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Introduction

The string-matching problem is to find all full in-
stances of a “pattern” character string z as a subword
(contiguous substring) in a “text” string y. While
the naive algorithm (trying the pattern from scratch
starting at each successive text position) requires time
proportional to the product |z| - |y| of the string
lengths in the worst case, Knuth, Morris, and Pratt
[10] and Boyer and Moore [2, 10, 5] designed algo-
rithms which require only linear time (proportional to
|z|<1yl). Their algorithms, however, require numbers
of local storage locations proportional to the length
|z! of the pattern in every case, making a general im-
plementation impossible without plenty of dynamic
storage allocation.

In [7] we designed linear-time algorithms requir-
ing only O(log|z|) (at most some constant times log|z|)
local storage locations in the very worst case, and we
designed almost linear-time algorithms requiring no
dynamic storage allocation at all (O(1) local storage
locations). Both we [8] and Karp and Rabin [9] have
subsequently developed linear-time algorithms requir-
ing no dynamic storage allocation, but these algo-
rithms require other special capabilities. The algo-
rithms in [8] are just our earlier linear-time algo-
rithms, modified to fill their relatively small dynamic
storage needs by temporarily borrowing some of the
space occupied by thg input pattern. While extremely
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simple conceptually, the Karp-Rabin algorithm re-
quires operations such as multiplication {(by the al-
phabet size) and a source of random numbers. (The
algorithm can err, but randomisation keeps the prob-
ability of error small and independent of the input
pattern and text.)

In this paper we describe a new linear-time
string-matching algorithm requiring neither dynamic
storage allocation nor other high-level capabilities.
The algorithm can be implemented to run in linear
time even on a six-head two-way finite automaton.
Moreover, the automaton requires only *{==,7#}-
branching” {1]. (Decisions depend on which of the
six scanned pattern or text symbols and positions are
the same, but not on the particular symbols or how
many symbols there are. Hence the same algorithm
works even for an infinite alphabet.) A *real-time”
implementation is possible on such a multihead finite
automaton with & few more heads.

Preliminaries

Throughout this paper, let ¥ be some fixed, com-
fortably large integer. In retrospect, £ = 4 will have
been large enocugh. )

For 1 < ¢ < |w|, let w(%) denote the s-th charac-
ter of the character string w. For 0 < ¢ € 7 < |w],
let [5, fle = w(E +1)...w()).

Consider any nonnull string z. 2z is a period of
the character string w if w is a preflx of the infinite
string 2°° == zzz.... Equivalently, z is a period of
w if and only if w is a prefix of zw [10]. For each
p < |w|, let reachy(p) =

max{ ¢ < |w| | [0, 7]« is & period of [0, q]w }
=p+max{g < |w—p|[0,qlwe=[p,p+qle}

z is basse if it is not of the form 2* for any integer
{> 1. zis a prefiz period of w if it is basic and z* is
a prefix of w. Equivalently, [0, p],, is a prefix period of
w if it is basic and reach,(p) > kp. (Since k is fixed,
we do not bother to include it in the terminology.)



Ezamples. The string ababab = (ab)® is not basic,
but the string abababa is. Both strings have periods
ab, abab, ababab, and even abababa. (Every extension
of a string w is a (relatively uninteresting) period of
w.) The string w = (abababa)*abab has reach (1) =
1, reach,(2) = 7, and reachy(7) = |w| =Tk 4+ 4. If
k > 4, then w has only the one prefix period [0, 7], =
abababa; if k = 3, then ab is also a preflx period.

Periodicity lemma [11, 10]. If a string of length p, +
po has pertods of lengths p; and py, then it has a
period of length ged(py, po).

Proof: Note that it has a period of length |p; — po|,
and cite Euclid’s algorithm. W

Corollary. Distinct prefiz periods of the same string
differ in length by ot least a factor of k — 1.

