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Proofs by Induction in Equational Theories with Constructors

Gérard HUET and Jean-Marie HULLOT

Résumé

Nous montrons comment faire des démonstrations (et des réfutations) -
d'identités dans 1'algébre initiale d'une variété, equationnelle, par une simple
extension de 1l'algorithme de complétion de Knuth et Bendix. Ceci nous permet de
démontrer par des méthodes &quationnelles des théorémes dont la preuve nécessite
d'ordinaire 1'utilisation d'un principe de récurrence. Nous montrons des ap-
plications de cette méthode 3 des preuves de programmes calculant sur des
structures de données récursives, et 2 des preuves de sommations algébriques.

Ce travail &tend et simplifie des résultats récents de Musser et de Goguen.

Abstract

We show how to prove (and disprove) theorems in the initial algebra
of an equational variety by a simple extension of the Knuth-Bendix completion
algorithm. This allows us to prove by purely equational reasoning theorems whose
proof usually requires induction. We show applications of this method to proofs
of programs computing over data structures, and to proofs of algebraic summation

identities. This work extends and simplifies recent results of Musser and Goguen.
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Abstract

We show how to prove (and disprove) theorems in
the initial algebra of an equational variety by a simple
extension of the Knuth-Bendix completion algorithm.
This allows us to prove by purely equational reason-
ing theorems whose proof usually requires induction.
We show applications of this method to proofs of pro-

- grams computing over data structures, and to proofs

of algebraic summation identities. This work extends
and simplifies recent results of Musser!s and Goguen®.

Introduction

We assume familiarity with the basic notions of
equational logic and term rewriting systems. See for
instance!!. For simplicity of notation, we assume we
have only one sort; all the results of this paper carry
over to many-sorted theories without difficulty.

A set of equations £ defines a variety, that is the
class of algebras which are models of the equations
considered as axioms. An equation M = N issaid to
be valid in this variety if it is true in all these models.
It is well known that this is equivalent to whether
M = N can be derived from £, using instantiation and
replacement of equals by equals. In the cases where
£ can be compiled iato 3 canonical term rewriting
system by the Knuth-Bendix completion algorithm!?,
we can decide this problem by testing for identity the
canonical forms of M and N.

Equations may also be used as definitions. This is
frequent in computer science: programs written in ap-
plicative programming languages, abstract interpreter
definitions and algebraic data type gpecifications are
of this nature. In this framework, one has in mind a
notion of standard model defined by these equations:
the initial algebra defined by the set of equations. Now
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we have lost the nice completeness property of equa-
tional logic: an equation M = N cannot in general be
proved to be valid (or invalid) in the initial algebra by
mere equational reasoning: some kind of induction is
necessary.

However, Musser has recently shown an interesting
theorem which may be roughly stated as follows: if the
set of equations considered contains the axiomatization
of an equality predicate, then an equation is valid in
the initial algebra if and only if adding it as an axiom
does not make the theory inconsistent (in the sense
that true = false is derivable). This permits proofs
(and disproofs) of equations without explicit induction.
The method was simplified by Goguen® and Huet and
Oppen'l.

We show in this paper that in the case where one
considers inductive definitions over free algebras, and
when the Knuth-Bendix completion algorithm conver-
ges, we can make these proofs by a very simple ex-
tension of the completion algorithm, and without the
need of an equality axiomatization. We show how the
method applies to proofs of simple properties and op-
timizations of primitive recursive programs over recur-
sively defined data structures. The inductive comple-
tion algorithm defined in the paper generates implicitly
the necessary instances of structural induction. The
method generalizes to commutative-associative theories,
and we show an application to proofs of algebraic sum-
mation identities. '

1. A Principle of Deflnition

The key of our method consists in partitioning
our function symbols between constructors and defined
function symbols, and to express the necessary relation-
ships between them via a principle of definition.

We assume given signature L. Every operator F in
T is given with its arity. The signature I is partitioned
as T = C & D. We call operators in C the constructors,
and members of D the defined operators. We assume
there are at least two constructors (for instance, true
and false).



Let T be the set of terms constructed {rom opera-
tors in T and variables in a given denumerable set
V. We use § to denote the set of ground terms,
i.e. containing no variables, and we assume § non-
empty. Finally we denote by §C the set of ground
terms formed solely from constructors.

Principle of Definition. Let & be a set of equations
over I, =¢ the corresponding congruence on 7. We
say that & defines D over C if and only if for every M
in 9 there exists a unique N in §C such that M =¢
N.

1t is convenient to express our principle of definition
as the conjunction of two properties:

(1) For every M in § there exists N in §C such that

M=¢N.

(2) For every M, N in §C we have M =¢ N ouly if

M=N.

When € satisfies (1), we shall use §C¢[M], for M
in G, todenote any N in §C such that M =¢ N. Note
that (1) implies that we have a constructor signature in
the sense of Goguen®, If £ satisfies {2) as well, §C¢ is a
function, and then the set §C can easily be made into a
E-algebra by associating with F of arity n the function
AM,..., M, .S5Ce|F(My,..., My)]. Morecver:

Lemma 1. If € satisfies the principle of definition, the
algebra SC is isomorphic to the initial algebra I(Z, &)

Proof. Follows directly from the fact that the initial
algebra is (isomorphic to) the quotient of G by =¢.
(See for instance®). B

2. Suflicient Conditions for Deciding the Definition
Principle

Let us consider sufficient conditions for our prin-
ciple of definition to hold. We shall from now on
regard our sets of equations (when possible) as sets of
(oriented) rewrite rules. We assume familiarity with
the terminology of term rewriting systems®!!. In par-
ticular, we recall that a canonical term rewriting sys-
tem is defined as being confluent (ie. to have the
Church-Rosser property) and ncetherian (i.e. all se-
quences of rewriting terminate).

