
e-MGR: An Architecture for Symbolic Plasticity

M. J. Coombs, H. D. Pfeiffer and R. T. Hartley

Computing Research Laboratory
Box 30001/3CRL

New Mexico State University
Las Cruces, New Mexico 88003-0001

[mcoombs,hdp,rth]@nmsu.edu

ABSTRACT
The e-MGR architecture was designed for symbolic problem solving in task environments

where data are noisy and problems are ill-defined. e-MGR is an operator-based, shared memory
system which integrates problem solving ideas from symbolic artificial intelligence (AI) and
adaptive systems research.

The Computing Research Laboratory was established by the
I

New Mexico State Legislature,
administered by its Science and Technology Commission

as part of the Rio Grande Research Corridor.



1. Introduction
A widely reported result concerning knowledge-based, symbolic problem solvers in artificial

intelligence (AI) is that they are brittle in the sense that they only respond as intended in narrow,
well-specified domains (Coombs and Alty, 1984; Fields and Dietrich, 1987; Hewett, 1985; Holland,
1986). This is a serious weakness because systems tend to become more brittle as they become larger.
Few prototypes, therefore, survive the process of being upgraded to a full-scale, real-world problem
solver. Moreover, the brittleness problem has been experienced in many of the foundation domains for
AI research, including: (i) real-time diagnosis of complex, quasi-open systems (Coombs and Hartley,
1987; Woods, 1986); (ii) military data fusion and information integration (Thompson et al., 1986);
(iii) reactive planning (Georgeff and Lansky, 1987); (iv) scientific data analysis (McWilliams et al.,
1989).

Despite the importance of solving the brittleness problem, there has been little systematic
exploration of the causes of brittleness in symbolic systems. There has also been little work on
alternative problem solving approaches, other then simulated neural networks, for tasks currently
undertaken by symbolic systems. However, while neural networks may provide an effective solution
for tasks involving the interpretation of low level data, they appear not to be appropriate for
traditional AI application domains; in particular, those domains that have proved susceptible to expert
systems techniques when the problems are well structured (Barnden and Pollack, 1989).

Ongoing research in the Knowledge Systems Group at the Computing Research Laboratory
(CRL) has identified the presence of noise and novelty in the problem solver's task environment as a
primary source of brittleness (Coombs and Hartley, 1987; Fields and Dietrich, 1988). Stated
informally, a task environment is considered to be noisy when the data available to the problem solver
are inaccurate, fragmentary, incoherent, or unrelated to the task in hand. A task environment is
considered to contain novelty when the problem solution requires the system to relate objects in ways
unanticipated by the system designer. Similar characterization of the sources of brittleness have been
given by Hewitt (1985) and Holland (1986).

Symbolic problem solvers are constructed following the standard practices of software
engineering. The programmer codes into the system a fixed set of relationships between data and
knowledge that have been determined by experiment, or experience, to be relevant to desired system
goals. We term these relevance relations. Input is then screened to ensure that these relations are
preserved. However, while this strategy will maintain the internal consistency of the system, its
products will not present reliable interpretations of data when input moves outside the system's
pre-specified operating range.

In noisy and novel task environments it is not possible in principle to specify a complete set of
relevance relations in advance of a problem solving event. The main approach to this relevance
problem in AI is to incorporate various relevance logics or nonmonotonic logics in the control
structure of the problem solver, thus enabling it to change what information in its knowledge base is
considered relevant for interpreting data input (see Doyle, 1979; the 1980 Special Edition of Artificial
Intelligence on Nonmonotonic Reasoning; de Kleer, 1986). The trouble with such approaches is that
the weakness is still there since definitions of relevance and irrelevance are pre-coded;



-2-

the system will still be unable to distinguish between unexpected but relevant data and expected
but irrelevant or misleading data.

The conceptual alternative to incorporating explicit relevance relations in the program code is
to leave them implicit in the control structure. Relevance relations can then be constructed by
optimizing some fitness function between data and knowledge, where the patterns of input that are
interpreted as data depend on the knowledge structures used for interpretation, and the knowledge
structures available to be used for interpretation depend on the patterns perceived. Instead of
exploiting pre-coded relevance relations in a "generate/evaluate" control cycle, where problem
solving operations are determined by the evaluation stage, it is necessary to remove "evaluate" from
the control cycle in order to achieve plasticity. Problem solving is driven within the generation
stage through feedback from characteristics of the current set of proposed solutions to the operators
that generate new solutions. Evaluation is thus reduced to a decision procedure for terminating
generation. This approach is, of course, related to problem solving using artificial neural networks,
and also classifier systems, where novel solutions are created by the superposition of previous
solutions, rather than by the method of discrete conjunction largely used in traditional symbolic AI.