Proof: Suppose, to the contrary, that w has prefix
periods of lengths p; and po with p; < po < (k—1)p;.
Then p2 + p; < kp; < reachy(py); 80 [0,p2 + pi]u
has periods of both lengths, hence also one of length
ged(p1, p2). Therefore the prefix [0, ps2]y has a period
of length ged(p1,p2) € p1 < p2 and is not basic, a
contradiction. M

Searching for a Fixed Pattern

Several earlier string-matching algorithms follow
a single general scheme. That scheme considers posi-
tions p for the pattern in the text in increasing order,
and it maintains the length g > O of a pattern prefix
known to match the text starting following position
p {[0,9]: = Ip,p + qly). For appropriately calculated
p' > p and ¢/, then, the algorithms search as follows:

- (p,q) +(0,0)
ploop:
while y(p+g+1)=2z(¢+1)dog+g+1
(9~ (r.¢)
goto ploop

Each time g reaches the pattern length |z|, a full in-
stance of the pattern has been found following posi-
tion p in the text (z = [p,p + |z|]y); the search can
be continued by dropping out of the while-loop. (We
consider y(p 4+ g -+ 1) = z{q + 1) to be false when-
ever p+q-+1 > Jylor g+ 1 > |z|, so this will
be automatic.) Of course the algorithms should halt
when the end of the text is reached (p = |y|).

The earlier algorithms differ only in how they cal-
culate ¢’ and ¢/. The naive algorithm conservatively
calculates p/ = p+ 1 and ¢’ = 0. Since [0,9], =
_ [p,p+ gly, however, consideration of p’ = p + shift

* is futile unless [0,q — shift], = [shift,q];; so the
Knuth-Morris-Pratt algorithm calculates p/ = p +

shift,(q), where shift,(q) =
min{ shift > 0| [shift,ql. = [0,9 — shift]; },

and then can even salvage ¢ = g — shift.(q) if ¢ >
D. To get by with a skimpier tabulation of the shift
function, algorithms from [7] calculate (¢, ¢') =

{ (p + shift.(g), g — shift(q)) if shift;(q) < g/k,
(p + max(1,[q/k)),0) otherwise.

It k is large, the case shift.(g) < g/k above
should be relatively rare. Qur new algorithm below
is inspired by the vain wish that such cases could be
ignored entirely. Lemmas 1 and 2 below characterize

such cases in terms of preflx periods of the pattern.

Lemma 1. If shift,(q) < q/k, then [0,shift,(q)], ts
a prefiz period of z.

Proof: By definition, [0,shift;(g)], is a (shortest)
period of [0,g];. It appears k times because ¢ > k-
shift.(g). If it were of the form z* for some integer
$ > 1 (i.e., not basic), then z would be a shorter
period of [0,q],. W

Lemma 2. If [0, shift]; &5 6 prefiz period of z, then

shift = shift,(q) < q/k
& k-shift < g < reach.(shift).

Procf: Only the proof of the backward implication
(&) requires a nontrivial observation: By the peri-
odicity lemma (assuming & > 2), shift,(q) < shift
would contradict the assumption that [0, shift], is
basic. M '

The following decomposition theorem, proved in
the next section, now leads to an efficient algorithm
to search for any fixed pattern z:

Decomposition theorem. Each paitern z has a parse
T = uv such that v has at most one prefiz period
and |u| = O(shift,(|v()).

(We cannot insist that v have no prefix period: For
z = g", we would have to have |u| > n — k and
shift,(Jv]) = 1.) The efficient algorithm uses the
general scheme discussed above to search for full in-
stances of the pattern suffix v. If v has no prefix
period, then the crucial values are always

(v, ¢) = (p + max(31, [q/k]), 0).

It v has one prefix period, and its length is p;, then
the crucial values are (¢/,¢') =

{ (®+p1.9—p) if kp1 < g < reachy(ps),
(p + max(1,[q/k]),0) otherwise.
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On a text y, the time to find all instances of v will be
O(|v| + |y|), because the nonnegative, nondecreasing
integer quantity (k -+ 1)p + g = O(|v| + |y|) is bound
to increase every O{1) steps. The algorithm checks
naively (in time O(|u])) whether the pattern prefix
4 occurs to the immediate left of each discovered in-
stance of v. Since v can oceur at most |y|/ shift,(]v|)
times in a text y, the total time for the naive checks
will be O(jul)|yl/ shift,(|v]) = O(]y]). So the total
time is O(|v| + |ly|) = O(|z| 4+ |y|), and the number of
local storage locations is some small constant.

