
INFORMATION SCIENCES 81,55-72 (1994) 55

Cost-Optimal Parallel Algorithms for Constructing B-Trees

BIING-FENG WANG

and

GEN-HUEY CHEN

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan, Republic of China

Communicated by Tosiyasu L. Kunii.

ABSTRACT

In this paper two cost-optimal parallel algorithms are presented for constructing a
B-tree for a sorted list of N keys. These two parallel algorithms are designed on the
shared-memory SIMD computer: one, based on the EREW model, uses N/loglog N
processors and requires O(loglog N) time; the other, based on the CREW model, uses
N processors and requires O(1) time.

1. INTRODUCTION

Search trees [3, S], such as binary search trees, m-way search trees, 2-3
trees, and B-trees are efficient data structures to store a sorted list of keys
(here keys may denote records). Search, insertion, and deletion with
respect to a balanced search tree of N keys can be done in worst-case
time O(log N). The problem of constructing a balanced search tree for a
sorted list of N keys is to create a balanced search tree with minimal
height to store the sorted list. To create such a tree, the keys within each
node must be determined and the links between nodes must be set up
properly.

Correspondence to Professor Gen-Huey Chen, Department of Computer Science
and Information Engineering, National Taiwan University, Taipei, Taiwan, Republic of
China.

OElsevier Science Inc. 1994
655 Avenue of the Americas, New York, NY 10010 0020-0255/94/$7.00

B.-F. WANG AND G.-H. CHEN

Optimal sequential algorithms for constructing balanced binary search
trees can be found in [4] and [6]. Based on the EREW (exclusive read,
exclusive write) shared-memory model, Moitra and Iyengar 19, 101 have
designed parallel algorithms that use N processors to construct balanced
binary search trees in O(1) time. When there are too many keys to be kept
in the main memory, they must be saved as an external file. In such a
situation, it is helpful to keep more than one key in each node in order to
balance key processing time and file accessing time. Therefore, m-way
search trees are suitable data structures for storing a large number of keys.
In [7], also based on the EREW shared-memory model, Dekel et al. have
designed parallel algorithms that use N processors to construct balanced
m-way search trees. The time complexities of Dekel et al.‘s algorithms are
O(1) under an assumption that computing the kth, 0 <k < log N, power of
m takes O(1) time.

The main disadvantage of the m-way search tree is that it may become
unbalanced when it is not static [l, 81, and thus logarithmic access time
cannot be guaranteed. For example, let us consider a sequence of update
operations such as insertion and deletion on a balanced m-way search
tree. The tree may become unbalanced after these operations are com-
pleted and then the access time of the tree may become proportional to
the tree size in the worst case. Therefore, periodic rebalancing is indis-
pensable to an m-way search tree after some update operations are
performed on it. This leads to the unsuitability of on-line processing of the
m-way search tree, especially when it is stored in the auxiliary memory. As
an alternative to the m-way search tree, some other trees have been
proposed, for example, AVL tree [8], weight-balanced tree [8], and B-tree
12, 51. Among them, the B-tree, which was originally proposed by Bayer
and McCreight [2], is the most attractive one for a number of reasons.
First, periodic rebalancing is unnecessary. Second, logarithmic access time
is guaranteed for on-line processing. Third, insertion and deletion to the
B-tree are quite simple. Fourth, as compared with the AVL tree and the
weight-balanced tree, the B-tree is free of keeping additional information
for maintaining itself balanced. Finally, in addition to being an alternative
representation of a sorted list, the B-tree has the capabilities of concate-
nating and splitting lists. A more recent description of B-trees and some of
their variations can be found in [5].

Recently, Wang and Chen [ll] designed parallel algorithms for con-
structing 2-3 trees, which are B-trees of order 3 (explained in the next
section). In this paper, as an extension of their results, we present two
cost-optimal parallel algorithms for constructing B-trees of arbitrary order
m. The two parallel algorithms are designed on the shared-memory SIMD
(single instruction stream, multiple data stream) computer: one, based on

COST-OPTIMAL PARALLEL ALGORITHMS 57

the EREW model, uses N/loglog N processors and requires O(loglog N)
time; the other, based on the CREW (concurrent read, exclusive write)
model, uses N processors and requires O(1) time, where N is the number
of keys stored in the B-tree. Like [7], [9], [lo], and [ll], we assume that
computing the logarithm of a number k takes O(l) time.