At CRL, we have been exploring architectures for implementing this view of symbolic
problem solving under the Model Generative Reasoning (MGR) project. Our early
experimentation (Coombs and Hartley, 1987; 1988; Fields et al., 1988) convinced us that four
features were required to achieve the requisite plasticity to cope with noisy and novel task
environments. These features are supported by the evolutionary-MGR (e-MGR) architecture, and
include:
(i) object-based knowledge representation based on the contextual definition of concepts;
(ii) primitive operators capable of creating transient knowledge structures that have the

combined status of being interpretations of available data, and expectations used to
determine the data that might become available for interpretation in the next cycle;

(iii) operators capable of coping with novelty by decomposing knowledge structures and
recombining fragments to create new structures;

(iv) an optimizing approach to system control that uses coherence as the strongest criterion for
the acceptability of an explanation.

2. Problem Solving in e-MGR
Problem solving in symbolic AI has conventionally been conceptualized as a search through

a space of problem states (Nilsson, 1980). These states are defined over a representation language
composed of concept and relation terms, where possible combinations of terms are restricted to
allow the expression of propositions that are considered to be relevant to the task domain of
interest, i.e., in an animal identification program, a "bird", but not an "insect", is allowed to have
AS-PART a "beak". The search space thus becomes dimensioned by some set of explicit relations,
which may themselves be subject to some higher-level dimensioning. This is achieved typically
through the imposition of a partial ordering of terms (e.g., through an ISA relation), or by their
organization as rules (e.g., expressing a CAUSE relation). These dimensions can then be exploited
by the problem solver to control the search of the problem space.



-3-

Given the multi-dimensional nature of problem domains typically chosen by AI research, e.g.,
the planning and scientific data analysis problems mentioned above, the search space tends to grow
exponentially. This results in theoretically possible solutions becoming computationally
intractable. A principal concern in the design of AI symbolic problem solving architectures is
therefore the incorporation of control procedures to restrict the search space to a manageable size.

The intractability problem arises from the high dimensionality of explicit relevance relations
typically present within AI problem domains. As a result, AI problem solving architectures may be
characterized in terms of the specific method used to reduce dimensionality and factor the search
space into sub-spaces. These methods frequently exploit three classes of perceived property
attributed to objects and events. These include: (i) classification by types; (ii) causal relations; (iii)
means-end relations. Architectures based on types are usually the most efficient but require a
stable, well-defined problem domain (e.g., the spectroscopy domain of the classic expert system
DENDRAL - Buchanan and Feigenbaum, 1978). However, as it becomes less clear how to
dimension the problem space, where one may rely on pre-defined types, propagation architectures
using causal or means-end relations become necessary (e.g., the least-commitment approaches
explored in MOLGEN for genetics experiment design Stefik, 1981).

In noisy and novel task domains the dimensionality of relevance relations will be unknown,
and thus unavailable to be built into a problem solver's control structure. EMGR attacks this
problem by taking a procedural approach to relevance, allowing relevance relations to emerge
implicitly from the optimization of a fitness function between data and knowledge, where the basic
function is defined in terms of structural mappings between concepts rather then relations. The
semantic relations necessarily present in the representation language to allow for the expression of
domain knowledge are not the fundamental source of control, as in conventional AI architectures.
However, it may be necessary in some applications to incorporate measures derived from semantic
features into the fitness function.

Reasoning in e-MGR is implemented through a process of building sets of hypothetical
conceptual structures to explain the concepts in available data. Since all objects in e-MGR are
represented as graphs, it is possible to define "explanation" in terms of set relations between
concept nodes in the graphs representing data and concept nodes in the graphs representing
knowledge; more specifically, in terms of the set covering relation between data concepts and
knowledge concepts; in e-MGR predefined knowledge structures are termed definitions, data are
termed facts and explanations are termed models.

In this respect, reasoning in e-MGR is related to the generalized set covering (GSC) view of
abductive problem solving developed by Reggia et al. (1985) where, given data, the task is to find
the best set of hypotheses to explain the data in terms of the most parsimonious cover of the data
by this set. However, whereas GSC deals with atomic explanatory hypotheses and pre-defined
relevance relations between hypotheses and data, the requirement that e-MGR should function in
noisy and novel task environments makes it necessary for the system to be capable of: (i) creating
hypotheses autonomously from knowledge fragments, and (ii) autonomously identifying relevant
data from the set of available observations.



