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Abstract

Symbol manipulation as used in traditional Artificial Intelligence has been criticized by neural net

researchers for being excessively inflexible and sequential. On the other hand, the application of

neural net techniques to the types of high-level cognitive processing studied in traditional artificiaa

intelligence presents major problems as well. We claim that a promising way out of this impasse

is to build neural net models that accomplish massively paraliel case-based reasoning. Case-

based reasoning, which has received much attention recently, is essentially the same as analogy-

based reasoning, and avoids many of the problems leveled at traditional artificial intelligence.

Further problems are avoided by doing many strands of case-based reasoning in parallel, and by

implementing the whole system as a neural net. In addition, such a system provides an approach

to some aspects of the problems of noise, uncertainty and novelty in reasoning systeras. We are

accordingly modifying our current neural net system (Conposit), which performs standard rule-

based reasoning, into a massively parallel case-based reasoning version.

t This work has been supported in part by grant AFOSR-88-0215 from the Air Force Office of Scientific

Research and grant NAGW-1592 under the hmovative Research Program of the NASA Office of Space

Science and Applications.



1. INTRODUCTION

Certain limitations of typical connectionist techniques arise when one attempts to apply them to

the sorts of high level cognitive task attacked in traditional, symbolic Artificial Intelligence. On the

other hand, there has _so been much discussion on limitations of traditionaJ symbolic computation

-- rule-based reasoning in particular -- as used in AI and in many models in Cognitive Psychology.

A connectionist who is interested, as we are, in high level cognitive tasks (commonsense inferencing,

planning, natural language understanding, etc.) is therefore faced with the problem of where to look

for a way' of overcoming/he connectionist problems without running into the traditional symbolic

ones. The central theme of this paper is that a promising place to look is connectionistically

implemented, massively parallel case-based reasoning. "_

-f Case-based reasoning (CBR) is essentially the same as analogy-based reasoning (ABR). A

good overall impression of CBR can be obtained from reference DARPA (1989), and of ABR

from the papers in Helman (11988), especially Kedar-Cabelli (1988). Some largely methodological

differences between the two fields are discussed in "Analogy and CBR" panel in DARPA (1989).

In brief, in CBR a current problem, situation or reasoning goal is tackled by transferring advice,

solutions or actions from records of similar "cases" (problems, situation-descriptions, and so on)

that have been encountered in the past. A fuller account is given below. It has received a lot of

attention recently because it is claimed to serve as a good framework for learning and to allow

much more fluidity and fle:dbility of reasoning than standard types of rule-based reasoning (RBR)

do. (As is customary, we concentrate on RBR in alluding to traditional AI, but we recognize that

not all of traditional AI is rule-based in any, strong sense. We should also note that CBR can be

implemented in RBR and vice versa. Contrasts between CBR and RBR should therefore be on

the basis of rules and cases which are in some sense at the same conceptual level.)

In particular, CBR provides more of a handle on problems of noise, novelty and uncertain

reasoning, the three issues that were the loci of the workshop that led to this paper. For our

purposes here, it is important to realize that the noise and the uncertainty can arise fl'om imper-

fections in a system's knowledge base as well as from imperfections in input information. A lot

of attention in case-based reasoning research goes to the task of combining the advice fl'om many

retrieved cases, under the expectation that some of the advice will be conflicting. For instance,

suppose some stored cases portray episodes of insulting. If some of these cases have the insuited

person being amused whereas most have the victim being not amused, then the system must deal

somehow with the conflict arising when the cases are used to illuminate some new episode of in-

sulting. One thing the system might do is to conclude that the new victim will probabI9 not be

amused but that he may be amused.

Such conflict can be viewed as a source of noise and uncertainty. Although many RBR

systems also allow ways of combining advice (from different rules), the techniques are relatively

primitive compared to the more advanced advice-combination facilities entertained in the CBR

field. In RBR systems the combination is usually' confined to some form of numerical combination

"_This conclusion and the premises from which it was reached are similar to those of Domeshek (1989).
However, he does not propose a fully' connectionist case-based reasoning system, nor does he suggest using

massive parallelism in the way we do.



of confidence/evidence measures attached to hypotheses that have already been created, whereas

in CBR. systems it is much more common to combine symbolic structures that embody advice in

order to create new pieces of advice (see e.g. Barletta & Hennessy 1989, Branting 1989), as well as

adapting individual pieces of advice to create new ones (see "Case Adaptation" panel in DARPA

1989).

Another type of "noise" arising in reasoning systems is that most of tile system's knowledge

is going to be irrelevant to any specific reasoning episode, and the rest relevant to differing extents.

Much attention is given in most CBR research efforts to the problem of efficiently accessing only

those cases that have promise of being relevant to the problem at hand. Again, approaches to

relevance are necessary, indeed central, in RBI{, systems, since efficiency is severely compromised

unless the system only tries to fire rules that have some chance of being useful. It is not clear

fthat there is much advantage to either RBIL or CBR with respect to their handling of relevance.

However, on the issue of novelty, a system that reasons by analog)' to past examples is inherently

equipped to deal with significant types of novelty in its input, and to have a considerable advantage

over R,BR systems in this respect.

RBR as implemented in the traditional symbol processing framework, and indeed traditional

symbol processing as a whole, is often criticized by connectionists for being excessively rigid. The

alleged rigidity can take a number of forms, notably (a) the inability of rules to act usefully on any

data other than the precisely defined type of data the rules were designed for, and (b) their inability

to act usefully when not quite enough, or not quite good enough, data is provided. Both of these

are failures of adaptability, with the second often described as a lack of "graceful degradation".

Connectionist systems are claimed to be able to avoid these failures, even though a given system

might still give the appearance of being rule-based or be approximately describable as acting in a

rule-based way (as in e.g. Rumelhart &: McClelland 1986: Smolensky 1988a).

The problem is that connectionism in its current typical forms has severe limitations with

regard to effecting commonsense reasoning and other "high level" cognitive tasks. The issues

have been discussed by eLnumber of authors (including Barnden 1984, Birnbaum 1990, Dyer 1990,

Fodor & Pylyshyn 1988, Smolensky 1988b), and center on the difficulty of getting connectionist

systems to systematically handle complex, short-term information structures, such as plans of

action, or semantic representations derived from natural language sentences. The difficulty is

fundamentally that of ensuring the efficient and systematic processing of highly arbitrary and

temporary associations between data items. The "variable-binding problem" is a special case

of this problem. A number of systems -- including but not limited to those reported in the

articles in Barnden & Pollack (1990) - have attacked the difficulties raised by high-level cognitive

processing. However, no connectionist system to date has been able to approach the flexibility and

sophistication with which current traditional AI systems handle such structures.

We therefore wish to accomplish the following simultaneously: (i) avoid the deficiencies

of traditionM RBR; (ii) exploit the potential benefits of connectionist processing, such as paral-

lel processes for associatively inde_ng into large knowledge bases (of rules, cases, or whatever),

approximate matching of representations, perceptual processing, and some types of learning or

adaptation; and yet (iii) avoid the deficiencies of current connectionist systems.



Weclaim that devisingconnectionistsystemsthat implementCBR.is agoodwayto achieve
thesegoals. This is firstly becauseCBR,evenwhenrealizedby meansof conventionalsymbol-
processing,alreadyavoidsmanyof the mostcommonlydiscussedproblemsof R.BR..In particu-
lar, becausereasoningproceedsby comparisonof cases,allowingfor mismatchesandincomplete
matches,CBtZ is much less susceptible to the two specific deficiencies, (a) and (b), that were noted

above. But if we were able to devise a connectionist CBR system, we would have the opportunity

to achieve subgoal (ii) as well. Further, assuming the connectionist CBR system that was able to

manipulate cases with complex structure, we would also have achieved subgoal (iii).