Proof of Decomposition Theorem

To prove the decomposition theorem, we need one
more lemma.

Lemma 3. For each bastc string w, there is a
parse w = W Wy Such that, no matter what w' ¢s,
wow* 1w’ has no prefiz period shorter than |w|.

Procf: By the periodicity lemma, any offending prefix
period would have to be shorter than |w|/(k — 1); so
w' is irrelevant, and we may as well use the infinite
sufix w' = w°.

The obvious way to seek the parse is to start with
w™ and repeatedly delete offending prefixes:

While the remainder has a prefix z* with |z| < |w|,
delete a shortest such 2.

If this terminates, then a satisfactory parse of (the last
entered copy of) w has been found. Here is a termina-
tion argument: When z is deleted, z*~! remains a
prefix of the remainder. Therefore, the nezi deletion
Z cannot be shorter. (Otherwise, by the periodicity
lemma, 2* would have to be a prefix of z2, contradict-
ing the previous choice of z as smallest.) Therefore,
either 2 = z, or |/| > |z|. (In fact, |2| > |2| implies
|#| 2 (k — 2)|z|, by the periodicity lemma; hence,
z*=2 will be a prefix of every subsequent remainder.)
But, since w is basic, the periodicity lemma implies
that no same z continues to work forever. Therefore,
the length eventually reaches |w|. W

Remark. A stronger claim can be made for the algo-
rithm in the proof of Lemma 3 above: Not even one
Jullw gets deleted.

Proof of remark: Suppose some deletion z ends at
position p > |w| in w™. (Our convention is that
position p separates characters number p and p+ 1.)
The algorithm would now loop (contradicting our ter-
mination argument} if some deletion z had started one
period back, at position p — |w|. Therefore, position
p— |w| must have been within some deletion z; start-
ing at some position po (p — |w| — po < |2o]). By our

observation in the proof above, zo*—2 occurs starting
at position p. Therefore, it occurs at both positions
po and p— |w|. From this, it follows that zo*—2 (and
hence zy*) has a period of length p — |w| — po <
|2o|, contradicting the choice of z, as a shortest prefix
period starting at position p;. W

Proof of decomposition theorem: We obtain v =
[s, |z|]« by deleting appropriate prefixes from the pat-
tern until the remainder has at most one prefix period:

s+~—0
while [s, |z|]; has more than one prefix period do
begin

Let po be the length of the second shortest
prefix period.

By appeal to Lemma 3, find 8 < s+ ps
such that [s/, |z[]; has no prefix period
shorter than po.

Set s + o,

end

It remains only to prove that |u| = O(shift,(|v|))
finally holds. For each s, let

£(s) = length of the shortest period of [s, |z]],,
p1(s) = length of the shortest prefiz period
of [s, |z|]z (if there is one).

(If pi(s) exists, then [s,s 4 pi(s)]. is the shortest
period of some prefiz of [s,|z|],, guaranteeing that
p1(s) < L) By induction, we prove the loop invariant
s < 2min(pi(s), £(s)):

s <s+po
< 2 min(pi(s), &s)) + p2
= 2p1(s) + P2
< 22/(k—1)+p2
< 2p; ‘
< 2min(pi(s'), &(s")).

(The periodicity lemma ensures that po < £(s).)
Finally, therefore, |u| = s < 2£(s) = 2shift,(|[v]). =

Preprocessing a Pattern

Even the algorithm for finding the decomposition
z = uv = [0,s],[s, |z|]: above can be implemented
efficiently. First note that, by Lemma 3 and the sub-
sequent remark, there is a very simple algorithm for
finding ¢’

§ s
while [s/, |z]]; has a prefix period shorter than p,
do Delete a shortest one.



Now an efficient implementation iz natural in terms
of efficient subroutines to find the one or two shortest
prefix periods of a string.