-4-

Explanations, e-MGR models, are generated through a set of graph transformation operations:
(i) specialize, which builds new graphs from graph fragments, "gluing" together facts with
definitional material to generate models; (ii) fragment, which decomposes graphs into fragments,
"ungluing" models to extract fragments worth preserving as assumptions to be passed on to
subsequent stages of processing; (iii) classify, which tags a graph with a pre-computed marker
graph, using assumptions to tag new facts to be submitted for processing. The critical problem
solving notions here are that: (i) e-MGR interprets facts by gluing them together with definitional
material to form models; (ii) models are unglued to form assumptions (proto-facts); (iii)
assumptions are used to extract new facts from the world, which then become interpreted to form
new, more complete models.

To conclude this conceptual summary of e-MGR problem solving, it should be noted that the
three operations can be interpreted in terms of Peirce's (Peirce, 1934) explanation cycle →
induction → abduction → deduction →. Classify implements the induction of relevance relations
between assumptions and facts, specialize implements the abduction of interpretive contexts for
tagged facts, and fragment implements the deduction of new assumptions from models (Hartley and
Coombs, 1989). That e-MGR explanations are truly abductive, and will contain information of a
hypothetical nature (i.e., that is not contained in the facts), is evident from the operation of the
primitive procedures cover and uncover that implement the gluing and ungluing of graphs. Cover
interprets tagged facts by first finding some subset of definitions that subsume the facts, and then
fusing facts and definitions by coalescing on common concepts. The resulting explanations will
therefore contain facts joined by non-factual material. Uncover cleaves an explanation into one or
more fragments around the images of facts projected onto it by removing links between projections.
Links may not necessarily be cut exactly at projection boundaries, thus leaving nodes that originate
from definitions attached to the fragments. Uncover is not simply the inverse of cover.

3. The e-MGR Architecture

3.1. Overview
Evolutionary (e-MGR) is logically a multi-instruction, multi-data parallel virtual machine

(MIMD) that accepts input from the databases F,D, an M. F is a fact database that receives all input
from external agents; D is a definition database that contains all of the system's pre-computed
explanations, and serve as an initial set of concerning the relatedness of facts; M is a model
database that contains all explanations currently under development. In contrast to earlier
descriptions of the architecture (Fields et al., 1988), in e-MGR we partition M into three sections:
(i) A, which is an assumption database containing system constructions deemed to be sufficiently
fit to regard as factual "for all practical purposes"; (ii) T, which is a database of tagged items
selected from A and T to be presented to e-MGR for interpretation during the current cycle; (iii) M
itself, which as in MGR is the database of current interpretations. All objects in the databases are
represented as connected, multi-labeled, bipartite, oriented graphs. A data flow diagram of the
e-MGR architecture is given in Figure 1.

Three operators, classify, (Cl), specialize, (Sp), and fragment, (Fr) act on the databases in an
autonomous fashion. The functionality of these operators is specified completely



-5-

Figure 1. A data-flow diagram of the e-MGR architecture. Detailed description of the
lower-level operators join, J, cover, C, project, P and uncover, UC, are given in Hartley and
Coombs (1989) and in section 3.3. below. Informally, C identifies a subset of definition
graphs that has some pre-defined set cover relation to all of the labeled nodes in a given
subset of graphs; J merges two graphs at a single point where both graphs contain related
node labels; P is the inverse of join in that it seeks to identify related labels between graphs;
UC is the inverse of cover in that it partitions graphs in the neighborhood of sub-graph
boundaries.

by the architecture. Operator actions may be described informally as follows: (i) Cl selects tagged
facts T for interpretation from processing of A and F; (ii) Sp generates model M interpretations by
fusing items from T using definitional "glue" taken from D; (iii) Fr generates new assumptions by
cleaving models through the removal of "glue" around the items currently in T. The e-MGR
operations can be represented as a closely coupled set of functions, with coupling at T, M, and A. In
the worst case:

The activity of the operators is governed by the control level, which determines when the
operators act, but not their functionality. Strategy in MGR thus consists largely of scheduling these
three operators, along with the additional activities of selection over T and D, and evaluation of A
and M in order to determine halting conditions. Control strategies are formally optimizations,
represented either as algorithms or adaptive systems.



-6-

The precursor to e-MGR, along with the supporting CP environment to be discussed below,
is implemented in CommonLisp on Symbolics Lisp Machines. e-MGR is currently being
developed on the Sun 4 (Sparc) running SunOS 4.0.3. The e-MGR precursor has been used to
produce a number of proof-of-concept demonstrations in the information integration area. The
most substantial project is concerned with intentions analysis in high-intensity conflict (Coombs et
al., 1990).

3.2. Representation

3.2.1. The Conceptual Programming (CP) Environment
The conceptual representation package for e-MGR is provided by the Conceptual

Programming (CP) environment (Hartley and Coombs, 1988). This package uses knowledge
structures based on Sowa's conceptual graphs (Sowa, 1984), and supports three levels of
representation. Two classes of declarative concept are represented at the base level: facts and
schematic definitions. The concept labels form a vocabulary which is partially ordered to form a
type lattice.

