l)*m)/(2*[m/212)am/[m 

?I+1 

> 

‘21. 

s NS 

(1) 

CASE 2 (2*m<N<m2-1). In this case, n=l and 2<r=[(N+l)/ 
m-11&m-l. Moreover, since r-l<(N+l)/m-1, we have r*m-1 
<N. Therefore, 

(r/(r+l))*(m/~m/2~)n~1<((N+1)*m)/((r+l)*~m/2~”~‘) (2) 

can be derived. The left-hand side of (2) equals 

(r/P+ 1)) *(m/Tm/V2 
a P/3) * (m/W21) * WW21) 

>-(2/3)*(3/2)*(m/[m/2]) (since m&3, m/[m/2]>3/2) 

am/[m/21. 
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CASE3(N>m2). Inthiscase,n~2and1gr=~(N+l)/m”-1]~m-l. 
Moreover, since r- 1 <(N+ 1)/m” - 1, we have r * m” - 1 <N. There- 
fore, 

w(~+1))*(wb/21) “+‘<((N+l)*m)/((r+l)*[m/2]“+‘) (3) 

can be derived. The left-hand side of (3) equals 

THEOREM 1. For an arbitrary N > m, the B-tree TN,,, uniquely exists. 

Proof. From Lemma 1, we know that TN,m is uniquely specified by a 
pair of c and W,,,, because the height of TN,m is rz = [log,(N+ 01 - 1 
and the number of keys that are contained in the root is r = [(N + 1)/m” - 
11. Therefore, to complete the proof, we show that for an arbitrary N, 
there exists a unique pair of c and W,,, satisfying the following con- 
straints: 

* (1 + [m/21 + [m/212 + -** + [m/21nec) + W,,, 

= (r+ 1) * mcp2 *[m/21 n-c+l-l+WN,m, (4) 

~W~,m<(r+1)*mc-2*~m/2~“-C+1*(m-l), (5) 

l<c<n+l. (6) 

Equation (4) means that the total number of keys contained in TN,,, 
equals N. Combining (4) and (5), we have 

(r+l)*mc-2*[m/21 n-C+2<N~(r+l)*mc-1*~m/2]“-c+‘-1. (7) 
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Inequality (7) is equivalent to 

(rf 1) * rnc-’ *[m/21 n-c+2-1<N~(r+l)*mc-‘*~m/2]“~c+ 

from which 

c - 1 <log,,,,,,,((( N+ 1) * m)/((r+ 1) *[m/2]“+‘)) <c 

can be derived. 

1 - 

63 

1, 

(8) 

Clearly, [log m,,m,2,(((N+ 1)~ m>/((r+ l)*[m/21”+‘))1 is the unique 
solution of c that satisfies (8). By Lemma 2, the unique solution of c also 
satisfies (6). 

On the other hand, the unique solution of W,,, can be obtained from 
(4) and the unique value of c. Moreover, it can be seen from (7) that the 
obtained value of W,,, satisfies (5). 0 

COROLLARY 1. For the B-tree TN,,,, 

n = [log&V+ l)] - 1, 

r=[(N+l)/m”-11, 

c = I logm,,m,2, (((N+1)*m)/((v+l)*rm/21"+'))17 

V N,m =(r+l)*((mc-2-l)/(m-1)+mc-2 

* ([m/21n-c+2- l)/([m/21-1))+L 

W N,m =N-(r+l)*mc-2*[m/2]“-c+‘+1, 

L N,m = (rt 1) * mcM2 *[m/2]n-c+‘, 

~=[Yv,m/L~,ml~ 

According to the construction of TN,,,, we have the following lemma. 

LEMMA 3. For each node ( i, j > in TN, m : 

(a) When i= 1, 

p(i,l),u = 

(2, v>, for l<v<r+l, 

undefined, for r + 1 < v < m. 
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(b) When 1 <i<c, 

P~i,j),,,=(i+l,(j-l)*m+u), forl<v<m. 

CC) when c<i<n+l, 

'(i,j),c,= 

(i+l,(j-l)*[m/2]+u), for l<vG[m/2], 

undefined, for [m/2]<uOz. 

(d) B%eni=n+l 7 

‘<i,j),u = undefined, for 1~ v Q m . 

