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Jnirodue1iion 

The string-matching problem is to find all full in
stances of a -pattern" character string:l: as a subword 
(contiguous substring) in a ~xt" string y. While 
the naive algorithm (trying the pattern from scratch 
starting at each successive text position) requires time 
proportional to the product 1:1:1 . 1111 of the string 
lengths in the worst case, Knuth, Morril, and Pratt 
[10] and Boyer and Moore [2, 10, 5] designed algo
rithms which require only linear time (proportional to 
1=1+1111). Their algorithms, however, require numbers 
of local storage locations proportional to the length 
1=1 of the pattern in every case, making a general im
plementation impossible without plenty of dynamic 
storage allocation. 

In [7] we designed linear-time algorithms requir
ing only O(1ogl:l:1) (at most some constant times 10gl:l:I) 
local storage locations in the very worst case, and we 
designed "lmost linear-time algorithms requiring no 
dynamic storage allocation at all (0(1) local storage 
locations). Both we [8J and Karp and Rabin [9] have 
Subsequently developed linear-time algorithms requir
ing no dynamic storage allocation, but these algo
rithms require other special capabilities. The algo
rithms in [8} are just our earlier linear-time algo
rithms, modified to fill their relatively small dynamic 
storage needs by temporarily borrowing some of the 
space occupied by th! input pattern. While extremely 
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simple conceptually, the Karp-Rabin algorithm re
quires operations such as multiplication (by the al
phab~t size) and a source of random numbers. (The 
al~o.rlthm can err, but randomization keeps the prob
ability of error small and independent of the input 
pattern and text.) 

In this paper we describe a new linear-time 
string-matching algorithm requiring neither dynamic 
storage allocation nor other high-level capabilities. 
The algorithm can be implemented to run in linear 
time even on a six-head two-way finite automaton. 
Moreover, the automaton requires only -{ =, #-}
branching- [1]. (Decisions depend on which of the 
six scanned pattern or text symbols and positions are 
the same, but not on the particular symbols or how 
many symbols there are. Hence the same algorithm 
works even for an infinite alphabet.) A -real-time" 
implementation is possible on such a multi head finite 
automaton with a few more heads. 

Preliminaries 

Throughout this paper, let Ir; be some fixed com
fortably large integer. In retrospect, Ir; = 4 wili have 
been large enough. 

For 1 SiS Iwl, let we,) denote the t-;th charac
ter of the character string w. For 0 SiS i S Iw I, 
let [i,,;}w = wei + 1) ... wei). 

Consider any nonnull string z. z is a period of 
the character string w if w is a prefix of the infinite 
string ZOO = zzz.... Equivalently, z is a period of 
w if and only if w is a prefix of zw [10]. For each 
l' < Iwl, let reachw(p) = 

max{ q S Iwll [O,p]tD is a period of [0, qJw} 
= l' + max{ q S Iwl-p I [0, q]w = [p,p + q1tr1}· 

Z is b"sic if it is not of the form 21' for any integer 
i > 1. z is a prefi:l: period of w if it is basic and Zk is 
a prefix of w. Equivalently, [0, plw is a prefix period of 
w if it is basic and reachw(p) 2: "1'. (Since Ie is fixed, 
we do not bother to include it in the terminology.) 
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E:tu.mples. The string a.ba.ba.b = (a.b)3 is not basic, 
but the string aba.ba.ba. is. Both strings have periods 
a.b, abab, a.ba.bab, and even a.bu.ba.bu.. (Every extension 
of a string w is a (relatively uninteresting) period of 
w.) The string w = (a.babu.bu.).taba.b has reachw(l) = 
1, reachw(2) = 7, and reachw(7) = Iwl = 7k + 4. If 
Ie ~ 4, then w has only the one prefix period [0,7]ft! = 
u.ba.ba.ba; if Ie = 3, then ab is also a prefix period. 

Periodicity lemma [11, 10]. If u. string of length PI + 
1'2 h(J8 perioels of lengths PI and 1'21 then it h(J8 a 
perioel of length ged(p1, 1'2)' 

Proof: Note that it has a period of length 11'1 - 1'21, 
and cite Euclid's algorithm. • 

Coroll&rJ. Distinct preji:r. perioels of the ",me string 
eliffer in length b, at least a fa.ctor of Ie - 1. 