Facts correspond to reports of objects in the world and their interrelationships; schemata
correspond to definitions of objects and actions that operate on them. The schematic definition for
the act [MURDER-METHOD] taken from a cluster of murder methods is illustrated in Figure 2.
This schema shows the relationships between the action of an illegal killing. and the concepts
related to the act. For example, an unknown [PERSON] is the agent of the [KILL] act, a
[VICTIM] is the object of the act, and a [WEAPON] is the instrument. Schemata assert the set of
possible structural features that may exist without reference to time or space, where relationships
are not necessary but represent a point of view of the object. Each object can have more than one
schema associated with it, in which case we refer to the schematic cluster of an object.

The second CP level represents procedural or temporal information. The
procedural/temporal level is built on the declarative level and shows the temporal relationships
between each action in a schema. Procedural overlays make use of a distinction between states and
events. If a state is thought of as a collection of predicates, then events are relations on states. The
procedural overlay for killing in Figure 2 is represented by the diamond-shaped node (actor)
linked to relations by solid lines. Actors serve essentially as confluence nodes, taking states as
inputs and events as outputs or, vice versa, inputs and states as outputs. In Figure 2, the act of
<KILL>ing is shown to require the "Temporary Enabling Condition" (TEC) that both killer and
victim be in the same place, and that <KILL>ing is a "Continuous Enabling Finish Condition"
(CEFC), i.e., the body does not get up and walk away.

The third level of CP adds numerical constraints to graphs, which give power and flexibility
to the representation of actions by the attachment of functions. In CP, these functions serve as
more than just procedures in that they can serve as true constraints, i.e. a missing parameter to the
function can be constrained to a value that is dependent on the other parameters. Each function has
a number of parameters which may be specified as either inputs, outputs or both. If some of the
parameters to the function are both inputs and outputs, the function serves as a constraint function.
If all parameters are specified as inputs or outputs the function serves only as a computational
procedure.



-7-

Figure 2. A CP schematic definition representing the concept of [MURDERMETHOD].

In Figure 2, the constraint overlay associated with the [MURDER-METHOD] schema is shown as
a diamond-shaped node linked to its parameters - [PERSON], [WEAPON] and [WOUND] - with
dashed lines. It asserts that the [PERSON] must have been capable of using the [WEAPON] to
apply sufficient force to cause the victim's [WOUND].

3.2.2. Reduced Graph Notation for Operators
As mentioned in the overview, conceptual graphs are connected, directed, bipartite graphs

where the nodes are labeled with either a concept type or a relation name, and concept labels are
partially ordered to form a type lattice. There are restrictions on the edges, however, that are used
to preserve semantic coherence. A relation node may have only one ingoing edge, but any number
of outgoing edges. A concept node may have any number of edges, in or out. For the purposes of
this paper, however, this family of graphs will be reduced to a concept graph by eliminating all
relation nodes and the directionality of the edges. This can clearly be done for any conceptual
graph, although there is a small problem with relations of degree greater than two which will not
concern us here. Figure 3 shows a conceptual graph and its reduction to the corresponding concept
graph.

3.3. Primitive Operators in e-MGR

3.3.1. The Cover Operator C
The cover operator acts over two sets of graphs A and B. Its job to choose an appropriate

subset of a set of graphs B, that cover all of the concepts in a given subset of graphs taken from a
set A. If the conceptual content of a graph g is given by CC(g) and the maximal common subtype
of two concepts c1 and C2 is given by Mb (c1, C2) then the functionality of cover is given in the worst
case by:



-8-

Figure 3. A conceptual graph and its concept graph reduction.

In other words, every concept in a must have at least one concept in the set of graphs Bcc, where
their maximum common subtype exists i.e. is not bottom. There are problems with graphs
containing duplicate labels, but these can be solved by ensuring that there are sufficient quantities
of covering concepts from graphs in B for the concepts in a.

The choice of an appropriate subset, since there can be many which satisfy the above
condition, is a matter for the pragmatics of the problem, and the e-MGR operator it is serving. For
illustration, we use the parsimonious set cover definition from Nau and Reggia (1986), which is
produced my minimizing the boolean expression:

Parsimonious cover is then the minimization of:

3.3.2. The Uncover Operator UC
The job of uncover is to undo some of the work that cover has done, but not all of it. It is best

illustrated with a set diagram form. In Figure 4 the areas labeled AI and A2 (forming the set A) are
distinguished regions of a graph B. Uncover splits apart these regions by breaking links between
nodes spanning these regions to form multiple new distinguished regions. These regions may, and
usually will, contain additional nodes derived from the spanning region.