This argument for connectionist CBR systems does not exclude a hybrid system involving

both connectionist and non-connectionist techniques, with the latter having no counectionist im-

plementation specified for them. ttowever, a f, zlly connectionist system is at an advantage through

-:being a more tightly integrated system -- there are richer possibilities for interaction among the

various parts of the system. For example, if the system has connectionist subsystems fo:" percep-

tion, these are more easily interfaced with reasoning subsystems if the latter are also implemented

in connectionist networks. As another example, in the system described in this paper the connec-

tionist mechanism for associative recall of cases in long-term memory is intimately related to the

mechanism for matching the complex symbolic structures in cases. The intimate relationship is

facilitated by the fact that the latter mechanism has a connectionist implementation. Another,

independent, motive we have for being concerned with the development of fully connectionist CBP_

models is that we are ultimately interested in the construction of psychological theories and in

mapping them down to biological neural networks, as well as in the engineering of reasoning arti-

facts.

It is often suggested that connectionist and related techniques could be used for case retrieval

in CBR systems (see e.g. Domeshek 1989, Martin 1989), or, similarly, for retrieval of stored

analogous problems in ABR problem-solving systems (see e.g. Thagard &:."Holy, oak 1989). Also,

Holyoak &: Thagard (1989) have proposed a connectionist way of performing the mapping process

in using analogies. However, such suggestions are generally for systems that are hybrid in the above

sense. The few fully connectionist case-based systems that we know of (e.g. the CBR system of

Becket & Jazayeri 1989) are quite limited in their ability to handle complex cases.

How are we to devise a fully connectionist system that manipulates cases containing complex

structures of information? Our answer is to borrow the basic representational techniques of our

e.'dsting connectionist system for high-level cognitive processing, called Conposit [Barnden 1988b,

1989, 1990]. This system allows great flexibility in variable binding, and enables very complex

symbolic structures to be manipulated much as they can be in AI systems. The system gets

its power from unusual ways of handling the problem of arbitrary temporary associations, and

wiU be sketched below. Now, the current Conposit is in fact a connectionist implementation of

standard RBR, so that it inherits the rigidity that has been ascribed to traditional I_BR systems.

Our research therefore centers on radically modifying Conposit to make it into a connectionist,

massively parallel CBR system. We emphasize that we currently view the system as a vehicle for

the investigation of fundamental issues, rather than as a system that could immediately put to

use in some real-world domain. The new system includes promising approaches to the problems of

recalling relevant knowledge (noted above) and managing some forms of noise and uncertainty (this



isdiscussedin the concludingsection).At presentwemerelyhavea partial, pilot simulationof the
newversionof Conposit.However,themainideashavebeenelaboratedinenoughdetailfor themto
provideaspringboardfor usefuldiscussionandfurtherwork. Moreover,thebasicrepresentational
techniques,andsomecrucialprocessingmechanisms,areinheritedin largelyunchangedformfrom
theexisting,simulated,RBR Conposit.

The plan of the paper is as follows. Section 2 sketches the RBR Conposit. Section 3 gives

a short sketch of CBR in general. Section 4 outlines the CBR version of Conposit. Section 5 is

the conclusion, and comments on how the new version of Conposit addresses problems of noise,

novelty and uncertainty.

-_ 2. THE RULE-BASED VERSION OF CONPOSIT

The sketch in this section is of necessity highly compressed, but detailed accounts are given

in Barnden (1988b, 1989. 1990). The most important points to appreciate for the purposes of

understanding the CBR version of Conposit are the techniques used for encoding symbolic data

structures (rather than for manipulating them), and it is only this aspect of Conposit that is

explained in any detail here.

Conposit's main strength is the ability to encode complex, temporary, symbolic data struc-

tures for use in short-term inferencing processes. A typical type of Conposit data structure is,

at an abstract level of description, a semantic network fragment expressing a proposition such as

"Bill believes that John loves Mary or that Mary loves Peter". Such propositional data structures

are temporary activation states of a neural subnetwork called the "Configuration Matrix" (CM).

The data structures are detected, anMyzed, modified, destroyed and created by means of domain-

specific, hand-crafted, condition-action rules that are hardwired into another neural subnetwork.

This part of the system that will disappear in the move to a CBR version of Conposit, and is

therefore omitted from the present account. See Fig. 1 for the overall structure of the system.

FIG- 1 AH()II'I' HI_;RI_;

As an example of a rule, one Conposit version contains a rule that can be paraphrased as: if A

loves B and B loves C (where C is not .4) then A is jealous of C. Here A, B and C act as variables.

The "Subconfiguration Detection Module" in Fig. 1 would detect the presence in the CM of an

"A loves B" proposition and a "B loves C" proposition, with a consistent binding for B. Then,

the bindings for A, B and C are in essence passed to the rule's action part (in the "Action Parts"

module). The action part would check that C is not A, and then create a new data structure

stating that A is jealous of C, unless such a proposition already e_sts. The system thus pursues

a course of reasoning by modifying the content of -- i.e. neural activation pattern in -- the CM.

Currently, there is no attempt in Conposit to model any perceptual or natural language interface

that could give rise to initial data structures, nor does the system produce any natural language

or motor output. A simulation simply starts and ends with some set of data structures in the

CM.aThis is because the research focus has been on high-level reasoning processes.

a But there is a user interface allowing CM states to be derived from and converted into propositions

in a textual list format.



The current versions of Conposit are RBR systems of a fairly standard type, manipulating

familiar types of symbolic data structure. We emphasize that the whole system is defined at the

neural net level, although for many" purposes it is convenient to discuss it at the more abstract

level used in this article.

Conposit's configuration matrix (CM) or working memory is a 32 x 32 array of registers.

Each register is implemented as a small connectionist subnet, and is connected to its neighboring

registers and to other components. A register's value consists of a "symbol" and a vector of

binary "highlighting flag" values. Each highlighting flag is implemented as a connectionist network

unit that is either ON (high level of activation) or OFF (zero activation). The symbol is itself

implemented as a vector of high/zero activations across some other units in the register. (Conposit's

rules respond to configurations of symbols and highlighting values across the CM, and change those

"_-configurations by sending signals to registers.)

A symbol may' have a specific representational function, such as denoting a particular person

or a particular type of relationship among people. Any symbol can be placed in any register, and

all registers have the same set of highlighting flags. Temporaw structure is encoded mainl9 irz

the adjacen W relatiorzships among ualues in C.U registers. We therefore say that Conposit uses a

"Relative-Position Encoding" technique. For instance, if a register contains a symbol denoting the

class of all possible situations in which one person loves another, and has a certain highlighting

flag in the ON state, then any adjacent register that has another specific highlighting flag ON is

deemed to represent, temporarily, a specific loving situation.

See, for example, the representation of tile proposition that John loves Mary in the upper

portion of Fig. 2, which shows an 8 x 8 region of the CM.

FIG. '2At_()[I'[' H F_RI_;

Each square stands for a register, and capitalized words and letters stand for symbols. The word

JOHN stands for a symbol denoting a particular person, John, who is known to the system. The

LOVE symbol denotes the class of all conceivable loving situations. The X and Y symbols may be

ignored for now. The registers with no symbol shown contain a "null symbol" that does not denote

anything. The denotations of symbols are considered to be borrowed by the registers they occur in

at any moment: a register containing a non-null symbol denotes what that symbol denotes. Hence,

in the figure there are registers that -- temporarily -- denote John, Mary and the love-situations

class. The other signs within squares show ON states of highlighting flags, which in this example

are all referred to by, the names of colors. An 'r' indicates that the register is red-highlighted (i.e.

the red flag is currently on); similarly 'g' for green, del sign (V) for white, and bullet (°) for black.

