
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 21, 156-178 (1980)

Computable Queries for Relational Data Bases

ASHOK K. CHANDRA AND DAVID HAREL

IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heikhts, N. Y. 10598

Received September 26, 1979; revised March 24, 1980

The concept of “reasonable” queries on relational data bases is investigated. We provide
an abstract characterization of the class of queries which are computable, and define
the completeness of a query language as the property of being precisely powerful enough
to express the queries in this class. This definition is then compared with other proposals
for measuring the power of query languages. Our main result is the completeness of a
simple programming language which can be thought of as consisting of the relational
algebra augmented with the power of iteration.

1. INTRODUCTION

The relational model of data bases, introduced by Codd [7, 81 is attracting increasing
attention lately [2-6, 11, 12, 16, 22, 231. 0 ne of the significant virtues of the relational
approach is that, besides lending itself readily to investigations of a mathematical nature,
its modelling of real data bases is quite honest.

One of the central themes of research in relational data bases is the investigation of
query languages. A query language is a well-defined linguistic tool, the expressions of
which correspond to requests one might want to make to a data base. With each request,
or query, there is associated a response, or answer. For example, in a data base which
involves information about the personnel of some company, a reasonable query might be
one whose answer is the set of names and addresses of all employees earning over $15,000
a year.

A large portion of the work done on query languages involves the first-order relational
calculus (or its closely related relational algebra [2, 3, 5, 8, 12, 221). Besides the fact
that this language resembles conventional predicate calculus and, as such, is known and is
easy to comprehend, it seems that one of the reasons for this phenomenon is rooted in the
choice made by Codd [8]. There, one version of this calculus is taken as the canonical
query language, and any other language having at least its power of expression is said
(in [8]) to be complete.

It has been shown by Aho and Ullman [4], however, that certain reasonable queries
cannot be expressed in first-order relational calculus (in particular, the transitive closure
of a binary relation cannot be so expressed). This poses the question of whether there is
a natural definition of the set of all reasonable queries. One approach to this is to add

various constructs such as transitive closure, fixpoint operators, and iteration [4, 9, 231 to

OO22-OOOO/80/050156-23$02.00/O
Copyright 0 1980 by Academic Press, Inc.
AU rights of reproduction in any form reserved.

156

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 157

query languages and to compare the expressive power of the resulting languages. This
approach has the disadvantage that there is no guarantee that one has in fact captured all
reasonable queries, whatever they might be. The other approach (which we follow) is to
define an appropriately large set of queries, and then give query languages that can
express all the queries in the set. The term completeness, if adopted, then becomes
appropriate; if indeed a reasonable set of queries is chosen, a language expressing the
queries in that set could conceivably be called a complete one. Bancilhon [5] favored this
approach, questioning the choice of the word complete as referring to the expressive
power of first-order relational calculus.

The purpose of this paper is to settle the question of maximal expressiveness of query
languages. This is done in two steps. First, the set of computable queries is defined. These
correspond to partial recursive functions which satisfy a consistency criterion reflecting
the fact that the computation is on a data base rather than, say, on a natural number.
Then a query language is demonstrated which expresses precisely all the computable
queries.

In Section 2 relational data bases and queries are defined, and the class of queries,
which we call computable, is identified. This class consists of those queries which (i) when
regarded as functions on data bases, are partial recursive and which (ii) preserve
isomorphisms between these data bases.

In Section 3 we introduce the general notion of a query language and define the proper-
ties of boundedness, expressiveness and completeness. The rest of that section is devoted to
the introduction of and the comparison with two other definitions of completeness appear-
ing in the literature, namely those of [8] and [5].

Section 4 contains the definition of our proposed query language QL, and a proof that
it is “minimal” in the sense that removing any one of its constructs weakens its power.
One can view the language QL as being essentially an iterative programming language
in which the right-hand sides of assignment statements are taken to be expressions in a
simple version of the relational algebra.

In Section 5 the main result, i.e., the completeness of QL, is proved. The nontrivial
part of the proof is in showing that a program in QL can reconstruct a data base up to
isomorphism by computing its set of automorphisms, and then, from this set, generate
the desired output.

In Section 6 we provide a useful generalization of the simple basic model, and prove
the appropriate generalized version of the main result.

2. DATA BASE QUERIES

DEFINITION. Let U denote a fixed countable set, called the universal domain. Let D C U
be finite and nonempty, and let R, ,..., R, for k > 0, be relations such that, for all i,
Iii C Dad. B = (D, R, ,..., Rk) is called a relational data base of type a (or data base for
short), where a = (a, , . . . , ak). Ri is said to be of rank a,; D is called the domain of B and
is also written D(B).

158 CI-IANDRA AND HAREL

Our formalism of data omits certain features that are often adopted in the literature.
These include data base dependencies and the use of different domains for each column
of a relation. However, features such as these can be viewed as merely restricting the
allowed data bases, and our results carry over directly to these cases.

DEFINITION. Two data bases of type a, B = (D, RI ,..., RK) and B’ = (D’, R; ,..., R;)
are said to be isomorphic by isomorphism h, (or h-isomorphic) written B eh B’, if
h: D -+ D’ is an isomorphism and h(RJ = R; for all i (i.e., h is one-one onto, and for
all i, (x1 , x2 ,..., x,,) E Ri iff (h(x,), h(x,),..., h(x,i)) E Ri). An important special case is
when B = B’. If B *h B then h is an automorphism on B.

DEFINITION. A data base query of type a (or 4”lery for short) is a partial function
giving, for each data base B of type a, an output (if any) which is a relation over D(B).
Formally, with -0~ denoting partial,

Q: (B 1 B is a data base of type a> --o+ u Z”‘,

where, if Q(B) is defined, Q(B) C D(B) f 3 or some j. A query Q is said to be computable
if Q is partial recursive and satisfies the following consistency criterion: if B wh B’ then
Q(B’) = h(Q(B)), i.e., Qpreserves isomorphisms.

EXAMPLES. Consider a data base B = (D, R) consisting of a single ternary relation R
whose columns correspond to employee name, employee age, and manager’s name. The query

the name of the$rst employee in the data base

is not consistent because the value depends on how the data base is stored. The query

the name(s) of the youngest employee(s)

is also not consistent because the date base does not have a relation giving the total ordering
on employee age. This second query, however, is a reasonable query to ask, and in Section 6
we extend our notion of consistency to handle queries such as this one. Finally, the query

the names of those managers for whom the number of employees they directly manage,
encodes a true statement of jirst order arithmetic

is consistent but not computable because the set of true statements of arithmetic is
not even recursively enumerable.

The set of computable queries satisfies the principles postulated in [4, 51, namely, that
the result of a query should be independent of the representation of the data in a data
base and should treat the elements of the data base as uninterpreted objects. Also, we will
see in Section 3 that our consistency criterion is the appropriate generalization of the
condition appearing in [5,22]. There, the outcome of a query Q (which is the subject matter
of [5, 221, not the query itself as a function) is to have the property that it cannot distin-

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 159

guish between tuples which are “equivalent” as far as the data base B is concerned. In
other words, if B +-+h B, then (dr ,..., di) E Q(B) iff (h(d,) ,..., h(d,)) E Q(B).