Proof: Suppose, to the contrary, that w has prefix 
periods oflengths PI and 1'2 with PI < 1'2 < (le-l)p1' 
Then 1'2 + PI S lePl S reachW(pl); so [0,1'2 + p11ft! 
has periods of both lengths, hence also one of length 
gcd(Plrp2l. Therefore the prefix [0,1'21111 has a period 
of length gCd(pl,p2) S PI < 1'2 and is not basic, a 
contradiction. • 

Searching for a Fixed Pattern 

Several earlier Dring-matching algorithms follow 
a single general scheme. That scheme considers posi
tions I' for the pattern in the text in increasing order, 
and it maintains the length q ~ 0 of a pa.ttern prefix 
known to match the text starting following position 
I' ([0, q]!f = [P, I' + q],). For appropria.tely calculated 
'P' > .I' and q', then, the algorithms search as follows: 

(P, q) - (0,0) 
.1'1001': 

whUe,(p +q+ 1) = :r.(q+ 1) do q - q + 1 
(P,q) - (pI,q') 
goto 1'1001' 

Each time q reaches the pattern length 1.2:1, a full in
stance of the pattern has been found following posi
tion I' in the text (.2: = [p,p + 1.2:11,); the search can 
be continued by dropping out of the while-loop. (We 
consider ,(p + q + 1) = .2:(q + 1) to be false when
ever p + q + 1 > 1,1 or q + 1 > 1.2:1, so this will 
be automatic.) Of course the algorithms should halt 
when the end of the text is reached (p = I,D. 

The earlier algorithms differ only in how they cal
culate tI and q'. The naive algorithm conservatively 
calculates 'P' = I' + 1 and q' = O. Since [0, q]!f = 
[p,p + q]" however, consideration of 1" = .I' + shift 
is futile unless [0, q - shift]!f = [shift, q]c; so the 
Knuth-Morris-Pratt algorithm calculates tI = I' + 

shift!f(q), where shifts(q) = 

min{ shift> 0 I [shift, q1~ = [0, q - shift]~ }, 

and then can even salvage q' = q -shifts(q) if q > 
O. To get by with a skimpier tabulation of the shift 
function, algorithms from [7] calculate (pi, q') = 

(p + shift!f(q), q - shift~(q)) if shift~(q) S q/Ie,
{ (p + max(l, r q/lel), 0) otherwise. 

It Ie is large, the ease shift~(q) ~ q/Ie above 
should be relatively rare. Our new algorithm below 
is inspired by the vain wish that such cases could be 
ignored en«rel,. Lemmas 1 and 2 below characterize 
such eases in terms of prefix periods of the pattern. 

Lemma 1. If shiftc(q) ~ q/Ie, then [0, shift!f(q)]!f is 
a prefi:r. .I' erioel of:r.. 

Proof: By definition, [0, shift!f(q)]~ is a (shortest) 
period of [0, q]~. It appears Ie times because q ~ Ie • 
shiftc(q). It it were of the form zi for some integer 
i > 1 (i.e., not basic), then z would be a shorter 
period of [0, q]:e. • 

Lemma 2. If [0, .th.iftl~ " u. preji.2: perioel of.2:, then 

shift = shift:e(q) S q/Ie 
{::} Ie • shift ~ q ~ reachz(shift). 

Proof: Only the proof of the backward implication 
(*=) requires a nontrivial observation: By the peri
odicity lemma (assuming Ie ~ 2), Ihift!f(q) < shift 
would contradict the assumption that [0, shiftl~ is 
basic. • 

The following decomposition theorem, proved in 
the next section, now leads to an eftlcient algorithm 
to search for any fixed pattern :r.: 

Decomposition theorem. Eu.ch p4ttern:r. h(J8 a pu.'fSe 
.2: = u!/ such that !/ h(J8 at most one preji:r. perioel 
anel lui = O(shiftt/(I!/I)). 