One important function for highlighting is to help specify the representational relationships

temporarily holding between adjacent registers. For instance, a white-highlighted register is deemed

to denote a member of the class denoted by' any neighboring black-highlighted register. Therefore

the upper-left white register and the upper-right white register in the figure denote some man and

some love situation respectively. Further, if a register denotes a love situation, then any adjacent

red register (here, the one contzdning JOHN) denotes the "lover", and any adjacent green one



(here,the onecontainingMARY) denotesthe "lovee". Note that the absolute positions of the

symbols and highlighting states are irrelevant, as are the directions of the adjacency relationships.

The upper-right white register in Figure 2 is said to be the "head" register of the love

proposition. The red, green and black registers are the "role" registers. Tile red and green ones

are also called "argument" registers.

Complex data structures can be split up into pieces by a shared-symbol association technique,

an instance of the general "pattern-similarity association" class of techniques (Barnden 1988a,b,

19901). Shared-symbol association relies on the stipulation that two registers containing the same

symbol are considered to represent the same entity. The real power comes from the sharing

of variable-like "unassigned symbols". By appearing within a data structure, an unassigned

-5symbol can be viewed as having a temporary denotation dictated by the role of the symbol in

the structure. The letters 'X' and 'Y' in Fig. 2 indicate unassigned symbols. Y temporarily

denotes some particular but unspecified man, since that is what the register containing it denotes.

Similarly, X temporarily denotes the hypothetical loving situation by being in the head register

of the love proposition. Altogether, the figure shows how the proposition that some mm_ believes

that John loves Mary can be encoded by three separate clumps of registers that are linked by the

sharing of the X and Y symbols. ?vIuch more complex data structures than the one shown in Figure

2 can be built in a similar way.

Even a simple proposition, say John loves Mary, can be split into pieces by the un_ssigned

symbol sharing technique. Each piece is a clump of registers representing one or more roles of

the proposition. One register in each clump acts like a local "head" register. It is highlighted

in white and contains the shared symbol. Each remaining register the clump is adjacent to that

register, contains the LOVES, JOHN or MARY symbol, and is highlighted in black, red or green

respectively.

As stated above, the symbol in a CM register is a vector of high/zero (ON/OFF) values

maintained on some units in the register. This treatment of symbols is merely for the sake of

simplicity and of abstracting away from concerns orthogonal to our main goals. What we envisage

ultimately is that the "ordinary" (i.e. non-unassigned) symbols like the JOHN symbol are derived

by some pattern-compression mechanism from much larger activation patterns elsewhere in a total

connectionist cognitive system. One of these larger patterns might, for instance, be a patte,'n that

encodes the visual appearance of the object denoted by the symbol. As for the unassigned symbols,

we have already abandoned arbitrary patterns in our design for the new, CBR Conposit. Instead,

an unassigned symbol in a register is derived on the fly from the symbols in other registers by a

pattern-construction mechanism. This will be explained below.

An important mechanism in the RBR Conposit is carried over into the CBR Conposit. This

is the "Temporal-Winner-Take-All" (TWTA) mechanism for performing selection. In the RBR

Conposit, it is often used by a rule for selecting an arbitrary register out of a set of contending

CM registers (candidates for being affected by tile rule). The selection is based on time differences

among signals, rather than on activation differences as in the conventional "winner-take-all" styles

of selection mechanism [see e.g. Feldman & Ballard 1982, Grossberg 1988, Lippmann 1987].



The TWTA mechanismin the RBR Conpositworksas follows. Eachcontendingregister
sendsan"I'm ready'*announcementto a modulecalledtheCM's "paralleldistributor". Theparal-
lel distributormakesasits arbitrarychoicethe one that sent the siynal that was received first. This

relies on the e_stence of small random arrival-time differences among the announcements. The

differences are caused mainly bv random delays within the announcement-generating subnetworks

in the CM registers. When there is a sufficiently close tie among the earliest arriving announce-

ments, the parallel distributor orders each of the registers that sent the tying messages to try

again. Thus, another round of contention starts, but usually with a reduced number of contending

registers. If the new round again leads to a quasi-tie, another round of contention is initiated,

and so on. The expected number of rounds is very reasoaable, given a suitable choice of timing

parameters -- it grows approximately logarithmically witli the number of initially contel_ding reg-

._-isters. Further details, a connectionist implementation and the results of a mathematical analysis

and simulation experiments are given in Barnden, Srinivas & Dharmavaratha (1990), where our

reasons for preferring temporal-winner-take-all over conventional winner-take-all mechanisms are

also given.

As an example of an appEcation of TWTA, and of linking connectionism to CBR. we have

implemented a connectionist network (unrelated to Conposit) for diagnosing automobile defects

by means of a simple form of CBR. The network consists of two kinds of nodes, the concept nodes,

each representing a symptom, fault, or piece of advice, and the case nodes, each representing a past

failure situation. A case node is connected with positive weights to the concept nodes signifying

the symptoms and faults involved in the situation and the pieces of advice that were useful in the

situation. Some concept nodes are also connected to each other by links. For instance, incompatible

symptom nodes are connected together by links with negative weights. In a reasoning episode, a set

of of symptoms is specified to the system by virtue of high levels of activation being placed on some

symptom nodes. Activation spread is started at these nodes and the network is allowed to settle

down. The activations of the advice nodes are converted into time by using simple threshold units.

The TWTA mechanism is used to select among the advice nodes, the effect being to select the

strongest piece of advice. The TWTA based selection mechanism is ideally suited to this purpose

owing to its fast convergence properties.

4. CASE-BASED REASONING

To take a basic example of the simple sort of case-based reasoning currently included in the

modified Conposit, suppose a stored case (i.e. a case in the "case-base", or long-term memory)

contains the following information:

Peter kissed Susan, Susan dislikes Peter, Susan slapped Peter

(This is simply an unordered set of propositions -- in particular, there are no implied temporal or

causal relationships among the three events/situations.) Suppose the system is presented with the

following situation (_'given" case):

John kissed Mary, Mary slapped John Mary is a student

8



Underanobviousmappingof theparticipants,thereis acorrespondencebetweenpartof thegiven
caseandpartof thestoredease.Asaresult,the "advice"that Mary dislikes John would be formed.

Of course, this advice is at best a plausible inference. Tile handling of possible inconsistencies

between the conclusion and other information that might be available from other stored cases is

an important research issue for the CBR field in general.

Another possibility is that there is the stored, partially-general case

X kissed Mary, Mary slapped X

where X is a variable. (Another yet more general type of case is one that states, for example, that

X kissed Y and Y slapped X.) With a given case stating just that John kissed Mary, the advice

would be that Mary slapped John. There is no intrinsic, rule-like directionality here: if the given

-_fcase had been just that Mary .slapped John, the advice would have been that John kissed Mary. It

is possible to include extra structure or inforlnation in a stored case to indicate that part of it is to

be treated as a matching condition and that another part is to be treated as advice -- these parts

not necessarily being disjoint -- and then the case acts much like a rule. However, we would still

not demand that the whole of the matchable part of the stored case be matched by information in

the given case.