Although our constraints on a computable query seem to be necessary for it to be
“reasonable” it is not intuitively clear whether or not additional ones are also called for.
However, we wish to enforce our belief in the sufficiency of these constraints, and hence
to substantiate our argument that the set of computable queries plays a role in relational
data bases analogous to the role played by the set of partial recursive functions in the
framework of the natural numbers. Accordingly, in Section 4 we define an operationally
computable data base query language and show that it expresses precisely the set of
computable queries.

3. QUERY LANGUAGES AND THEIR COMPLETENESS

Now that we have defined data bases, queries and computable queries, we can turn to
the issue of designing languages for expressing queries.

We will think of a query language as consisting of a set L of expressions and a meaning
function M, such that for any expression E EL and for any data base B, the meaning of E
in B, denoted by M,(B), is either undefined, or is a relation over D(B).

Throughout, for convenience, we assume that for any data base B each query language
has at least one expression E for which M,(B) is undefined. (This can be achieved, e.g.,
by letting the meaning of an expression referring to more relations than the data base has,
be undefined.)

As examples of query languages one might consider the relational algebra and (first-
order) relational calculus of Codd [8]. Using the definitions appearing in [22] and [5],
respectively, the following are expressions on these languages:

(1) WI ” R2) x R&2=5) I

(2) (%(x1 7 x2) ” R‘&, ,x2>> * R&2 > x4 > x5) A x2 = x5 *

Given a data base B = (D, R, , R, , RS) of type (2,2,3), the meaning of both these
expressions is the relation consisting of all 5-tuples over D whose first two components
form a pair in either R, or R, , whose last three components form a tuple in R, , and whose
second and fifth components are equal (i.e., the same element of D). We do not further
define these languages here.

DEFINITION. An expression E in a query language expresses the query Q of type a if for
each data base of type a, either both n/l,(B) and Q(B) are undefined or else M,(B) = Q(B).
We write

O’BKME@) = Q(B)),

where B is understood to range over data bases of type a.

DEFINITION. A query language is bounded if its expressions express only computable
queries. It is expressive if every computable query is expressed by some expression. A query

160 CHANDRA AND HAREI.

language is complete if it is both bounded and expressive, i.e., it expresses exactly the set
of computable queries. These definitions for boundedness and expressiveness can
respectively be formalized as

where a ranges over types, E ranges over expressions in the language and Q and B
respectively range over computable queries and data bases, both of type a.

There have been at least two other definitions of completeness in the literature, both
of which turn out to be different from ours, and their expressiveness components turn
out to be strictly weaker than ours.

DEFINITION (Codd [8]). A query language is C-bounded if it is no more expressive
than the relational calculus, it is C-expressiwe if it is at least as expressive as the relational
calculus and it is C-complete if it is both C-bounded and C-expressive. (Here, language L
is at least as expressive as L’ ifL can express any query that L’ can.)

A note on notation. Codd used the term “complete” for our C-expressive and it is
in this sense that the term is usually used in the literature. However, there has been some
confusion even about the precise formulation of Codd’s definition (e.g., the differences
between the C-version and the BP-version, see below). We have adopted a slight change
in terminology in order to maintain consistency between the terms “expressive,”
“bounded” and “complete,” and because we feel that our definition of completeness is
perhaps a more natural one.

Codd [8] showed that the relational algebra is C-expressive. Trivially it is also C-
bounded; hence, C-complete. Aho and Ullman [4] have shown, however, that there are
computable queries which are not expressible in the relational calculus or algebra.
Consider the query transitive closure of type a = (2), defined as

TC(B) = R*

for B = (D, R), where R is a binary relation over D and R* is its reflexive and transitive
closure.

THEOREM 3.1. (Aho and Ullman [4]). 7% ere is no expression in Codd’s relational algebra
which expresses the query TC.

Observing that TC is a computable query we can conclude

COROLLARY 3.2. Neither the relational algebra nor the relational calculus is expressive
(0~ complete).

Thus, although an expressive query language is also C-expressive, the converse fails.
Likewise, a C-bounded query language is also bounded but not vice versa. See Fig. 1.

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 161

In order to introduce the second definition of completeness, taken from Bancilhon [5],
we define, for a data base B, the set of relations consistent with it in the sense of the
consistency criterion of the previous section. Define

IB = {R 1 R C D(B)” for some m, and whenever B +% B, R = h(R)}.

DEFINITION (Bancilhon [5]; see also Paredaens [22]). A query language is BP-
bounded if for every data base B and expression E, either M,(B) is undefined or ME(B) E
IB . It is BP-expressive if for every data base B and for every R E I, there are expressions E,
E’ such that Me(B) = R, and M,(B) is undefined. A query language is BP-complete if it
is both BP-bounded and BP-expressive.

Bancilhon [5] and Paredaens [22] proved, respectively, that the relational calculus and
relational algebra are BP-complete. (It has been pointed out to us by L. Marcus and these
results also follow directly from known facts in model theory. Bancilhon’s result, in that
framework, states that a relation is first-order definable in a finite structure iff it is invariant
under the automorphisms of that structure.) Bancilhon used the word “complete” for our
BP-expressiveness. Paredaens, on the other hand, did not use the term completeness,
but rather regarded his results as a characterization of the power of the relational algebra
to express relations. In order to better see the connection with our own definitions, we
show

LEMMA 3.3. A query language is BP-complete if% using the notation of (*),

and
W WE) (W PQ) (MD) = Q!(B)),
(W (VQ) VW W) PEW = Q(B)),

(**)

the jirst line asserting BP-boundedness and the second BP-expressiveness.

Proof. We prove that the second line of (**) asserts BP-expressiveness. The proof of
the other claim is similar. Assume L is BP-expressive and let Q and B be a computable
query and a data base, respectively, of type a. By the definition of a computable query
Q(B) is either undefined or is in I, . In the former case take E to be an expression such
that M,(B) is undefined, and in the latter take E to be the expression existing by the
assumption.

Conversely, assume the second line of (**) and let R E 1, for some data base B of type
a. Define the query Q of type a as

QW = h(R) if h is a function such that B +% B’,

= undefined if B and B’ are non-isomorphic.

It can be shown that this definition is sound; in particular if B tih B’ and Bc~~’ B’
then h(R) = h’(R). Clearly, Q is a computable query with R = Q(B) and by the second
line of (**) there is an E such that M,(B) = Q(B) = R. The existence of E’ follows from
(**) and the computable query that is undefined on B. 1

162 CHANDRA AND HAREL

C-bounded

IJ
bounded

If
BP-bounded

C-expressive

BP-expressive

FIGURE

Comparing (*) with (* *), BP-completeness can be seen to be a measure of the power
of a language to express relations (as nicely captured by the title of [22]) and not of its
power to express functions having relations as outputs, i.e., queries.