(We cannot insist that v have no prefix period: For 
:r. = an, we would have to have lui > n - Ie and 
shift,,(lvD = 1.) The eftlcient algorithm uses the 
general scheme discussed above to search for full in
stances of the pattern BUftlX!/. If!/ has no prefix 
period, then the crucial values are always 

(tI, q') = (.I' + max(l, rq/lel), 0). 

If v has one prefix period, and its length is .I'll then 
the crucial values are (pi, q') = 

(p +1'1, q - "1) if 1e"1 ~ q ~ reach,,(.Pl),
{ (p + max(I, rq/lel),O) otherwise. 

2 


http:reach,,(.Pl
http:u.ba.ba.ba
http:a.bu.ba.bu
http:aba.ba.ba


l 

On a text 11, the time to find all instances of v will be 
O(lvl + 1111), because the nonnegative, nondecreasing 
integer quantity (k + 1)1' +q = O(lvl + 1111) is bound 
to increase every 0(1) steps. The algorithm checks 
naively (in time 0(1'1.&1» whether the pattern prefix 
1.£ occurs to the immediate left of each discovered in
stance of v. Since v can occur at most 11111 shiftv(lvl) 
times in a text 11, the total time for the naive checks 
will be 0(1'1.&1)11111 shift!J(lvl) = 0(1111). So the total 
time is O(lvl + 1711) =0(1:1 + I7ID, and the number of 
local storage locations is some small constant. 

Proof of Decomposition Theorem 

To prove the decomposition theorem, we need one 
more lemma. 

Lemma 3. For each ba8ic string wJ there is a 
pa.rse w = W1W2 such tha.t, no matter what w' uJ 

W2Wk-1W' ha.s no preft: period shorter than Iwl. 

Prool: By the periodicity lemma, any offending prefix 
period would have to be shorter than Iwl/(k - 1); so 
w' is irrelevant, and we may as well use the infinite 
suffix w' = wOO. 

The obvious way to seek the parse is to start with 
'Woo and repeatedly delete offending prefixes: 

While the remainder has a prefix zk with Izl < Iwl, 
delete a shortest such z. 

If this terminates, then a satisfactory parse of (the last 
entered copy of) w has been found. Here is a termina
tion argument: When z is deleted, zk-l remains a 
pretlx of the remainder. Therefore, the ne:t deletion 
z' ca.nnot be shorter. (Otherwise, by the periodicity 
lemma,. z'1c would have to be a prefix of Z2, contradict
ing the previous choice of z as smallest.) Therefore, 
either z' =z, or 1z'1 > Izi. (In fact, Izl > Izi implies
1z'1 > (Ie - 2)lzl, by the periodicity lemma; hence, 
zJ:-2 will be a pretlx of ner71 subsequent remainder.) 
But, since w is basic, the periodicity lemma implies 
that no same z continues to work forever. Therefore, 
the length eventually reaches Iwl. • 

Rema.rk. A stronger claim can be made for the algo
rithm in the proof of Lemma 3 above: Not even one 
lull w get8 ddded. 

Prool 01 rema.rlc: Suppose some deletion z ends at 
position l' > Iwl in woo. (Our convention is that 
position l' separates characters number l' and l' + 1.) 
The algorithm would now loop (contradicting our ter
mination argument) if some deletion z had started one 
period back, at position l' - Iwl. Therefore, position 
p-Iwl must have been withi.n some deletion Zo start
ing at some position Po (p -Iwl- Po < Izol). By our 

observation in the proof above, zok-2 occurs starting 
at position p. Therefore, it occurs at both positions 
Po and l' -Iwl. From this, it follows that zok-2 (and 
hence ZOk) has a period of length l' - Iwl - Po < 
Izol, contradicting the choice of Zo as a shortest prefix 
period starting at position Po. • 

Prool 01 decomposition theorem: We obtain v = 
[s, 1:llz by deleting appropriate prefixes from the pat
tern until the remainder has at most one prefix period: 

s+-O 
while [s, 1:1121 has more than one prefix period do 

begin 
Let 1'2 be the length of the second shortest 

prefix period. 
By appeal to Lemma 3, find I < s + P2 

such that [s', 1:llz has no pretlx period 
shorter than 1'2. 