The rest of this paper is organized as follows. In the next section,
notation and definitions that are used throughout this paper are intro-
duced. In Section 3, the shape of the B-tree to be constructed for a given
value of N is uniquely specified. Also, some properties that are relevant to
our construction algorithms are described. Then, in Section 4, the two
parallel construction algorithms are presented. Finally, concluding remarks
are given in Section 5.

2. NOTATION AND DEFINITIONS

DEFINITION 1. A B-tree of order m, ma 3, is a tree satisfying the
following properties.

1. Every node has at most m children.
2. Every node, except for the root, has at least [m/21 children.
3. The root has at least two children.
4. All leaves are on the same level.
5. A node with w children contains w - 1 keys.

For the convenience of description, we use notation (i, j) to denote the
jth node from the left at the ith level (see Figure 1). For example, the root
node is denoted by (1,l) and its left child is denoted by (2,l). A node
(t, j) with w keys and w + 1 pointers can be represented as

where Kci,j) I <Kci,jj 2 < .*a <Kci,j),w denote the w keys, Pci,j) 1 points to
the subtree ‘whose keys are smaller than Kci,j),l, Pci,j),l., 1 <u <w + 1,
points to the subtree whose keys are between Kci,j),L._l and Kci,j),L,, and
P cr,,j,w+l points to the subtree whose keys are greater than Kci,jl,,,. If
node (ii, j,) and node (i,, j2) are contained, respectively, in two subtrees
pointed by Pci,j),l, and Pci,j),l,+l, 1 <V dw, then the key Kli,j),l. is said to
be the split key of node (ii, j,) and node (i,, j,). For example, let us
consider Figure la, where P(2,2),, = (3,4), Pc2,2),2 = (3,5), and Pc2,21,3 =
(3,6). The split key of nodes (4,4) and (4,5) is 12.

58 B-F. WANG AND G.-H. CHEN

<4,1> <4,2> <4,3> <4,4> ~4s.52 <4,6> <4,7> <4, X> <4,9> <4,10> ~4.1 l> <4,12>

(b)

Fig. 1. Two different B-trees of order 3 that store the sorted list f 1,2,3,. . . ,26,27).

Note that more than one B-tree of order m can store a given sorted list.
For example, Figure 1 shows two different B-trees of order 3 that can store
the sorted list (1,2,3 , . . . ,26,27X Thus, before presenting the parallel con-
struction algorithms, it is helpful to specify the exact one that our algo-
rithms will construct for a given sorted list. For a given sorted list of size

COST-OPTIMAL PARALLEL ALGORITHMS 59

N, the unique B-tree of order m to be constructed has the following
properties:

1. It has the minimal height n = [log,@/ + 1>1- 1.
2. The root owns r = [(N + 1)/m” - 11 keys. Note that m” <N < mn+ ’ -

1; hence, 1 Grgrn - 1.
3. There exists a unique integer c, 1 <c <rz + 1, such that all the nodes,

except the root, above the cth level own m - 1 keys and all the nonleaf
nodes on and below the cth level own [m/21 - 1 keys.

4. Let s be the number of keys contained in the leaf node (II + 1, l),
[m/21 f s G m - 1. Then, each of the other leaf nodes may own s or s - 1
keys, but may not own more keys than the leaf nodes on its left.

For example, the B-tree of order 3 that our algorithms will construct for
the sorted list (1,2,3,.. . ,26,27) is shown in Figure la. In this example,
n=3, r=l, c=3, and s=2.

The existence and uniqueness of the B-tree with properties l-4 is
shown in the next section. In the following, we define notations that are
used throughout this paper:

m

N

T N,m

n

r

C

V N,m
L N,m

W N,m

s

The order of the B-tree to be constructed. Note that
m a 3 is a constant.
The number of keys in the given sorted list. We
assume N > m.
The B-tree of order m to be constructed for a sorted
list of N keys.
The height of TN,,,, which is defined as the number
of levels of TN,m. Note that IZ = llog,(N + 111 - 1.
The number of keys that are contained in the root of
T N,m. Note that r = [(N + 1)/m” - 11.
The marked level of TN,m. That is, in TN, ,,,, all the
nodes, except the root, above the cth level own m - 1
keys and all the nonleaf nodes on and below the cth
level ownIm/2]-1 keys. Note that l<c<n+l.
The number of nodes m TN, m.
The number of leaf nodes in TN,,,. Note that, accord-
ing to the construction of TN,m, L,, m = (r +
l)* mce2 *[m/21n-c+1.
The total number of keys that are contained in the
leaf nodes of TN,,,. Note that L,,, *([m/21 - 1)-t 1
<WN,<LN,*(m-I).
The number’ of keys that are contained in the leaf
node (n+l,l> of TN,m. Note that [m/21 <s <rn - 1.