The notion of BP-boundedness is not restrictive enough for queries, in that a query
language can contain expressions that are not partial recursive and still be BP-bounded.
For example, consider the relational calculus augmented with the expression E,, , whose
meaning is given by

ME,,@) = {> if the kth Turing Machine halts on input K, where K = 1 D(B)I,

= a>> otherwise.

ME, is not partial recursive but the language is BP-bounded. Also, the notion of BP-
expressiveness is fairly weak for queries. One can define a query language, each expression
of which has the property that its meaning is defined only for data bases of some fixed
size. This language will clearly be neither expressive nor C-expressive, but can be made
to be BP-expressive. For example, consider expressions of the form (E, K), where E is an
expression of the relational calculus and K > 0, with meaning given by

Mw(B) = ME(B) if R = 1 D(B)],
= undefined otherwise.

Thus, if a query language is bounded it is also BP-bounded but not vice versa, and if a
query language is expressive it is also BP-expressive but not vice versa. See Fig. 1.

Our choice of a stronger notion of expressiveness, and hence of a different notion of
completeness, cannot be justified solely on the basis of it apparently being a more natural
one for queries (as opposed to relations), but must be accompanied by a feasibly “com-
putable” language which is indeed complete in our sense. In the next section we supply
such a language.

4. THE QUERY LANGUAGE QL

The language we define (QJ~) is essentially a programming language computing finite
relations over some domain. Its access to a given data base, however, is only through a
restricted set of operations: equality, complementation, intersection, a test for emptiness,

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 163

and simplified versions of projection and Cartesian product, The ability to simulate
arbitrary Turing machines is an important consequence of this choice. Let us now define
QL more formally.

Syntax

y1 , yz ,... are variables in QL. The set of terms of QL is defined inductively as follows:

(I) E is a term, and for i 3 1, rel, and yi are terms.

(2) For any terms e and e’,

(e n e’), (7e), (eJ), (et), and (e-) are terms.

The set ofprograms of QL is defined inductively as follows:

(1) yi c e is a program for a term e and i 2 1.

(2) For programs P and P’

(P; P’) and while yi do P

are programs.

Semantics

Given a data base B = (D, RI ,..., Rk) of type a = (al ,..., a,), terms of QL take on
values which are relations over D = D(B). For technical reasons it will be convenient to
associate a rank, rank(e), with each term e, forcing us to distinguish between empty
relations of various ranks. Thus, if rank(e) = i, i > 0, then e is either a nonempty subset
of Di or the empty set of rank i, +. For example, there are precisely two relations of
rank 0, (b” and {()I, the latter being Do. Denote by EX, the set of all relations over D of
rank i, in the above sense, and let EX+ denote {$O}.

The term E, equality, is a fixed relation in EX, given by E = ((d, d) 1 d E D}.
The value of rel, is given by

rel, = Ri , i < k,

= 4J07 i>k

and is thus either of rank ai or of rank 0.
n is a binary operator on relations having the standard value (intersection) when both

its arguments are of rank i (9 if the intersection is empty) and 4” otherwise. ?, 4, t, and -
are unary operators on relations acting as follows:

, : E& + EXi , complementation, is given by

7e = Di - e.

J: EX, --f EX’,-, , projecting out the first coordinate, is given by

e j = {(d, ,..., di) j (dl ,..., di) E e}.

164 CHANDRAANDHAREL

t: EXi ---f EX,,, , projecting in on the right, is given by

et = ((dl ,..., di , d) 1 d E D, (dl ,..., dJ E e}.

N: EXi + EX, , exchanging the two rightmost coordinates, is given by

e- = {(d, ,..., L2 , 4, did I (4 ,..., 4) Eel, i > 1,

e, i < 1.

Note the following: -,(P) = @, eJ = (0) ‘f 1 rank(e) = 1 and e # 4l, (4”’ l)J = @,
+sJ = Co, @T = fl+l, and {()}t = EJ, = D.

Programs in QL act in the obvious way; all variables are initialized to do, and the test yi
in the while do construct is true iff the value of yi is empty, i.e., $j for some i.

Given a program P and a data base B, the value of P in B, M’,(B), or P(B) for con-
venience, is undefined if P does not terminate, and is otherwise defined to be the value
of the variable yr upon termination (ify, has the value @ then the output is the empty set;
the rank of empty sets is irrelevant as far as the output behavior of queries and programs
is concerned). Given a query Q of type a, we know from Section 3 what it means for a
program P to express Q. P expresses Q (we will also say computes Q) if for every data
base of type a, P(B) = Q(B), i.e., either P(B) and Q(B) are both undefined or P(B) L=

Q(B).
Our main result, to be proved in the next section is

THEOREM 4. I. QL is complete.

For the proof we will need the fact that several conventional operations on relations
are expressible in QL. Observe first that in effect we have counters. E&J, which is (()},
plays the role of 0, and if e plays the role of the natural number i then ef and e$ play the
roles of i + 1 and i - 1, respectively. (Counters need never attempt to substract 1
from 0.) Testing whether e is “equal” to 0 is accomplished by testing e$ for emptiness.
Note that this gives QL the power of general Turing machines (cf. [18]). Hence in the
sequel, we will use n, m..., in programs to denote natural numbers, and will freely use
Turing machine terminology.

An ;fyi then P else P’ construct can be simulated by the following program (assuming
that yz and ys do not appear in P or P’).

Y2'Ydi ~3 +- E&U;
while y2 do(P; y2 + B, y3 + E);
while y3 do (P’; y3 +- E).

The reader should also be convinced that we can simulate the test “non-empty” using the
if and while constructs. Denote ’ ‘yi non-empty” by yi .

Now we show how to compute, in n, the value yank(e):

if e then yl +- ?e else yl t e;

n+O;whiZey,do(y,ty,J;ntn+ 1);
?I+--n-1.

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 165

The following abbreviation is useful. Define e(t-)” to be the value of ys in the program

y2 +- e;

whikn #Od~(y,t((y~~)~);ntn- 1)

in other words e(t-)” is e with rz columns projected in to the left of the rightmost column.
(We will use similar notations for single connectives, e.g. e(p).)

Now, we can project in on the left of a relation, an operation we denote by te:

y1 + 4; n +- rank(e);

whirk n # 0 do (y2 + E(+)rank(e);

Yl +- (Yl? nr2u;

n +- n - 1).

It may be checked that this program generates the desired result. We can now compute
the Cartesian product of two relations, i.e.,

el x e2

This is done by

Yl +- M
rankbe)) n (yank’““) e2).

It should be clear that one can also compute the generalizedprojection of e,

e[il,...,ipl = We,-., dipI I (4 ,..., 4J E 4,

where for all 1 < j < p, ii < rank(e) = m. In order to do this, observe that,

As an example of a naturally arising query, consider again the transitive closure. The
following program, in which -(7e1 n 7e2) is abbreviated by e, u e2 , computes TC:

y1+ E; y2 + 4; Y~+E"Y~; y4+ -dny2;

while y4 do (y1 + y3;

~3 +- ~3 ” (((ys x ~2) n t%1,41);

y4 + 7~1 n Y&

It is clear that no power is lost if, in QL, the t, 4, and N operators are replaced by
Cartesian product and generalized projections. Thus, the reader might want to regard our
language QL as being, in a sense, the “closure” of the relational algebra [S] under
sequencing and iteration, with the ability to test for emptiness. R. Parikh has pointed out

166 CHANDRA AND HAREL

to us that a language as powerful as ours can be obtained in a similar fashion from the
relational calculus by “closing” it under a certain kind of infinitary quantification. This
remark, upon which we do not further dwell here is reminiscent of the use of infinitary
logic to reason about dynamic situations such as those involved in proving the correctness
of programs. See [15].