Lemma 2. Let & be such that it defines a ncetherian
term rewriting system such that every term of the form
F(My, M3, ..., My), with F in D and My,..., M, in
6C, is reducible. Then £ satisfies (1).

Proof. Define §C¢|M], for M in §, as some &-normal
form of M. It is easy to show by structural induction
that any such normal form must be in 9C. 1§

There are several ways to give effective conditions
that are sufficient to entail the bypothesis of lemma 2.
We shall propose here one such condition; we recoin-
mend skipping the details of the next definition on a
first reading.

Definition. We define inductively what it means for
aset S = {S1,...,5p} of k-tuples of terms S =
(S},...,5% (1 < i< p)tobe complete for C. First
we require every variable of S; to occur in only one
occurrence. Then either k = 0,and § = {({}}, or else:
o either the set of k— 1-tuples {(S2,...,55) 1S} €V}
is complete,
e or else for every C in C, say of arity n, there is at
least one S} with leading function symbol C, and the
union of the two sets of n 4 k — 1-tuples
{(Py,...,PnS%...,80) | S} = C(Py,...,Pn)} and
{{z1,..2n, 53, ..., S5 | S} € V} is complete, where
the z.'s are new distinct variables not occurring in §.
Remark that this definition is well-founded, first
on the number of function symbols contained in §, and
second om k.

Example. With ¢ = {8§,0}, with § unary and 0 a
constant, the following set is complete for C:

{10, 5(z)), (z,0), (8(z), 8(0)), {(z), B(S(¥)) }-

Lemma 3. Let S ={S,...,Sp} be a set of k-tuples
of terms complete for C. For every k-tuple of ground
terms in 6C: (M, ..., My) there exist n, with 1 <
n < p, and a substitution o, such that for every ¢,
1 < ¢ < k, we have My = o(5%)-

Proof. Easy induction on the definition of complete.
K

This lemma permits us to state a sufficient condi-
tion for property (1), which we shall use in practice:

Lemmsa 4. Let & be a set of equations defining 8
necetherian term rewriting system such that, for every
F in D, there is in € a set of rewrite rules whose left-
hand sides are of the form F(S},...,8%), (1 <i < p),
and the set {Si,...,Sp} is complete for C. Then £
has property (1).

Proof. It is easy to show, using lemma 3, that the
assumption of the lemma implies that of lemma 2. §

Remark that if £ is finite and known to be ncethe-
rian, then the bypothesis of the lemma is 8 decidable
condition. Actually, when giving the definition of F
in D by cases on arguments constructed over C, one
naturally gets complete sets of arguments.

Finally we state a trivial sufficient condition for
property (2).



Lemma 5. Let & be a set of equations defining a
canonical term rewriting system such that every left-
hand side is of the form F(M,,...,M,) with F in D.
Then £ has property (2).

Proof. Since £ is canonical, we have M =¢ N if and
only if M| = N|, where M| denotes the canonical
form of M obtained by an arbitrary terminating se-
quence of rewritings by rules in €. If all left-hand sides
of equations in £ have their leading function symbol in
D, we have M| = M for every Min§C. 1

Putting togethér the two preceding lemmas gives a -

useful sufficient criterion for the principle of definition
to hold. For instance, any set of primitive recursive
definitions satisfies the hypotheses of lemmas 4 and 5.

Remark that if £ obeys the hypothesis of lemma
5, then the converse of lemma 2 holds: € satisfies
the definition principle if and only if §C is the sel
of £-normal forms, and then §C¢[M]is the canonical
form of M defined by &. However, the converse of
lemma 4 may not hold, since property (1) may be
the consequence of axioms in & whose left hand sides
contain multiple occurrences of a variable. We shall
return to this problem in section 5.

3. Structural Induction and the Principle of Deflnition

In this section, we shall show how our principle of
definition permits us to prove and disprove properties
of the standard model J(E, £). The next lemma shows
that the principle of definition is preserved by exten-
sion if and only if this extension is valid in the standard
model.

Lemma 6. Let £ satisly (1) above. Let £' be any set of
X-equations such that =;'is contained in =g Then
&! satisfies (2) if and only if:

a) € satisfies (2), and

b) every equation of &' holds in I(Z, £).

Proof. Obviously, &' satisfies (1), and it satisfies (2)
only if £ does too.

= Assume that &' satisfies (2) and that M = N in
&' does not hold in J(E, ). This means that for some
ground substitution o we have o(M) #¢ o(N). In
particular we get §Cclo(M)] # 9C¢lo(N)), although
§C¢lo(M)] =¢r SCelo(N)), a contradiction with (2)

“for &'

& If every equation of £’ holds in I(E, ), then for
every M,N in § we have M =g N if and only if
M =¢ N, and (2) for &' follows from (2) for £. &

The next three lemmas give technical properties
of equality in the standard model that are essential to
the proof of our completion algorithm.

Lemma7. Let M = C(Mj,..., M), N=C(Ny, ..+,
N,), with C inC. Let £ be a set of equations satislying
the principle of definition such that M =¢ N. Then
M; = N; holds in I(Z, €) for every i, 1 < i < n.