Set s +- s'. 
end 

It remains only to prove that lui = O(shift.,(lvl)) 
finally holds. For each s, let 

te,) = length of the shortest period of [s, 1:1]21, 
pl(S) = length of the shortest preft: period 

of [s, 1:1121 (if there is one). 

(If 1'1(') exists, then [s, s + p1(S)]2: is the shortest 
period of some preft: of [s,I:I12:' guaranteeing that 
p1(S) ~ t.) By induction, we prove the loop invariant 
s < 2min(p1(s),t(s»: 

s' < s +1'2 
< 2 min(Pl(s),t(s» +1'2 
= 2p1(S) +1'2 
~ 2p2/(1c -1) + 1'2 
~ 21'2 
~ 2 min(p 1 (s'), t(s'}). 

(The periodicity lemma ensures that 1'2 ~ t(8').) 
Finally, therefore, lui = s < 2l(s) = 2shiftv(lvl}.• 

Preprocessing a Pattem 

Even the algorithm for ftnding the decomposition 
.:I: = uv = [0, s],:I:[s, 1:112: above can be implemented 
efficiently. First note that, by Lemma 3 and the sub
sequent remark, there is a very simple algorithm for 
finding s': 

I+-s 
while [s', I:IJ,:I: has a prefix period shorter than 1'2 

do Delete a shortest one. 
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Now an efficient implementation is natural in terms 
of efficient subroutines to find the one or two shortest 
prefix periods of a string. 

The general scheme discussed above, and inter
preted as in [7J, provides an efficient algorithm to 
determine whether a string w has a prefix period and 
to find the shortest one if it does. The algorithm 
matches '10 against itself, starting with (p, q) = (1,0). 
Of course no full instance of the pattern will be found, 
but for each i we will have shiftw(i) = P the first 
time P + q = i holds. To see this, consider any i 
(1 ~ i ~ 1'101). The first time P + q = i holds, no 
symbol beyond '10(,) has been examined, so shiftw(') is 
still a prospective position for the patterni I.e., P ~ 
shift.,(i). Since the algorithm guarantees that [p, il w 
is a prefix of [0, ilw at this point, we cannot have P < 
shiftw(i)i so P = shiftw('), as claimed. The algorithm 
we want simply watches for the first i with shiftw(i) ~ 
illr. (p ~ (p +q)1 Ie). (By Lemma 2, these inequalities 
will be eqf.l,a.lities.) Until such an i is found, the cal
culation 

(tI, eI) = (p + max(l, rqllel),O) 
.. 

will always be appropriate, since shiftw(q) > qllr. for 
all q < i. If the shortest prefix period exists and has 
length Pl, then the final values of P and q will be Pl 
and (Ie -l)Ph respectively. Therefore, the total time 

will be O(1e + l)p + q) = 

O(Pl) if Pl exists, 
{ .0(lwi) in any case. 

To determine whether '10 has a prefix period shorter 
tha.n some gifJen P2, we can use the same algorithm 
until preaches P2i the running time for this variant 
will be 

O(Pl) if Pl < P2 exists, 
{ 0(P2) in any case. 

Similarly, there is an efllcient algorithm to deter
mine whether a string '10 has two prefix periods and 
to find the second shortest one if it does. First, 
the algorithm seeks the shortest prefix period as 
above. It the shortest prefix period exists and has 
length PI, then the algorithm straightforwardly deter
mines reachw(Pl) in time O(reachw(Pl»' Finally, 
the algorithm matches '10 against itself, starting with 
(p, q) = (1,0) as above, now watching for the first 

i > reachw(Pl) with shiftw(i) = illr.. Until such an i 
is found, the calculation (p', q') = 

(P +Pl, q - Pl) if lepl ~ q ~ reachw(Pl), 
{ (P +max(l, rqlIe1),0) otherwise 

will always be appropriate, since every q < i will 
have either shiftw(q) > qllt: or shiftw(q) = Pl- If the 
second shortest prefix period exists, then its length P2 
will have to be at least reachW(Pl) - Ph by the peri
odicity lemma. By looking at the quantity (Ir.+l)p+q 
again, therefore, we see that the total time will now 
be 

O(Pl) +O(reach.,(Pl» + 0(P21 if P2 exists, 
O(Pl) + O(reachW(Pl» + 0(1'101) if only PI exists,

{ 
O(lwl) in any ease 

0(P21 if P2 exists, 
{= 0(1'101) in any case. 