-9-

Figure 4. Set diagram of the uncover operator UC.

In Figure 4, uncover removing the links shown with a bar through them and splits the graph
into two fragments. Which nodes to remove is a matter of searching out from the initial
distinguished regions, adding nodes to each region where they do not lie on a path to another
region, and removing one node that lies in the middle of each path to another region.

The functionality of uncover is:

no concept in any b connects with any concept in another b.

3.3.3. The Join Operator J
The job of the binary operation join is to merge two graphs at a single point where both

graphs contain the same concept label, or a subtype. In the current version of the e-MGR
architecture, join is always maximal, i.e., labels may be restricted by replacement with a label of
any subtype, and graphs will be merged on the maximum number of nodes. However, there are
plans to implement a partial join in order to support information integration and planning
applications. An example of maximal join is given in Figure 5.

The functionality of maximal join over a set of graphs G is:

There can be more than one maximal join, hence the powerset notation on the set of all graphs G.
Join is a binary operation but multiple graphs can be joined by composing it with itself.
Unfortunately, there is good reason to believe that join is not commutative when semantic
considerations come into play (Pfeiffer and Hartley, 1989), but for now we will assume there is no
problem.

Since restrictions are allowed, it is clear that two nodes are joinable as part of a maximal join
operation if they contain types that have a maximal common subtype. So NARCOTIC can be
restricted to OPIUM, and so can POISON. Thus nodes containing NARCOTIC and POISON join
to produce OPIUM. If two concepts have only ⊥(bottom) as their common subtype, then the
maximal common subtype is not considered to exist.



- 10 -

Figure 5. An example of maximal join (M b (D,F) = H).

3.3.4. The Project Operator P
P is the inverse of the operation join. It is based on the same idea of merging two graphs, but

this time taking the minimal common supertype of the concepts (MP). Just as join is maximal in the
current e-MGR architecture, so is project. Another similarity is that, just as bottom was not allowed
with join, so top is not allowed with project. If join is likened to set union, in that all nodes not
joinable are just left alone, and come along for the ride, then project is like set intersection. All
nodes that are not projectable are simply dropped from the resultant graph, along with their
associated relation nodes.

Project's functionality is the same as join:

The example in Figure 6. shows projection with the reduced form of graphs. The operand graphs
are the same as in Figure 5.

Figure 6. An example of projection (M p (D F) =I and M p (G,C) = J).



3.4. The e-MGR Operators

3.4.1. The Functionality of the Classify Operator Cl
Cl is implemented by the single primitive operator cover C. Its task is to retrieve the maximal

set of facts from F that mention a concept present in the current set of assumptions A. Cl therefore
uses a default of maximal cover, which is the opposite setting of cover to the example given in
section 3.3.2. The set of facts retrieved, and the assumptions employed to retrieve them, are then
passed along to Sp as the set of tagged facts T (or more correctly the set of assumption tags A and
facts in T covered by graphs in A).

The functionality of classify is:

Classification may be seen as a form of induction operation, in which assumptions are used to
induce a tentative set of relevance relations over facts, and to abstract those facts that conform to
those relevance relations.

3.4.2. The Functionality of Specialize Operator Sp
The functionality of specialize is:

where T is a set of tagged facts, D is a set of definitions, and M is the resultant set of models.
Sp is composed from the two primitive operators cover, C, and join, J, where

In the Sp context, C selects a subset of stored graphs D that cover the concepts subsets of graphs
from the set T. In applications implemented in e-MGR, a default setting of minimal cover for Sp
has found to be effective (e.g., Coombs et al., 1990). This contrasts with the default of maximal
cover setting for Cl. Models are then generated by the primitive operation maximal join, J, which
merges definitions and tagged facts on common labels. During this operation, all labels with
common subtypes will be specialized to their maximal common subtype.

As a reasoning process, specialize generates contextual interpretations of tagged facts by
covering them with stored definitions. Since in e-MGR the covering definitions are viewed as
explanations that provide the system with expectations concerning relations between facts, and
join restricts labels to their maximal common subtype, the resultant model graphs have the status
in logic of abductive inferences, i.e., they should be regarded as hypotheses rather than sound
deductive inferences.

Figure 7. contains a more intuitive Venn-like diagram of specialize where each enclosed
region contains at least one concept node. T1 and T2 are two fact graphs, and D1 and D2 are two
covering definitions. D1 covers all of T1 and one node of T2, D2 covers all of T2 and two nodes of
Fl. Together they cover all of the nodes in both facts.

- 11 -



-12-

Figure 7. Specialize Sp in a set diagram form.

3.4.3. The Functionality of the Fragment Operator Fr
The functionality of fragment is:

where a set of tagged fact graphs taken from T are projected into a single model m ∈ M to
produce a set of fragments A. The subset T need not be the set of tagged facts that were originally
covered to produce m.