The prototypical, basic CBR process can be broken down into the following stages.

(1) [ndezing: The information in the case or cases that are the current focus of attention are used

to generate indexing key's for accessing cases in iong-term memory (LTM).

(2) Retrieval: Some or all of the indexed LTM cases are retrieved.

(3) Matching: The retrieved cases are compared with some or all of the current cases mentioned

in (1).

(4) Advice Creation: When a retrieved case matches sufficiently well with a current case, portions

of the retrieved case, possibly modified, are used as tentative conclusions (advice). Modifications

typically involve substitutions of constants (e.g. John for Peter and Ivlary for Susan in the above

example), or substitutions of constants for variables like the X above. Conflicting advice must be

resolved in some way, perhaps depending of the goodness of the matching that led to the advice.

Pieces of surviving, compatible advice can be combined. Advice can generally be regarded as

forming a new case, which may now become an answer or a current case.

Also, new cases created may be stored in LTM, rather than merely serving as an answer or

as a generator of further indexing into LTM.

This brief description of CBR leaves out many refinements and complications that can be

added. Papers in DARPA (1989) provide a good idea of the variety.

4. THE CASE-BASED REASONING VERSION OF CONPOSIT

Overview



Theoverallarchitectureof theCBRversionof Conpositis asshownin Fig. 3. Therearenow
multipleconfigurationmatrices(CMs)-- weenvisagehundredsof themultimately. CMscontain
casesthat arecurrentlybeingsubjectto short-termprocessing.The systemis heavilydependent
oncopyingoperationsbetweenCMs. A copyoperationis donerapidlyby sendingthe statesof
all the registersin the sourceCM to the corresponding registers in the destination registers, in

parallel.

The relatively small set of "LTM gateway" CMs provides the interaction between short-term

processing and the large long-term memory of cases. (The cases in LTM are not stored in CMs.

Rather, they are encoded in connection weight settings, in a way to be detailed below.) Cases in

f non-gateway CMs compete to have their contents copied into gateway CMs. A case in a gateway

CM tends, by an associative inde×ing/retrieval process, to cause some more or less relevant case

stored in LTM to be inserted into the CM, alongside the case already there. When this [_appens,

the new contents of the CM are copied into a currently unused non-gateway CM, in which a

matching process occurs between the two cases. If matching is successful, the umnatched part

of the retrieved case, after possible symbol substitutions, acts as a collection of new assertions.

These constitute the "advice" contributed by the case. The symbol substitutions take care of

correspondences between John and Peter, and so on, or between John and the variable X, in the

love/slap examples presented earlier. The case consisting of the modified versions of the unmatched

parts of the retrieved case, together with the whole of the case that was in the CM before retrieval.

is now copied into a currently unused CM. From there it may succeed in being copied into a gateway

CM, where it can cause further retrievals from LTM. Therefore, we have a massively parallel and

intertwined reasoning process.

There is also a small set of "primary" CMs that collect and merge advice front other CMs,

and compete more strongly than other CMs do for copying into gateway CMs. Another purpose

for primary CMs is for them to act ultimately as a channel or interface between the reasoning

system and other systems, such as systems for non-reasoning aspects of natural language under-

standing/generation. At present, we simply stipulate that any "run" of the system starts with one

or more of the primary CMs containing initial cases.

The case-based reasoning proceeds with no central control. In order to restrict and focus the

process, however, a case which has recently been produced by case-matching, or which has recently

been placed in a primary CM by' an outside agency, is copied to many currently unused CMs. As

a result, some proportion of those cases all cause the same LTM case to be retrieved and added

into them (if they succeed in being copied into LTM gateways). They therefore tend to lead to the

same advice. The more that a piece of advice is replicated in this way,, the more power it has for

influencing the ease-retrieval process. This is a "population-based" mode of self-control, roughly

reminiscent of genetic algorithms [Goldberg 1988].

In the following subsections we elaborate on this overview in considerable detail, while re-

fraining fi'om going down to the most detailed level of connectionist network nodes and connections.

However, all the mechanisms to be mentioned have straightforward connectionist realizations.

10



Data Structures and Symbols

The symbolic data structures making up cases are like the data structures in the RBR Con-

posit (recall Fig. 2). However, the "unassigned symbols" (like X and Y in Fig. 2) are automatically

and dynamicaily generated from the contents of CMs, rather than having unexplained origin as in

the RBR Conposit. The m_in feature of this dynamic generation is that the unassigned symbol put

into a head register of a proposition is defined by the application of a simple "hashing" transforma-

tion to the symbols and highlighting states in the proposition's role registers. The transformation

is called a hashing transformation because it is reminiscent of hash functions as described ill stan-

dard computer data structure textbooks --- see for example Standish (1980). It is also related to

the idea of using "reduced descriptions" (Hinton 1988) as a basis for complex data structures in

connectionist systems (see also Touretzky &," Geva 1987 and Pollack 1988).

Our hashing transformation is implemented very efficiently as a process involving connec-

tionist circuitry local to registers together with circuitry in the CM's parallel distributor. The

hashing is a crucial substrate for the case-matching and case-retrieval operations detailed below.

We are experimenting with different hashing methods, but the currently favored one is as follows.

Assume, by way of illustration, that the proposition that John loves Mary has just been

created in the CM, say by virtue of input fi'om outside the reasoning system itself. Suppose for

simplicity that this proposition is not split up into separate register clumps (cf. Section 2), and is

realized as a white-highlighted head register, H, and three neighboring role registers, holding the

symbols JOHN, MARY and LOVES, and highlighted in red, green and black respectively (as in

Fig. 2). Register H is given an unassigned symbol as follows.

Step i: In each of H's neighboring registers R that has a role-selection highlighting flag (like black,

green or red) ON, the symbol activation pattern is combined with the activation pattern over the

highlighting-flag units, to get a vector VR the same length as a symbol. (The details of this "local"

combination are given below.) Note that the only registers that compute a combination vector are

the role registers of the proposition.

Step 2: Each role register sends its V vector in parallel to the parallel distributor, which simply

averages them and then modifies the result by adding a small, randomly generated vector, to get

a result vector Vs.

Step 3: The parallel distributor sends VH back to H and any other registers that need to contain

the same symbol as H. (These registers are identified in the way explained below.) These registers

adopt VH as their unassigned symbol.

Note that any John-loves-Mary proposition will acquire the same unassigned symbol, to within the

small random deviations generated in Step 2, no matter how the role registers are "geometrically"

arranged around H. Also, the way the above process is modified to take care of a proposition that

is split up into several clumps ensures that the computed symbol is the same as if the proposition

were not split up.

The addition of a random vector in Step 2 is done to ensure that spurious symbol sharings

do not arise. The work of Step 2 is done globally by the parallel distributor rather than locally,
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by H itself, because in tile more general case when the proposition is split up (see Section 2) the

averaging that contributes to Step 2 involves registers that are not neighbors of H.

Hashing: Local Combination Process

The currently favored symbol/highlighting combination process in a register is as follows.

Each component P} of the result vector is computed by >'}= Si _i WjF_ where Si is the ith compo-

nent of the register's symbol vector, F_ is 0 or 1 standing for an OFF or ON state (respectively)

of the register's jth role flag, and W_ is a weight associated with that role flag. Each register uses

the same weight vector W. Currently, I,gj is simply taken to be j itself. This appears to lead to

satisfactory hashing for our purposes. First, each _,_is trivial to compute using a small number

of connectionist units of a standard type. Second, the given definition of V as a function of the 5"

-land F vectors obeys the important basic constraint that it should not lead to the same I_"value

under permutation of the arguments of a proposition. We want the unassigned symbol computed

for John-loves-Mary to be different from that computed for Mary-loves-John.