Let us consider a node (i, j> in TN,,,. If 1 <i -CC, the set of leaf nodes 
that precede the key Kti,j),U in in-order traversal consists of the leaf nodes 
of the subtrees with roots at (i + 1, l), (i + 1,2), . . . , (i + l,( j - l)* m + u), 
respectively. If i = 1 or c <i <n + 1, the set of leaf nodes that precede 
K,,, j),c in in-order traversal can be identified similarly. Therefore, for each 
node (i,j> in TN,,, PRECN,,(K~i,j~,,,) can be computed according to the 
following lemma. 

LEMMA 4. 

/ 

= 

u * mcp2 * [m/2]“-‘+ ‘, 
ifi=l and l<v<r, 

((j-l)*m+u)*mC~‘-‘*~m/2]“-c+1, 

if l<i<cand l<u,<m-1, 

((j-l)*[m/2~+v)*[m/21”-‘, 

ifc<i<n+l andl<u<[m/2]-1, 

j-l, 
ifi=n+l,l~j~LL,,,,andl~v~s, 

j-l, 
ifi=n+l, LL,,, <j,and lgv<s-1, 

undefined 

otherwise. 
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To facilitate the subsequent discussion, we introduce the tree T,v,,m 
which is obtained from TN m by inserting one key into each of the leaf 
nodes that own only s - 1 ‘keys. Clearly, TN,,m is the unique tree to be 
constructed for N’ = N + L, m - LL,, m. Note that TN,,,, and TN,,, are of 
the same shape but different’in that every leaf node of the former contains 
s keys but only the leftmost LL,,, leaf nodes of the latter contain s keys. 
The tree TNf,m is helpful to the computation of RANK,,,(K,,,j,,U). In the 
following, we introduce some properties about TNS,m. 

LEMMA 5. In TN, m, the subtree whose root is at node (i, j) contains 
(s + l)* mC-’ *[m/2i”-c+l -1keysif2~i<cand(s+1)*[m/2]“-‘+‘--1 
keys ifc<i<n+l. 

Proof. When 2 <i <c, the number of keys that are contained in the 
subtree whose root is at node (i, j) is computed as the sum of (m - l)* 
(1+m+m2+ .** +mc-‘-‘) + ([m/21 - l)* mcpi *(l + [m/21 + [m/212 
+ a*. +[m/21”-‘)+s * mc-’ *[m/2]n-c+1, which can be simplified to (s + 
l)* mc-‘*[m/2]“-‘+’ - 1. When c < i <n + 1, the computation is similar. 

0 
Since the set of keys that precede Kci,lj,l in in-order traversal of TNv,m 

is exactly the set of keys that are contained in the subtree whose root is at 
node (i + 1, l), the following lemma can be derived from Lemma 5. 

LEMMAS. 

~NK,,,,(Kc,,,),,) = I 
n-c+1 

(s+1)*mc-i-‘*[m/2] , if 1 <i<c, 

(s + 1) *[m/2]“-‘, ifcGi<n+l, 

1, ifi=n+ 1. 

Further, we have the following lemma. 

LEMMA 7. 

I?LINK,~,,(K,~,~),~) + (s + 1) * mC-’ *[m/21”-‘+‘, 

if 2<i<c, 

RANK,~,,(K~,,j~,,)+(s+l)*~m/2~“~it1, 

ifc<i<n+l, 

RANKNr,m(K(i,j),l) +'+ '9 

ifi=n+l. 
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Proof The keys that are between Kci, jl,I and K~i,j+ 1j,1, while travers- 

ing %‘,m in in-order traversal, include the following four parts: 

1. The keys in the subtree whose root is at P~i,j~,*. 
2. The key Kci,j),u and the keys in the subtree whose root is at 

p(i,j),u+l, where 2<ugm-1 if 2<i<c, 2<v<[m/21-1 if c<i<n+l, 
and 2<u<s if i=n+l. 

3. The split key of nodes (i,j> and (i,j+ 1). 
4. The keys in the subtree whose root is at Pci,j+ l),l. 

By counting the above keys with the aid of Lemmas 3 and 5, the lemma 
follows. 0 

Similarly, since the keys that are between Kci,j),u and K~i,j),u+l, while 
traversing TN,, m in in-order traversal, are contained in the subtree whose 
root is at p(,,j),Lt+l' we have the following lemma. 