Fr is composed of the two primitive operators project, P, and uncover, UC. P identifies
projections of tagged facts in a model, m. We then add to projection UC, the inverse of the cover
operation. UC has the job of preserving subgraphs in m that are supported by facts at the expense of
definitional information. It does this by breaking apart m into unconnected pieces, or fragments,
which are by definition unjoinable. Hence the name for the operation: fragment.

Fr is used in two different contexts that require different setting for the amount of definitional
glue removed by UC. From a reasoning perspective, Fr has two functions: (i) the extraction of
assumptions from models, where the assumptions may be regarded as factual "for all practical
purposes", and (ii) the removal of incoherences between a model and a tagged fact. In the case
where Fr is used to extract assumptions, fragments may be seen as logical deductions from the
facts in T. UC thus needs to remove sufficient glue from models to leave facts minimally connected
with hypothetical material. The e-MGR architecture thus employs maximal uncover and the default
for the deductive use of fragment. In contrast, the removal of incoherences from models may be
seen more as a process of adjusting abductions, than of making deductions. E-MGR therefore uses
the default UC of minimal uncover, which preserves the hypothetical nature of fragments.



- 13 -

Figure 8 illustrates minimal uncover in the form of a Venn-like diagram. The regions labeled
T1 and T2 are the regions of the graph that contain concept nodes to be projected onto by a given
set of fact graphs. D1, D2, and D3 are the definition graphs that originally made up the model
graph. In fact these may already be fragments of definitions from previous fragmentations, but for
the purpose of illustration, we will assume that the definitions are, as yet, intact within the model.
Removing the links shown with a bar through them, and the node n1, splits the graph into two
fragments. Which nodes to remove is a matter of searching out from the fact projections T1 and T2
(each fragment is thus guaranteed to contain at least one whole fact projection), adding nodes to
each projection where they do not lie on a path to another projection (i.e. that connect within
definitions), and removing one node that lies in the middle of each path to another projection.

Figure 8. Fragment Fr in a set diagram.

4. Baseline Experiments in Control

4.1. The Approach
Control in e-MGR is the process of regulating the execution of the e-MGR operators.

Operator execution may be regulated by: (i) adjusting the order and rate of firing, (ii) adjusting the
setting of the primitive operator parameters, (iii) applying filters to a selected operator's input from
the five databases F, D, A, T and M, and (iv) restricting operator output by evaluation.

As discussed in section 2, e-MGR supports an optimization approach to control. More
specifically, e-MGR seeks to optimize the final model population using feedback from some
function defined over a set of relations between assumptions and models. The function manipulates
the gluing and ungluing of graphs through adjusting parameters to the primitive operators C and
UC. The manipulation of these operators thus



-14-

provides the basis for the controlling process. A set of experiments have been designed to baseline
the effects of given parameters to C and UC within the e-MGR operator framework.

Control is being studied through a simulator written in C and running on a Sun 4. The
simulator has all the essential functionality of the e-MGR architecture, although it sacrifices
representational expressiveness with regard to both the concept language and the allowed structural
relations between the transient structures A, T, and M In particular, the simulator imposes the
following set of subsumptive relationships:

Although the simulator is much reduced, it do have significant advantages with regard to speed and
procedural clarity.

The halting rule used in the experiments is an e-MGR variant of the parsimony principle
employed in set covering approaches to reasoning (Reggia et al., 1985). The rule sets the goal of
generating a set A, such that the set:
i) maximizes the facts covered, while
ii) minimizing the definitional material used in order to achieve maximal cover.

This system goal is open to a number of operational interpretations, depending on the
operational definitions of "definitional material". The initial definition employed in the precursor
MGR system was made in terms of the cardinality of discrete definitions used to achieve the cover.
However, e-MGR introduces an additional definition made at the conceptual level, in which cover
is evaluated both parsimoneously and in terms of the conceptual content of definitions, i.e., CC(d).

The fitness function accepts as input measures defined over the five e-MGR databases, and
outputs parameter values for the primitive operators to drive the next cycle of interpretation. It is
anticipated that, given the importance of the concept of "gluing", the function will have as its core
the relationship between the proportion of the available facts covered and the conceptual glue used
to achieve the cover. In order to develop a baseline for constructing a fitness function, the present
experiments operate on the starting parameter set of the primitive operators, and no fitness function
is used to modify these operators on each additional cycle of interpretation. Therefore, all graphs
are considered fit in the experiments.