We now argue that in a sense our language is minimal, i.e., that no constructs of QL
can be eliminated without weakening its power. As we have remarked, QL without the
while statements has no more power than the relational algebra, and hence, by Corollary
3.2 is weaker than QL. Also it is clear that without assignments the language can only
compute the empty set. We leave to the reader the task of showing that the composition
operator on programs, I‘;“, cannot be eliminated, as is the case with the equality relation E.
We now show that none of the operators on terms can be eliminated.

ForSE{n, ?, J, t,-}, let QL6 be the language obtained by omitting, from the defini-
tion of the terms of QL, the clause corresponding to 6. Let “<” stand for “strictly
weaker in expressive power.”

LEMMA 4.1. For every S E (n, 7, 4, t, -}, QL, < QL.

Proof. For each such S we supply a data base B, and a relation R, , defining the query

Qs as

Q&4 = W.J ifB,+%B,

= undefined if B, and B are non-isomorphic.

From our choice of the B, and R, it will become clear that the Q6 are computable queries.
The claim is that for each S, there is no program in QL, which computes Q8 . First, though,
note that it is sufficient to prove that no term in QLLb has value R, when interpreted in B, .
The reason for this is that if a program P in QL6 computes Q6 , then P(B,) is defined and
by unravelling the while loops sufficiently, the “execution sequence” of P in B, can be
found and collapsed into one assignment of the form y1 +- e, for some (large) term e, with
the value of e being the value ofy, upon termination, i.e. R, .

We supply a proof that no term in QL, has value R, in B, only for S = N. The other
cases are either trivial or similar. The B,‘s are defined as

(4 B, = (h, 6, NJ))); 4, = ((6, @I.

In other words, B, is a data base with domain {a, b} and the single-tuple unary relation
{(b)}. The intuition here is that without intersecting with E, there is no way of “doubling”
the element b.

(ii) B, = ({a, 4); R7 = ((a, b), (6, 4.

B, has no relations (or to fit into the strict definition of a data base (D, RI ,..., R,) with
K > 0 we would let R, = E be its single relation). The intuition is that complementation
is the only way to get rid of the equality pairs (b, 6) and (a, a).

(iii) B, = ({a>); R, = ((a)}.

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 167

B, is the trivial data base with a l-element domain and no relations. The intuition is
that no unary relation is expressible without J.

(4 4 = (W; fh = {(a, a, 41.

Similarly, without T no relation of rank 3 is expressible.

(v) Ba = ({a, b}); R, = {(a, b, 4, (h a> b), (a, a, a), (6, 4 43.

R, is in fact (in QL) ET-. We have to prove that no term in QL, has value R, . Define

A = {cf, Di}:=“=, u {E x Di, -,(E x IY)}:“=, .

First, note that the only relations of rank 3 in A are +3, D3, E x D, and 7(E x D), none
of which is equal to R, . Thus, R, E A. However, we now show that the value (in B,)
of any term e in QL, , is in A. This is done by induction on the structure of e: E and
rel, , for any i, are in A. A is clearly closed under complementation. Also, DiflJ. = Di,
Dit = Difl, (E x Di)J, = Di+l, (E x Di)T = E x Di+l, and similarly for their
complements. Thus A is also closed under T and 4. Finally, if e = e’ n e”, then e’
and e” are either of different ranks, in which case e = do E A, or elselthe intersection is
trivial in the sense that e is either one of e’ or e”, or else is @. Thus, A is closed under
intersection, and the claim is proved. 1

To summarize, we can extend our notation of QLs to include assignments, composition,
while statements, etc., obtaining

THEOREM 4.2. For every 6 E {E, rel, , yi ,;, c, while, n 7, j, f, -1, QL6 < QL.

We refer the reader at this point to Aho and Ullman [4], where it is suggested that the
deficiency of the relational algebra expressed in Theorem 3.1 be remedied by augmenting
that language with a least-fixpoint operator on monotonic functionals over relations. The
transitive closure TC can then be expressed. We show in [25] that such a language is not
complete. Another point raised in [4] is that of allowing some predicates and constants
over the domain to be fixed by the isomorphisms of a data base when considering a
candidate query for consistency. This issue is dealt with in an extension to our basic
notion of a data base, in Section 6.

We now turn to the proof of Theorem 4.1.

5. PROOF OF THEOREM 4.1

It is straightforward to show that QL is bounded: given a program P and query Q of
type a such that P computes Q, it is obvious that Q is partial recursive. Furthermore,
to see that Q preserves isomorphisms, consider the simultaneous behaviors of P on two
h-isomorphic data bases B and B’ of type a. One can easily show that all expressions of QL
preserve isomorphism (an isomorphism on empty sets preserves their rank). For example,
if e, and e2 are, respectively, h-isomorphic to e; and ei , then e, n e2 is h-isomorphic

168 CHANDRAAND HAREL

to e; n el . Also, if e and e’ are h-isomorphic then e is empty iff e’ is. Hence, tests evaluate
to the same truth values in both computations and it is clear, therefore, that P(B) is
defined iff P(E) is, and that if both are defined then P(B) and P(E) are h-isomorphic.l

Turning to the other direction, i.e., expressiveness, let Q be a computable query of
type a = (a1 ,..., ale). We will describe the construction of a program P, such that PO
computes Q. The computation of P, , given an input data base B of type a, will consist
of the following four main steps:

(1) Compute the set of automorphisms of B.

(2) Compute an internal, “model” data base BN isomorphic to B.

(3) Compute Q(BN) using the Turing machine capability.

(4) Compute Q(B) f rom Q(BN) using the set of automorphisms computed in step 1.

In order to be able to spell out this process more precisely and show how to program
it in QL, we will need some additional notation. Let B = (D, RI ,..., RJ be a data base
of type a. Let 71 = 1 D 1, and denote by perm(D) the n-ary relation over D consisting of
all permutations of the 71 elements of D. Assume, without loss of generality, that
{I, 2, 3)... } c u.

Now, let d = (dl ,..., d,) be some tuple of perm(D), i.e., d is some ordering of D. For
R C Dr denote by R/d the index set

((4 ,..., 4 I (4, ,..., 4J E RI.

We note that two different elements, d and d’, of perm(D) may give rise to the same index
set. Accordingly, define d wR d’ iff R/d = R/d’. It is clear that wR is an equivalence
relation. The equivalence class of d with respect to wR will be called (following [22])
the cogroup of R via d

CG,(R) = {d’ 1 d’ Eperm(D) A d -R d’},

= W(,) ,..., dad I a! is a permutation of {l,..., n} and

R = {(4(il) ,..., 4x(,,,) I (4, >..., 4,) E 4).