LEMMA 8. 

= 

‘k4NKN~,,(K~i,j~,l.)+(s+l)*mc-i-1 *[m/2]“-“+I, 

ifi=l andl<v<r, 

Rz4NK,~,,(K~,,j~,,,)+(s+l)*mc-i-’ *[m/21”-‘+‘, 

ifl<i<candl<.<m-1, 

mNK,vf,,(K<i,j>,c.) +(s+ 1) *[m/2]n-i, 

ifc<i<n+l andl<U<<rm/2]-1, 

mNKNf,,(K<i,j,,,,) + 1, 
ifi=n+l,l~j~LL,,,,andl~u<.s, 

~NK~,,m(K,z,j,,~~> + 1, 

ifi=n+l, LL,,, <j, and l<v<s-1, 

undefined, 

otherwise. 

According to Lemmas 6, 7, and 8, RANK,,,,(K,i,j,,“) can be computed 
as follows. First, by Lemma 6, RANK,., ,(Kci, 1) I) is computed. Then, by 
applying Lemma 7 repeatedly, RANK,,, ,( K, i, j), ;I is computed. Finally, by 
applying Lemma 8 repeatedly, RFINK,~,,(K,,,~,J is computed. Therefore, 
we have the following theorem. 
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THEOREM 2. 

U*(S+l)*mC-‘-‘*[m/2]“-‘+‘, 

ifi=l and l<v<r, 

((j-1)*m+u)*(s+1)*m’-‘-‘*~m/2]“-’+’, 

if l<i<candl~v~m-1, 

((j-l)*[m/21+v)*(S+l)*[m/2]“-‘, 

ifc<i<n+l and l<u<[m/2]-1, 

(j-l)*(s+l)+L’, 

ifi=n+l,l<jfLL,,,,andl~u<s, 

(j-l)*(s+l)+u, 

ifi=n+l, LL, m <j,andl<v<s-1, 

undefined, 

otherwise. 

With the aid of Theorem 2, RANK,,,(K,i,j,,,> can be computed easily. 
Note that only the leftmost LL,,, leaf nodes of TN,,, own s keys, whereas 
every leaf node of TN,,,, owns s keys. Therefore, for each node (i, j), 

MNKN,rrz(K,,,jj,v) = MNKN,,,(K,i,j),c) if PmCN,,(Kci,j),,,) G LL,,, 
and RANK, m(K,i,j,,,) = RANK,, m (Kci.j),c) - (PmC,,,(Kci,j>,,,) - 
LL,,,) if PhC,,,(K,i,j,,,)>LL, I,. We summarize the result in the 
following theorem. 

THEOREM 3. RANK, m(K,,,j,,,,) = R4NK,,,,(K,i,j,,l,) - max 

IO,PREC,,,(K,i,j,,,)-LL,,,}. 
According to Theorem 3, RANK, m 

LL,,,, PREC, m(K~i,j),u), and RANkN!,E&..)) c?nhzz ~~~p~~p~~ 
respectively, according to Corollary 1, Lemma 2, &rd Theorem 2. 

4. PARALLEL CONSTRUCTION ALGORITHMS 

A convenient data structure to represent a search tree is a linear array. 
In this section, we assume that TN,m is stored in a linear array of length 
V N, m. Therefore, before presenting the parallel construction algorithms, we 
need to specify a linear ordering for the nodes of TN,,, such that the node 
with order k, 1 <k d V,, m, is represented by the kth element of the linear 
array. A simple approach to do so is to number the nodes according to 
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their breadth-first search order. For example, Table 1 shows the specified 
linear ordering for the nodes of the B-tree that was depicted in Figure la. 
For each node (i,j> in TN,m, it is not difficult to determine its order in the 
specified linear ordering. Let ORDER,, m ((i, j>> denote the order of node 
(i,j> in TNm. 
lemma. ’ 

We can determine ORDER,,,((i, j)) by the following 

LEMMA 9. Let (i, j) be a node of TN,,,. Then, 

(1, 
ifi= 1, 

l+(r+l)*(m’~2-l)/(m-l)+j, 

ORDER,,,((i, j>) = ( if 2gi<c, 

l+(r+l)*(mC-2- l)/(m-l)+(r+l)*mC-* 

*([m/2]i-c-l)/([m/2] - 1) +j, 

\ ifc<iGn+l. 