The general scheme discussed above, and inter-
preted as in [7], provides an efficient algorithm to
determine whether a string w has a preflx period and
to find the shortest one if it does. The algorithm
matches w against itself, starting with (p, ) = (1,0).
Of course no full instance of the pattern will be found,
but for each ¢ we will have shift, () = p the first
time p + ¢ = ¢ holds. To see this, consider any ¢
(1 £ ¢ < |w|). The first time p 4+ g = 1 holds, no
symbol beyond w(s) has been examined, so shift,(s) is
still a prospective position for the pattern; i.e., p <
shifty(t). Since the algorithm guarantees that [p, 1],
is a prefix of [0, 1], at this point, we cannot have p <
shift,(t); so p = shift,,(), as claimed. The algorithm
we want simply watches for the first £ with shift,(f) <
t/k(p < (p+q)/k). (By Lemma 2, these inequalities
will be equalsties.) Until such an ¢ is found, the cal-
culation

(7,q) = (p + max(1,[q/k1),0)

will always be appropriate, since shift,(gq) > g/k for
all ¢ < ¢. If the shortest prefix period exists and has
length py, then the final values of p and g will be p,
and (k — 1)p;, respectively. Therefore, the total time

will be O((k + 1)p + ¢) =

O(p1) if p; exists,
O(lw]) in any case.

To determine whether w has a prefix period shorter
than some given py, We can use the same algorithm
until p reaches p,; the running time for this variant
will be

O(p1) if p; < po exists,
O(p2) in any case.

Similarly, there is an efficient algorithm to deter-
mine whether a string w has two prefix periods and
to find the second shortest one if it does. First,
the algorithm seeks the shortest prefix period as
above. I the shortest prefix period exists and has
length p,, then the algorithm straightforwardly deter-
mines reach.,(p;) in time Of(reach,(p;)). Finally,

" the algorithm matches w against itself, starting with

{r,9) = (1,0) as above, now watching for the first

i > reach,(p;) with shift,(tf) = ¢/k. Until such an ¢
is found, the calculation (p/,¢') =

{ (p+p1,9—p1) if kpy < g < reachy(p1),
(p + max(1,[q/k]),0) otherwise

will always be appropriate, since every ¢ < 1 will
have either shift,,(q) > g/k or shift,(q) = p;. If the
second shortest prefix period exists, then its length po
will have to be at least reach,(p:) — p1, by the peri-
odicity lemma. By looking at the quantity (k+1)p-+q
again, therefore, we see that the total time will now
be

O(p1) + O(reachy(p;)) + O(|w|) if only p, exists,

{ O(p:) + O(reac;hw(m)) + O(p2) if p2 exists,
O(|w])

in any case

— O(pz) if P2 exists,
~ | O(lw|) in any case.

Now consider using these efficient subroutines
to implement the outlined decomposition algorithm.
The time for the one failed entry test for the outer
loop will be O(|v|). In terms of the current value of
p2, the time for finding s’ will be O(s' — 5) <4 O(p2) =
O(p2). Therefore, the time for the entire loop body,
including the passed entry test, will be O(po). By the
periodicity lemma, each successive p; will be at least
k— 2 2> 2 times the preceding one. So the total
decomposition time will be

o(lvh)+Oo(lvl(1+1/241/4+---}) = O(lv[} = O(lz|).

Combining this preprocessing algorithm with the
searching algorithm described earlier, we finally get
an algorithm which can find all full instances of an
arbitrary patiern z in an arbitrary text y in time
proportional to |z|+ |y|, without dynamic storage al-
location.

An Integrated Implementation

Having established the existence of our algo-
rithm, we turn now to integrated and improved
implementation. The following implementation of
the entire algorithm will lead to a multihead finite
automaton implementation in the next section.
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(r,q) + (0,0)
(S, P1, 91) - (0: 1, 0)
(PQ, 02) At (0:0)
newpl:
whilz(s +p1+q:1 +1) =z(s + 9,4+ 1)
dogi—q:1+1
pi+q1 2 kp
then [(pz, g2) + (g1,0); goto newp?|
if s + p1 + ¢q1 = |z| then goto search
(P1,91) + (p1 + max(1,[q:/k1),0)

goto newpl
newp2:

while z(s +p2+ g2+ 1) = z(s + g2+ 1)
and p2+ g2 < kpodo gz +— g2+ 1
if po 4+ g2 == kpo then goto parse
if 5 <+ py + go = |z| then goto search
fge=p1+q
then (p2, g2) « (p2+ p1,92 — p1)

eise (p2, g2) + (p2 + max(1, [¢g2/k]),0)
goto newp?