4.2. Simulation Experiments
A simple graph transformation exercise was devised for the baseline experiments related to

Fuller's "Four Triangles Out of Two" problem (Fuller, 1975). Fuller presents the problem as an
illustration of the phenomenon of structural self-organization through the mechanism of
cooperation between the parts within each structure. Such cooperative processes are termed
synergesis, and provide a tool for understanding processes underlying the evolution of complex
organizations.



- 15 -

Given two distinguished triangular structures (facts), a set of definitional fragments and a
starting assumption (Figure 9), the e-MGR task is to hypothesize their possible relevant
relationships. The interest of the task is that in Fuller's analysis, triangles can be depicted as flat
helixes (Fuller, 1975, pp 4). Using this structural depiction, which Fuller argues is common in
natural systems, pairs of triangles tend to join in ways that form a tetrahedron, which is considered
by Fuller as a minimal solution. Pairs of triangles thus combine to generate four triangular faces,
rather than two. By analogy with continuous dynamical processes, the tetrahedron should emerge
as an "attractor" in the discrete e-MGR problem space.

Figure 9. Given are the three sets F, A, and D of graphs that form the starting conditions of the
"Four Triangles out of Two" problem.

The problem was run under the four groups of two primitive operator settings given in Table
1 below. The parameter setting for Cl is not shown because it is maintained as a maximal cover on
all runs. The labels "least" and "most" given in parentheses after the minimal cover designation for
Sp refer to heuristic functions applied on top of the minimal covering algorithm. These heuristics
provide an additional constraint on definitional minimality at the conceptual content level, where
"least" returns the set of graphs with the smallest number of concepts, and "most" returns the set of
graphs with the largest number of concepts. The experiments thus include both operational
definitions of "definitional material".

All of the final models in the experimental runs turned out to be "attractor" models composed
of four triangular faces (Figure 10). Interesting elements to the results were as follows: i) maximal
uncovering returned zero results; ii) minimal uncovering enhanced the chances of getting results;
iii) minimum covering with no additional heuristic resulted in the largest number of models being
generated; iv) minimum



-16-

Table 1.
Experimental Operator Settings and Results.

Run# Sp Fr Total Models Generated Final Models
1. min max 6 0
2. min min 6 1
3. min(least) max 2 0
4. min(least) min 2 0
5. min(most) max 6 0
6. min(most) min 6 1
7. max max 2 0
8. max min 2 1

covering with least number of nodes returned zero results; v) minimum covering with most number
of nodes resulted in the smallest number of models being generated; vi) maximum covering
resulted in the smallest number of models being generated with a successful result.

Figure 10. Given is the "attractor" model found in the "Four Triangle out of Two" problem.

The main generalization from the experiments is that problem solving in e-MGR requires
cooperation between Sp and Fr. In particular, arrival at the attractor model depends on Fr leaving
some conceptual glue, added by Sp, still attached to factual components during the generation of
new assumptions. If all glue is removed, no results are obtained.



-17 -

The above effect is enhanced by the amount of glue added during the Sp operation. If no glue
is added, as in the the minimum cover (least) experiment, no glue can be removed; therefore, no
results are obtained. On the other hand, when a maximum cover is used, a result is obtained very
quickly. However, when the amount of glue added is moderated by the application of minimum
cover or minimum cover (most), results are obtained but at a slower rate.

5. Conclusions and Future Work
In summary, the design of a problem solving architecture, e-MGR, fulfills the four

requirements for processing in noisy and novel task environments outlined in section 1. Critical
amongst these are the notions of: (i) employing transformable, object-based knowledge structures,
and (ii) taking an optimization approach to control. Together, these features allow relevance
relations to emerge from gluing (and ungluing) operations applied to knowledge structures in order
to optimize relations between prior knowledge and data.

In section 2, it was argued that reasoning in noisy and novel task environments must have an
abductive component for the generation of hypotheses, which in e-MGR is implemented by the Sp
operator. The effects of abduction are clearly illustrated in the above experiments. The two
triangles in F only become fused into a tetrahedron when Fr employs minimal uncover, and
therefore preserves the attachment of definitional material to facts in assumptions.

The dynamics of abduction will be explored in future work. In the multidimensional search
space of an AI problem, it is to be expected that the computation of globally optimal solutions will
be difficult. The system will encounter "rugged" fitness landscapes in which a wide range of
alternative optimal and sub-optimal solutions are distributed across the space. The problem solver
must be capable of searching this space efficiently and effectively, while avoiding the traps of
sub-optimal solutions. The fitness function must drive the system to a solution within the bounds
of reasonable computational complexity. We have already seen potential difficulties here, since in
the experiments the tetrahedron "solution" was identified faster when cover was maximal; a setting
most likely to increase the problem space. However, e-MGR provides a flexible environment to
balance the demands of symbolic representation against the need for adaptive control.

