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The concept of “reasonable” queries on relational data bases is investigated. We provide 
an abstract characterization of the class of queries which are computable, and define 
the completeness of a query language as the property of being precisely powerful enough 
to express the queries in this class. This definition is then compared with other proposals 
for measuring the power of query languages. Our main result is the completeness of a 
simple programming language which can be thought of as consisting of the relational 
algebra augmented with the power of iteration. 

1. INTRODUCTION 

The relational model of data bases, introduced by Codd [7, 81 is attracting increasing 
attention lately [2-6, 11, 12, 16, 22, 231. 0 ne of the significant virtues of the relational 
approach is that, besides lending itself readily to investigations of a mathematical nature, 
its modelling of real data bases is quite honest. 

One of the central themes of research in relational data bases is the investigation of 
query languages. A query language is a well-defined linguistic tool, the expressions of 
which correspond to requests one might want to make to a data base. With each request, 
or query, there is associated a response, or answer. For example, in a data base which 
involves information about the personnel of some company, a reasonable query might be 
one whose answer is the set of names and addresses of all employees earning over $15,000 
a year. 

A large portion of the work done on query languages involves the first-order relational 
calculus (or its closely related relational algebra [2, 3, 5, 8, 12, 221). Besides the fact 
that this language resembles conventional predicate calculus and, as such, is known and is 
easy to comprehend, it seems that one of the reasons for this phenomenon is rooted in the 
choice made by Codd [8]. There, one version of this calculus is taken as the canonical 
query language, and any other language having at least its power of expression is said 
(in [8]) to be complete. 

It has been shown by Aho and Ullman [4], however, that certain reasonable queries 
cannot be expressed in first-order relational calculus (in particular, the transitive closure 
of a binary relation cannot be so expressed). This poses the question of whether there is 
a natural definition of the set of all reasonable queries. One approach to this is to add 

various constructs such as transitive closure, fixpoint operators, and iteration [4, 9, 231 to 
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query languages and to compare the expressive power of the resulting languages. This 
approach has the disadvantage that there is no guarantee that one has in fact captured all 
reasonable queries, whatever they might be. The other approach (which we follow) is to 
define an appropriately large set of queries, and then give query languages that can 
express all the queries in the set. The term completeness, if adopted, then becomes 
appropriate; if indeed a reasonable set of queries is chosen, a language expressing the 
queries in that set could conceivably be called a complete one. Bancilhon [5] favored this 
approach, questioning the choice of the word complete as referring to the expressive 
power of first-order relational calculus. 

The purpose of this paper is to settle the question of maximal expressiveness of query 
languages. This is done in two steps. First, the set of computable queries is defined. These 
correspond to partial recursive functions which satisfy a consistency criterion reflecting 
the fact that the computation is on a data base rather than, say, on a natural number. 
Then a query language is demonstrated which expresses precisely all the computable 
queries. 

In Section 2 relational data bases and queries are defined, and the class of queries, 
which we call computable, is identified. This class consists of those queries which (i) when 
regarded as functions on data bases, are partial recursive and which (ii) preserve 
isomorphisms between these data bases. 

In Section 3 we introduce the general notion of a query language and define the proper- 
ties of boundedness, expressiveness and completeness. The rest of that section is devoted to 
the introduction of and the comparison with two other definitions of completeness appear- 
ing in the literature, namely those of [8] and [5]. 

Section 4 contains the definition of our proposed query language QL, and a proof that 
it is “minimal” in the sense that removing any one of its constructs weakens its power. 
One can view the language QL as being essentially an iterative programming language 
in which the right-hand sides of assignment statements are taken to be expressions in a 
simple version of the relational algebra. 

In Section 5 the main result, i.e., the completeness of QL, is proved. The nontrivial 
part of the proof is in showing that a program in QL can reconstruct a data base up to 
isomorphism by computing its set of automorphisms, and then, from this set, generate 
the desired output. 

In Section 6 we provide a useful generalization of the simple basic model, and prove 
the appropriate generalized version of the main result. 

2. DATA BASE QUERIES 

DEFINITION. Let U denote a fixed countable set, called the universal domain. Let D C U 
be finite and nonempty, and let R, ,..., R, for k > 0, be relations such that, for all i, 
Iii C Dad. B = (D, R, ,..., Rk) is called a relational data base of type a (or data base for 
short), where a = (a, , . . . , ak). Ri is said to be of rank a,; D is called the domain of B and 
is also written D(B). 



158 CI-IANDRA AND HAREL 

Our formalism of data omits certain features that are often adopted in the literature. 
These include data base dependencies and the use of different domains for each column 
of a relation. However, features such as these can be viewed as merely restricting the 
allowed data bases, and our results carry over directly to these cases. 

DEFINITION. Two data bases of type a, B = (D, RI ,..., RK) and B’ = (D’, R; ,..., R;) 
are said to be isomorphic by isomorphism h, (or h-isomorphic) written B eh B’, if 
h: D -+ D’ is an isomorphism and h(RJ = R; for all i (i.e., h is one-one onto, and for 
all i, (x1 , x2 ,..., x,,) E Ri iff (h(x,), h(x,),..., h(x,i)) E Ri). An important special case is 
when B = B’. If B *h B then h is an automorphism on B. 

DEFINITION. A data base query of type a (or 4”lery for short) is a partial function 
giving, for each data base B of type a, an output (if any) which is a relation over D(B). 
Formally, with -0~ denoting partial, 

Q: (B 1 B is a data base of type a> --o+ u Z”‘, 

where, if Q(B) is defined, Q(B) C D(B) f 3 or some j. A query Q is said to be computable 
if Q is partial recursive and satisfies the following consistency criterion: if B wh B’ then 
Q(B’) = h(Q(B)), i.e., Qpreserves isomorphisms. 

EXAMPLES. Consider a data base B = (D, R) consisting of a single ternary relation R 
whose columns correspond to employee name, employee age, and manager’s name. The query 

the name of the$rst employee in the data base 

is not consistent because the value depends on how the data base is stored. The query 

the name(s) of the youngest employee(s) 

is also not consistent because the date base does not have a relation giving the total ordering 
on employee age. This second query, however, is a reasonable query to ask, and in Section 6 
we extend our notion of consistency to handle queries such as this one. Finally, the query 

the names of those managers for whom the number of employees they directly manage, 
encodes a true statement of jirst order arithmetic 

is consistent but not computable because the set of true statements of arithmetic is 
not even recursively enumerable. 