Proof. Let o be an arbitrary ground substitution, and
assume M =g N. We have
o(M) = C(o(M)),...,0(My))
=¢ C(o(Ny),...,0(Nn)) = o(N)
and by (1) we get
C(SCelo(My)), ..., 9Celo(Ma)))
= C(QCdO(Nl)},,QCCIU(N,.)]) '
which implies by (2) §Celo(My)] = §Celo(Ny)] for
every £, 1 < ¢ < n, and thus o(M;) =¢ o(N;). Since
this holds for every ground o, we get that M; = N;
holds in J(Z,€). 8 '

Corollary. With M and N as above, let £ containing
M = N and satisfying (1). Consider £' =& —{M =
NYU{M; = N;|1 < i< n}. Obviously =¢ is
contained in =g+ Now either & satisfies (2), in which
case I(X,&') = I(Z,£) by lemma 7, and &' satisfies
(2) by lemma 6, or else £' does not satisly (2).

Lemma 8. Let M = C(My,..., My), N = D(Ny,...,
N,), with C and D two distinct constructors. Let ¢ be
a set of equations satisfying (1) and such that M =¢
N. Then £ does not satisly (2). ,

Proof. Let o be any substitution substitutling ground
terms for every variable occurring in M or N. From
M =¢ N we get
U(M) = C(O(Ml); ee- 10(Mn))
=¢ D(a(Ny), ... 10(Np)) = o(N)
and therefore by (1)
C(QC[[U(Ml)], veey gCCIU(Mn)])
=¢ D(GC¢lo(Ny)], ..., GCelo(Np)])
a contradiction with (2). @

Lemma 9. Let M = C(M;,..., M,), with C in C,
and let N be a variable. Let £ be a set of equations
satisfying (1) and such that M =¢ N. Then £ does
not satisfy (2).

Proofl. Let o be-any substitution that replaces N by
a term whose leading function symbol is a constructor
distinct from C (Remember that we assume the exist-
ence of at least two constructors.) We have o(M) =¢
o(N), and the result follows from the preceding lemma
|

We are now ready to present our extension of the
Knuth-Bendix completion algorithm.

4, The Inductive Completion Algorithm

Let & satisfying the principle of definition, &' any
set of D-equations. Run the Knuth-Bendix completion



algorithm on & U &', with the following modifications.
We assume given a well-founded partial ordering on
terms >, compatible with the term structure and stable
by substitution, with which we prove the termination
of the successive sets of rewrite rules. We assume
familiarity with the Knuth-Bendix completion algo-
rithm, as presented for instance in Huet!®. The only
modification occurs in the step in which a pair of terms,
coming from either a simplified critical pair or a reduced
rewrite rule, is considered for orientation before being
added as a new rewrite rule. This step should be
modified as foliows, assuming that (M, N} is the cur-
rent candidate rewrite rule, with M # N.

- If M =C(M,...,M,;) withC in C, then:
- If N = C(Ny,...,N,) then replace the pair
by the n pairs (M, N;)
- IfN =D(Ny,...,Np), withD inC, D #C,
or N = z stop “disproof”
- Otherwise:
- If N > M, introduce new rule N -+ M
- Otherwise stop “failure”
- Otherwise:
- If N = C(Ny,...,N,) with C in C do symetri-
cally as above
- Otherwise:
- I M > N, introduce new rule M - N
- If N > M, introduce new rule N - M
- Otherwise stop “failure”. B

The new inductive completion algorithm may:
e stop with success, i.e. we gel a finite canonical
term rewriting system.

e stop with disproof.

o stop with failure, i.e. either the ordering > used
was inadequate to prove the termination of the set of
current rewrite rules, or this set is nonterminating, and
the method is therefore not applicable.

o run forever, generating an infinite set of rewrite
rules.

Theorem, If the algorithm stops with success, every
equation in &' holds in I(E,€). Furthermore, the
resulting cancnical term rewriting system satisfies the
principle of definition. If the algorithm stops with
disproof, some equation in £' does not hold in I(L, £).
Conversely, if some equation in £' does not hold in
I(Z, £), the algorithm stops with either disproof or
failure. :

Proof. From the lemmas above and the properties of
the Knuth-Bendix algorithm, as proved in Huet!%. 1}

Note that lemma 5 forbids us to introduce a left-
hand side whose main function symbol is a constructor.
This is necessary, as shown by the following example.
Let C = {A, B}, D = {C}, all symbols nullary. Let
£ ={C=A},and {'={C=B} With A > C
and B > C, the usual completion algorithm would
converge with the canonical set {A — C,B — C }.
The algorithm above would oblige us to use an ordering
such that C > A and C > B, would construct for £U
&' the term rewriting system {C — A,C — B}, and
the critical pair (A, B) would (correctly) force stopping
with disproof.

The theorem above was inspired by the work of
Musser!®, and its extensions in the taut presentations
of Goguen® and the s-separable theories of Huet and
Oppen'!. However, note that here no special equality
axioms are required.

5. General Organization of Inductive Proofs

Assume we are working in the initial theory I(E, ),
with T = C ¢ D. That is, we are interested in studying
properties of the objects freely constructed from mer-
bers of C, and to this end we have axiomatized the
operators of D using the equations in £ as recursive
definitions.

We check that every left-hand side of € is of the
form F(Mj,..., M,) with F € D, that £ is confluent,
ncetherian, and verifies the hypothesis of lemma 4.
These checks usually go together: if £ is a set of primi-
tive recursive-like definitions, it can be proved ncethe-
rian by a simple lexicographic ordering argument, every
defined function symbol has trivially a complete set of
arguments, and the set is confluent because there are
no critical pairs.