B.-F. WANG AND G.-H. CHEN

The number of leaf nodes in TN,m that own s keys.
The rank of the key Kci,j),u in the given sorted list. It
equals the number of keys (inclusive of Kci, j),U itself)
that precede Kci,j),G in in-order traversal of TN,,,.
Note that if node (i, j> contains w keys,
R4NKN,,(K,i,j,,,.> is undefined for u > w.
The number of leaf nodes in TN,,, that precede the
key Kci, jj,c in in-order traversal of TN,,,. Note that if
node (i,j> contains w keys, PRZXN,,(K~i,j,,,) is
undefined for v > w.

For example, let us consider Figure la again; where m = 3, N= 27,
n =3, r= 1, c =3, V,, 3 =21, L,, 3 = 12, W,, 3 = 16, s =2, LL,, 3 =4,

~NK~,,~(K~~,,~,, >=6, ‘RANK,,&,,,),,)= Ii, PREC,,&z,1),;)=2,

3. SOME PROPERTIES

Two graphs G and G’ are said to be isomorphic if there is a one-to-one
correspondence between their vertices and between their edges such that
the incidence relationship is preserved. In other words, suppose that edge
e is incident on vertices u1 and v2 in G; then the corresponding edge e’ in
G’ must be incident on the vertices vi and v; that correspond to vi and
u2, respectively. In this section, considering all isomorphic B-trees equiva-
lent, we prove that TN m uniquely exists. In addition, we introduce some
properties of TN,,,, which are the kernel of our construction algorithms.

LEMMA 1. The B-tree TN,,, is uniquely specified by a pair of c and W,, m,
where l<c<n+l andL,,,*(lm/2]-l)+lgW,,gLN,,*(m-11).

Proof. Clearly, according to the construction of TN,,,, TN,,, is uniquely
specified by a triplet of c, s, and LL, m, where 1 < c Q n + 1, [m/21 Q s <rn
- 1, and LL N,m B 1, because the height of TN,,, is n = [log,(N + 1>1- 1
and the number of keys that are contained in the root is r = [(N + 1)/m” -
11. Given a pair of c and W,,,, where 1 <c in + 1 and L,,, *([m/21 - 1)
+ I < w,., <L,., *(m - l), the values of s and LL,,, are uniquely
determined, namely,

s= mv,m/LAJ,m1

Note that Tm/21<ssg -

and LL,,, = W,,, -(s- 1) *L,,,.

1 and LL N,m & 1. Therefore, the lemma follows.
0

COST-OPTIMAL PARALLEL ALGORITHMS 61

LEMMA 2. For N > m, 1 < log,,,,,J((N + l>* m)/((r + 1)
*Im/2]“+‘))<n+l.

Proof. Since r = I(N + 1)/m” - 11, we have r 2 (N +- 1)/m” - 1. It is not
difficult to prove that

log ,/r,/21(((N+l)*m)/((~+l)*lm/21”~’))~~+l.

On the other hand, to prove 1 <log,,,,,,,(((N+ l)* m>/((r+ 11
*[m/21”+‘>> for N > m is equivalent to proving

m/Fm/21 <((N+ 1) * m)/((r+ 1) *[m/21’+‘)

for N > m.
In the following we consider three cases, m <N < 2 * m - 1, 2 * m

m2 - 1, and m2 G N, to complete the proof.

CASE 1 (m<N<2*m-1). In this case, n=l and r=l. We have

((m+l)*m)/((r+l)*[m/2]“+‘)

<((N+l)*m)/((r+l)*[m/21’

for N >m. The left-hand side of (1) equals

((m+l)*m)/(2*[m/212)am/[m

?I+1

>

‘21.

s NS

(1)

CASE 2 (2*m<N<m2-1). In this case, n=l and 2<r=[(N+l)/
m-11&m-l. Moreover, since r-l<(N+l)/m-1, we have r*m-1
<N. Therefore,

(r/(r+l))*(m/~m/2~)n~1<((N+1)*m)/((r+l)*~m/2~”~‘) (2)

can be derived. The left-hand side of (2) equals

(r/P+ 1)) *(m/Tm/V2
a P/3) * (m/W21) * WW21)

>-(2/3)*(3/2)*(m/[m/2]) (since m&3, m/[m/2]>3/2)

am/[m/21.