Hashing: Further Details 4

It is in principle possible in principle for radically different propositions to lead to creation

of the same unassigned symbol (to within the small random deviations of the magnitude involved

in Step 2 of the hashing process). However, we conjecture that it is extremely unlikely that such

coincidences will actually arise. The verification of this conjecture is one important task for future

experimentation with versions of the system involving large numbers of ordinary symbols and a

large long-term memory of cases.

The hashing process occurs whenever a case is placed in a primary CM from outside the

reasoning system, and also on other occasions mentioned below. On any such occasion, registers

that are to be given an unassigned symbol must be already highlighted with one of a set of special

highlighting flags called "hash" flags. (The hash flag highlighting is deleted once the unassigned

symbol has been computed.) Moreover, registers that are to be given the same unassigned symbol

must be highlighted with the same hash flag. Registers that have the same hash flag on are deemed

to represent the same thing, just as if they already contained an unassigned symbol.

The description of hashing above used the proposition that John loves Mary as an example.

We must also explain what happens when one of the role registers, say the agent register A, is itself

to contain an unassigned symbol. With no further propositions involving this symbol, the effect is

that of representing the proposition "something loves Mary". An unassigned symbol in a register

like A is simply a small randomly generated vector (generated with same parameters as used in

Step 2 of the hashing process above), as long as the symbol is not also to be shared with the head

register of some proposition. This sharing would occur in the representation of a proposition like

"some man loves Mary" (recall the "some man believes that ..." proposition represented as shown

in Fig. 2). In this case the symbol in the argument register A of "something loves Mary" must

also appear in a white register next to a black register containing the MEN symbol.

4 This subsection can be skipped on a first reading.
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Considernow the proposition"Somemanbelievesthat JohnlovesMary" (seeFig. 2). In
this case,the symbolL in the John-loves-Mary head register H must also appear in the object

role register O of the "believes" proposition's register clump. However, this does not affect L. The

reason for this is that the only registers which do a local symbol/highlighting combination and

transmit the result to the parallel distributor are ones that have a role flag on and are adjacent

to a white register which is to contain the desired unassigned symbol (L in this case). Register

0 is not white, so none of its neighbors have any effect on L. In sum, the unassigned symbol in

a proposition head register depends only on that proposition and not on higher level propositions

for which that symbol acts as an argument.

Several different unassigned symbols may need to be computed in a CM. Because of embed-

dings of propositions within each other (as in the "believes" example just treated), the symbols

-2 cannot in general be computed in an arbitrary order: for instance, in the "believes" example the

John-loves-Mary proposition's head symbol L must be computed before the head symbol B of the

belief proposition. The correct ordering is obtained by allowing the computation of a symbol only

if none of the registers into which that symbol is to be put has a non-white neighbor with a hash

flag on. Apart from this constraint, unassigned symbols can be computed in any order. Because

the computations involve the parallel distributor as a shared resource, they must be serialized. The

serialization is done by means of successive applications of the TWTA mechanism.

Case Matching: Basic Process

Recall that case matching is to occur when a case Ct,m is retrieved from LTM and placed

in a CM that already contains a case Co. When this is done, the two cases are distinguished by

having the registers they use highlighted with distinct, special flags hl,,_ and h0. The c_e matching

process now seeks to establish for each proposition in Co whether there is a similar one in C_,,,.

First consider a Co containing only one proposition, P0. The white, head register H of

P0 is made to broadcast its symbol throughout the CM. Then, each register R highlighted with

both white and h/_,_ compares the broadcast symbol with its own symbol. If equality is found, to

within the max_imum magnitude M somewhat bigger than that of the random deviations in Step

2 of the hashing process, R sends a graded "local degree of match" signal to the CM's parallel

distributor. The size of the signal is dependent on the exactness of equality of R's own symbol

and the broadcast one (and also, for reasons to be given later, on the magnitudes of the symbols

themselves). The parallel distributor maintains a "total degree of match" activation level that is

augmented on receipt of local-degree-of-match signals. The intuitive interpretation of this level is

that it says how strong the Co/Ca,, match is, and hence how a strong a piece of advice the contents

of the unmatched propositions in the h_,,_ portions of the CM are to be regarded as being.

A register R noticing appro.,dmate symbol equality as just described not only sends a local

degree of match signal to the parallel distributor, but also sends its current symbol to it. When the

local degree of match is above a certain threshold, the parallel distributor averages the incoming

symbols together with the previously broadcast symbol. It then sends the result V to all registers.

Registers whose current symbols are within M of V now adopt V as their new unassigned symbol.

The adopting registers necessarily include H and all the registers like R, plus all registers containing
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the same symbol as all those registers. The intuitive effect of the symbol adoptions is to force all

the registers in question to mean the same thing.

Recall that the head symbols of identical propositions have roughly identical unassigned

symbols created bv the hashing process, even if the clumps of registers used by the propositions

are geometrically different. Therefore, if P0 is in CZ_m a strong local-degree-of-match signal will be

sent to the parallel distributor. Consider for instance the following example:

EXAMPLE 1: Co Cltm

John kissed Mary John kissed Mary

5larTj slapped ./otu_

.¢ Here the total degree of match in the parallel distributor achieves a high level, and the proposition

that Mary slapped John is to be regarded as being fairly strong advice. More precisely, as it is not

one of the propositions that was matched against one in Co, it is what is added to C_'_ to form a

new case. By specially highlighting the matched parts of G,,,_, it is possible to cause just Co and

Mary slapped John to be copied into an unused CM.

Consider now a Co containing several propositions. The process just described is done for

each one, under some arbitrary serialization effected through the TWTA mechanism.

degree of match is now be affected by each of the propositions. Consider:

EXAMPLE 2: Co

John kissed Mary

Mary was angry with John

The total

Citm

John kissed Mary

Mary was angr_ with John

Mary slapped John

The total degree of match in the parallel distributor a higher level than in Example 1.

Currently we take the total degree to be just the sum of the local degrees. Note in particular

that this means that there is no penalty for unmatched parts of Co, as in the following modification

of Example 1.

EXAMPLE 3: Co Cltrn

John kissed Mary John kissed "_Iary

Mary slapped John

Mary was angry with John

By default, the system assumes that unmatched parts of C0 do not upset the advice formed on

the basis of the matched parts. However, it is certainly important to be able to upset advice on

occasion. Suppose one CM contains the same Co and Clam as in Example l, and another CM

contains:

EXAMPLE 4: C0

John kissed Mary

Mary loved John

Cltr_,

John kissed Mary

3'[ary loved John

Mary did not slap John
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From the first CM there will be the advice that Mary slapped John. However, flom the second CM

there will also be the stronger advice that Mary did not slap John.

Matching Variables to Constants or Other Variables

The described case-matching process works just as well on examples in which va.riables must

be matched against variables. For instance, suppose "John loves something;' is in C0 and :'John

loves something" is in C:_,.... assuming that in each proposition the second argument of the loving is

represented by an unassigned symbol (and that this symbol is not in any proposition head register

in the CM). It is still the case that the hashing process will have put roughly the same unassigned

symbols in the two head registers. This is because into the argument registers corresponding to

the "somethings" it puts roughly the same unassigned symbols (small random vectors in this case).

f Therefore, matching succeeds just as before.