Now let &' be a set of equations which we conjec-
ture about the inductive theory above. We run the
inductive completion algorithm above, initializing the
set of rewrite rules to £ and the set of equations to ¢'.
If the algorithm stops with failure, nothing interesting
may be said. I it stops with disproof, some equation
from &' does not hold in the theory. If it stops with
success, generating a canonical set £, all of the equa-
tions from &' are true in I(Z,€) = I(T, €4), and fur-
thermore &; satisfies the definition principle. We may
therefore iterate the process, trying a new set of con-
jectures &', while profiting of the previously proved
conjectures as lemmas.

Let us now consider the situation when we want
to enrich our theory with new function symbols. First
of all, we remark that it would be unsound to add
new constructors, since a theory complete for C might
not be compleie for some extended C'. Furthermore



we may have proved some theorem valid in J(E, ¢)
which is not valid in the extended theory I(X',&').
For instance, with ¢ = {A,B} and £ = {F(4) =
A, F(B) = B} we may prove F(z) = z, but this
formula is not valid any more if we extend our theory
with constructor C and definition F(C) = A. We
shall therefore assume that our set of constructors C
is constant, and that we only permit to emrich our
signature by adding new defined function symbols. We
are sure this way that our extensions are mouotonous,
in the sense that any theorem proved in a theory is still
true in an extended theory, even if we do not keep it
around as a lemma.

Assume therefore that we are currently dealing
with a set of equations £ that is known to satisly
the definition principle, and that we are adding a new

function symbol F and some new definitions £'. How

do we know that £ U €' satisiies the definition prin-
cipla? Our problem is that £ itself may not satisly
the hypothesis of lemma 4, because { may be obtained
after some steps of compietion that may have desticyed
the completeness property. For instauce, consider ¢ =
{true,false}, D = {V}, £ = {trueV z =true,zV
true == true,false V false = felse}. If we attempt
to prove the theorem z V z = z using the compie-
tion algorithm, we shall stop with success, generating
the canonical set &' = {{rue vV z = true,z V true =
true,z V z = z}. This set is known to satisfy the
definition principle, but lemma 4 does not apply to it
any more, and therefore cannct be used to show that
some extension of it satisfies the definition pricciple for
an extended signature. However, the fcllowing slight
generalization of lemmas 4 and 5 will be encugh to tell
us how to enrich canonical theories while preserving
the definition principle.

Assume that £ obeys the hypothesis of lemma $
and is known to have property (1) relatively to a given
signature £ = C & D. Now assume we want to enrich
our theory by one more defined symbol F, i.e. we now
consider signature &' = C & (DU {#}). Copsider any
set ' obtained from € by adding a complete definition
for F, i.e. a set of equations with left-hand sides
of the form F(S},...,S7), the argument tupies Sy's
forming a complete set. If €’ is canonical, it satisfies
the principle of definition for the extended signature.
This way we know how to test the validity of our
definition principle in an incremental way. Actually,
remark that the process of epriching a theory, once
the completeness property has been checked, is exactly
the same as proving lemmas: it just consists in running
the completion algorithm. This is probably the most
surprising feature of our theorem-prover: we treat new
axioms and conjectures to be proven in exactly the

same manner.

In practice it will be useful to deal with sorted
theories. Over sorted theories, we shall be able to in-
troduce new constructors, provided we introduce at a
time all constructors of a given sort, and that none
of the symbols considered so far had arguments of
the new sort. For instance, we may consider intro-
ducing sort boolean with constructors true and false,
define certain boolean connectives and prove properties
about them, then introduce sort integer with con-
structors 0 and S, prove arithmetic properties, then in-
troduce list-of-integers with constructors Null
and List, etc...

The Appendix presents examples of proofs and
disproofs using the method above. All our examples
satisfy the hypotheses of lemmas 4 and 5 above, as
the reader may readily check. However, in the cur-
rent implementation these conditions are not checked
automatically. We plan to implement fully the method
above, using for the termination tests recent criteria
developed by Plaisted!?, Dershowitz*, and Kamin &
Lévy!2,

6. Extension to Commutative-Associative Operators

The theory above can be extended without difficul-
ty io the generalization of the Knuth-Bendix comple-
tion algorithm to the case where certain function sym-
bols are assumed to be commutative and associative
14,16 These operators must be placed in D. For these
operators, the notion of a complete set of tuples of ar-
guments extends naturally to the notion of a complete
set of multisets of arguments.

In the Appendix we apply this technique to proofs
of simple arithmetic identities. In particular, we show
that the sum of the first n odd integers is n?, and that
the sum of the first n integers is 5'—(1;—1-)

It appears possible too to introduce commutative-
associative contructors. This would allow proofs of
recursive programs over data types such as multisets.
However, lemma 7 must be changed accordingly; that
is, an equation C(Mj,..., M,) = C(Ny,..., Np), with
C € C and C commutative-associative, does not neces-
sarily imply pairwise equality of the arguments M; and
N;. It rather implies one out of the possibly several
solutions {0 the corresponding multiset equation. This
would complicate the general organization of the meth-
od, since the proofs would have to split according to
the varicus cases. We bave not yet implemented this
mwechanism in our proof system.



Conclusion

We have presented in this paper a very simple
method to construct proofs by structural induction.
The method is based on a straightforward modification
of the Knuth-Bencix completion algorithm, and does
not require an equality axiomatization. The method
is simple to implement, and when it applies the proofs
obtained are surprisingly short. For instance, given
the two recursive definitions of the concatenation of
lists, we can prove the associativity of concatenation
by simply checking that this set of three equations,
cansidered as rewrite rules, forms a canonical set.

Experimental evidence with an implementation of
our method suggests that it is powerful enough to apply
to the usuel proofs of correctness of algebraic data
types implemientation, and proofs of simple primitive
recutsive prograimns computing on data types such as in-
tegery, lists and trees. We know how te handle simple
fragicents of arithmetic, and thus generate automati-
ca'ly nroofs of standard summation identities.