Now consider using these efficient subroutines 
to implement the outlined decomposition algorithm. 
The time for the one failed entry test for the outer 
loop will be O(lul). In terms of the current value of 
P2, the time for finding s' will be O( s' - 8) +0(P2) = 
0(P2)' Therefore, the time for the entire loop body, 
including the passed entry test, will be O(p21. By the 
periodicity lemma, each successive P2 will be at least 
It: - 2 > 2 times the preceding one. So the total 
decomposition time will be 

0(lfJl)+0(lfJl(1+1/2+ 1/ 4+... )) = O(lfJI) = 0(1:1). 

Combining this preprocessing _algorithm with the 
searching algorithm described earlier, we finally get 
an algorithm which can find all full instances of an 
arbitrary pattern: in an arbitrary text 11 in time 
proportional to 1:1 +l:vl, without dynamic storage al
location. 

An Integrated Implementation 

Having established the existence of our algo
rithm, we turn now to integrated and improved 
implementation. The following implementation of 
the entire algorithm will lead to a multi head finite 
automaton implementation in the next section. 
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(p, q) ~ (0,0) 

(S,Phqtl ~ (0,1,0) 

(P2, q21 ~ (0,0) 


newp1: 
while :(s + PI + ql + 1) = :(s + ql + 1) 

do ql ~ ql + 1 
if PI + ql ~ /cPl 

then [(P2, q2) ~ (ql, 0); goto newp21 
if s + PI + ql = 1:1 then goto sea.rch 
(Pllql) ~ (PI + max(l, fqt!/cl), 0) 
loto newpl 

newp2: 
while :(s + P2 + q2 + 1) = :(s + q2 + 1) 

and P2+ q2 < kP2 do q2 ~ q2+ 1 
if P2 + q2 = kP2 then goto pa.rse 
if s + P2 + q2 = 1:1 then goto sea.rch 
if q2 =PI + ql 

then (P2, q2) ~ (P2 +Ph q2 - PI) 
else (P2, q2) ~ (P2 + max(l, fq2/kl),O) 

goto newp2 

parse: 
while :(s + PI + ql + 1) = :(s + ql + 1) 

do ql- ql + 1 
whUe PI + ql ~ kPl do (I, ql) ~ (s +Ph ql - PI) 
(Ph ql) ~ (P 1+ max(l, fql/kn, 0) 
if PI < P2 

then loto parse 
else loto newp1 

sea.rch: 
while y(P + s + q + 1) = :(s + q + 1) 

doq~q+1 

if q = 1:1-' thenif lP,p + ']y = [0, 'Iz 
then announce instance of: at text position P 

if q = PI + ql 
then (p,q) ~ (P + l1x.q - PI) 
else (p, q) ~ (P + max(l, fq/kl), 0) 

If P+ s !5; Iyl then goto lea.rch 

(Note: The variables P and q are introduced only for 
clarity. By the time they are used (in the segment fol
lowing search), P2 and q2 are free and could be reused 
instead.) 

The main purposes of the program segments 
above are as follows: 

newp1: 
-~ Find the shortest prefix period of [s,I:l1z' 

newp2: 
Find the second shortest prefix period of [',I:lIz. 

pa.rse: 
Increment ,. 


learch: 

'. 

Search the text for: = [0, ']z[', 1:lIz. 


A more detailed direct analysis relies on the validity 

of the following assertions at the labeled checkpoints: 

newp1: 

[s, 1:I]z has no prefix period shorter than Pl' 

[s +PI, s +PI + qtlz = [s, s + qllz 

P2 !5; Pl· 

P2+q2= kp2. 

newp2: 
[s, 1:11.21 has shortest prefix period of length PI
[s" + PI + qdz has period of length PI
[s, s + PI + ql + lIz does not. 
P2 ~ ql· 
[s,I:!]:r: has only one prefix period shorter than P2. 