References
Artificial Intelligence, 13, (1980). Special Edition on Non-monotonic Reasoning.
Barnden, J. & Pollack, J. (1989). Introduction. In J. Barnden & J. Pollack, Eds. Advances in

Connectionism and Neural Computation Theory, vol. 1. Norwood, NJ: Ablex.
Buchanan, B. G. & Feigenbaum, E. A. (1978). DENDRAL and Meta-DENDRAL: Their

application dimension. Artificial Intelligence, 11, 5-24.
Coombs, M. J. & Alty, J. L. (1984). Expert systems: An alternative -paradigm. International

Journal of Man-Machine Studies, 20, 21-44.
Coombs, M. J. & Hartley, R. T. (1987). The MGR algorithm and its application to the generation

of explanations for novel events. International Journal of Man Machine Studies, 27,
679-708.



-18 -

Coombs, M. J. & Hartley, R. T. (1988). Explaining novel events in process control through model
generative reasoning. International Journal of Expert Systems, 1, 89-109.

Coombs, M. J., Hartley, R. T. & Pfeiffer, H. D. (1990). Developing Computing Technology for
Modeling Enemy Intentions using Environmental and Doctrinal Information. MCCS-90-184,
CRL, NMSU, Las Cruces.

de Kleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28, 127-162.
 Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 28, 127-162.
Fields, C., Coombs, M. J. & Hartley, R. T. (1988). MGR: An architecture for problem solving in

unstructured task environments. Proceedings of the Third International Symposium on
Methodologies for Intelligent Systems. pp. 40-49, Amsterdam: Elsevier.

Fields, C. A. & Dietrich E. S. (1987). Transition virtual machines. I: The TVM problem-solving
architecture. Technical Report # 3CR/Al-87-06, University of Colorado, Boulder, CO.

Fuller, R. B. (1975). Synergerics: Exploration in the Geometry of Thinking. New York:
Macmillan.

Georgeff, M. P. & Lansky, A. L. (1987). Reactive reasoning and planning. Proceedings of
AAAI-87, pp. 677-682, Los Altos, CA: Kaufmann.

Hartley, R. T. & Coombs M. J. (1988). Conceptual Programming: foundations of problem solving.
In J. Sowa, N. Foo, and P. Rao, Eds. Conceptual Graphs for Knowledge Systems. Reading,
MA: Addison-Wesley.

Hartley, R. T. & Coombs, M. J. (1989). Reasoning with graph operations. In J. Sowa, Ed. Formal
Aspects of Semantic Networks. Los Altos, CA: Morgan Kaufmann.

Hewitt, C (1985). The challenge of open systems. Byte, 10, 223-242.
Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose machine learning

algorithms applied to parallel rule-based systems. In R. Michalski, J. Carbonell, and T.
Mitchell, Eds. Machine Learning: An Artificial Intelligence Approach, vol. 111. Los Altos,
CA: Kaufmann.

McWilliams, G. S., Kirby, C., Fields, C. A., Coombs, M. J., Eskridge, T., Hartley, R. T., Pfeiffer,
H. D. & Soderlund, C. (1989). Army requirements for an intelligent interface to real-time
meteorological databases. Pre-prints of the Fifth International Conference on Interactive
and Information Processing Systems for Meteorology, Oceanography and Hydrology, pp.
1-2. Boston: American Meteorological Society.

Nau, D. S. & Reggia, J. A. (1986). Relationships between deductive and abductive inference in
knowledge-based diagnostic problem solving. Proceedings from the First International
Workshop on Expert Database Systems. New York: Benjamin/Curnmings.

Nilsson, N.J. (1980). Principles of Artificial Intelligence. Palo Alto: Tioga Press.
Pierce, C. S. (1934). Scientific method. In A. W. Burks, Ed. Collected Papers of Charles Saunders

Pierce, Harvard: Harvard University Press.



- 19 -

Reggia, J., Nau, D. & Wang, P. Y. (1985). A formal model of diagnostic inference. 1. ~ Problem
formulation and decomposition. Information Sciences, 37, 227-256.

Sowa, J. F. (1984). Conceptual Structures. Reading, MA: Addison-Wesley.
 Stefik, M.J. (1981). Planning with constraints. Artificial Intelligence, 16, 111-140.
Thompson, J. R., Trout, R. & Landee-Thompson, B. (1986). Artificial Intelligence Applications

for Sensor Data Fusion. Perceptronics and Knowledge Systems Concepts, Report A002,
Contract # F30602-85-C-0107, Rome Air Development Center.

Woods, D. D. (1986). Paradigms for intelligent decision support. In E. Hollnagel, G. Mancini and
D. D. Woods, Eds. Intelligent Decision Support in Process Environments. Heidelberg:
Springer-Verlag.