On the other hand, given the above specified order, we can also 
determine the corresponding node. Let NODE,,,(k) denote the node in 
T N,m whose order is k. Clearly, NODE,,,(k) = ORDER;,‘,(k). We can 
determine NODE,,,(k) by the following lemma. 

LEMMA 10. For a given order k, l<k<I/,,,, if NODE,,,(k)=(i,j), 
then : 

(a) when k = 1, 

i=l and j=l. 

(b) when l<k<l+(r+l)*(m’-‘-l)/(m-11, 

i=[log,((k-l)*(m-l)/(r+l)+l)] +l 

TABLE 1 

The Specified Linear Ordering for the Nodes of the B-tree that was Depicted in Figure la 

Node(i,j) (1,l) (2,l) (2,2) (3,l) (3,2) (3,3) (3,4) (3,s) (56) (4,l) (4,2) 
Order k 

Node (i, j) (413) <424) <435) <446) <457) (468) <479) (4810) (4911) (4ly2) 
11 

Order k ;2 ;3 ;4 lk ;6 i7 i8 ;9 ;o ;1 
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and 

Cc) 

and 

j=k-(l+(r+l)*(m’-2-1)/+72-l)). 

When l+(~+l)*(mC~‘-l)/(m-l)<k~I/,,, 

i=[log,,,,,((k-(l+(r+l)*(m’~‘-l)/(m-1))) 

*(~m/2l-l)/((r+1)*m~-2)+l)l +c-1 

j=k- 1+(r+l)*(mc-2-l)/(m-l)+(r+l)*mc-2 ( 

*([m/21’-‘- l)/([m/2]-1)). 

Since each node of TN,,, is uniquely represented by an element of a 
linear array of length V,, m, for each element of the linear array, we have 
to determine which node of TN m 
sorted list it will keep, and which 

it represents, which keys in the given 
elements of the linear array are its 

children, in order to construct TN,,,. To say more concretely, for the kth 
element of the linear array, 1 < k G V,,,, we have to determine 
NODE,,,,(k), MNKN,,(K<i,j,,,), 1 <V <rn - 1, and ORDERN,,CP(i,j),“I, 
1 <u <m, where (i, j) =NODE, ,(k). Since the above computations can 
be performed independently for ‘all the elements of the linear array, we 
can derive parallel construction algorithms, running on the shared-memory 
SIMD computer, in which all the elements are processed in parallel. The 
parallel construction algorithms consist of the following two steps: 

Step 1. Compute n, r, c, V,,,, W,,,, LN,,,, s, and LL,_, according to 
Corollary 1. 

Step 2. Compute NODE,,,(k), RFINK,,,(K,~,~),,), 1 <v Grn - 1, and 
ORDER,,,(Pci, j,,u>, 1 <u <m, where (i, j) = NODE,,,(k), according to 
Lemmas 3 and 4, Theorems 2 and 3, and Lemmas 9 and 10 for all k, 
l<k<V,,. 

The time complexity of the parallel construction algorithms are depen- 
dent on how fast the set S of values mn, [m/21”+‘, mc-*, lm/21n-C+2, 
[m/21n-c+l, me-i-l, [m/21n-i, me-i, [m/21n-i+l, mi-2, [m/21i-c+l, 

[m/21’-‘, and mC-’ can be computed. In the set S, m is given and the 
values of n and c are fixed when N is given, but the value of i varies with 
the level of the node being considered. That is, i = i,, when node (ik, j, > is 
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being processed. Sequentially, O(log n> time is required to compute the set 
S. However, if N processors are used, the set S can be computed in O(1) 
time (explained later). In the following, we present the parallel construc- 
tion algorithms running on the EREW model and the CREW model, 
respectively. 

PARALLEL CONSTRUCTIONALGORITHM ON THE EREWMODEL 

A simple parallel algorithm for constructing TN,,, on the EREW model 
is to let all processors Pk, 1 Q k B V,,,, p recess the kth element simultane- 
ously. The time complexity is O(loglog N) [ = O(log n)], which is the time 
requirement for Pk to compute the set S for i =i,, where (ik, jk) = 
NODE,,,(k). Since V,, m GN processors are needed, the parallel algo- 
rithm is not cost-optimal. According to the following fact, we can propose 
a cost-optimal parallel algorithm, where VN,,Jloglog N processors are 
used, while O(loglog N) time is retained. 