[s + P2, s +P2 + ~]z = [s, S + q21z
P2+ q2 < kp2. 


pa.rse: 
[s,I:llz has no prefix period shorter than Pl. 
[s +PI,S +Pl + ql]z = [s,s + qdz-
PI < 112
P2+q2= kP2

search: 
[s,I:lls has at most one prefix period. 

If [I, I: II z does have a prefix period, 


then its length is Pl' 
[s, s + 111 + qllz has shortest period of length PI
[s, s + PI + ql + lIz does not have 

period of length Pl. 

All instances of: starting at text positions 


before P have been announced. 

[P+S,I1+ S+q]y= [",+q]z' 

s < 2pl. 


First consider the very last assertion, which is 
crucial for the time analysis. Assuming all the other 
assertions hold, the integrated implementation incre
ments s in the same way as the original algorithm. So 
the validity of the assertion follows from our proof of 
the decomposition theorem. 

Verification of all the other assertions is routine, 
frequently by appeal to the periodicity lemma. Note 
that we have replaced the test kPI !5; q2 !5; PI + ql 
with the simplified test q2 = PI + ql in the segment 
following newp2. This is justified by the mismatch 
:('+112+ q2+ 1) ;C :(S+q2+1) (and the periodicity 
lemma). Similarly, we have replaced the test kPl !5; 
q !5; PI + ql with just q = PI + ql in the segment 
following sea.rch. The last two assertions for newpl 
are included for their aid in the time analysis below. 
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For a direct time analysis, consider the expreuion 

s2 + (k + 1)1'1 + ql) 

+ (k + 1)1'2 + q2) 
+ (k + 1)1' + q). 

The value of this expression is always an integer 
0(1=1 + Iyl). Its initial value is positive, and every 
assignment increases its value. (This is immediately 
clear for every assignment except (P2. q21 - (qt, 0). 

" 	 Since that assignment occurs only when PI +ql ~ kpi 
(by the test) and 1'2 ~ PI and 1'2 + q2 = leP2 (by 
assertions at newpl), however, 

(Ie + 1)1'2 + q2 = kP2 + (1'2 + q2) 
= 2kp2 
~ 2kpl 
~ 2kqd(k -1) 
< (Ie + l)ql; 

hence, the contribution by 1'2 and q2 is greater after 
the auignment than before.) Some such assignment 

( 	
is executed every 0(1) steps, except for tests [p,p + 
81, = [0, s1z. But we have seen already that the total 
time for these tests is O(lyl), because s = 0(1'1) holds 
at search. Therefore, the algorithm's total running 
time must be 0(1=1 + Iyl). 

Multihead Finite Automaton 

For an eleven-head finite automaton implementa
tion, maintain text heads at positions I' + s + q and 
I' + s, and pattern heads at positions s + PI + ql, 
s+qll S+lePl, S+p2+q2, S+q2, S+leP2, s+q, 
s, and s again. (The values s + ieI'I and s + kP2 
might exceed 1=1, but they will certainly be bounded 
by (Ie + 1)1=1. The pattern head maintaining such 
a value can reverse direction whenever it reaches an 
endmarker, and the finite control can keep track of 
the net number of reversals for the current value.) 
With heads at these positions, each test [p,p + sj, = 
[0, s1z requires only O(s) steps, as before; every other 
test requires only 0(1) steps, provided the finite con
trol keeps track of the order of the head positions; and 
each assignment requires at most a number of steps 
proportional to the resulting increase in the expres
sion used in the time analysis above. Therefore, the " 
total time remains 0(1=1 + Iyl). 