Observe that CG,(R)/d gives the indices corresponding to the permutations of D which
preserve R. Also, note that d E CG,(R).

EXAMPLE. Let d = (4 , 4,4,4) and R = ((4 , 4, (4, 4>, (4, 4, (4,4)>.
Then R/d = {(I, 2), (2, I), (3, 3), (4,4)) and CGd(R)/d = {(I, 2, 3, 4), (2, 1, 3, 4), (1, 2,
4, 3), (2, 1, 4, 3)).

Now, for our data base B = (D, RI ,..., R,), let CGdB abbreviate nr(d&k CG,(R,).
Certainly CG/ C perm(D), and CGdBId can be thought of aa representing the set of
automorphisms of D relative to the ordering d, which preserve the relations of B. Here
too, note that d E CGdB.

1 This argument is analogous to Theorem 1 of [S] and Lemma 2 of [22] in which, respectively,
the constructs of Codd’s [8] relational calculus and algebra were shown to preserve automorphisms.

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 169

We now give a more precise description of the four steps of the computation of P, on
input B (describing how to program these steps in QL will be done below).

(1) Compute CGdB for some d E perm(D). (CG,s is an n-ary relation over D.)

(2) Compute and “store on tape” the data base

B,v = ((1,2,..., 4, WA..., R,ld)

(Each RJd is an a,-ary relation over (1, 2,..., rz}.)

(3) Compute, using the Turing machine capability, the value Q(BN) of the given
function Q applied to the argument B, . (Q(BN) is, say, an m-ary relation over { 1, 2 ,..., rz}.)

(4) Compute (in yi)

s= (,J (CGct%j,....,i,~ .

(S is an m-ary relation over D.)

Step 3 makes the execution of P, depend on the given computable query Q. The fact
that Q is partial recursive is what enables the “Turing machine part” of QL to carry out
this step, and the fact that Q preserves isomorphisms will be essential in establishing that
S = Q(B). Note that if Q(BN) is undefined the Turing machine will not halt and P,(B)
will be undefined too.

LEMMA 5.1. Q(B) C S, where S is as described above.

Proof. We will show that in fact Q(B) corresponds to a very “small” part of S, namely
that part obtained by replacing the relation CGdB in the definition of S by the singleton
{(d, ,...I 48, a subrelation of CGdB. Indeed, we now show that

Q(B) = Wj, ,..., 4,) I (iI ,...A> EQ(BN)J

First, observe that BN -h B, where for 1 < i < n, h(i) = di . This follows immediately
from the definition of R/d. Hence since Q is a computable query, we must have Q(BN) ~9

Q(B), or h(Q(%)) = Q(B), h h P w ic is recisely what was required. 0

LEMMA 5.2. S C Q(B), where S is as described above.

Proof. Lets = (si ,..., s,) E S. Then there is (j, ,..., jm) E Q(BN) and (d,,,) ,..., da(,)) E
CGdB, such that for 1 < i < m, si = dutii) . We show that (dq ,..., d,(,,,) EQ(B). Note
that, by definition of CG, s B +P’ B, where ol’(dJ = dafi) . It follows that ol’(Q(B)) = ,
Q(B) or that (djl ,..., djm) E Q(B) iff (d,til) ,..., d,tjm)) E Q(B). But (j, ,..., j,) being in
Q(BN) by assumption, implies (dil ,..., d,,) E Q(B) by the characterization of Q(B) in
the proof of Lemma 5.1. 1

Hence we have established that the above four steps, if executed, correctly compute
Q(B). We now set out to show how (l)-(4) can be programmed in QL.

571/21/2-2

170 CHANDRA AND HAFtEL

We first show how to compute perm(D) in some variable, say ys , and simultaneously
compute n = 1 D / in a “numerical” variable n. For any expression e and 1 < i < j <
rank(e), denote by e(,+j) the expression

e n -,(Di-1 x ,Jj’(t-)U-i-1) x Drank(e)-j).

Thus, e(i+;i) contains all tuples in e for which the elements in the ith andjth positions are
unequal. (The same expression, but without the “--,“, is denoted e(,,9,). Denote by et,)
the relation obtained by executing

y + e;
for all 1 < i < j < rank(e) do

Y +- Y(W) 9

where y is a suitable new variable. Certainly this is programmable in QL. Nowperm(D)
and n are calculated by

n t 0; y2 t EJ;

whileP2 do (y3 +y2?;y2 +-Y~(#); n+-n + ~);Y~+-Y~&

We now show how to calculate CGdB in QL, for some d Epttrm(D). Let N = {I, 2,..., n}.
Consider the function $(V, r, R, X), where V C perm(D), R C Dr and X C NT, defined
as follows:

+(V, r, R X) = 4’ if Qd 6 V, X # R/d,

= CG,(R) n V if X = R/d, dE V.

Assume for the moment that we can compute #. The way in which CGdB is computed,
for some d eperm(D), is by utilizing the Turing machine power of QL to cycle through
all possible choices of a set {X1 , . . . , X,} where, for each i, Xi C N”i. For each such choice
the following program is executed:

y3 + pm(D);
foralll <i<kdoy,+-$(y3,ai,Ri,XJ

and upon its completion y3 is tested for emptiness. It is easy to see that y3 is nonempty
(i.e., Qj , y3 f @) iff for some d eperm(D), Xi = R,/d for every 1 < i < k. In fact, y3
will then have the value (. . . @urn(D) n CG,(R,)) n CG,(R,)) n ... n CG,(R,)) =
CG/. Moreover, cycling through all possibilities of {X, ,..., X,} must result in our
falling upon a nonempty y3 . Note that the “successful” set {X1 ,..., X,) is that required
in step (2) of the computation of PO , so that it can be essentially stored on tape and used
for step (3).

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 171

Turning now to #, given V and R as relations, we show that the following program
computes I/I(V, r, R, X) in ya . (A s earlier, the reader should convince himself that (***)
can be programmed in QL.)

y3 - v;

for all (il ,..., iv) E N’ do

(;f (4 ,..., i,.)EXthetty,+-R xy3

else y4 +- --,I? x y3;

for all 1 d j < Y do y4 + y4(icr+i,);

Y3 - Y4(t’n

(***I

For each element of X (respectively of TX), (***) eliminates from I/ all permutations
with which no tuple of R (respectively of T R) is consistent. Denote by T the final value
of y3 in (* * *). Noting that T C V, we now prove the following two lemmas which serve
to establish the validity of (***):

LEMMA 5.3. If X # Rldfor every d E V, then T = @.

Proof. Let d = (dl ,..., d,) E T. We show that X = R/d. Let (i1 ,..., i,) E X. We have
to show (il ,..., i,) E R/d, or equivalently (dit ,..., diF) E R. In order to be in T, d had to
“survive” each execution of the body of the main loop of (* * *). In particular, d had to be
left in y4, concatenated with come element (d,o ,..., d,(,,) of R, and such that for all
1 < j < Y, d,tj, = dii . But this implies (dil ,..., dir) E R.