The set of computable queries satisfies the principles postulated in [4, 51, namely, that 
the result of a query should be independent of the representation of the data in a data 
base and should treat the elements of the data base as uninterpreted objects. Also, we will 
see in Section 3 that our consistency criterion is the appropriate generalization of the 
condition appearing in [5,22]. There, the outcome of a query Q (which is the subject matter 
of [5, 221, not the query itself as a function) is to have the property that it cannot distin- 
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guish between tuples which are “equivalent” as far as the data base B is concerned. In 
other words, if B +-+h B, then (dr ,..., di) E Q(B) iff (h(d,) ,..., h(d,)) E Q(B). 

Although our constraints on a computable query seem to be necessary for it to be 
“reasonable” it is not intuitively clear whether or not additional ones are also called for. 
However, we wish to enforce our belief in the sufficiency of these constraints, and hence 
to substantiate our argument that the set of computable queries plays a role in relational 
data bases analogous to the role played by the set of partial recursive functions in the 
framework of the natural numbers. Accordingly, in Section 4 we define an operationally 
computable data base query language and show that it expresses precisely the set of 
computable queries. 

3. QUERY LANGUAGES AND THEIR COMPLETENESS 

Now that we have defined data bases, queries and computable queries, we can turn to 
the issue of designing languages for expressing queries. 

We will think of a query language as consisting of a set L of expressions and a meaning 
function M, such that for any expression E EL and for any data base B, the meaning of E 
in B, denoted by M,(B), is either undefined, or is a relation over D(B). 

Throughout, for convenience, we assume that for any data base B each query language 
has at least one expression E for which M,(B) is undefined. (This can be achieved, e.g., 
by letting the meaning of an expression referring to more relations than the data base has, 
be undefined.) 

As examples of query languages one might consider the relational algebra and (first- 
order) relational calculus of Codd [8]. Using the definitions appearing in [22] and [5], 
respectively, the following are expressions on these languages: 

(1) WI ” R2) x R&2=5) I 

(2) (%(x1 7 x2) ” R‘&, ,x2>> * R&2 > x4 > x5) A x2 = x5 * 

Given a data base B = (D, R, , R, , RS) of type (2,2,3), the meaning of both these 
expressions is the relation consisting of all 5-tuples over D whose first two components 
form a pair in either R, or R, , whose last three components form a tuple in R, , and whose 
second and fifth components are equal (i.e., the same element of D). We do not further 
define these languages here. 

DEFINITION. An expression E in a query language expresses the query Q of type a if for 
each data base of type a, either both n/l,(B) and Q(B) are undefined or else M,(B) = Q(B). 
We write 

O’BKME@) = Q(B)), 

where B is understood to range over data bases of type a. 

DEFINITION. A query language is bounded if its expressions express only computable 
queries. It is expressive if every computable query is expressed by some expression. A query 
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language is complete if it is both bounded and expressive, i.e., it expresses exactly the set 
of computable queries. These definitions for boundedness and expressiveness can 
respectively be formalized as 

where a ranges over types, E ranges over expressions in the language and Q and B 
respectively range over computable queries and data bases, both of type a. 

There have been at least two other definitions of completeness in the literature, both 
of which turn out to be different from ours, and their expressiveness components turn 
out to be strictly weaker than ours. 

DEFINITION (Codd [8]). A query language is C-bounded if it is no more expressive 
than the relational calculus, it is C-expressiwe if it is at least as expressive as the relational 
calculus and it is C-complete if it is both C-bounded and C-expressive. (Here, language L 
is at least as expressive as L’ ifL can express any query that L’ can.) 

A note on notation. Codd used the term “complete” for our C-expressive and it is 
in this sense that the term is usually used in the literature. However, there has been some 
confusion even about the precise formulation of Codd’s definition (e.g., the differences 
between the C-version and the BP-version, see below). We have adopted a slight change 
in terminology in order to maintain consistency between the terms “expressive,” 
“bounded” and “complete,” and because we feel that our definition of completeness is 
perhaps a more natural one. 

Codd [8] showed that the relational algebra is C-expressive. Trivially it is also C- 
bounded; hence, C-complete. Aho and Ullman [4] have shown, however, that there are 
computable queries which are not expressible in the relational calculus or algebra. 
Consider the query transitive closure of type a = (2), defined as 

TC(B) = R* 

for B = (D, R), where R is a binary relation over D and R* is its reflexive and transitive 
closure. 

THEOREM 3.1. (Aho and Ullman [4]). 7% ere is no expression in Codd’s relational algebra 
which expresses the query TC. 

Observing that TC is a computable query we can conclude 

COROLLARY 3.2. Neither the relational algebra nor the relational calculus is expressive 
(0~ complete). 

Thus, although an expressive query language is also C-expressive, the converse fails. 
Likewise, a C-bounded query language is also bounded but not vice versa. See Fig. 1. 
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In order to introduce the second definition of completeness, taken from Bancilhon [5], 
we define, for a data base B, the set of relations consistent with it in the sense of the 
consistency criterion of the previous section. Define 

IB = {R 1 R C D(B)” for some m, and whenever B +% B, R = h(R)}. 

DEFINITION (Bancilhon [5]; see also Paredaens [22]). A query language is BP- 
bounded if for every data base B and expression E, either M,(B) is undefined or ME(B) E 
IB . It is BP-expressive if for every data base B and for every R E I, there are expressions E, 
E’ such that Me(B) = R, and M,(B) is undefined. A query language is BP-complete if it 
is both BP-bounded and BP-expressive. 

Bancilhon [5] and Paredaens [22] proved, respectively, that the relational calculus and 
relational algebra are BP-complete. (It has been pointed out to us by L. Marcus and these 
results also follow directly from known facts in model theory. Bancilhon’s result, in that 
framework, states that a relation is first-order definable in a finite structure iff it is invariant 
under the automorphisms of that structure.) Bancilhon used the word “complete” for our 
BP-expressiveness. Paredaens, on the other hand, did not use the term completeness, 
but rather regarded his results as a characterization of the power of the relational algebra 
to express relations. In order to better see the connection with our own definitions, we 
show 

LEMMA 3.3. A query language is BP-complete if% using the notation of (*), 

and 
W WE) (W PQ) (MD) = Q!(B)), 
(W (VQ) VW W) PEW = Q(B)), 

(**) 

the jirst line asserting BP-boundedness and the second BP-expressiveness. 

Proof. We prove that the second line of (**) asserts BP-expressiveness. The proof of 
the other claim is similar. Assume L is BP-expressive and let Q and B be a computable 
query and a data base, respectively, of type a. By the definition of a computable query 
Q(B) is either undefined or is in I, . In the former case take E to be an expression such 
that M,(B) is undefined, and in the latter take E to be the expression existing by the 
assumption. 