62 B.-F. WANG AND G.-H. CHEN

CASE3(N>m2). Inthiscase,n~2and1gr=~(N+l)/m”-1]~m-l.
Moreover, since r- 1 <(N+ 1)/m” - 1, we have r * m” - 1 <N. There-
fore,

w(~+1))*(wb/21) “+‘<((N+l)*m)/((r+l)*[m/2]“+‘) (3)

can be derived. The left-hand side of (3) equals

THEOREM 1. For an arbitrary N > m, the B-tree TN,,, uniquely exists.

Proof. From Lemma 1, we know that TN,m is uniquely specified by a
pair of c and W,,,, because the height of TN,m is rz = [log,(N+ 01 - 1
and the number of keys that are contained in the root is r = [(N + 1)/m” -
11. Therefore, to complete the proof, we show that for an arbitrary N,
there exists a unique pair of c and W,,, satisfying the following con-
straints:

* (1 + [m/21 + [m/212 + -** + [m/21nec) + W,,,

= (r+ 1) * mcp2 *[m/21 n-c+l-l+WN,m, (4)

~W~,m<(r+1)*mc-2*~m/2~“-C+1*(m-l), (5)

l<c<n+l. (6)

Equation (4) means that the total number of keys contained in TN,,,
equals N. Combining (4) and (5), we have

(r+l)*mc-2*[m/21 n-C+2<N~(r+l)*mc-1*~m/2]“-c+‘-1. (7)

COST-OPTIMAL PARALLEL ALGORITHMS

Inequality (7) is equivalent to

(rf 1) * rnc-’ *[m/21 n-c+2-1<N~(r+l)*mc-‘*~m/2]“~c+

from which

c - 1 <log,,,,,,,(((N+ 1) * m)/((r+ 1) *[m/2]“+‘)) <c

can be derived.

1 -

63

1,

(8)

Clearly, [log m,,m,2,(((N+ 1)~ m>/((r+ l)*[m/21”+‘))1 is the unique
solution of c that satisfies (8). By Lemma 2, the unique solution of c also
satisfies (6).

On the other hand, the unique solution of W,,, can be obtained from
(4) and the unique value of c. Moreover, it can be seen from (7) that the
obtained value of W,,, satisfies (5). 0

COROLLARY 1. For the B-tree TN,,,,

n = [log&V+ l)] - 1,

r=[(N+l)/m”-11,

c = I logm,,m,2, (((N+1)*m)/((v+l)*rm/21"+'))17

V N,m =(r+l)*((mc-2-l)/(m-1)+mc-2

* ([m/21n-c+2- l)/([m/21-1))+L

W N,m =N-(r+l)*mc-2*[m/2]“-c+‘+1,

L N,m = (rt 1) * mcM2 *[m/2]n-c+‘,

~=[Yv,m/L~,ml~

According to the construction of TN,,,, we have the following lemma.

LEMMA 3. For each node (i, j > in TN, m :

(a) When i= 1,

p(i,l),u =

(2, v>, for l<v<r+l,

undefined, for r + 1 < v < m.

64 B.-F. WANG AND G.-H. CHEN

(b) When 1 <i<c,

P~i,j),,,=(i+l,(j-l)*m+u), forl<v<m.

CC) when c<i<n+l,

'(i,j),c,=

(i+l,(j-l)*[m/2]+u), for l<vG[m/2],

undefined, for [m/2]<uOz.

(d) B%eni=n+l 7

‘<i,j),u = undefined, for 1~ v Q m .

Let us consider a node (i, j> in TN,,,. If 1 <i -CC, the set of leaf nodes
that precede the key Kti,j),U in in-order traversal consists of the leaf nodes
of the subtrees with roots at (i + 1, l), (i + 1,2), . . . , (i + l,(j - l)* m + u),
respectively. If i = 1 or c <i <n + 1, the set of leaf nodes that precede
K,,, j),c in in-order traversal can be identified similarly. Therefore, for each
node (i,j> in TN,,, PRECN,,(K~i,j~,,,) can be computed according to the
following lemma.

LEMMA 4.