'he methad has many limitations however. The
requirement on finile termination, while natural for
cacu;sive definitions (or recursive programs, provided
we ;i estrict ourssives lo programs thst always lermina-
te:, may be impossible te enfoice for comples combina-
tivas ol icmmas. We do not know bow tc handle per-
mutaiive equations, except jor commutative-associative
laws. Even when we krow how to give an orienta-
tion to ail the generated equations so that finite ter-
miaation holds, the completion process may loop. It
may however be possible to recognize easy patterns of
such Joopings, and avoid these by appropriate “meta-
rules”, such as the gereralization technique of Boyer
and Mocre. Finaliy, most nontrivial program proofs
involve a fair amount of propositional calculus (such as
cases analysis). Such reasoning is better dealt withasa
separate top-level proof system rather than by equa-
tional encoding.

Apperdix

The following is the image of a computer session
run oo SRI's KL 10 using the VLISP interpreter devel-
oped at Universit¢é de Vincennes. User input appears
after question marks. When in doubt, the system asks
the user the orientation of equation M = N with the
prompt COMMAND ? to which one answers y (resp.
n) to get the rewrite ;ule M — N (resp. N — M).
Cominents are inclosed beiween semi-colons.

;We sptart with a simple axiomatization of st
etructures;
? (inttialization)

List of constructors ? (NULL CONS)
Liet of AC operatora ?* O

List of infix operators ? QO

Liet of data-files ? (llep)
Mode (Free/Const/Auto) ? const

;we enter the definitions of append and reverse;
? (complete apparev)

Given set of equatione: APPAREY

APPEND(NULL,x) = x

APPEND (CONB(x,y) ,2) = CONB(x,APPEND(y.s})
REV (NULL} = NULL

REY (CONB(x,y)) = APPEND(REV(y),CONS(x,NULL))

Ri : APPEND(NULL,x) — x Given

R2 : APPEND(CONB(x,y).s) — CONB (x,APPEND(y,8))
Given

R3 : REV(NULL) -+ NULL Given

REV (CONB(x,y)) = APPEND(REV (y) ,CONB(x,NULL)) Given

Command ? y

R4 : REV(CONSB(x,y)) — APPEND(REV(y),CONS(x, NULL))

Complete Bet: ¢APPAREY

Unification tima: 113me
Rewriting time: 280ms

;we now prove rev(rev(x))=x;
? (prove rev.rev)

Given pet of equationa: REV.REV

REV(REV(x)) = x

R5 : REV(REV(x)) — x Given

R6 : REV (APPEND (REV (x) ,CONB (y ,NULL))) ~+» CONS(y,x)
— From RS and R¢

RT : REV (APPEND(x,CONB(y, NULL))) — CON8B(y ,REV({x))
From R6 and RS

R6 deleted

Rewrite rules : RT R3 for left part

Complete Bet: sREV.REV

Unification time: 410me
Rewriting time: 1003me

? (ehow srev.rev)




sREV.REV

APPEND(NULL,x) — x

APPEND (CONS (x,y) ,2) —+ CONB(x,APPEND(y,%)}
REV(NULL) — NULL :

REV (CONB(x,y)) -+ APPEND (REV(y),CONB (x,NULL))
REV(REV(x)) ~ x

REV (APPEND (x,CONB(y ,NULL))) — CONB(y,REV(x))

;Let ue now consider & new function brev.

in peseude-LISP notation, we would program:
brav{(x)=1f null(x) then nil

elsif null (cdr(x)) then 1list(x)

elgse cona(car(brev(cdr(x))),

brev(cons {car(x) ,brev(cdr(brev(cdr(x)))))).

Yu rhall hero define brev with the help of auxiliary
functicng brevi and brev2, such that

brevi (x,y)=car (brev(cons({x,y))) and

brev2(x,y)=cdr (brev(cona{x,y3)) .
Note that our “programe” are closer to Buretall’s
HOPE than teo LIBP;
7 (zompletw srev.rev brev)

Given aut of equatione: BREV

BAREV (NULL) = NULL

BREV {CONS(x,y)) = CONB(BREV1 (x,y) ,BREV2(x,y))
BRIV (%, NULEL) = x

BREV1 {x,CCNB%y,z)) = BREVi(y,z}

BREVZ (x,RULL) = NULL

BREVZ (x,CONZ (y, ) ) = BREV (CON8 (x, BREV (BREV2 (y,%))))

RT : BREV(NULL) —+ NULL Given
8

R3 : BREV(CONS(x,y)) — CONB(BREV1(x,y),BREV2(x,y))

Given

R® : BREvi(x,NULL) - x Given

BREV! (x,CONB(y,%)) = BREVi(y,s) Given

Command ? y

R10 : BREVi(x,CONB(y,2)) — BREVi(y,®)

Rii : BREV2(x,NULL) — NULL Given

R12 : BREV2(x,CONB(y,£)) —+ CONB(BREV1 (x,BREV(
BREV2(y,2))) ,BREV2(x,BREV (BREV2(y.%)))) Given

Complete Bet: *BREV

Unification time: 35Tms
Rewriting time: €95me

? (ohow sbrev)

*BREV

APPEND (NULL,x) — x

APPEND (CONB (x,y) ,2) — CONB(x,APPEND(y.5))

REV (NULL) — NULL

REV (CONB (x,y)) — APPEND(REV(y),CONB(x, NULL))

REV(REV(x)) — x

REV (APPEND (x , CONB (y ,NULL))) — CONB(y,REV(x))