Conversely, assume the second line of (**) and let R E 1, for some data base B of type 
a. Define the query Q of type a as 

QW = h(R) if h is a function such that B +% B’, 

= undefined if B and B’ are non-isomorphic. 

It can be shown that this definition is sound; in particular if B tih B’ and Bc~~’ B’ 
then h(R) = h’(R). Clearly, Q is a computable query with R = Q(B) and by the second 
line of (**) there is an E such that M,(B) = Q(B) = R. The existence of E’ follows from 
(**) and the computable query that is undefined on B. 1 
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FIGURE 

Comparing (*) with (* *), BP-completeness can be seen to be a measure of the power 
of a language to express relations (as nicely captured by the title of [22]) and not of its 
power to express functions having relations as outputs, i.e., queries. 

The notion of BP-boundedness is not restrictive enough for queries, in that a query 
language can contain expressions that are not partial recursive and still be BP-bounded. 
For example, consider the relational calculus augmented with the expression E,, , whose 
meaning is given by 

ME,,@) = {> if the kth Turing Machine halts on input K, where K = 1 D(B)I, 

= a>> otherwise. 

ME, is not partial recursive but the language is BP-bounded. Also, the notion of BP- 
expressiveness is fairly weak for queries. One can define a query language, each expression 
of which has the property that its meaning is defined only for data bases of some fixed 
size. This language will clearly be neither expressive nor C-expressive, but can be made 
to be BP-expressive. For example, consider expressions of the form (E, K), where E is an 
expression of the relational calculus and K > 0, with meaning given by 

Mw(B) = ME(B) if R = 1 D(B)], 
= undefined otherwise. 

Thus, if a query language is bounded it is also BP-bounded but not vice versa, and if a 
query language is expressive it is also BP-expressive but not vice versa. See Fig. 1. 

Our choice of a stronger notion of expressiveness, and hence of a different notion of 
completeness, cannot be justified solely on the basis of it apparently being a more natural 
one for queries (as opposed to relations), but must be accompanied by a feasibly “com- 
putable” language which is indeed complete in our sense. In the next section we supply 
such a language. 

4. THE QUERY LANGUAGE QL 

The language we define (QJ~) is essentially a programming language computing finite 
relations over some domain. Its access to a given data base, however, is only through a 
restricted set of operations: equality, complementation, intersection, a test for emptiness, 
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and simplified versions of projection and Cartesian product, The ability to simulate 
arbitrary Turing machines is an important consequence of this choice. Let us now define 
QL more formally. 

Syntax 

y1 , yz ,... are variables in QL. The set of terms of QL is defined inductively as follows: 

(I ) E is a term, and for i 3 1, rel, and yi are terms. 

(2) For any terms e and e’, 

(e n e’), ( 7e), (eJ), (et), and (e-) are terms. 

The set ofprograms of QL is defined inductively as follows: 

(1) yi c e is a program for a term e and i 2 1. 

(2) For programs P and P’ 

(P; P’) and while yi do P 

are programs. 

Semantics 

Given a data base B = (D, RI ,..., Rk) of type a = (al ,..., a,), terms of QL take on 
values which are relations over D = D(B). For technical reasons it will be convenient to 
associate a rank, rank(e), with each term e, forcing us to distinguish between empty 
relations of various ranks. Thus, if rank(e) = i, i > 0, then e is either a nonempty subset 
of Di or the empty set of rank i, +. For example, there are precisely two relations of 
rank 0, (b” and {()I, the latter being Do. Denote by EX, the set of all relations over D of 
rank i, in the above sense, and let EX+ denote {$O}. 

The term E, equality, is a fixed relation in EX, given by E = ((d, d) 1 d E D}. 
The value of rel, is given by 

rel, = Ri , i < k, 

= 4J07 i>k 

and is thus either of rank ai or of rank 0. 
n is a binary operator on relations having the standard value (intersection) when both 

its arguments are of rank i (9 if the intersection is empty) and 4” otherwise. ?, 4, t, and - 
are unary operators on relations acting as follows: 

, : E& + EXi , complementation, is given by 

7e = Di - e. 

J: EX, --f EX’,-, , projecting out the first coordinate, is given by 

e j = {(d, ,..., di) j (dl ,..., di) E e}. 
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t: EXi ---f EX,,, , projecting in on the right, is given by 

et = ((dl ,..., di , d) 1 d E D, (dl ,..., dJ E e}. 

N: EXi + EX, , exchanging the two rightmost coordinates, is given by 

e- = {(d, ,..., L2 , 4, did I (4 ,..., 4) Eel, i > 1, 

e, i < 1. 

Note the following: -,(P) = @, eJ = (0) ‘f 1 rank(e) = 1 and e # 4l, (4”’ l)J = @, 
+sJ = Co, @T = fl+l, and {()}t = EJ, = D. 

Programs in QL act in the obvious way; all variables are initialized to do, and the test yi 
in the while do construct is true iff the value of yi is empty, i.e., $j for some i. 

Given a program P and a data base B, the value of P in B, M’,(B), or P(B) for con- 
venience, is undefined if P does not terminate, and is otherwise defined to be the value 
of the variable yr upon termination (ify, has the value @ then the output is the empty set; 
the rank of empty sets is irrelevant as far as the output behavior of queries and programs 
is concerned). Given a query Q of type a, we know from Section 3 what it means for a 
program P to express Q. P expresses Q (we will also say computes Q) if for every data 
base of type a, P(B) = Q(B), i.e., either P(B) and Q(B) are both undefined or P(B) L= 

Q(B). 
Our main result, to be proved in the next section is 

THEOREM 4. I. QL is complete. 

For the proof we will need the fact that several conventional operations on relations 
are expressible in QL. Observe first that in effect we have counters. E&J, which is (()}, 
plays the role of 0, and if e plays the role of the natural number i then ef and e$ play the 
roles of i + 1 and i - 1, respectively. (Counters need never attempt to substract 1 
from 0.) Testing whether e is “equal” to 0 is accomplished by testing e$ for emptiness. 
Note that this gives QL the power of general Turing machines (cf. [18]). Hence in the 
sequel, we will use n, m..., in programs to denote natural numbers, and will freely use 
Turing machine terminology. 

An ;fyi then P else P’ construct can be simulated by the following program (assuming 
that yz and ys do not appear in P or P’). 

Y2'Ydi ~3 +- E&U; 
while y2 do(P; y2 + B, y3 + E); 
while y3 do (P’; y3 +- E). 