/

=

u * mcp2 * [m/2]“-‘+ ‘,
ifi=l and l<v<r,

((j-l)*m+u)*mC~‘-‘*~m/2]“-c+1,

if l<i<cand l<u,<m-1,

((j-l)*[m/2~+v)*[m/21”-‘,

ifc<i<n+l andl<u<[m/2]-1,

j-l,
ifi=n+l,l~j~LL,,,,andl~v~s,

j-l,
ifi=n+l, LL,,, <j,and lgv<s-1,

undefined

otherwise.

COST-OPTIMAL PARALLEL ALGORITHMS 65

To facilitate the subsequent discussion, we introduce the tree T,v,,m
which is obtained from TN m by inserting one key into each of the leaf
nodes that own only s - 1 ‘keys. Clearly, TN,,m is the unique tree to be
constructed for N’ = N + L, m - LL,, m. Note that TN,,,, and TN,,, are of
the same shape but different’in that every leaf node of the former contains
s keys but only the leftmost LL,,, leaf nodes of the latter contain s keys.
The tree TNf,m is helpful to the computation of RANK,,,(K,,,j,,U). In the
following, we introduce some properties about TNS,m.

LEMMA 5. In TN, m, the subtree whose root is at node (i, j) contains
(s + l)* mC-’ *[m/2i”-c+l -1keysif2~i<cand(s+1)*[m/2]“-‘+‘--1
keys ifc<i<n+l.

Proof. When 2 <i <c, the number of keys that are contained in the
subtree whose root is at node (i, j) is computed as the sum of (m - l)*
(1+m+m2+ .** +mc-‘-‘) + ([m/21 - l)* mcpi *(l + [m/21 + [m/212
+ a*. +[m/21”-‘)+s * mc-’ *[m/2]n-c+1, which can be simplified to (s +
l)* mc-‘*[m/2]“-‘+’ - 1. When c < i <n + 1, the computation is similar.

0
Since the set of keys that precede Kci,lj,l in in-order traversal of TNv,m

is exactly the set of keys that are contained in the subtree whose root is at
node (i + 1, l), the following lemma can be derived from Lemma 5.

LEMMAS.

~NK,,,,(Kc,,,),,) = I
n-c+1

(s+1)*mc-i-‘*[m/2] , if 1 <i<c,

(s + 1) *[m/2]“-‘, ifcGi<n+l,

1, ifi=n+ 1.

Further, we have the following lemma.

LEMMA 7.

I?LINK,~,,(K,~,~),~) + (s + 1) * mC-’ *[m/21”-‘+‘,

if 2<i<c,

RANK,~,,(K~,,j~,,)+(s+l)*~m/2~“~it1,

ifc<i<n+l,

RANKNr,m(K(i,j),l) +'+ '9

ifi=n+l.

66 B.-F. WANG AND G.-H. CHEN

Proof The keys that are between Kci, jl,I and K~i,j+ 1j,1, while travers-

ing %‘,m in in-order traversal, include the following four parts:

1. The keys in the subtree whose root is at P~i,j~,*.
2. The key Kci,j),u and the keys in the subtree whose root is at

p(i,j),u+l, where 2<ugm-1 if 2<i<c, 2<v<[m/21-1 if c<i<n+l,
and 2<u<s if i=n+l.

3. The split key of nodes (i,j> and (i,j+ 1).
4. The keys in the subtree whose root is at Pci,j+ l),l.

By counting the above keys with the aid of Lemmas 3 and 5, the lemma
follows. 0

Similarly, since the keys that are between Kci,j),u and K~i,j),u+l, while
traversing TN,, m in in-order traversal, are contained in the subtree whose
root is at p(,,j),Lt+l' we have the following lemma.

LEMMA 8.

=

‘k4NKN~,,(K~i,j~,l.)+(s+l)*mc-i-1 *[m/2]“-“+I,

ifi=l andl<v<r,

Rz4NK,~,,(K~,,j~,,,)+(s+l)*mc-i-’ *[m/21”-‘+‘,

ifl<i<candl<.<m-1,

mNK,vf,,(K<i,j>,c.) +(s+ 1) *[m/2]n-i,

ifc<i<n+l andl<U<<rm/2]-1,

mNKNf,,(K<i,j,,,,) + 1,
ifi=n+l,l~j~LL,,,,andl~u<.s,

~NK~,,m(K,z,j,,~~> + 1,

ifi=n+l, LL,,, <j, and l<v<s-1,

undefined,

otherwise.