BREV (NULL) — NULL

BREV (CONB(x,y)) — CONSB(BREV1(x.y),BREV2 (x,y3)

BREV1 (x,NULL) — x

BREV1 (x, CONS(y, %)) — BREVi(y,s)

BREV2 (x, NULL) -+ NULL

BREV2 (x, CONB(y,®)) —+ CONB(BREV1 (x,BREV (BREVZ(y.,
£))) ,BREVZ (x, BREV(BREV2(y.5))))

:brev ie actually still another reverss function,
as we now show;
? (prove rev.brev)

Given set of equations: REV.BREV

BREV (%) =REV(x)

BREV (x) = REV(x) Given
Command ? y

Ri3 : BREV(x) — REV(x)

RT doleted

Rewrite rules : R13 R3 for left part

R8 replaced by:

APPEND CREV (x) , CONB(y . NULL)) = CONB(BREV1 (y,x),
BREV2(y,x))

Rewrite rules: R13 R4 for left part

R12 replaced by:
BREVZ (x,CONB(y.B)) = CONS (BREV1 (x,REV (BREV2(y,
2))) ,BREV3 (x ,REY (BREV2(y,5))))

Rewrite rulee: R13 for right part

Ri4 : BREV2(x,CONB(y,z)) — CONB(BREVS (x ,REV (BREV2(y.
€))) ,BREVZ (x,REV(BREV2(y,®))))} From Ri2

Ri® APPEND (REV (x) ,CONB(y ,NULL)) — CONB(BREVi (y,
x) ,BREV2 (y,x)) From RB

R4 replaced by:
REV (CONB(x,y)) = CONB(BREVS (x,y) , BREV2(x,¥))
Rewrite rules: Ri3 for right part

R16 : REV (CONB(x,y)) — CONS (BREV1 (x,y) ,BREV2(x,y))}
From R4

RLT7 : BREVi(BREVi(x.y).BREV2(x.y)) - %
From R16 and R3

R1i8 : BREV2(BREVi(x,y),BREV2(x,y)) — ¥
From Ri6 and RS




R19 : APPEND(x,CONB(y,NULL)) — CONS(BREVi(y.REV(x)),
BREV2(y,REV(x))) From R1Y and RS

R6 deleted

Rewrite rules : R1i9 R16 R17 R18 for left part

RiB deleted

Rewrite rules : R19 RS R3 for left part

Complete Bet: ¢REV.BREV

Unification time: 1684nms
Rewrliting time: 6433ms

¢REV.BREV

APPEND (NULL,x) — x

APPEND (CONB(x,y) ,2) -+ CONB(x,APPEND(y,=))

REV (NULL) — NULL

REV(REV(x)) — x

BREVS (x,NULL) — x

BREV! (x,CONS(y,z)) — BREVi(y,®)

BREV2 (x,NULL) — NULL

BREVY (x) — REV(x) .

BREV2(x,CONS(y,2)) — CONB(BREV1(x,REV(BREV2(y,®)))
,BREV2 (x, REV (BREV2(y,2))))

REV (CONB(x,y)) — CONS(BREV1(x,y),BREV2(x,¥))

BREV! (BREV1 (x,y) ,BREV2(x,y)) — x

BREV2 (BREV1 (x,y) ,BREV2(x,y)) — y

APPEND (x,CONB (y ,NULL)) — CONB(BREV1(y,REV(x)),

BREV2(y ,REV(x)))

;note the use of our induction rule in the proof
above, in generating Ri7 and Ri8.

Let ue now play with °dietributive cons”;

? (complete dcons)

Given set of equatione: DCONS

DCONB{x,NULL) =NULL
DCONB (x,CONB(y,2)) =CONB(CONB(x,y),DCONB(x,%))

R1 : DCONB(x,NULL) — NULL Given

R2 : DCONSB(x,CONB(y,z)) — CONB(CONB(x,y) ,DCONB(x,x))
Given

Complote Bot: «DCONB

Unification time: 60me
Rewriting time: 18ms

;we now enter the function iterate, and prove a
lemma reolating iterate and dcons;
? (prove iterate)

Given set of equations: ITERATE

ITERATE(NULL,x) =NULL
ITERATE(CONS(x,y) ,2) =CONB(z,ITERATE(y,%))
DCONB (x, ITERATE(y,2)) =ITERATE(y,CONS(x,2))

R3 : ITERATE(NULL,x) -+ NULL Given

Ré : ITERATE(CONS(x,y),s) — CONB(s,ITERATE(y.3))
Given

DCONS (x , ITERATE(y .2)) = ITERATE(y ,CONB(x,8)) Given

Command ? y
RS : DCONB(x,ITERATE(y.2)) — ITERATE(y.CONS(x,%))

Complete Bet: sITERATE

Unification time: 153me
Rewriting time: 393me

;we now enter the definftion of vm, a function
that repeats a vector as 3 matrix; '
? (complete siterate vm)

Given set of equationp: VN

VM (NULL) = NULL
VN (CONB(x,y)) = CONS (CONB (x,y) ,DCONB(x, VN (y)))

R6 : YM(NULL) — NULL Given

RT : VM(CONB(x,y)) — CONB(CONS(x,y) ,DCONB(x,VN(y)))
Given

Complete Bot: »VM

Unification time: 99me
Rewriting time: T3me

? (show svm)

sVM

DCONB (x ,NULL) — NULL

DCONB(x,CONS(y,2)) — CONB(CONB(x,y) ,DCONB(x,%))
ITERATE (NULL,x) — NULL

ITERATE(CONB(x,y),z) — CONS(z,ITERATE(y,z))
DCONS(x,ITERATE(y,2)) — ITERATE(y,CONS(x,x))
VM (NULL) — NULL

VN (CONB(x,y)) — CONB (CONB (x,y) ,DCONB(x,VN{y)))