The reader should also be convinced that we can simulate the test “non-empty” using the 
if and while constructs. Denote ’ ‘yi non-empty” by yi . 

Now we show how to compute, in n, the value yank(e): 

if e then yl +- ?e else yl t e; 

n+O;whiZey,do(y,ty,J;ntn+ 1); 
?I+--n-1. 
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The following abbreviation is useful. Define e( t-)” to be the value of ys in the program 

y2 +- e; 

whikn #Od~(y,t((y~~)~);ntn- 1) 

in other words e( t-)” is e with rz columns projected in to the left of the rightmost column. 
(We will use similar notations for single connectives, e.g. e(p).) 

Now, we can project in on the left of a relation, an operation we denote by te: 

y1 + 4; n +- rank(e); 

whirk n # 0 do ( y2 + E( +)rank(e); 

Yl +- (Yl? nr2u; 

n +- n - 1). 

It may be checked that this program generates the desired result. We can now compute 
the Cartesian product of two relations, i.e., 

el x e2 

This is done by 

Yl +- M 
rankbe)) n (yank’““) e2). 

It should be clear that one can also compute the generalizedprojection of e, 

e[il,...,ipl = We,-., dipI I (4 ,..., 4J E 4, 

where for all 1 < j < p, ii < rank(e) = m. In order to do this, observe that, 

As an example of a naturally arising query, consider again the transitive closure. The 
following program, in which -( 7e1 n 7e2) is abbreviated by e, u e2 , computes TC: 

y1+ E; y2 + 4; Y~+E"Y~; y4+ -dny2; 

while y4 do ( y1 + y3; 

~3 +- ~3 ” (((ys x ~2) n t%1,41); 

y4 + 7~1 n Y& 

It is clear that no power is lost if, in QL, the t, 4, and N operators are replaced by 
Cartesian product and generalized projections. Thus, the reader might want to regard our 
language QL as being, in a sense, the “closure” of the relational algebra [S] under 
sequencing and iteration, with the ability to test for emptiness. R. Parikh has pointed out 



166 CHANDRA AND HAREL 

to us that a language as powerful as ours can be obtained in a similar fashion from the 
relational calculus by “closing” it under a certain kind of infinitary quantification. This 
remark, upon which we do not further dwell here is reminiscent of the use of infinitary 
logic to reason about dynamic situations such as those involved in proving the correctness 
of programs. See [15]. 

We now argue that in a sense our language is minimal, i.e., that no constructs of QL 
can be eliminated without weakening its power. As we have remarked, QL without the 
while statements has no more power than the relational algebra, and hence, by Corollary 
3.2 is weaker than QL. Also it is clear that without assignments the language can only 
compute the empty set. We leave to the reader the task of showing that the composition 
operator on programs, I‘;“, cannot be eliminated, as is the case with the equality relation E. 
We now show that none of the operators on terms can be eliminated. 

ForSE{n, ?, J, t,-}, let QL6 be the language obtained by omitting, from the defini- 
tion of the terms of QL, the clause corresponding to 6. Let “<” stand for “strictly 
weaker in expressive power.” 

LEMMA 4.1. For every S E (n, 7, 4, t, -}, QL, < QL. 

Proof. For each such S we supply a data base B, and a relation R, , defining the query 

Qs as 

Q&4 = W.J ifB,+%B, 

= undefined if B, and B are non-isomorphic. 

From our choice of the B, and R, it will become clear that the Q6 are computable queries. 
The claim is that for each S, there is no program in QL, which computes Q8 . First, though, 
note that it is sufficient to prove that no term in QLLb has value R, when interpreted in B, . 
The reason for this is that if a program P in QL6 computes Q6 , then P(B,) is defined and 
by unravelling the while loops sufficiently, the “execution sequence” of P in B, can be 
found and collapsed into one assignment of the form y1 +- e, for some (large) term e, with 
the value of e being the value ofy, upon termination, i.e. R, . 

We supply a proof that no term in QL, has value R, in B, only for S = N. The other 
cases are either trivial or similar. The B,‘s are defined as 

(4 B, = (h, 6, NJ))); 4, = ((6, @I. 

In other words, B, is a data base with domain {a, b} and the single-tuple unary relation 
{(b)}. The intuition here is that without intersecting with E, there is no way of “doubling” 
the element b. 

(ii) B, = ({a, 4); R7 = ((a, b), (6, 4. 

B, has no relations (or to fit into the strict definition of a data base (D, RI ,..., R,) with 
K > 0 we would let R, = E be its single relation). The intuition is that complementation 
is the only way to get rid of the equality pairs (b, 6) and (a, a). 

(iii) B, = ({a>); R, = ((a)}. 
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B, is the trivial data base with a l-element domain and no relations. The intuition is 
that no unary relation is expressible without J. 

(4 4 = (W; fh = {(a, a, 41. 

Similarly, without T no relation of rank 3 is expressible. 

(v) Ba = ({a, b}); R, = {(a, b, 4, (h a> b), (a, a, a), (6, 4 43. 

R, is in fact (in QL) ET-. We have to prove that no term in QL, has value R, . Define 

A = {cf, Di}:=“=, u {E x Di, -,(E x IY)}:“=, . 

First, note that the only relations of rank 3 in A are +3, D3, E x D, and 7(E x D), none 
of which is equal to R, . Thus, R, E A. However, we now show that the value (in B,) 
of any term e in QL, , is in A. This is done by induction on the structure of e: E and 
rel, , for any i, are in A. A is clearly closed under complementation. Also, DiflJ. = Di, 
Dit = Difl, (E x Di)J, = Di+l, (E x Di)T = E x Di+l, and similarly for their 
complements. Thus A is also closed under T and 4. Finally, if e = e’ n e”, then e’ 
and e” are either of different ranks, in which case e = do E A, or elselthe intersection is 
trivial in the sense that e is either one of e’ or e”, or else is @. Thus, A is closed under 
intersection, and the claim is proved. 1 

To summarize, we can extend our notation of QLs to include assignments, composition, 
while statements, etc., obtaining 

THEOREM 4.2. For every 6 E {E, rel, , yi ,;, c, while, n 7, j, f, -1, QL6 < QL. 

We refer the reader at this point to Aho and Ullman [4], where it is suggested that the 
deficiency of the relational algebra expressed in Theorem 3.1 be remedied by augmenting 
that language with a least-fixpoint operator on monotonic functionals over relations. The 
transitive closure TC can then be expressed. We show in [25] that such a language is not 
complete. Another point raised in [4] is that of allowing some predicates and constants 
over the domain to be fixed by the isomorphisms of a data base when considering a 
candidate query for consistency. This issue is dealt with in an extension to our basic 
notion of a data base, in Section 6. 