Conversely, let (il ,..., i,) E R/d, or (dil ,..., dit) E R. Using a similar argument, if
(4 ,..., i,) $ X, then dwould have survived the inner loop of (***) with the given (i1 ,..., i,),
from which it would follow that (dil ,..., dir) 4 R. 1

LEMMA 5.4. If X = R/d and d E V then T = CG,(R) n V.

Proof. Assuming that X = R/d for some d = (dl ,..., d,) E V, we first let d’ =
(4(l) >..., de(,)) E T and show that d wR d’. By our assumption we need only show that
X = R/d’. Indeed, if (i1 ,..., iT) E X then the appropriate inner loop of (* * *) with (il , . . . , i,)
would have eliminated d’ fromy, if it were not the case that (d,q ,..., d,cir,) E R. But this
implies that (ir ,..., i,) E R/d’. Conversely, if (i1 ,..., i,.) E R/d’ then (d+ ,..., d,ci>) E R,
and similarly, if (il ,..., ir) # X then we would have eliminated d’ in the inner loop of (* * *)
with (il ,..., i,).

For the other direction, let R/d’ = X. We have to show that d’ E T. The reader should
be able to use arguments similar to the previous ones in order to show that if d’ was
eliminated in a “positive” inner loop, i.e., where (il ,..., i,) E X, then (il ,..., i,) #R/d’,
and if d’ was eliminated in a “negative” one, i.e., where (il ,..., i,) 6 X, then (il ,..., iv) E
R/d’, in both cases a contradiction to X = R/d. 1

To complete the proof of Theorem 4.1, note that S of step (4) in the computation of P,
is easily programmed in QL using the computed CGdB and the program described earlier
for the generalized projection operator.

172 CHANDFU AND HAFZEL

6. THE EXTENDED QUERY LANGUAGE EQL

When relational data bases are used in practice, several operations outside the formal
relational framework are useful. Consider the query “sum the salaries of all employees.”
Answering this query requires the ability to recognize numbers in the data base, to add,
and to produce a number as output. Or consider the query “what is the length of the
longest name of a department.” Answering this query requires a length operator on
strings. The problem with these additional operations is that their results can be in a
potentially infinite domain. We abstract the essence of these additional operations to
produce the set of extended queries as follows.

In addition to the universal domain U, there is another countable, enumerable domain
F = {A, ,fi ,h v-1, where F n U = 4. F is intended to include interpreted features
such as numbers, strings (if needed), etc. An extended data base B = (D, RI ,..., R, ,
S 1 ,-.., S,) has a finite domain D C U, finite relations Ri on D u F, and operations &:
Dbi + F which serve to connect the “uninterpreted” domain D to the interpreted domain
F. Thus the requirement F n U = $ is not restrictive since if overlap is needed, F could
contain a “copy” which is obtained by applying an Si of rank 1 performing the “identity”
operation. The rank ai of relation Ri is (not a natural number but) a finite 0, 1 sequence,
with R, C 2,. , t where 2,. is defined recursively as follows

ZA =;o,, Z,, = D x Z, , Z,, = F x Z,.

The type of B is (al ,..., ak , 6, ,..., b,). It should be noted that the operations Si are not
really necessary in this formalism since they can simply be treated as relations Ri (see also
comment on functional dependencies in Section 7).

Two extended data bases B = (0, R, ,..., S, ,...) and B’ = (D’, RI ,..., S; ,...) of the
same type are said to be isomorphic by isomorphism h (or h-isomorphic, B ++h B’) if
h: D -+ D’ is an isomorphism and for all i, h(RJ = R; (where h is extended to be the
identity function on F) and h(SJ = Si (w h ere Si is treated as a relation for purposes
of applying h).

Let Y, be defined as was Z, but replacing D by (the universal domain) U. An extended
data base query of type a (extended query for short) is a partial function

Q: (B 1 B is a data base of type a> --o-f u 2’~
c

where, if Q(B) is defined, Q(B) C Z, for some c and Q(B) is finite. An extended query is
said to be computable if it is partial recursive and satisfies the consistency criterion: if
B ++lr B’ then Q(B’) = h(Q(B)).

EXAMPLES. The query

sum the salaries of all employees

can be modeled as follows. B = (D, R) where D is the set of employee names, F =
(0, 1, 2,...}, and R C D x F is of rank 01 and associates salaries with names. The desired

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 173

query has output E(Z,Z)ER i} and is a computable extended query. The same query could
also have been modeled by a data base B = (D, R, S’), where D is the set of employee
names and salaries (tagged to make them disjoint from F), F == (0, 1, 2,...}, R C D x D
is of rank 00 and associates salaries with names, and S: D -+ F maps salaries in D to the
corresponding values inF. The desired query has output (&.i)ER S(i)} and is a computable
extended query. In this data base, the query

output the names of people who make the highest salary

has output {X 1 3i. (x, i) E R A S(i) = Max{S(i) ((x,j) E R}} and is also a computable
extended query. An example in which S is not used merely for providing “copies” of
elements of D, is the query

length of the longest name of a department

in which S: D -+ F might associate with each department name, viewed as a string of
characters, its length. All other elements in the domain would be mapped to a special
element in F which may be called the “undefined” element.

We define the extended query language (.EQL) which contains the constructs ofQL:

E, reli , yi , n, 7, J, t, -, +-, ;, while.

In addition, terms in EQL can also be of the forms:

and

si(Y,)

f IIt
(el x ea), where e, , and ea are terms

(el u 4

(el - 4.

The semantics of EQL is the appropriate extension to that of QL. Values of variables have
ranks in (0, 1)“; variables are initialized to +^; le has value 2, - e, where e has rank c;
the value of el n ea is the set intersection of the values of e1 and ea if they have the same
rank, otherwise it is 4”; 1 as before projects out the first coordinate, and @./. = +^;
t maps 2, to Co, and projects in D to the right; and N interchanges the two rightmost
coordinates (the operators 7 and t are redundant in EQL). The new term f,, has value
{(fJ> if yi has rank O”, and has value 4” otherwise. Si(yj) has value (Si(x, ,..., x,) 1
(Xl >***, x,) E yj} if yj has rank 0” and bi = m, and has value $” otherwise. The terms
e, x ea , e, u es and e1 - es are respectively, cartesean product (function Y, x Yd + Y,.J,
set union and set difference (for u and -, if e, and es do not have the same rank, the value
is 4”). Programs yi +- e, (P; P’), and while yi do P have the obvious semantics.

THEOREM 6.1. EQL is complete in the extended sense, i.e., the set of queries computed by
programs in EQL is precisely the set of extended computable queries.

174 CHANDRA AND HAREL

Outline of Proof. As in the proof of Theorem 4.1, it may be seen that EQL computes
only extended computable queries: if program P computes query Q, then Q is partial
recursive, and by considering simultaneous executions of P on two h-isomorphic data
bases it is seen that the outputs, if any, are also h-isomorphic (recall that isomorphisms
induce the identity function on the interpreted domain F).