According to Lemmas 6, 7, and 8, RANK,,,,(K,i,j,,“) can be computed
as follows. First, by Lemma 6, RANK,., ,(Kci, 1) I) is computed. Then, by
applying Lemma 7 repeatedly, RANK,,, ,(K, i, j), ;I is computed. Finally, by
applying Lemma 8 repeatedly, RFINK,~,,(K,,,~,J is computed. Therefore,
we have the following theorem.

COST-OPTIMAL PARALLEL ALGORITHMS 67

THEOREM 2.

U*(S+l)*mC-‘-‘*[m/2]“-‘+‘,

ifi=l and l<v<r,

((j-1)*m+u)*(s+1)*m’-‘-‘*~m/2]“-’+’,

if l<i<candl~v~m-1,

((j-l)*[m/21+v)*(S+l)*[m/2]“-‘,

ifc<i<n+l and l<u<[m/2]-1,

(j-l)*(s+l)+L’,

ifi=n+l,l<jfLL,,,,andl~u<s,

(j-l)*(s+l)+u,

ifi=n+l, LL, m <j,andl<v<s-1,

undefined,

otherwise.

With the aid of Theorem 2, RANK,,,(K,i,j,,,> can be computed easily.
Note that only the leftmost LL,,, leaf nodes of TN,,, own s keys, whereas
every leaf node of TN,,,, owns s keys. Therefore, for each node (i, j),

MNKN,rrz(K,,,jj,v) = MNKN,,,(K,i,j),c) if PmCN,,(Kci,j),,,) G LL,,,
and RANK, m(K,i,j,,,) = RANK,, m (Kci.j),c) - (PmC,,,(Kci,j>,,,) -
LL,,,) if PhC,,,(K,i,j,,,)>LL, I,. We summarize the result in the
following theorem.

THEOREM 3. RANK, m(K,,,j,,,,) = R4NK,,,,(K,i,j,,l,) - max

IO,PREC,,,(K,i,j,,,)-LL,,,}.
According to Theorem 3, RANK, m

LL,,,, PREC, m(K~i,j),u), and RANkN!,E&..)) c?nhzz ~~~p~~p~~
respectively, according to Corollary 1, Lemma 2, &rd Theorem 2.

4. PARALLEL CONSTRUCTION ALGORITHMS

A convenient data structure to represent a search tree is a linear array.
In this section, we assume that TN,m is stored in a linear array of length
V N, m. Therefore, before presenting the parallel construction algorithms, we
need to specify a linear ordering for the nodes of TN,,, such that the node
with order k, 1 <k d V,, m, is represented by the kth element of the linear
array. A simple approach to do so is to number the nodes according to

68 B.-F. WANG AND G.-H. CHEN

their breadth-first search order. For example, Table 1 shows the specified
linear ordering for the nodes of the B-tree that was depicted in Figure la.
For each node (i,j> in TN,m, it is not difficult to determine its order in the
specified linear ordering. Let ORDER,, m ((i, j>> denote the order of node
(i,j> in TNm.
lemma. ’

We can determine ORDER,,,((i, j)) by the following

LEMMA 9. Let (i, j) be a node of TN,,,. Then,

(1,
ifi= 1,

l+(r+l)*(m’~2-l)/(m-l)+j,

ORDER,,,((i, j>) = (if 2gi<c,

l+(r+l)*(mC-2- l)/(m-l)+(r+l)*mC-*

*([m/2]i-c-l)/([m/2] - 1) +j,

\ ifc<iGn+l.

On the other hand, given the above specified order, we can also
determine the corresponding node. Let NODE,,,(k) denote the node in
T N,m whose order is k. Clearly, NODE,,,(k) = ORDER;,‘,(k). We can
determine NODE,,,(k) by the following lemma.

LEMMA 10. For a given order k, l<k<I/,,,, if NODE,,,(k)=(i,j),
then :

(a) when k = 1,

i=l and j=l.

(b) when l<k<l+(r+l)*(m’-‘-l)/(m-11,

i=[log,((k-l)*(m-l)/(r+l)+l)] +l

TABLE 1

The Specified Linear Ordering for the Nodes of the B-tree that was Depicted in Figure la

Node(i,j) (1,l) (2,l) (2,2) (3,l) (3,2) (3,3) (3,4) (3,s) (56) (4,l) (4,2)
Order k

Node (i, j) (413) <424) <435) <446) <457) (468) <479) (4810) (4911) (4ly2)
11

Order k ;2 ;3 ;4 lk ;6 i7 i8 ;9 ;o ;1

COST-OPTIMAL PARALLEL ALGORITHMS 69

and

Cc)

and

j=k-(l+(r+l)*(m’-2-1)/+72-l)).