However, we impose the rule that a local degree of match signal sent by a register to the

parallel distributor is proportional to the magnitude of the symbol vector in the register. Since

the symbol corresponding to the "something" in Cam is small, the symbol in the head register of

the love proposition in CI,,,_ is considerably smaller than it would have been if the object of the

proposition had been Mary instead of %omething". Hence, the tocal degree of match produced

by the two instances of "'John loves something" is considerably smaller than i_ would have been if

we had had "John loves Mary" in both cases. Therefore, the system penalizes matches tbr lack of

specificity. This effect becomes very important below.

Matching in which a constant like JOHN might be matched with (a) a variable or (by

another constant constitutes more of a problem. Our approaches to (a) and (by are similar, and

(by is slightly more difficult, so we will discuss that. An example is as follows.

EXAMPLE 5: Co Ct,m

John kissed Mary Peter kissed Su_o_

Susan laughed

We wish to ensure that it is possible to conclude that Mary laughed, with some lower degree of

confidence than if Ct,,_ consisted of John kissed Mary and Mary laughed. The problem is that the

unassigned symbols used in the head registers of the two kissed propositions are very, different,

since the propositions use very' different argument symbols, so that the basic matching process

fails. The system now proceeds as follows.

It randomly replaces the constant symbols in some or all of the argument registers of kiss

propositions in C,,,_ by unassigned symbols. For now we will assume that all the argument symbols

are replaced. (Both occurrences of the SUSAN symbol are replaced by the same new symbol.) In

our example, none of the registers containing any of the new unassigned symbols has to share its

symbol with a proposition head register. Therefore, the unassigned symbols replacing PETER and

SUSAN are small random vectors.

In Co, the system leaves the argument symbols of the current proposition, Joh_z kissed :lfary,

as they are, but highlights one or both of the argument registers with a special highlighting flag,
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h,_pp ..... It highlights the agent register in this way if any kiss-agent constant argument symbol

in Czt,_ was replaced by an unassigned symbol. It deals with the object register in tile analogous

way. The unassigned symbols in propositions heads are re-computed, with the extra proviso that

registers highlighted with h,,,ppr..,, are treated as if they contained the zero vector (the vector for the

null symbol). Hence, the new head symbols in the two "kissed" propositions will be approximately

equal, so that a good match will occur by the basic case matching process.

Whenever the register clump for a proposition in Co receives a new head symbol as a result

of a good match, it causes the symbols in its argument registers to replace the symbols that lie in

the corresponding registers in the matching proposition in Ca,_. The replacement is done at every

register in which the latter symbols appear. Intuitively the effect is to replace Peter everywhere in

Cam by John, and to replace Susan everywhere in Ca,, by Mary. The process involves sequencing

f through the set of argument registers of the proposition in Co. The sequencing is in arbitrary order

and is handled by TWTA.

To sum up so far, the total effect of case matching in Example 5 is to replace the proI_ositioas

in Czt_,, by John kissed :llary and Mary laughed. Since the latter was not one that was mar.ched, it

is what it is added to C0 to form the new case. Notice, however, that because the Peter and Susan

symbols were replaced by unassigned symbols in the course of matching, the local degree of match
tl_, t!l C c _'v. t C_

computed by the head register of the kiss proposition in Ct_,, is relatively small, so .... tt _ o. ......

has relatively little confidence in the new case, compared with what it would have had if C',,_,_had

contained John kissed Mary.

More on Example 5: Replication of Matching

What if Gt,, is the pair John kissed Susan and Susan laughed? If all the constant arguments

in Ca,_ were replaced by unassigned symbols as before, then we would have a match as weak as it

was before, even though John is the agent of the kissing in both Co and Cam. It is to take care of

this type of situation and related ones that the replacement process in Gt,,, only affects a random

subset of the argument registers. It is then possible that the John svmbol in Gt,_ is left untouched

and only the Mary symbol is replaced. If this happens, then the magnitude of the symbol in the

kiss proposition head register in Ca,, is bigger than in the original form of Example 5, so that we

get a higher degree of match.

Naturally, it is undesirable to rely on just one random selection of constant arguments

coming up with the right thing. Our technique for dealing with this is population based. The

whole contents of the CM are copied into as many other unused CMs as possible. (This requires

competition with other activities that are trying to grab unused CMs.) In each of these the same

matching process now goes on, but with different random selections of replacements. Also, in each

individual CM, if the matching process does not lead to a good match with a particular selection,

then another selection is made, and so on. We therefore markedly increase the chances that a good

match will be found.

The full validation of this technique awaits the construction of a simulation of a large version

of the system.
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Case Matching: Consistency of Matching

Consider the following variant of Example 5.

EXAMPLE 6: Co

John kissed Mary

Mary loved John

Cltrn

Peter kissed Susan

Susan loved Peter

Susan laughed

The issue we address here is how to ensure that the total degree of match is boosted by the fact that

there is a consistent match based on the mapping of John to David and Mary to Susan, compared

to what would happen in a less consistent situation (in which, say, C_,,, stated that Susan loved

2" someone other than Peter, a possibility to be treated in Example 7 below).

Let us assume that tile system considers John kissed Mary before Mary loved Joh_z. Assume

also that both the Peter symbol and the Susan symbol in C_m are replaced in the attempt to find

a match for John kissed Mary. A (weak) match is found as in the original form of Example 5. As

a result, the CM state is changed into:

Co

John kissed .l[ar 9

Mary loved John

_'1 tm

John kissed Mary

Mary loved John

Mary laughed

Therefore, when the system turns to look at Mary loved John, it will find a strong match for

this proposition. The total degree of match resulting from the two propositions in Co is therefore

considerably greater than it was in the original form of Example 5.

Now consider what happens in the following example, a less consistent variant of Example

6:

EXAMPLE 7: C0

John kissed Mary

Mary loved John

Cltrn

Peter kissed Susan

Susan loved Bill

Susan laughed

Under similar assumptions as before, the system finds a weak match for John kissed Mary, and

will convert the CM state into:

Co

John kissed Mary

Mary loved John

Cltrn

John kissed Mary

Mary loved X

Mary laughed

where X is the unassigned symbol that replaced the Bill symbol. When the system turns to Mary

loved John, it will find a match, but weaker than the one it found in Example 6.
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Noticeincidentallythat this matchcanbe foundwithout replacingany constantsin Ci,m.

Merely putting h,_,r_,, highlighting at the John object register in Mary loved John will ensure a

match. In fact, no constants in G_,_ that arise from Co should be replaced anyway. This prohibition

can easily be enforced by suitably highlighting any register in C_tm that adopts a symbol from Co.

In the present example, after doing the replacements caused by matching John kissed Mary, all

the argument registers in Ctt_ containing constants have been highlighted in this way and are

protected from further symbol replacement.

Case Matching: Further Complications

Consider the problem of matching .Iohn lot,es some dog in Co to John loves some filnz in C_,....

.:- Each of these would be represented by means of two clumps of registers. Co would be represented

" chmps paraphrasable as John loves D and D is a dog for some unassigned symbol D. Following

the technique shown in Fig. 2 for the "some man" agent of the believing, the D is a dog clump

would consist of an adjacent pair of registers: a white one containing D and a black one containing

the DOGS symbol. The two clumps for Cttm would be analogous, but using a different unassigned

symbol F and using the FILMS symbol instead of the DOGS symbol.

Since black is a role flag, D and F are affected by being in the head registers for D is

a dog and F is a fihn respectively, and are markedly different symbols. Hence, the symbols in

the head registers for John loves D and John loves F are markedIy different from each other.