The proof for the other direction is also quite similar to the proof of Theorem 4.1.
Let (1, 2, 3 ,... } C U. For d = (dr ,..., d,) in perm(D) and R of rank c = clczI...c,. let

R/d = ((4 ,..., i,) I 3(gl ,..., gl.) E R. Vk. if cK = 0 then g, = di, else il, = glc}.

Note that R/d has the same rank as R. Given B = (D, RI ,..., R, , S, ,..., S,,J, S,/d is
defined as for Ri/d (treating Si as a relation) and is a function of the same rank as &;
d wR d’ iff R/d = R/d’, and CG,(R) is the equivalence class of d with respect to wR
(and likewise for an SJ. Also, let

CGdB = n CG,(R,) n n CG,(Si).
l<i<k l(i<m

Given a computable query Q, the program P, in EQL computes Q as follows:

(1) Compute CG,B for some d E perm(D).

(2) Compute the data base (n = 1 D 1)

BN = ({I, 2 ,..., n}, RI/d ,..., S,/d ,...).

(3) Compute, using the Turing machine capability of E&L, the value Q(BN).

Let the rank of Q(BN) be c = ci ,..., c, ,

(4) Compute (in YJ

s= u (CGB x ikl 9 g, ,...,gr)})[p1.....*,1 9

where if ci = 0 then qi = ji and gi = f. , otherwise qi = n + ji and gi = ji . Each term
in S is the set of all h(jl ,..., j,) where h is an automorphism on B.

Along the lines of Lemmas 5.1, 5.2 it can be shown that S = Q(B).
A program in EQL can enumerate the elements in the interpreted domain F, and

determine the set F’ of such elements occurring in the data base (the operators X, U,
and - are used for this). Steps (l), (2) b a ove, can be implemented as in Section 5 by
treating the extended data base as if it were a (nonextended) data base with domain
D u F’ with elements in F’ all being distinguished (e.g., by additional relations ((f)}
for each f EF’). Using the Turing machine capability, step (3) can be executed, and the
set F” of interpreted elements occurring in Q(BN) d e ermined. t The implementation of
step (4) then follows. 1

Other Extensions. It is sometimes desirable to have typed queries. For every data base,
the value of such a query is either undefined, or is a relation of a fixed given rank. If

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 175

a = (al)..., uk), and a’ > 0, a typed computable query Q of type a -+ a’ is a partial recursive
function mapping (nonextended) data bases of type a into relations (on the domain of the
data base) of rank a’, and which satisfies the consistency criterion (Section 2). Typed com-
putable queries form a subset of the computable queries. The query language QL may be
modified so as to compute precisely the typed computable queries as follows. The output
variable yr is given a special rank a’ and is initialized to the empty set of rank a’. The
semantics is changed so that any assignment yr +- e where e is an expression of rank a’
has the standard semantics. However, if e has any other rank, it assigns the empty relation
of rank a’ to y1 . Note that only the variable yr has a rank associated with it. It can
then be shown that this query language computes precisely the typed computable queries.
Similar restrictions can be imposed on the extended computable queries and the language
EQL to handle the case when part of the data is interpreted.

One advantage of typed queries is that a sequence of them can be combined to produce
a data base as output (as an alternative to a sequence of typed queries, one might just
modify the definition of a query, and the query language, so that a single query produces
a data base as output). Since data bases are both inputs and outputs of such sequences, the
sequences could be composed to develop an algebra of data base queries (see [25]).

A second extension is that any query could refer to a fixed number of elements in the
uninterpreted domain U (or in some subset of U). Consider, for example, a query like,
“give me the names of all faculty members in the Computer Sciences and Mathematics
departments”. Such a query treats the names “Mathematics” and “Computer Sciences”
as interpreted, but all other names in the data base, such as “Physics” or “Smith” as
uninterpreted. For any finite set of “constants” CC U, C = {cl , ca ,..., c,}, we can
define a query with C to be a partial recursive function which, for data bases B =
(Q R, ,..., R,), produces as output a relation on D u C, and preserves isomorphisms
on B, = (D u C, R, ,..., R, , {cl> ,..., {cm}). A query with constants is then a query with
C for some C. It is not hard to show that the set of queries with constants is exactly the
set of queries computed by the query language QL augmented such that {c} is also an
expression for every c E U. This exercise and the preceding one with extended queries
shows that while such extensions (and others like column headings and dependencies)
are useful for modelling real data bases and queries, they serve from a theoretical point
of view largely to obfuscate basic issues in data base queries (see also [24, 251). Typed
queries, however, are probably of greater theoretical interest.

Another extension to queries is to add nondeterminism. For example, queries such as
“give me the name of anyone in the Toy department” can be handled by having an EQL
program output the names of all employees in the Toy department, and then having a
“back end” choice operator that chooses an element (in general, a tuple) from this set of
elements (in general, from a relation). More general versions of nondeterminism, e.g.,
“give me any one in the Toy department, or the entire employee-manager relation”
require both a choice operator on relations as above (see also [l 11) as well as nondeter-
minism on the flow of control (see [lo] for a discussion of some primitives). In this case,
however, a reasonable definition of all nondeterministic computable queries is not known,
and remains a topic for future research.

A related extension is that of probabilistic choice. An example is where employees’

176 CHANDRA AND HAREL

salaries are randomly probed to estimate the average salary (see [20] for a general proba-
bilistic construct). Another extension is where a query language is augmented with user-
supplied procedures. In this case, the query can be thought of as a query schema, and
concepts from program schemata (see, e.g., [13, 171) could be used. These extensions
also remain largely unexplored.

7. DIRECTIONS FOR FUTURE WORK

Several interesting possibilities present themselves for further research. First, results
similar to ours can be proved for systems other than relational data bases. For example,
analogous results could be obtained for the hierarchical and network models of data bases.
Perhaps the most general framework is that of computable functions over arbitrary
algebraic structures [21]. Even for relational data bases, several constructs such as non-
determinism, probabilistic choice, and program schemata based queries remain largely
unexplored as mentioned in the preceding section. It should be noted, however, that our
results do apply to relational data bases on which certain constraints (such as functional
or multivalued dependencies [1, 6, 7, 161) are specified. Such data base definitions can be
thought of as defining a subset of our data bases, and as such, no additional queries can be
computed. The computable queries on such data bases are precisely the queries determined
by our query languages restricted to the applicable data bases.

A second research area is that of usable query languages which are complete. Our
language QL is intended to be a minimal language, and as such could be useful for proofs
in the theory of query languages but not for writing queries. This is analogous to the role
played by Turing machines in computability and complexity theory. Query languages that
are more powerful than first-order predicate calculus can be obtained by various
approaches, one of which involves embedding a query language such as Query-by-
Example or SQL into a programming language such as Cobol, PLjl , etc. (see, e.g., [19]). A
second approach is to add constructs such as summing a column in a relation, or obtaining
the length in bits, of a field [14], p o era ions that may (depending on the formalism) t
violate the consistency criterion. A third approach, suggested by [4] and indicated by our
results, is that of augmenting relational algebra or predicate calculus with constructs such
as transitive closure, fixpoint operators, while-do, or other programming features. This
seems to be a promising approach. A possible disadvantage, however, is that it might
be more difficult to produce efficient code as compared with the other two approaches.
Such questions of efficiency provide several interesting topics for research.