When l+(~+l)*(mC~‘-l)/(m-l)<k~I/,,,

i=[log,,,,,((k-(l+(r+l)*(m’~‘-l)/(m-1)))

*(~m/2l-l)/((r+1)*m~-2)+l)l +c-1

j=k- 1+(r+l)*(mc-2-l)/(m-l)+(r+l)*mc-2 (

*([m/21’-‘- l)/([m/2]-1)).

Since each node of TN,,, is uniquely represented by an element of a
linear array of length V,, m, for each element of the linear array, we have
to determine which node of TN m
sorted list it will keep, and which

it represents, which keys in the given
elements of the linear array are its

children, in order to construct TN,,,. To say more concretely, for the kth
element of the linear array, 1 < k G V,,,, we have to determine
NODE,,,,(k), MNKN,,(K<i,j,,,), 1 <V <rn - 1, and ORDERN,,CP(i,j),“I,
1 <u <m, where (i, j) =NODE, ,(k). Since the above computations can
be performed independently for ‘all the elements of the linear array, we
can derive parallel construction algorithms, running on the shared-memory
SIMD computer, in which all the elements are processed in parallel. The
parallel construction algorithms consist of the following two steps:

Step 1. Compute n, r, c, V,,,, W,,,, LN,,,, s, and LL,_, according to
Corollary 1.

Step 2. Compute NODE,,,(k), RFINK,,,(K,~,~),,), 1 <v Grn - 1, and
ORDER,,,(Pci, j,,u>, 1 <u <m, where (i, j) = NODE,,,(k), according to
Lemmas 3 and 4, Theorems 2 and 3, and Lemmas 9 and 10 for all k,
l<k<V,,.

The time complexity of the parallel construction algorithms are depen-
dent on how fast the set S of values mn, [m/21”+‘, mc-*, lm/21n-C+2,
[m/21n-c+l, me-i-l, [m/21n-i, me-i, [m/21n-i+l, mi-2, [m/21i-c+l,

[m/21’-‘, and mC-’ can be computed. In the set S, m is given and the
values of n and c are fixed when N is given, but the value of i varies with
the level of the node being considered. That is, i = i,, when node (ik, j, > is

70 B.-F. WANG AND G.-H. CHEN

being processed. Sequentially, O(log n> time is required to compute the set
S. However, if N processors are used, the set S can be computed in O(1)
time (explained later). In the following, we present the parallel construc-
tion algorithms running on the EREW model and the CREW model,
respectively.

PARALLEL CONSTRUCTIONALGORITHM ON THE EREWMODEL

A simple parallel algorithm for constructing TN,,, on the EREW model
is to let all processors Pk, 1 Q k B V,,,, p recess the kth element simultane-
ously. The time complexity is O(loglog N) [= O(log n)], which is the time
requirement for Pk to compute the set S for i =i,, where (ik, jk) =
NODE,,,(k). Since V,, m GN processors are needed, the parallel algo-
rithm is not cost-optimal. According to the following fact, we can propose
a cost-optimal parallel algorithm, where VN,,Jloglog N processors are
used, while O(loglog N) time is retained.

FACT 1. Let (ik, j,) =NODE,,,(k) and (iktl, j,,,) =NODE,,,(k+ 1).
Then, ik+l -i, = 0 or 1. That is, NODE,,,(k) and NODE,,,(k+ 1) are
two nodes at the same level or at adjacent levels.

As a result of Fact 1, when we have obtained the set S of values for
i=i,, we can obtain the set S of values for i = i,, 1 in additional constant
time, where (ik, j,) =NODE,,,(k) and (i,,,, jk+l) =NODE,,,(k+ 1).
This means that the (k + 11th element can be processed in constant time
after the kth element has been processed. The cost-optimal parallel
algorithm is simply to let each processor process loglog N consecutive
elements. Each processor will process the assigned elements in increasing
order of their indices and therefore it will take O(loglog N) time for the
first one and O(1) time for each of the others. Thus, totally O(loglog N)
time is required for each processor.

THEOREM 4. The B-tree TN,,, can be constructed in O(loglog N) time on
an EREW shared-memory SIMD computer with V,,,/loglog N Q N/
log log N processors, which is cost-optimal.