FACT 1. Let (ik, j,) =NODE,,,(k) and (iktl, j,,,) =NODE,,,(k+ 1). 
Then, ik+l -i, = 0 or 1. That is, NODE,,,(k) and NODE,,,(k+ 1) are 
two nodes at the same level or at adjacent levels. 

As a result of Fact 1, when we have obtained the set S of values for 
i=i,, we can obtain the set S of values for i = i,, 1 in additional constant 
time, where (ik, j,) =NODE,,,(k) and (i,,,, jk+l) =NODE,,,(k+ 1). 
This means that the (k + 11th element can be processed in constant time 
after the kth element has been processed. The cost-optimal parallel 
algorithm is simply to let each processor process loglog N consecutive 
elements. Each processor will process the assigned elements in increasing 
order of their indices and therefore it will take O(loglog N) time for the 
first one and O(1) time for each of the others. Thus, totally O(loglog N) 
time is required for each processor. 

THEOREM 4. The B-tree TN,,, can be constructed in O(loglog N) time on 
an EREW shared-memory SIMD computer with V,,,/loglog N Q N/ 
log log N processors, which is cost-optimal. 

PARALLEL CONSTRUCTIONALGORITHM ON THE CREWMODEL 

From the above discussion, we know that we have to speed up the 
computation of the set S in order to obtain a faster parallel construction 
algorithm. Fortunately, we have an approach to compute the set S for all 
i’s, 1 d i d n + 1, in O(1) time. As a result, an O(1) time parallel construc- 
tion algorithm is derived. In this approach, N processors are used to fill in 
two tables POliZP,,,,,[l *a* 12 + 11 and POwER,[l a** n + 11, where the 
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contents of POWER rm,2,[i] and POWERJi], 1 <i Gn + 1, are the values 
of [m/21’ and m’, respectively. Here we only describe the approach to fill 
in the table POIVER,[l ... n + 11. A similar approach to fill in the table 

POIJ=&,, ,z,[I ..* n + l] easily can be derived. In the approach, each pro- 
cessor P,,, 1 <k <N, is first to compute uk = [log, k] and 1, = [log, k]. If 
uk =l,, Pk fills POWER,[u,] with the value of k. Then (since m” G N G 
m n+l 

- 11, processor PN fills POWER,[n + 11 with the value of 
m * POWER,[n]. After the two tables have been established, TN,,, can be 
constructed in O(1) time by letting each processor Pk, 1 <k < V,,,, pro- 
cess the kth element simultaneously. Now the set S of values for any i can 
be obtained in O(1) time by looking up the tables. 

THEOREM 5. The B-tree TN, m can be constructed in O(1) time on the 
CREW shared-memory SIMD computer with N processors, which is cost- 
optimal. 

5. CONCLUDING REMARKS 

Parallel algorithms for constructing binary and m-way search trees have 
been proposed in the literature [7, 9, 101. In this paper, we have proposed 
two parallel algorithms for constructing a B-tree of order m. The main 
advantage of the B-tree over the m-way search tree, i.e., guaranteeing 
logarithmic access time even when it is dynamically changed, comes from 
the flexibility of its structure. However, the flexibility also causes the 
difficulty of deriving parallel algorithms for constructing it. The two 
parallel algorithms that we have proposed in this paper were designed on 
the shared-memory SIMD computer: one, based on the EREW model, 
uses N/loglog N processors and requires O(loglog N) time; the other, 
based on the CREW model, uses N processors and requires O(1) time. 
Both parallel algorithms are cost-optimal. If the number of available 
processors is fixed, say p, it is not difficult to see that the proposed 
algorithms can run in O(N/p) time, which is also cost-optimal. 

There have been many variants of B-trees, such as B*-trees, B’-trees, 
and prefix Be-trees [5]. The parallel algorithms we have proposed in this 
paper cannot be used to construct them. It is still open for the interested 
readers to discover if there exist efficient parallel algorithms for construct- 
ing them. 
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