We now turn to the proof of Theorem 4.1. 

5. PROOF OF THEOREM 4.1 

It is straightforward to show that QL is bounded: given a program P and query Q of 
type a such that P computes Q, it is obvious that Q is partial recursive. Furthermore, 
to see that Q preserves isomorphisms, consider the simultaneous behaviors of P on two 
h-isomorphic data bases B and B’ of type a. One can easily show that all expressions of QL 
preserve isomorphism (an isomorphism on empty sets preserves their rank). For example, 
if e, and e2 are, respectively, h-isomorphic to e; and ei , then e, n e2 is h-isomorphic 
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to e; n el . Also, if e and e’ are h-isomorphic then e is empty iff e’ is. Hence, tests evaluate 
to the same truth values in both computations and it is clear, therefore, that P(B) is 
defined iff P(E) is, and that if both are defined then P(B) and P(E) are h-isomorphic.l 

Turning to the other direction, i.e., expressiveness, let Q be a computable query of 
type a = (a1 ,..., ale). We will describe the construction of a program P, such that PO 
computes Q. The computation of P, , given an input data base B of type a, will consist 
of the following four main steps: 

(1) Compute the set of automorphisms of B. 

(2) Compute an internal, “model” data base BN isomorphic to B. 

(3) Compute Q(BN) using the Turing machine capability. 

(4) Compute Q(B) f rom Q(BN) using the set of automorphisms computed in step 1. 

In order to be able to spell out this process more precisely and show how to program 
it in QL, we will need some additional notation. Let B = (D, RI ,..., RJ be a data base 
of type a. Let 71 = 1 D 1, and denote by perm(D) the n-ary relation over D consisting of 
all permutations of the 71 elements of D. Assume, without loss of generality, that 
{I, 2, 3 )... } c u. 

Now, let d = (dl ,..., d,) be some tuple of perm(D), i.e., d is some ordering of D. For 
R C Dr denote by R/d the index set 

((4 ,..., 4 I (4, ,..., 4J E RI. 

We note that two different elements, d and d’, of perm(D) may give rise to the same index 
set. Accordingly, define d wR d’ iff R/d = R/d’. It is clear that wR is an equivalence 
relation. The equivalence class of d with respect to wR will be called (following [22]) 
the cogroup of R via d 

CG,(R) = {d’ 1 d’ Eperm(D) A d -R d’}, 

= W(,) ,..., dad I a! is a permutation of {l,..., n} and 

R = {(4(il) ,..., 4x(,,,) I (4, >..., 4,) E 4). 

Observe that CG,(R)/d gives the indices corresponding to the permutations of D which 
preserve R. Also, note that d E CG,(R). 

EXAMPLE. Let d = (4 , 4,4,4) and R = ((4 , 4, (4, 4>, (4, 4, (4,4)>. 
Then R/d = {(I, 2), (2, I), (3, 3), (4,4)) and CGd(R)/d = {(I, 2, 3, 4), (2, 1, 3, 4), (1, 2, 
4, 3), (2, 1, 4, 3)). 

Now, for our data base B = (D, RI ,..., R,), let CGdB abbreviate nr(d&k CG,(R,). 
Certainly CG/ C perm(D), and CGdBId can be thought of aa representing the set of 
automorphisms of D relative to the ordering d, which preserve the relations of B. Here 
too, note that d E CGdB. 

1 This argument is analogous to Theorem 1 of [S] and Lemma 2 of [22] in which, respectively, 
the constructs of Codd’s [8] relational calculus and algebra were shown to preserve automorphisms. 
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We now give a more precise description of the four steps of the computation of P, on 
input B (describing how to program these steps in QL will be done below). 

(1) Compute CGdB for some d E perm(D). (CG,s is an n-ary relation over D.) 

(2) Compute and “store on tape” the data base 

B,v = ((1,2,..., 4, WA..., R,ld) 

(Each RJd is an a,-ary relation over (1, 2,..., rz}.) 

(3) Compute, using the Turing machine capability, the value Q(BN) of the given 
function Q applied to the argument B, . (Q(BN) is, say, an m-ary relation over { 1, 2 ,..., rz}.) 

(4) Compute (in yi) 

s= (,J (CGct%j,....,i,~ . 

(S is an m-ary relation over D.) 

Step 3 makes the execution of P, depend on the given computable query Q. The fact 
that Q is partial recursive is what enables the “Turing machine part” of QL to carry out 
this step, and the fact that Q preserves isomorphisms will be essential in establishing that 
S = Q(B). Note that if Q(BN) is undefined the Turing machine will not halt and P,(B) 
will be undefined too. 

LEMMA 5.1. Q(B) C S, where S is as described above. 

Proof. We will show that in fact Q(B) corresponds to a very “small” part of S, namely 
that part obtained by replacing the relation CGdB in the definition of S by the singleton 
{(d, ,...I 48, a subrelation of CGdB. Indeed, we now show that 

Q(B) = Wj, ,..., 4,) I (iI ,...A> EQ(BN)J 

First, observe that BN -h B, where for 1 < i < n, h(i) = di . This follows immediately 
from the definition of R/d. Hence since Q is a computable query, we must have Q(BN) ~9 

Q(B), or h(Q(%)) = Q(B), h h P w ic is recisely what was required. 0 

LEMMA 5.2. S C Q(B), where S is as described above. 

Proof. Lets = (si ,..., s,) E S. Then there is (j, ,..., jm) E Q(BN) and (d,,,) ,..., da(,)) E 
CGdB, such that for 1 < i < m, si = dutii) . We show that (dq ,..., d,(,,,) EQ(B). Note 
that, by definition of CG, s B +P’ B, where ol’(dJ = dafi) . It follows that ol’(Q(B)) = , 
Q(B) or that (djl ,..., djm) E Q(B) iff (d,til) ,..., d,tjm)) E Q(B). But (j, ,..., j,) being in 
Q(BN) by assumption, implies (dil ,..., d,,) E Q(B) by the characterization of Q(B) in 
the proof of Lemma 5.1. 1 

Hence we have established that the above four steps, if executed, correctly compute 
Q(B). We now set out to show how (l)-(4) can be programmed in QL. 

571/21/2-2 
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We first show how to compute perm(D) in some variable, say ys , and simultaneously 
compute n = 1 D / in a “numerical” variable n. For any expression e and 1 < i < j < 
rank(e), denote by e(,+j) the expression 

e n -,(Di-1 x ,Jj’(t-)U-i-1) x Drank(e)-j). 