Perhaps of more interest to the theoretically inclined reader, the fundamental questions
of complexity theory should now be asked in the realm of relational data bases, with an
eye towards singling out those queries which are not only computable, but also tractable
or efficiently computable. One could start by providing, for queries, sensible definitions
of measures of time and space and perhaps other relevant measures of resources (such as
the number of times a data base access is required in the course of evaluating a query-
this, in a practical situation, being possibly of great importance since an action may require
physical manipulation such as disc seek and access). Then it would be of interest to check

COMPUTABLE QUERIES FOR RELATIONAL DATA BASES 177

the appropriateness of such definitions by observing whether certain complexity classes
of queries with respect to these measures are invariant within a large class of computational
models (our QL being perhaps one of those models). Are there naturally arising queries
which are, in one or more of the senses defined, provably intractable ? Are there interesting
classes of queries which arise naturally in practice and which are tractable ? A particular
open question: give a complexity-theoretic characterization of the first-order definable
queries. This question is not presented by virtue of it being particularly hard, but by
virtue of it being dependent for its solution on providing the right kinds of definitions.

For some purposes one might be interested in different kinds of subclasses of the class
of computable queries, say “monotonic” or “continuous” queries, i.e., ones which not
only preserve isomorphisms but which preserve small changes in data bases (that is, if B’
is obtained from B by, say, removing the record of one employee, then Q(E) should
be “close” to Q(B)). Are there simple query languages which are complete for classes
such as these ?

Some initial answers to these questions have been provided in [24, 251. We feel that
many other interesting questions await to be asked and answered.

REFERENCES

1. W. W. ARMSTRONG, Dependency structures of data base relationships, in “Proceedings, IFIP 74,”
North-Holland, Amsterdam, 1974, pp. 58@583.

2. A. V. AHO, C. BEERI, AND J. D. ULLMAN, The theory of joins in relational data bases, in “Proceed-
ings, 18th IEEE Symp. on Foundations of Computer Science, Providence, RI., Oct. 1977.”

3. A. V. Ano, Y. SAGIV, AND J. D. ULLMAN, Equivalences among relational expressions, SIAM
J. Comq~ut. 8, 2 (1978), 218-246.

4. A. V. AHO AND J. D. ULLMAN, Universality of data retrieval languages, in “Proceedings, 6th
ACM Symp. on Principles of Programming Languages, San-Antinio, Texas, Jan. 1979,”
pp. 1 lo-l 17.

5. F. BANCILHON, On the completeness of query languages for relational data bases, in “Proceed-
ings, 7th Symp. on Mathematical Foundations of Computer Science, Zakopane, Poland,
Sept. 1978,” Lecture Notes in Computer Science, Springer-Verlag, Berlin/New York/Heidel-
berg.

6. C. BEERI, R. FAGIN, AND J. H. HOWARD, A complete axiomatization for functiona! and multi-
valued dependencies in database relations, in “Proceedings, 1977 SIGMOD Conf.” (D.C.P.
Smith, Ed.), Toronto, pp. 47-61.

7. E. F. CODD, A Relational Model for Large Shared Data Bases. Comm. ACM 13, 6 (June 1970).
8. E. F. CODD, Relational completeness of data base sublanguages, in “Data Base Systems”

(Rustin, Ed.), Prentice-Hall, Englewood Cliffs, N. J., 1972.
9. D. D. CHAMBERLIN et al. SEQUEL 2: a unified approach to data definition, manipulation,

and control, IBM J. RES. Dev. 20, 6 (Nov. 1976), 560-575.
10. A. K. CHANDRA, Computable nondeterministic functions, in “Proceedings, 19th Ann. Symp.

on Foundations of Comp. Sci., Ann Arbor, Michigan, Oct. 1978,” pp. 127-131.
11. M. A. CASANOVA AND P. A. BERNSTEIN. The logic of a relational data manipulation language,

in “Proceedings, 6th ACM Symp. on Principles of Programming Languages, San Antonio,
Texas, Jan. 1979,” pp. 101-109.

12. A. K. CHANDRA AND P. M. MERLIN, Optimal implementation of conjunctive queries in relational
data bases, in “Proceedings, 9th ACM Symp. on Theory of Computing, Boulder, Colorado,
May 1977.”

178 CHANDRA AND HAREL

13. A. K. CHANDRA AND 2. MANNA, On the power of features in programming, J. Comput. Lang.
1, 3 (1975), 219-232.

14. H. W. DAVIS AND L. E. WINSLOW, “Recursion in Retrieval Languages,” technical report,
Computer Science Dept., Wright State University, Dayton, Ohio, 1979. Also, The retrieval
power of predicate calculus based query languages, in “Proceedings, ACM Computer Science
Conference, Dayton, Ohio, Feb. 1979.”

15. E. ENGELER, Algorithmic properties of structures, Math. Systems Theory 1 (1967), 183-195.
16. R. FAGIN, Multivalued dependencies and a new normal form for relational databases, ACM

Trans. Database Systems 2, 3 (Sept. 1977), 262-278.
17. S. A. GREIBACH, “Theory of Program Structures: Schemes, Semantics, Verification,” Lecture

Notes in Computer Science No. 36, Springer-Verlag, Berlin/New York/Heidelberg, 1975.
18. J. E. HOPCROFT AND J. D. ULLMAN, “Formal Languages and their Relation to Automata,”

Addison-Wesley, Reading, Mass., 1969.
19. IBM Manual SH20-2077-0. “Query By Example, Program Description/Operations Manual,”

(1978).
20. D. KOZEN, Semantics of probabilistic programs, in “Proceedings, 20th Ann. Symp. on Founda-

tions of Comp. Sci., San Juan, Puerto Rico, Oct. 1979,” pp. 101-114.
21. J. MOLDESTAD, V. STOLTENBERG-HANSEN, AND J. V. TUCKER, Finite algorithmic procedures

and inductive definability, Preprint Series, Matematisk Institutt, University of Oslo. May
1978.

22. J. PAREDAENS, On the expressive power of the relational algebra, Inform. Processing Lett.,
7, 2 (Feb. 1978).

23. M. ZLOOF, “Query-by-Example: Operations on the Transitive Closure,” RC5526, IBM
Research, Yorktown Heights, Oct. 1976.

24. A. K. CHANDRA, Programming primitives for database languages, in “Proceedings, 8th Symp.
on Principles of Programming Languages, Williamsburg, Virginia, Jan. 1981.”

25. A. K. CHANDRA AND D. HAREL, Structure and complexity of relational queries, in “Proceed-
ings, 21st Ann. Symp. on Foundations of Comp. Sci., Syracuse, New York, Oct. 1980,” pp.
333-347.