We can save two pattern heads above by letting 
positions s + lePh S + leP2, and s + q share a single 
head. We let that head maintain position s + kPl in

'. 	 the segments following newpl and parse, s + leP2 in 
the segment following newp2, and s + q in the seg
ment following search. The time to relocate the head 

to position s + q = s the one time control enters 
the segment following search is certainly 0(1=1}. The 
time to relocate the head from position s + kpt (via 
position s) to position 8+kp2 = s+kql when control 
enters the segment following newp2 is O(PI + qt) = 
O(ql), but we were already allowing that long for the 
immediately preceding assignment (1'2, q2) - (ql, 0). 
The time to relocate the head from position s + leP2 
(via position s) to position S+lePl when control enters 
the segment following parse is 0(1'2 + PI) = O(P21, 
but 1'2 will be at least Ie - 2 ~ 2 times as large the 
next time this is necessary. Therefore, the total time 
still remains 0(1:z:1 + Iyl). 

To save one more pattern head, note that the 
head at position s + 1'2 + q2 is needed only in the 
segment following newp2, and that the second head 
at position s is needed only outside that segment (in 
fact, only for the assignment (s, ql) - (s + PI, ql 
PI»' As above, there is time for one shared head to 
shift roles on entering and leaving the segment. 

If both the pattern and the text are provided on 
the same input tape, then we can save two more heads. 
The two text heads are needed only after search is 
reached. At that point, however, it becomes unneces
sary ever again to maintain pattern positions s+1'2+ 
q2 and s +q2; 10 the corresponding pGttern heads can 
relocate to te:z:t position s and begin to serve as the 
tut heads. The final result is the promised six-head 
finite automaton requiring only {=,:;t: }-branching. 

Real-Time Algorithms 

In [12] we reported real-time Turing machine 
algorithms for string matching, for recognition of 
squares (strings of the form ww) and palindromes 
(strings which are their own reverses), and for a num
ber of generalizations of these problems. Using our 
new algorithm as a building block, we can adapt all 
of these algorithms to run in real time even on a 
multihead finite automaton. In this context, "real 
time" means that, for some constant c, the input tape 
is extended by one symbol every c: steps, and that 
the automaton must rule immediately on the accept
ability of the extended input string. For the string
matching problem, the pattern (while it lasts) and the 
text are extended simultaneously, and each verdict 
must indicate whether an instance of the pattern-so
far ends at the current end of the text. (The problem 
would be much easier if the entire pattern preceded 
the entire text.) 

Adaptation of the real-time algorithms from [12l 
is beyond the scope of this report, but the key is 
to use a variant of our new string matcher wherever 
in [12J we used the Fischer-Paterson string matcher 
[4J. The latter linear-time algorithm already required 
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linear space on an off'-line Turing machine; so for con
venience in [121, we freely allowed ourselves the luxury 
of marking all the instances of % on a copy of y for 
examination in latter passes. In addition, we made 
use of the Fischer-Paterson algorithm to find not only 
full instances of %, but also ·overhang" instances. An 
otlerhang instance of % occurs following position P in 
y (lyl ~ 1%1) if either 

-1%15 P 5 0 and [O,p + 1%1], = [-p, 1%11:.:, 
or 

• Iyl-I%I 5 P 5 Iyl and [p, Iyll, = [0, Iyl- pIs . 

In the first case, we call it a left otlerhang instance, 
and in the second, we call it a right otlerhang in
stance. 

Careful examination of the algorithms in [12] and 
those in the preliminary report included in [61 reveals 
that, with one possible exception, it is never really 
necessary to record the instances of a pattern in a text 
for later examination. Instead, it sufflces to be able 
to detect the instances one at a time, in order. The 
one possible exception is in the algorithm for Lemma 
1.2 in [12], but an alternative algorithm is available 
from [6]. 

/ As described above, our multi head finite 
automaton algorithm already detects the full in
stances of % in y in order of their appearance. It 
remains only to modify the algorithm to detect all 
instances (both full and overhang) in order. 

As a first step, we describe how the algorithm can 
detect all (left) overhang instances following positions 
P in the range -1%1/2 5 P 5 0, in time O(lzl). Let 
% = Uti, where lui = Llzl/2J. First the algorithm 
should find the length Po of the shortest period of tI. 

(To do this in time O(ltll), it should search as above 
tor the second full instance of the pattern tI in the text 
tltI.J In the case that po ~ ItlI/2, the algorithm should 
search as above for full instances of tI in [0, Izll" and 
check naively (in time O(lul) = 0(1%1)) whether each 
discovered full instance of tI extends to a left overhang 
instance of the entire pattern z. Since:e can occur 
at most Izl/po = O(lzl/ltll) = O(l:el/l%l) = 0(1) full 
times in y, the total time for the naive checks will be 
O(lzl). 