Nevertheless, it seems reasonable that a relatively weak match should be discernible betweeu these

two propositions, even though dogs are very different from films. Our approach is to rely on a

technique much like the one above for matching different constants with each other. The system

deletes a random subset of those propositions P in C_,,,_ whose head symbol is an argumea_ symbol

of a love proposition. Of course, in our example the only such proposition P is F is a film. For

corresponding arguments of John loves some dog in C0, the system imposes haupp .... highlighting.

Matters now proceed as in the matching of different constants.

Further, a stronger match should be discernible if we change the example by replacing "film"

by "cat", in view of the greater similarity of dogs and cats than of dogs aald films. The same basic

process could apply' as in the fihn example, but we are not yet sure how to ensure a stronger degree

of match. One current suggestion we make is as follows, in outline. We suppose that the system,

on noticing that C0 and C_tm contain the DOGS and CATS symbols respectively, has caused some

a set Paog, of general propositions about dogs and a set P_, of general propositions about cats to

be brought down from LTM into some CM. The system tries to match Pdog, and P___t, just as if

they were two cases. Vv'e may suppose that a fairly good match is found. The system then causes

the DOGS and CATS symbols in the original CM to be replaced by the same unassigned symbol

Z, whose magnitude as a vector is proportional to the degree of match of Paog, and P_,,. Once this

replacement has been done and other unassigned symbols in the original CM recomputed, symbols

D and C in the head registers of the D is a dog and C is a cat propositions are now approximately

the same. This in turn means that the head registers of the John loves some dog and .lohn loves

some cat contain roughly the same symbol, and a fairly strong match can ensue. Notice, however.

that the magnitude of Z affects that of D and C, and hence that of the head registers of the love
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propositions. Thus, there is an effect on the local degree of match reported by the John �ores cats

proposition.

This process involves an elaborate recursive use of case matching, and there remain several

detailed control issues to be investigated. It is reasonable to suggest the following optimization of

the process. The discovered match of Pdog, and P_, could cause a fast association to be set up,

outside the case-based reasoning system as we have described it, between the DOGS and CATS

symbols. Then the appearance of DOGS in a CM could directly and rapidly cause stimulation, to

some degree, of the CATS symbol, and thereby lead to the replacement of DOGS and CATS by Z

as before.

A further issue on which we have only speculative suggestions at present is a problem ra.ised

_,-by embedded propositions, such as arise, for instance, in the representation of negations and belief

states. We will concentrate on the former here as they present the most extreme problem. C,onsider

the following example.

EXAMPLE ,.._" Co

John kissed Mary

.llar_ d was happy

Cltm

Jotm kissed Mary

Mary was not happy

Mary slapped .]olm

Assume that ?,'laced was not happy is represented as a Mary was happed proposition embedded

as the only argument in a not proposition. Here the not proposition itself is a three-register clump

whose only argument register contains the same symbol X as is in the head register of Mary is

happy proposition in Cz,m. The problem is that X is not affected by being in the not proposition,

and the matching process as it has been described will find a strong match between the Mary is

happy proposition in Co and the one in Ca_. One simple approach to this problem is to assume

that only top-level propositions take part in the match-detection process. This can be enforced by

having each top-level proposition's head register marked with a special highlighting flag (as is done

already in the RBR Conposit), and to allow only thus-marked registers to take part in matching.

Then, nothing in Ca,, will be found to match the top-level proposition Mary is happy in Co, since

its copy in Cit_ is not top-level.

The total degree of match will be less than that obtained from matching Co against the

C_,m consisting of John kissed Mary, Mary was happy, and Mary slapped John. That is a desirable

effect. However, the suggested technique does not in any way penalize the match on the basis that

Co and Ca,,, in Example 8 as shown above contain conflicting propositions, and such penalization

might be thought desirable. For, surely the match should less strong than that arising from the

Ca_ containing, say, Mary was tail instead of Mary was not happy. However, the issue is by no

means clearcut, since it may well be, for all the system knows, that Mary's happiness or otherwise

is simply irrelevant to the question of whether she slapped .John. It may therefore be enough to

rely on the interference from competing pieces of advice from other case matchings. Suppose, for

instance, the same Co is being matched elsewhere against a Cam consisting of John kissed Mated,

Mary was happy and Mar 9 did not slap John. This will lead to a strong match -- stronger than
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the one obtained in Example 8 -- so that we may expect tile advice that -$fary did not .slap John

to win out over tile advice that site did.

Long-Term Case Nlemory: The Neural Encoding

Complete CM states are encoded into long-term memory' by means of weight change in

the following simple method. Each LTM item is a node (i.e., smali neural subnet) that has a

bundle of connections to and from each register of some single LTM gateway. Tile weights on the

connections to the registers are such that sufficiently high stimulation of the node causes particular

symbol and highlighting activation patterns to be sent to the registers. These patterns are merely

"OR'd" into the registers, in that au OFF highlighting value transmitted to a register does not

¢switch off tile corresponding highlighting flag in the register, and a null symbol transmitted to a

- register does not change its symbols. The intention of this is that, as long as the transmitted ON

values for highlighting and the transmitted non-null svmbols are in different positions from the ON

highlighting and non-null symbols already in tile CM, the effect is simply to add data structures

to the CM.

To ensure that tile given and retrieved cases do indeed occupy different registers in the CM,

we currently rety on the simple but possibly inelegant method of "squashing" the given case into

one particular half of the CM, and loading the retrieved case into the other half. Once a retrieval

operation has occurred, the new state of the LTM gateway concerned is copied to possibly' many

other (non-gateway) CMs, which can now perform case-matching. For this copying, tile LTM

gateway competes with other LTM gateways for access to free, non-gateway CMs.

For creating an LTM encoding of a CM state, the state is first copied into an arbitrary

LTM gateway, overwriting its previous contents. Then a new LTM node is recruited from among

a pool of unused nodes that have connections to the registers of the gateway. This is done by a

TWTA arbitrary-selection method (operating in this case on "ready" announcements generated

by LTM nodes rather than CM registers). Then it is simple to transmit the registers' symbol and

highlighting activation patterns to the node, and arrange for the weights on connections from the

node to the registers to be changed appropriately (and quickly). Our current strategy as to when

long-term memory items should be created is simply to have any CM that has recently performed

a successful case match enter a competition to have its new state copied into an LTM gateway so

that it can be stored.

LTM Indexing and Recall Competition

Our method of indexing into the case LTM relies on appro.'dmate equalities among symbols.

The intention is that if an LTM gateway contains, say, the JOHN symbol in some register, then ant'

LTM node that is connected to that register and encodes a CM state involving the JOItN symbol

should be given some degree of activation. Accordingly, Conposit does the following for each non-

null symbol in the gateway: (1) it broadcasts the symbol to all the registers in the gateway, and

then (2) it transmits the symbol activation patterns, in parallel, from each register to each of the

LTM nodes connected to the gateway, along the same connections as are used for creation of LTM
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nodes. It is simple to arrange for this transmission to stimulate the LTM node if it encodes a CM

state involving the symbol JOHN in any' position.

Since unassigned symbols with similar data structure contexts are similar, the method just

described does much more than just stimulate LTM items containing particular ordinary svmbols.

It also tends to stimulate LTM items that have similar pieces of complez data structure. For

instance, a Bill belieues that John loves Maw proposition will tend to stimulate LTM items encoding

CM states containing that proposition. Note that such items would also be stimulated merely by

virtue of the fact that they encode CM states involving the LOVES and BELIEVES symbols. By

the same token, the presence of "John loves Mary" in a gateway can cause retrieval of an LTM

item that encoded "Peter loves Susan", "Peter loves someone", and so on, but the stimulation of

such LTM items is relatively weak compared to that of an item containing "John loves Mary".