Thus, e(i+;i) contains all tuples in e for which the elements in the ith andjth positions are 
unequal. (The same expression, but without the “--,“, is denoted e(,,9,). Denote by et,) 
the relation obtained by executing 

y + e; 
for all 1 < i < j < rank(e) do 

Y +- Y(W) 9 

where y is a suitable new variable. Certainly this is programmable in QL. Nowperm(D) 
and n are calculated by 

n t 0; y2 t EJ; 

whileP2 do (y3 +y2?;y2 +-Y~(#); n+-n + ~);Y~+-Y~& 

We now show how to calculate CGdB in QL, for some d Epttrm(D). Let N = {I, 2,..., n}. 
Consider the function $(V, r, R, X), where V C perm(D), R C Dr and X C NT, defined 
as follows: 

+(V, r, R X) = 4’ if Qd 6 V, X # R/d, 

= CG,(R) n V if X = R/d, dE V. 

Assume for the moment that we can compute #. The way in which CGdB is computed, 
for some d eperm(D), is by utilizing the Turing machine power of QL to cycle through 
all possible choices of a set {X1 , . . . , X,} where, for each i, Xi C N”i. For each such choice 
the following program is executed: 

y3 + pm(D); 
foralll <i<kdoy,+-$(y3,ai,Ri,XJ 

and upon its completion y3 is tested for emptiness. It is easy to see that y3 is nonempty 
(i.e., Qj , y3 f @) iff for some d eperm(D), Xi = R,/d for every 1 < i < k. In fact, y3 
will then have the value (. . . @urn(D) n CG,(R,)) n CG,(R,)) n ... n CG,(R,)) = 
CG/. Moreover, cycling through all possibilities of {X, ,..., X,} must result in our 
falling upon a nonempty y3 . Note that the “successful” set {X1 ,..., X,) is that required 
in step (2) of the computation of PO , so that it can be essentially stored on tape and used 
for step (3). 
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Turning now to #, given V and R as relations, we show that the following program 
computes I/I( V, r, R, X) in ya . (A s earlier, the reader should convince himself that (***) 
can be programmed in QL.) 

y3 - v; 

for all (il ,..., iv) E N’ do 

(;f (4 ,..., i,.)EXthetty,+-R xy3 

else y4 +- --,I? x y3; 

for all 1 d j < Y do y4 + y4(icr+i,); 

Y3 - Y4( t’n 

(***I 

For each element of X (respectively of TX), (***) eliminates from I/ all permutations 
with which no tuple of R (respectively of T R) is consistent. Denote by T the final value 
of y3 in (* * *). Noting that T C V, we now prove the following two lemmas which serve 
to establish the validity of (***): 

LEMMA 5.3. If X # Rldfor every d E V, then T = @. 

Proof. Let d = (dl ,..., d,) E T. We show that X = R/d. Let (i1 ,..., i,) E X. We have 
to show (il ,..., i,) E R/d, or equivalently (dit ,..., diF) E R. In order to be in T, d had to 
“survive” each execution of the body of the main loop of (* * *). In particular, d had to be 
left in y4, concatenated with come element (d,o ,..., d,(,,) of R, and such that for all 
1 < j < Y, d,tj, = dii . But this implies (dil ,..., dir) E R. 

Conversely, let (il ,..., i,) E R/d, or (dil ,..., dit) E R. Using a similar argument, if 
(4 ,..., i,) $ X, then dwould have survived the inner loop of (***) with the given (i1 ,..., i,), 
from which it would follow that (dil ,..., dir) 4 R. 1 

LEMMA 5.4. If X = R/d and d E V then T = CG,(R) n V. 

Proof. Assuming that X = R/d for some d = (dl ,..., d,) E V, we first let d’ = 
(4(l) >..., de(,)) E T and show that d wR d’. By our assumption we need only show that 
X = R/d’. Indeed, if (i1 ,..., iT) E X then the appropriate inner loop of ( * * *) with (il , . . . , i,) 
would have eliminated d’ fromy, if it were not the case that (d,q ,..., d,cir,) E R. But this 
implies that (ir ,..., i,) E R/d’. Conversely, if (i1 ,..., i,.) E R/d’ then (d+ ,..., d,ci>) E R, 
and similarly, if (il ,..., ir) # X then we would have eliminated d’ in the inner loop of (* * *) 
with (il ,..., i,). 

For the other direction, let R/d’ = X. We have to show that d’ E T. The reader should 
be able to use arguments similar to the previous ones in order to show that if d’ was 
eliminated in a “positive” inner loop, i.e., where (il ,..., i,) E X, then (il ,..., i,) #R/d’, 
and if d’ was eliminated in a “negative” one, i.e., where (il ,..., i,) 6 X, then (il ,..., iv) E 
R/d’, in both cases a contradiction to X = R/d. 1 

To complete the proof of Theorem 4.1, note that S of step (4) in the computation of P, 
is easily programmed in QL using the computed CGdB and the program described earlier 
for the generalized projection operator. 
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6. THE EXTENDED QUERY LANGUAGE EQL 

When relational data bases are used in practice, several operations outside the formal 
relational framework are useful. Consider the query “sum the salaries of all employees.” 
Answering this query requires the ability to recognize numbers in the data base, to add, 
and to produce a number as output. Or consider the query “what is the length of the 
longest name of a department.” Answering this query requires a length operator on 
strings. The problem with these additional operations is that their results can be in a 
potentially infinite domain. We abstract the essence of these additional operations to 
produce the set of extended queries as follows. 

In addition to the universal domain U, there is another countable, enumerable domain 
F = {A, ,fi ,h v-1, where F n U = 4. F is intended to include interpreted features 
such as numbers, strings (if needed), etc. An extended data base B = (D, RI ,..., R, , 
S 1 ,-.., S,) has a finite domain D C U, finite relations Ri on D u F, and operations &: 
Dbi + F which serve to connect the “uninterpreted” domain D to the interpreted domain 
F. Thus the requirement F n U = $ is not restrictive since if overlap is needed, F could 
contain a “copy” which is obtained by applying an Si of rank 1 performing the “identity” 
operation. The rank ai of relation Ri is (not a natural number but) a finite 0, 1 sequence, 
with R, C 2,. , t where 2,. is defined recursively as follows 

ZA =;o,, Z,, = D x Z, , Z,, = F x Z,. 