In the remaining case that Po < Itli/2, the 
algorithm should reparse :e, in time 0(1%1), into 
[0, 'Is[i, l:el]s such that 

i 5 Izl/2, 

[i, l:ells has (shortest) period of length Po, 

[i - I, Izlls (if i > 0) does not. 


Using the fact that [i,I:elJs has a period of length po < 
Itll, the algorithm should search first for the left over
hang instances which are left overhang instances of 

[i,I:ell s. To do this, it should first determine qo = 
min(reach,{pQ}, Izl- ,) in time O(lzl - ,j = O(l:eD, 
and then search for full instances of tI in [0, l:el- i],. 
A discovered instance of fI extends to a left overhang 
instance of [i, 1%lJs if and only if it ends at a position 
p 5 qo. To find the left overhang instances of:e which 
are not left ovsrhang instances of [i,lzlls (assuming 
i > 0, so that there might be some), the algorithm 
should search for full instances of [i - 1, l:ell s, and 
check naively whether each discovered full instance 
extends to a left overhang instance of the entire pat
tern. By the periodicity lemma, the length of the 
shortest period of [i -1, 1%1l", must exceed Ifll- Po> 
Itli - Itll/2 = Itl1/2; so the total time for the naive 
checks will again be 0(1%1). 

An algorithm to find all the nontrivial left over
hang instances of :e in order can simply apply the 
algorithm just described to the sequence of patterns 
[1:e1-2, l:ell s, [I:e1-4, l:el]s, [1%1-8, 1%1]31,"" [0, IzlJs = 
%. (If l:el is not a power of 2, then :e can be padded 
on the left out to the next such length, and the last 
few left overhang instances can be ignored.) The 
total time will be 0(2 + 4 + 8 + ... + Izl) = 
0(1:e1). A similar algorithm, applied to the sequence of 
patterns:e = [O,lzl]s, [0, Izl/2]s, [O,lzl/4]s,"" [0, 2]2:, 
can detect all right overhang instances of % in time 
0(1%1). Combining results, then, we conclude that 
a multihead finite automaton, with only {=, -:t: }
branching, can detect, in order, all instances (left 
overhang, full, and right overhang) of an arbitrary 
pattern % in an arbitrary text y in time 0(1%1 + Iyi). 

Remaining Issues 

We have refuted previously formulated versions 
of the conjecture that a two-way multihead finite 
automaton could not perform string matching 
efflciently [I, 8], but. a number of questions remain, 
especially in retrospect. We list some of these below. 

1. How much time and local storage are needed 
for a string matcher which cannot back up or reread 
the text? Our earlier algorithms [7, 8] had this 
property, but our new one sometimes has to reread 
some of the last Izi many text characters. In terms 
of storage of the -restricted- variety, in other words, 
the new algorithm uses nearly twice a.s much as the 
earlier ones. 

2. Can anyone-way multihead finite automaton 
perform string matching at all? (Any such string 
matcher could not help running in linear time.) 

3. How few heads sufflce for a linear-time string 
matcher? For a real-time string matcher! For a real
time palindrome recognizer? Note that two heads 
sufflce for the naive, quadratic-time string matcher. 
DUriS and GaUl [3J have shown that a two-head finite 
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automaton cannot perform string mati:hing at all if 
one 	of the heads is "blind" (can distinguish only 
endmarkers). 

4. The instances of pattern z in text y can be 
characterized by a binary string of length Izl + Iyl, 
the iwth bit indieating whether the pattern occurs fol
lowing text position i -izi. By the real-time result, 
a multihead finite automaton can simulate one-way 
access to this characterisation in real time. How fast 
can a multihead finite automaton simulate twowWIJV 
access to the characterization? 

t 

AcA:n.owl.cI,.m.n.ts. The authol'l thank Pater GaCi and Gary • Peterson for their criticism or 8&rlier versions or thil paper. 
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