;we now express vm in terms of iterate;
? (prove vm.iterate)

Given set of equations: VM.ITERATE

VM (x) =ITERATé;x.x)

" YM(x) = ITERATE(x,x) Oiven

Command ? y

R8 : VM(x) -+ ITERATE(x,x)

R6 deleted
Rewrite rules : R8 R3 for left part
RT deleted

Rewrite rules : R8 R4 for left part

R8 R3 for right part




Complete Bet: ¢YM.ITERATE

Unification time: 147ms
Rewriting time: 273ms

;we now enter a new function itvm, together with
append;
?* (complete esvm.iterate ttvm)

Given set of equatione: ITVN

ITVM(NULL,x,y) =Yy
ITVM(CONB(x,y).Zz,u) = ITVM(y,z,CONS(z,u))
APPEND(NULL,x) = x
APPEND (CONB(x,y) ,2) = CONB(x,APPEND(y,%))

RT : ITVM(NULL,x,y) — ¥y Given

ITVM(CONB(x,y) ,z,u) = ITVK(y,s,CONB(s,u)) Given
Command ? y

R8 : ITVM(CONB{x,y),ez,u) — ITVM(y,s,CONB(x,u))

RS : AFPEND(NULL,x) — x Given

R10 : APPEND (CONB(x,y),z) — CONB (x,APPEND(y,®))
aiven

Complete Bet: #ITVN

Unification time: 378ms
Rewriting time: 532ns
? (show eitvm)

«ITYN

DCONB (x,NULL) — NULL

CONB (x,CONB(y,z)) — CONS(CDNB(x,y),DCONS(R,B))
ITERATE (NULL,x) —+ NULL

ITERATE(CONB(x,y),2) — CONB (2, ITERATE(y , %))
DCONS (x , ITERATE(y ,2)) — ITERATE(y,CONS(x.%))
VM (x) — ITERATE(x,x)

ITVM(NULL,X,y) — ¥

ITVM (CONB(xX,y) ,%,u) — ITVM(y,z, CONB(Z,u))
APPEND(NULL,x) — x

APPEND (CONB(x,y) ,2) — CONB(x,APPEND(y,B))

;we now expreass itvm in terms of iterate;
? (prove itvm.iterate)

Given get of equatione: ITVM.ITERATE

ITVM(x,y.%) =APPEND (ITERATE(x,y) ,®)

ITVM(x,y,2) = APPEND (ITERATE(x,y) ,%) Given
Command ? y

R11 : ITVM(x,y,E2) — APPEND (ITERATE(x,Y) ,8)

RT deleted

Rewrite rules

R8 replaced by:

CONB (x, APPEND (ITERATE(y,X) ,8)) =

APPEND (ITERATE(y,x) ,CONB (x,£))
Rii R4 R10 for left part
Ri1 for right part

Ri4 R3 RS for left part

Rewrite rules:

R12 : APPEND(ITERATE(x,y),CONS(y,s)) —

CONB Cy , APPEND (RTERATE(x,Y) , %)) From R8

Complete Bet: ¢ITVM.ITERATE

Unification time: 324me
Rewriting time: DO1imp

;and finally, we @how that we may compute va
iteratively, aince: vm(x)=1tvn(x,x,null).
This proof is done by mere simplification, once we
prove the lemma: append(x,nulid=x;

? (prove vm.itvm)

Given set of equations: VYM.ITVM

APPEND (x ,NULL) = x
VM(x) = ITVM(x,x,NULL)

R1i : APPEND(x,NULL) — x Given

Complete 8ot: sVN.ITVN

Unification time: 15ims
Rewriting time: 205me

? (ehow svm.itvm)

sVYM.ITVN.

DCONB (x, NULL) — NULL
DCONB (x,CONB(y,2)) — CONB(CONB(x,y), DCONB(x,x))
ITERATE(NULL,x) — NULL
ITERATE(CONS(x,y) ,2z) — CONS(z,ITERATE(y,=))
DCONB (x, ITERATE(y,2)) — ITERATE(y,CONS(x,s))
VM(x) — ITERATE(x,x)
APPEND (NULL,x) — x
APPEND (CONB(x,y) ,2) — CONB(x,APPEND(y,s))
ITVM(x,y,z) — APPEND(ITERATE(x,y),®)
APPEND (ITERATE(x,y) ,CONB(y,2z)) —

CONB(y , APPEND (ITERATE(x,y) . %))
APPEND (x ,NULL) — x

;We thank Patrick Greussay for suggesting the
example above.