The type of B is (al ,..., ak , 6, ,..., b,). It should be noted that the operations Si are not 
really necessary in this formalism since they can simply be treated as relations Ri (see also 
comment on functional dependencies in Section 7). 

Two extended data bases B = (0, R, ,..., S, ,...) and B’ = (D’, RI ,..., S; ,...) of the 
same type are said to be isomorphic by isomorphism h (or h-isomorphic, B ++h B’) if 
h: D -+ D’ is an isomorphism and for all i, h(RJ = R; (where h is extended to be the 
identity function on F) and h(SJ = Si ( w h ere Si is treated as a relation for purposes 
of applying h). 

Let Y, be defined as was Z, but replacing D by (the universal domain) U. An extended 
data base query of type a (extended query for short) is a partial function 

Q: (B 1 B is a data base of type a> --o-f u 2’~ 
c 

where, if Q(B) is defined, Q(B) C Z, for some c and Q(B) is finite. An extended query is 
said to be computable if it is partial recursive and satisfies the consistency criterion: if 
B ++lr B’ then Q(B’) = h(Q(B)). 

EXAMPLES. The query 

sum the salaries of all employees 

can be modeled as follows. B = (D, R) where D is the set of employee names, F = 
(0, 1, 2,...}, and R C D x F is of rank 01 and associates salaries with names. The desired 
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query has output E(Z,Z)ER i} and is a computable extended query. The same query could 
also have been modeled by a data base B = (D, R, S’), where D is the set of employee 
names and salaries (tagged to make them disjoint from F), F == (0, 1, 2,...}, R C D x D 
is of rank 00 and associates salaries with names, and S: D -+ F maps salaries in D to the 
corresponding values inF. The desired query has output (&.i)ER S(i)} and is a computable 
extended query. In this data base, the query 

output the names of people who make the highest salary 

has output {X 1 3i. (x, i) E R A S(i) = Max{S(i) ( (x,j) E R}} and is also a computable 
extended query. An example in which S is not used merely for providing “copies” of 
elements of D, is the query 

length of the longest name of a department 

in which S: D -+ F might associate with each department name, viewed as a string of 
characters, its length. All other elements in the domain would be mapped to a special 
element in F which may be called the “undefined” element. 

We define the extended query language (.EQL) which contains the constructs ofQL: 

E, reli , yi , n, 7, J, t, -, +-, ;, while. 

In addition, terms in EQL can also be of the forms: 

and 

si(Y,) 

f IIt 
(el x ea), where e, , and ea are terms 

(el u 4 

(el - 4. 

The semantics of EQL is the appropriate extension to that of QL. Values of variables have 
ranks in (0, 1)“; variables are initialized to +^; le has value 2, - e, where e has rank c; 
the value of el n ea is the set intersection of the values of e1 and ea if they have the same 
rank, otherwise it is 4”; 1 as before projects out the first coordinate, and @./. = +^; 
t maps 2, to Co, and projects in D to the right; and N interchanges the two rightmost 
coordinates (the operators 7 and t are redundant in EQL). The new term f,, has value 
{(fJ> if yi has rank O”, and has value 4” otherwise. Si(yj) has value (Si(x, ,..., x,) 1 
(Xl >***, x,) E yj} if yj has rank 0” and bi = m, and has value $” otherwise. The terms 
e, x ea , e, u es and e1 - es are respectively, cartesean product (function Y, x Yd + Y,.J, 
set union and set difference (for u and -, if e, and es do not have the same rank, the value 
is 4”). Programs yi +- e, (P; P’), and while yi do P have the obvious semantics. 

THEOREM 6.1. EQL is complete in the extended sense, i.e., the set of queries computed by 
programs in EQL is precisely the set of extended computable queries. 
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Outline of Proof. As in the proof of Theorem 4.1, it may be seen that EQL computes 
only extended computable queries: if program P computes query Q, then Q is partial 
recursive, and by considering simultaneous executions of P on two h-isomorphic data 
bases it is seen that the outputs, if any, are also h-isomorphic (recall that isomorphisms 
induce the identity function on the interpreted domain F). 

The proof for the other direction is also quite similar to the proof of Theorem 4.1. 
Let (1, 2, 3 ,... } C U. For d = (dr ,..., d,) in perm(D) and R of rank c = clczI...c,. let 

R/d = ((4 ,..., i,) I 3(gl ,..., gl.) E R. Vk. if cK = 0 then g, = di, else il, = glc}. 

Note that R/d has the same rank as R. Given B = (D, RI ,..., R, , S, ,..., S,,J, S,/d is 
defined as for Ri/d (treating Si as a relation) and is a function of the same rank as &; 
d wR d’ iff R/d = R/d’, and CG,(R) is the equivalence class of d with respect to wR 
(and likewise for an SJ. Also, let 

CGdB = n CG,(R,) n n CG,(Si). 
l<i<k l(i<m 

Given a computable query Q, the program P, in EQL computes Q as follows: 

(1) Compute CG,B for some d E perm(D). 

(2) Compute the data base (n = 1 D 1) 

BN = ({I, 2 ,..., n}, RI/d ,..., S,/d ,... ). 

(3) Compute, using the Turing machine capability of E&L, the value Q(BN). 

Let the rank of Q(BN) be c = ci ,..., c, , 

(4) Compute (in YJ 

s= u (CGB x ikl 9 g, ,...,gr)})[p1.....*,1 9 

where if ci = 0 then qi = ji and gi = f. , otherwise qi = n + ji and gi = ji . Each term 
in S is the set of all h( jl ,..., j,) where h is an automorphism on B. 

Along the lines of Lemmas 5.1, 5.2 it can be shown that S = Q(B). 
A program in EQL can enumerate the elements in the interpreted domain F, and 

determine the set F’ of such elements occurring in the data base (the operators X, U, 
and - are used for this). Steps (l), (2) b a ove, can be implemented as in Section 5 by 
treating the extended data base as if it were a (nonextended) data base with domain 
D u F’ with elements in F’ all being distinguished (e.g., by additional relations ((f )} 
for each f EF’). Using the Turing machine capability, step (3) can be executed, and the 
set F” of interpreted elements occurring in Q(BN) d e ermined. t The implementation of 
step (4) then follows. 1 

Other Extensions. It is sometimes desirable to have typed queries. For every data base, 
the value of such a query is either undefined, or is a relation of a fixed given rank. If 
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a = (al )..., uk), and a’ > 0, a typed computable query Q of type a -+ a’ is a partial recursive 
function mapping (nonextended) data bases of type a into relations (on the domain of the 
data base) of rank a’, and which satisfies the consistency criterion (Section 2). Typed com- 
putable queries form a subset of the computable queries. The query language QL may be 
modified so as to compute precisely the typed computable queries as follows. The output 
variable yr is given a special rank a’ and is initialized to the empty set of rank a’. The 
semantics is changed so that any assignment yr +- e where e is an expression of rank a’ 
has the standard semantics. However, if e has any other rank, it assigns the empty relation 
of rank a’ to y1 . Note that only the variable yr has a rank associated with it. It can 
then be shown that this query language computes precisely the typed computable queries. 
Similar restrictions can be imposed on the extended computable queries and the language 
EQL to handle the case when part of the data is interpreted. 