parse:
whilez{(s +p1+q1+1) =z(s +q: + 1)
dogi+—q+1
while p; + g1 2 kp1 do (s5,91) « (s +p1,q1 — p1)
(pl» QI) - (pl + max(l, IlQI/k.I): 0)
it p1 < p2
then goto parse
else goto newpl

search:
whilt yp+s+g+1)=z(s+qg+1)
doge+gq+1
if ¢ = |z| — s thenif [p,p + 5]y = [0, 5]z
then announce instance of z at text position p
ftg=p+q
then (px Q) - (p +rp1,9— pl)

else (v, g) «~ (p + max(1,[q/k]),0)
it p-+ s < |y| then goto search

(Note: The variables p and g are introduced only for
clarity. By the time they are used (in the segment fol-
lowing search), po and g2 are free and could be reused
instead.)

The main purposes of the program segments
above are as follows:

newpl:

Find the shortest prefix period of s, |z|],.
newpl:

Find the second shortest prefix period of [s,|z|];.
parse:

Increment s.
search:

Search the text for z = [0, 5].[s, |z]]-

A more detailed direct analysis relies on the validity

of the following assertions at the labeled checkpointa:

newpl:
[s,|z|]z has no preflx period shorter than p;.
+rus+rital=I[s5s+q
p2 < p1-
P2+ 92 = kpa.

newpld.
[5,12|]- has shortest prefix period of length p;.
[s,8 + p1 + g1], has period of length p;.
[s,s + p1 + q1 + 1] does not.
P2 2 91
[s, |zl bas only one prefix period shorter than p,.
[s + p2, 8 + pa+ g2l = [s,5 + g2e.
P2+ g2 < kpa.

parse:
[s,|z]]z has no prefix period shorter than p;.
[s+pus+pi+qlz=I[s,5+ qie
p1 < po.
P2+ g2 = kpa.

search.
[s,|z]]c has at most one prefix period.
If [s,|2|]z does have a prefix period,
then its length is p,.
[s,5 + p) + g1]: has shortest period of length p;.
[s,s + p1 + q1 -+ 1], does not have
period of length p;.
All instances of z starting at text positions
before p have been announced.
p+s,p+s+4qly=I[s55+ gl
s < 2p;. .

First consider the very last assertiom, which is
crucial for the time analysis. Assuming all the other
assertions hold, the integrated implementation incre-
ments s in the same way as the original algorithm. So
the validity of the assertion follows from our proof of
the decompozition theorem.

Verification of all the other assertions is routine,
frequently by appeal to the periodicity lemma. Note
that we have replaced the test kp; < g2 < p1 g4
with the simplified test go = p; <+ ¢, in the segment
following newp2. This is justified by the mismatch
z(s+p2+92+1) 7 z(s+g2+1) (and the periodicity
lemma). Similarly, we have replaced the test kp; <
qg < p1+ g, with just ¢ = p; + g; in the segment
following search. The last two assertions for newpl
are included for their aid in the time analysis below.



For a direct time analysis, consider the expression

52+ ((k+ 1)p1+q1)
+ ((k + 1)p2+ ¢2)
+((k+1)p+4q).

The value of this expression is always an integer
O(|z| + |y|). Its initial value is positive, and every
assignment increases its value. (This is immediately
clear for every assignment except (p2,q2) « (g1,0).
Since that assignment occurs only when p; g, 2 kp;
(by the test) and po < p, and p, + g2 = kps (by
assertions at newpl), however,

(k + 1)p2+ g2 = kpa + (p2+ 92)
= kag
< 2kpy
< 2%q1/(k—1)
< (k4 1)gy;

hence, the contribution by ps and go is greater alter
the assignment than before.) Some such assignment
is executed every O(1) steps, except for tests [p,p +
sly = [0, 5];. But we have seen already that the total
time for these tests is O(]y|), because s = O(p;) holds
at search. Therefore, the algorithm’s total running
time must be O(|z| + |y|).