PARALLEL CONSTRUCTIONALGORITHM ON THE CREWMODEL

From the above discussion, we know that we have to speed up the
computation of the set S in order to obtain a faster parallel construction
algorithm. Fortunately, we have an approach to compute the set S for all
i’s, 1 d i d n + 1, in O(1) time. As a result, an O(1) time parallel construc-
tion algorithm is derived. In this approach, N processors are used to fill in
two tables POliZP,,,,,[l *a* 12 + 11 and POwER,[l a** n + 11, where the

COST-OPTIMAL PARALLEL ALGORITHMS 71

contents of POWER rm,2,[i] and POWERJi], 1 <i Gn + 1, are the values
of [m/21’ and m’, respectively. Here we only describe the approach to fill
in the table POIVER,[l ... n + 11. A similar approach to fill in the table

POIJ=&,, ,z,[I ..* n + l] easily can be derived. In the approach, each pro-
cessor P,,, 1 <k <N, is first to compute uk = [log, k] and 1, = [log, k]. If
uk =l,, Pk fills POWER,[u,] with the value of k. Then (since m” G N G
m n+l

- 11, processor PN fills POWER,[n + 11 with the value of
m * POWER,[n]. After the two tables have been established, TN,,, can be
constructed in O(1) time by letting each processor Pk, 1 <k < V,,,, pro-
cess the kth element simultaneously. Now the set S of values for any i can
be obtained in O(1) time by looking up the tables.

THEOREM 5. The B-tree TN, m can be constructed in O(1) time on the
CREW shared-memory SIMD computer with N processors, which is cost-
optimal.

5. CONCLUDING REMARKS

Parallel algorithms for constructing binary and m-way search trees have
been proposed in the literature [7, 9, 101. In this paper, we have proposed
two parallel algorithms for constructing a B-tree of order m. The main
advantage of the B-tree over the m-way search tree, i.e., guaranteeing
logarithmic access time even when it is dynamically changed, comes from
the flexibility of its structure. However, the flexibility also causes the
difficulty of deriving parallel algorithms for constructing it. The two
parallel algorithms that we have proposed in this paper were designed on
the shared-memory SIMD computer: one, based on the EREW model,
uses N/loglog N processors and requires O(loglog N) time; the other,
based on the CREW model, uses N processors and requires O(1) time.
Both parallel algorithms are cost-optimal. If the number of available
processors is fixed, say p, it is not difficult to see that the proposed
algorithms can run in O(N/p) time, which is also cost-optimal.

There have been many variants of B-trees, such as B*-trees, B’-trees,
and prefix Be-trees [5]. The parallel algorithms we have proposed in this
paper cannot be used to construct them. It is still open for the interested
readers to discover if there exist efficient parallel algorithms for construct-
ing them.

REFERENCES

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algotithms. Addison-Wesley, Reading, MA, 1974.

2. R. Bayer and E. M. McCreight, Organization and maintenance of large ordered
indices. Actu Znform. 1:173-189 (1972).

72 B.-F. WANG AND G.-H. CHEN

3. M. R. Brown and R. E. Tajan, Design and analysis of data structure for represent-
ing sorted lists. SIAM J. Comput.. 9(3):594-614 (1980).

4. H. Chang and S. S. Iyengar, Efficient algorithm to globally balance binary search
trees. Commun. ACM 27(7):695-702 (1984).

5. D. Comer, The ubiquitous B-tree. Comput. Surveys 11:121-137 (1979).
6. A. C. Day, Balancing a binary tree. Comput. J. 19:360-361 (1976).
7, E. Dekel, S. Peng, and S. S. Iyengar, Optimal parallel algorithms for constructing

and maintaining a balanced m-way search tree. Znt. J. Parallel Program.
15(6):503-528 (1986).

8. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching.
Addison-Wesley, Reading, MA, 1973.

9. A. Moitra and S. S. Iyengar, A maximally parallel balancing algorithm for obtaining
complete balanced binary trees. IEEE Trans. Comput. C-34(6):563-565 (1985).

10. A. Moitra and S. S. Iyengar, Derivation of a parallel algorithm for balanced binary
trees. IEEE Trans. Software Eng. SE-12(3):442-449 (1986).

Il. B. F. Wang and G. H. Chen, Cost-optimal parallel algorithms for constructing 2-3
trees. J. Parallel Distributed Comput. 11(3):257-261 (1991).

Received 2 December 1991; revised 8 October 1992