One advantage of typed queries is that a sequence of them can be combined to produce 
a data base as output (as an alternative to a sequence of typed queries, one might just 
modify the definition of a query, and the query language, so that a single query produces 
a data base as output). Since data bases are both inputs and outputs of such sequences, the 
sequences could be composed to develop an algebra of data base queries (see [25]). 

A second extension is that any query could refer to a fixed number of elements in the 
uninterpreted domain U (or in some subset of U). Consider, for example, a query like, 
“give me the names of all faculty members in the Computer Sciences and Mathematics 
departments”. Such a query treats the names “Mathematics” and “Computer Sciences” 
as interpreted, but all other names in the data base, such as “Physics” or “Smith” as 
uninterpreted. For any finite set of “constants” CC U, C = {cl , ca ,..., c,}, we can 
define a query with C to be a partial recursive function which, for data bases B = 
(Q R, ,..., R,), produces as output a relation on D u C, and preserves isomorphisms 
on B, = (D u C, R, ,..., R, , {cl> ,..., {cm}). A query with constants is then a query with 
C for some C. It is not hard to show that the set of queries with constants is exactly the 
set of queries computed by the query language QL augmented such that {c} is also an 
expression for every c E U. This exercise and the preceding one with extended queries 
shows that while such extensions (and others like column headings and dependencies) 
are useful for modelling real data bases and queries, they serve from a theoretical point 
of view largely to obfuscate basic issues in data base queries (see also [24, 251). Typed 
queries, however, are probably of greater theoretical interest. 

Another extension to queries is to add nondeterminism. For example, queries such as 
“give me the name of anyone in the Toy department” can be handled by having an EQL 
program output the names of all employees in the Toy department, and then having a 
“back end” choice operator that chooses an element (in general, a tuple) from this set of 
elements (in general, from a relation). More general versions of nondeterminism, e.g., 
“give me any one in the Toy department, or the entire employee-manager relation” 
require both a choice operator on relations as above (see also [l 11) as well as nondeter- 
minism on the flow of control (see [lo] for a discussion of some primitives). In this case, 
however, a reasonable definition of all nondeterministic computable queries is not known, 
and remains a topic for future research. 

A related extension is that of probabilistic choice. An example is where employees’ 
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salaries are randomly probed to estimate the average salary (see [20] for a general proba- 
bilistic construct). Another extension is where a query language is augmented with user- 
supplied procedures. In this case, the query can be thought of as a query schema, and 
concepts from program schemata (see, e.g., [13, 171) could be used. These extensions 
also remain largely unexplored. 

7. DIRECTIONS FOR FUTURE WORK 

Several interesting possibilities present themselves for further research. First, results 
similar to ours can be proved for systems other than relational data bases. For example, 
analogous results could be obtained for the hierarchical and network models of data bases. 
Perhaps the most general framework is that of computable functions over arbitrary 
algebraic structures [21]. Even for relational data bases, several constructs such as non- 
determinism, probabilistic choice, and program schemata based queries remain largely 
unexplored as mentioned in the preceding section. It should be noted, however, that our 
results do apply to relational data bases on which certain constraints (such as functional 
or multivalued dependencies [1, 6, 7, 161) are specified. Such data base definitions can be 
thought of as defining a subset of our data bases, and as such, no additional queries can be 
computed. The computable queries on such data bases are precisely the queries determined 
by our query languages restricted to the applicable data bases. 

A second research area is that of usable query languages which are complete. Our 
language QL is intended to be a minimal language, and as such could be useful for proofs 
in the theory of query languages but not for writing queries. This is analogous to the role 
played by Turing machines in computability and complexity theory. Query languages that 
are more powerful than first-order predicate calculus can be obtained by various 
approaches, one of which involves embedding a query language such as Query-by- 
Example or SQL into a programming language such as Cobol, PLjl , etc. (see, e.g., [19]). A 
second approach is to add constructs such as summing a column in a relation, or obtaining 
the length in bits, of a field [14], p o era ions that may (depending on the formalism) t 
violate the consistency criterion. A third approach, suggested by [4] and indicated by our 
results, is that of augmenting relational algebra or predicate calculus with constructs such 
as transitive closure, fixpoint operators, while-do, or other programming features. This 
seems to be a promising approach. A possible disadvantage, however, is that it might 
be more difficult to produce efficient code as compared with the other two approaches. 
Such questions of efficiency provide several interesting topics for research. 

Perhaps of more interest to the theoretically inclined reader, the fundamental questions 
of complexity theory should now be asked in the realm of relational data bases, with an 
eye towards singling out those queries which are not only computable, but also tractable 
or efficiently computable. One could start by providing, for queries, sensible definitions 
of measures of time and space and perhaps other relevant measures of resources (such as 
the number of times a data base access is required in the course of evaluating a query- 
this, in a practical situation, being possibly of great importance since an action may require 
physical manipulation such as disc seek and access). Then it would be of interest to check 
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the appropriateness of such definitions by observing whether certain complexity classes 
of queries with respect to these measures are invariant within a large class of computational 
models (our QL being perhaps one of those models). Are there naturally arising queries 
which are, in one or more of the senses defined, provably intractable ? Are there interesting 
classes of queries which arise naturally in practice and which are tractable ? A particular 
open question: give a complexity-theoretic characterization of the first-order definable 
queries. This question is not presented by virtue of it being particularly hard, but by 
virtue of it being dependent for its solution on providing the right kinds of definitions. 

For some purposes one might be interested in different kinds of subclasses of the class 
of computable queries, say “monotonic” or “continuous” queries, i.e., ones which not 
only preserve isomorphisms but which preserve small changes in data bases (that is, if B’ 
is obtained from B by, say, removing the record of one employee, then Q(E) should 
be “close” to Q(B)). Are there simple query languages which are complete for classes 
such as these ? 

Some initial answers to these questions have been provided in [24, 251. We feel that 
many other interesting questions await to be asked and answered. 
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