-5 Altogether, therefore, symbol-similarity leads to differential levels of activation rather than to a

clear selection of particular LTM items.

LTM nodes stimulated (i.e. indexed) by a gateway CM compete to add their contents to that

CM. The competition is governed by the strength of activation of the nodes. However, instead of

using a standard Winner-Take-All mechanism, the differential activations are first converted into

temporal differences (a simple matter), allowing the competition to be organized by TWTA.

Competition arnong CMs

Several different types of occasion have been mentioned on which CMs compete to copy

their contents into another CM. The latter may be an LTM gateway, a primary CM, or just an

ordinary CM. All such competitions are handled by the TWTA mechanism, which also handles

contention among LTM items or nodes during recruitment and retrieval, and needed serializations

of operations within CMs. The inter-CM competitions rely on "ready" announcements generated

by the CMs (or more precisely by their parallel distributors).

In the case of competition among CMs containing just-formed advice, the use of TWTA

tends to favor advice on the basis of the promptness with which it has been formed and of the

extent to which it has been replicated in different CMs. The intention here is that the more relevant

and useful lines of reasoning wili lead to greater replication, and will therefore tend to be the ones

to load their conclusions (advice) into other CMs. This wiU in turn serve to extend those lines

of reasoning in preference to other possible ones, especially if the destination CM is a primary or

gateway CM. This is roughly reminiscent of genetic algorithms.

The activity-to-time transformation mentioned in the previous subsection is also applied to

the total-degree-of-match levels in CMs, allowing these levels to affect the various types of TWTA

contention among CMs.

5. CONCLUSION

We have described the CBR, version of Conposit, a preliminary, massively parallel case-based

reasoning system that is connect[onistically implemented. The motivation has been to achieve
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the ability' to manipulatecomplexstructuredsymbolicinformation-- a matter which is difficult
for standardconnectionistmodels-- whileavoidingthe rigidity problemsof standardrule-based
systems.

Many connectionists claim that connectionism is a way to avoid tile problems with standard

rule-based systems. We do not repudiate this claim, but wish to point out that many of the

problems can be avoided by moving to case-based reasoning as opposed to rule-based reasoning,

whether or not the case-based reasoning is implemented connectionistically. What the connectionist

implementation adds is certmn features and opportunities of a familiar connectionist sort. One

of these is the ability to include fast parallel LTM indexing mechanisms, and to do so in a way

which is thoroughly integrated with the rest of the system, rather than being grafted onto a non-

connectionist case-manipulation system. In ti_e same vein, there is the opportunity lot' ,datively

-f easy integration of Conposit with connectionisr, subsystems for perception and motor control. There

is also the possibility of adding classical forms of connectionist learning, such as slow adjusl, ment of

associations among Conposit's '_ordinary" symbols. For instance, if "'DOGS and "'CATS" symbols

came to be associated through perceptual experience in the world or through re_oning about cats

and dogs, a case about dogs could cruse the retrieval of a case about cats.

Currently tile type of learning the system is designed to do is learning by case accumulation

(the basic type of learning in the CBR field). One should note that this is accomplished by (fast)

connection-weight change, and so is not as distinct from standard forms of connectionist learning

as it may appear at first sight. Although the system might accumulate a huge number of cases

in long-term memory, each case is stored in (large) set of connection weights, r_ot in a large set of

nodes. A case only requires many nodes when it is brought down into a CM, which is a network

containing many thousands of nodes.

Finally, we return to the issues of novelty, noise and uncertainty. Any case/analogy-based

system is inherently concerned with being able to perform reasonably on inputs that are novel

to some significant extent. Indeed, that is one of the main motivations for CBR., and one of the

main departures from standard tZBR. that are claimed by CBR researchers. Although Conposit

only purports at present to embody a relatively simple style of CBR, we already see an ability' to

deal with novelty. This is because case matches can be partial and allow different constants (e.g.

the John and David symbols) to match. These features are somewhat analogous to the types of

imperfect matching supported by more conventional connectionist systems, although achieved in

a different way.

The particular forms of noise and uncertainty' that the work addresses are largely those arising

within reasoning systems, rather than those inherent in system input. CBR in general is specifically

aimed at handling the conflicts (= noise and uncertainty) arising in the advice to be gleaned from

past experience, and at managing the deployment of a large amount of stored information whose

relevance to and usefulness for a current reasoning goal is not clearcut. A piece of information that

is retrieved and tentatively applied to some problem, but which actually turns out to be irrelevant

or useless, is noise of a sort. Conposit attempts to reduce the irrelevance/uselessness problem by

inde>dng into long-term lnemory on the basis of small keys that can encode complex strucl;ures.

These key's are the unassigned symbols computed from those structures by the hashing process. Of
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course,wecanstill expecLthat irrelevantor uselesscaseswill be retrieved.This is wltereweget
onebenefitfrom massiveparallelismat thecaseprocessinglevel..Manystrandsof processingmay
turn out to beunprofitable-- in termsof successfulmatchesandnewconclusions-- but profitable
strandscancoexistwith them. Configurationmatricesthat haveperformedstrongcasematches
tend to win out overothermatriceswhenit comesto havingtheir contentscopiedinto "'primary"
configurationmatrices(whichcanbe viewedas holdingresultsof reasoning).Noticealsothat
only unmatchedpartsof retrievedcasesClt,_(that sufficientlystronglymatchagivencaseCo)are
deemedto beadvice. By makingthe contentionability of a configurationmatrix dependon the
amountof adviceit is producing,aswellason thedegreeof matchit hascomputedasat present,
wecouldguardto a largeextentagainstthe badeffectsof retrievingcasestilat are relevantbut
whichareuselessin the senseof providingnonewinformation.

___ Conposit'smassiveparaAlelismand the mechanismfor resolvingcontentionsamongCMs
trying to copy _heircontentsinto primary CMs potentially providesa way of handlingadvice
conflicts(and tl_enoiseand uncertaintythey entail). If many'retrievedcasessuggest,_ piece of

advice A but a few suggest a conflicting piece of advice B, then the number of CMs producing A

through the case-matcifiug process is likely to be considerably greater than the number producing

B. Hence, A is much more likely to be loaded into a primary' CM. By" trying the contention process

several times and noting the relative frequency with which A and B appear in primary CMs (or

perhaps by trying it once and noticing the relative frequency of instances of A ;tnd B over the

primary CMs), the system can come up witlt confidence measures for A and B. This approach

requires that further matching be done among the different p_'opositions appearil_g in pt'imary

CMs, but this matching can be done by the existing type of matching mechanism, it_ p_tr_llel with

rest of the system's operations. Another refinement of the scheme is to transmit degrees of match

when advice is copied fi'om a CM into a primary CM. These degrees can easily' be made to affect

the confidence measures computed from the primary CMs.
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FOOTNOTES

(i) This work has been supported in part by grant AFOSI%-88-0215 from the Air Force Officeof

ScientificResearch and grant NAGVv'-I592 under the Innovative Research Program of the NASA

Officeof Space Science and Applications.

(2) This conclusion and the premises from which itwas reached are similar to those of Domeshek

(1989). However, he does not propose a fullyconnectioaist case-based reasoning system, nor does

he suggest using massive parallelism in the way we do.

(3) But there isa user interface allowing CM statesto be derived from and converted into propo-

sitionsin a textual list format.

(4) This subsection ca_l be skipped on a first reading.
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