Let us now give an example of disproof;

? (show srev)




sREV

APPEND (NULL,x) - x

APPEND (CONB (x,y) ,z) —+ CONB(x,APPEND(y,$))
REV(NULL) — NULL

REV (CONB(x,y)) — APPEND(REY(y),CONB (x,NULL))

? <(complete srev wrong)

Given set of equatione: WRONG

REV(x) = APPEND(x,x)

REV(x) = APPEND(x,x) Given

Command ?* y
RS : REV(x) — APPEND(x,x)

'R3 deleted

Rewrite rules RS Ri for left part

R4 replaced by:

CONB (x, APPEND(y,CONB(x,¥)}) =

APPEND (APPEND (y ,y) , CONB (x,NULL))
R5 R2 for left part

RS for right part

Rewrite rules:

R6 : APPEND (APPEND (x,x),CONB(y ,NULL)) —

CONB(y,APPEND(x,CUNS(y,x))) From R4

NULL = CONB(x,NULL) from R6 and Ri
....'t‘.ntt.“to‘ot.t0‘t‘to“ttt..o.t.tt“..‘ttot‘
0800000000 NS FAILED sessdedtettssdsine
ooo.ootcooooo-oo..cooooo-o-‘.ooo-o.'to-ttacoocoooo

;:We now give examples of the method with
commutative-associative operators;
? <(initialization)

List of constructore ? (0 8)
List of AC operators ? (+ *)
Liet of infix operatore ? (+ ¢ H
List of data~files ?  (arith)
Ineide-Out Reductione A 4

? (complete sum.of.odds)

Given set of equations: BUM.OF.0DDB

1 = B(0)

2 = 8(1)

n+0 = n

n+B8(m) = B8(n+m)

ne0 = 0

ne8(m) = (nsm)+n

nto = 1

ni8(m) = ne(nim)

BIGMA(O) = O

BIGMA(8(n)) = BIGMA(n)+((2en)+1)

R1 : 1 — 8(0) Given
R2 : 2 — 8(8(0)) Given
R3 : n+0 — n Given
R4 : n+B(m) — 8(n+m) aiven

10

RS : ns0 — O

Given

neB(m) = (nem)+n
Command ? y

R6 : neB(m) — (nem)+n

Given

R7T : nfo — B(O)

Given

nt8(m) = ne(ntmd
Command ? y

RB : nt8(m) — neé(ntm)

Given

RO : BIGMA(O) — O

Given

R10 : BIGMA(8(n)) — B(BIGNA(n)+n+n)

Given

Complote Bot: ¢BUM.OF.ODDS

Unification time: 877me
Rewriting time: 3ii6ms

? (prove identity)

Given eet of equations: IDENTITY

8IGMA (n) nt2

BIGMA(n) nen

Command ® y
R11 : BIGMA(n) — nen

RO deleted
Rewrite rules Ri1 R5 for left part
R10 deleted
Rewrite rulee
Ri1 for right part

Ri1 R6 R4 R6 for left part

Given

Complete Bot: ¢IDENTITY

Unification time: 30me
Rewriting time: T42me

? (show sidentity)

¢IDENTITY

1 — 8(0)

2 — 8(8(0))

n+0 — n

n+8(m) — B{n+m)
ne0 — O

ne8(m) — (nem)+n
nto — B(O)
nt8(m) — na(nim)
BIGMA(n) — nen




; We are now interested in showing that
BUN(n)=ns(n+1)/2,

where BUM(n) denotes the eum of the firet n integers:
BUN(n)=1+2+...4n.

To achieve this aim, we introduce the HALF function.

Then we prove the following lemma:
HALF (2n+m)=n+HALF (m) .

And finally wo prove the summation identity:
BUN(n)=HALF (n# (n+1)) .

¥e otart with the following complete set:

RL n+0 — n

R2 : n+8(m) - B(n+m)

R3 @ ns0 — O

Ré : ne8(m) — (nemd+n

RS HALF(0) — O

R6 : HALF(8(0)) — ©O

RT : HALF(8(8(n))) — B(HALF(n))

¥e first prove the lemma concerning HALF;
? (prove lemma.HALF)

Complete Bet: «DEF.BUM

Unification time: 1898me
Rewriting timo: B78me

;¥e are now ready to prove the sumnation identity;

? (prove proof.eum)

Given @et of equatione: LEMNA.HALF

HALF (n+n+m) =n+HALF(m)

HALF (n+n+m) = n+HALF(m) Given
-Command ¥ y

R8 : HALF(n+n+m) — n+HALF(m)

RS : HALF(n+n) — n From RB and Ri

HALF(8(n+n+m)) = n+HALF(8(m)) From R8 and R2

Command ? y
R1O : HALF(8(n+n+m)) — n+HALF(B8(m))

Rii : HALF(B(n+n)) — n From Ri10 and Ri

Complete Set: ¢LEMMNA.HALF

Unification time: 2130ms

Rewriting time: 12942ne
; RT, R9 and R1i are the usual properties of HALF,
RB and R10 being goneralizations of these properties.
Let us now introduce the definition of BUM;
? (complete slemma.halt def.eum)

Given pet of equatione: DEF.BUM

BUM (0) =0
BUM(B(n)) =BUN(n)+B(n)

R12 : BUN(O) — 0 Given

Ri3 : BUM(B(n)) — B(BUM(n)+n) Given

Given set of equations: PROOF.BUM

BUM (n) =HALF(nsB{(n))

BUM (n) = HALF ((nen)+n) Given

Command T ¥y

Ri4 : BUM(n) -+ HALF((nen)+n)

Ri2 doleted
Rewrite rules : Ri4 R3 Ri RS for l1eft part

R13 deleted
Rewrite rules : Ri4 R4 R2 R4 R2 R2 R8 RT for left

part
Ri4 for right part

Complete Bet: ¢PROOF.BUN

Unification time: 49ms
Rewriting time: 1323ms

? (8how «PROOF.BUN)

«PROOF . BUM

n+0 — n

n+B(m) — B{n+m)

ne0 — O

ne8(m) — (nem)+n

HALF(O) — O

HALF(8¢0)) — O
HALF(B(B(n))) — B (HALF (n))
HALF (n+n+m) — n+HALF{m)
HALF(n+n) — n
HALF (B (n+n+m)) — n+HALF(8(m))
HALF(8(n+n)) — n

BUM(n) —+ HALF((nen)+n)
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