Maultihead Finite Automaton

For an eleven-head flnite automaton implementa-
tion, maintain text heads at positions p 4+ s + g and
p -+ s, and pattern heads at positions s 4+ p; + ¢,
s+qy, s+ kpy, s+p2+92 5+ 92, s+ kp2, s+ 4,
s, and s again. (The values s + kp; and s + kpo
might exceed |z|, but they will certainly be bounded
by (k + 1)|z|. The pattern head maintaining such
a value can reverse direction whenever it reaches an
endmarker, and the finite control can keep track of
the net number of reversals for the current value.)
With heads at these positions, each test [p,p + 5]y =
[0, s]; requires only O(s) steps, as before; every other
test requires only O(1) steps, provided the finite con-
trol keeps track of the order of the head positions; and
each assignment requires at most & number of steps
proportional to the resulting increase in the expres-
sion used in the time analysis above. Therefore, the
total time remains O(|z| + |y|).

We can save two pattern heads above by letting
positions s - kp;, s -+ kpo, and s < g share a single
head. We let that head maintain position s -+ kp; in
the segments following newpl and parse, 5 4+ kps in
the segment following newp?2, and s -+ ¢ in the seg-
ment following search. The time to relocate the head

to position s + ¢ = s the one time control enters
the segment following search is certainly O(|z|). The
time to relocate the head from position s 4 kp; (via
position s) to position s+ kp, = s+ kq; when control
enters the segment following newp?2 is O(p; 4+ ¢q;) =
O(q1), but we were already allowing that long for the
immediately preceding assignment (po, ¢2) « (q1,0).
The time to relocate the head from position s + kps
(via position s) to position s+kp, when control enters
the segment following parse is O(ps + p1) = O(py),
but p; will be at least k — 2 > 2 times as large the
next time this is necessary. Therefore, the total time
still remains O(|z| + |y|).

To save one more pattern head, note that the
head at position s 4 po -+ g2 is needed only in the
segment following newp2, and that the second head
at position s is needed only outside that segment (in
fact, only for the assignment (s,q;) + (s + p1, 91 —
P1)). As above, there is time for one shared head to
shift roles on entering and leaving the segment.

If both the pattern and the text are provided on
the same input tape, then we can save two more heads.
The two text heads are needed only atier search is
reached. At that point, however, it becomes unneces-
sary ever again to maintain pattern positions s po+
g and s go; so the corresponding patiern heads can
relocate to tezt position s and begin to serve as the
tezt heads. The final result is the promised six-head
finite automaton requiring only { =, 7 }-branching.

Real-Time Algorithms

In [12] we reported real-time Turing machine
algorithms for string matching, for recognition of
squares (strings of the form ww) and palindromes
(strings which are their own reverses), and for a num-
ber of generalizations of these problems. Using our
new algorithm as a building block, we can adapt all
of these algorithms to run in real time even on a
multihead finite automaton. In this context, “real
time” means that, for some constant ¢, the input tape
is extended by one symbol every ¢ steps, and that
the automaton must rule immediately on the accept-
ability of the extended input string. For the string-
matching problem, the pattern (while it lasts) and the
text are extended simultaneously, and each verdict
must indicate whether an instance of the pattern-so-
far ends at the current end of the text. (The problem
would be much easier if the entire pattern preceded
the entire text.)

Adaptation of the real-time algorithms from [12]
is beyond the scope of this report, but the key is
to use a variant of our new string matcher wherever
in [12] we used the Fischer-Paterson string matcher
[4]. The latter linear-time algorithm already required



linear space on an off-line Turing machine; so for con-
venience in [12], we freely allowed ourselves the luxury
of marking all the instances of z on a copy of y for
examination in latter passes. In addition, we made
use of the Fischer-Paterson algorithm to find not oxly
fullinstances of z, but also “overhang” instances. An
overhang instance of £ occurs following position p in
y (Iyl 2 |z[} if either

—jz|<p<0 and [0,p+ [z{ly = [—p, 2],
or
lyl—izl < p < |yl and [p,lylly = [0,|y] — Pla-

In the first case, we call it a [eft overhang instance,
and in the second, we call it a right cverhang in-
stance.

Careful examination of the algorithms in [12] and
those in the preliminary report included in [6] reveals
that, with one possible exception, it is never really
necessary to record the instances of a pattern in a text
for later examination. Instead, it suffices to be able
to detect the instances one at a time, in order. The
one possible exception is in the algorithm for Lemma
1.2 in [12], but an alternative algorithm is available
from [8].

As described above, our multihead finite
automaton algorithm already detects the full in-
stances of z in y in order of their appearance. [t
remains only to modify the algorithm to detect all
instances (both full and overhang) in order.

As a first step, we describe how the algorithm can
detect all (left) overhang instances following positions
p in the range —[z]/2 < p < 0, in time O(|z|). Let
z = yv, where |u] = [|z]/2]. First the algorithm
should find the length po of the shortest period of v.
(To do this in time O(|v|), it should search as above
for the second fullinstance of the pattern v in the text
vv.) In the case that py > |v]/2, the algorithm should
search as above for full instances of v in [0, |z[]y, and
check naively (in time O(ju|) = O(|z|)) whether each
discovered full instance of v extends to a left overhang
instance of the entire pattern z. Since z can occur
at most |z|/po = Of|z|/Iv|) = Of|z|/|z() = O(1) full
times in y, the total time for the naive checks will be
O(lz]).

In the remaining case that p, < [v|/2, the
algorithm should reparse z, in time O(|z|), into
[0, 4]z[¢, |zl]z such that

t < |zl/2,
[4, |z]]- has (shortest) period of length py,
[f—1,]z|]s (if 1 > 0) does not.

Using the fact that [f, |z|]; has a period of length po <
{v], the algorithm should search first for the left over-
hang instances which are left overhang instances of

[¢,|z]lz. To do this, it should first determine go =
min(reachy(po), |z| — 1) in time O(|z| — ¢) = O(|z]},
and then search for full instances of v in [0, |z| — 1],.
A discovered instance of v extends to a left overhang
instance of [f, |z|]; if and only if it ends at a position
p < go. To find the lefi overhang instances of z which
are not left overhang instances of [4,|z|], (assuming
¢ > 0, so that there might be some), the algorithm
should search for full instances of [¢ — 1,|z|],;, and
check naively whether each discovered fuil instance
extends to a left overhang instance of the entire pat-
tern. By the periodicity lemma, the length of the
shortest period of [{ — 1, |z|], must exceed |v|—po >
|v| — |v|/2 == |v|/2; so the total time for the naive
checks will again be O{|z]).

An algorithm to find ali the nontrivial left over-
hang instances of z in order can simply apply the
algorithm just described to the sequence of patterns
“zl""zr l:”m “.‘:'-4, |z”=: [lx]—-S, lzl]z; reny [0; lz”z =
z. (If |z| is not a power of 2, then z can be padded
on the left oyt to the next such length, and the last
few left overhang instances can be ignored.) The
total time will be O(2 + 4 4+ 8 4 --- + |2]) =
O(|z]). A similar algorithm, applied to the sequence of
patterns z = [0, |z|],, [0, |2/2]., [0, {z]/4]s, ..., [0, 2]5,
can detect all right overhang instances of z in time
O{|z|). Combining results, then, we conclude that
a multihead finite automaton, with only {==,5}-
branching, can detect, in order, all instances {left
overhang, full, and right overhang) of an arbitrary
pattern z in an arbitrary text y in time O(|z| + |y|).

Remaining Issues

We have refuted previously formulated versions
of the conjecture that a two-way multihead finite
automaton could not perform string matching
efficiently [1, 8], but a number of questions remain,
especially in retrospect. We list some of these below.

1. How much time and local storage are needed
for a string matcher which cannot back up or reread
the text? Our earlier algorithms [7, 8] had this
property, but our new one sometimes has to reread
some of the last |z| many text characters. In terms
of storage of the “restricted” variety, in other words,
the new algorithm uses nearly twice as much as the
earlier ones.

2. Can any one-way multihead finite automaton
perform string matching at all? (Any such string
matcher could not help running in linear time.)

3. How few heads suffice for a linear-time string
matcher? For a real-time string matcher? For a real-
time palindrome recognizer! Note that two heads
sufice for the naive, quadratic-time string matcher.
Duris and Galil [3] have shown that a two-head finite



automaton cannot perform string matching at all if
one of the heads is “blind® {can distinguish only
endmarkers).

4. The instances of pattern z in text y can be
characterized by a binary string of length |z| + |y|,
the i-th bit indicating whether the pattern occurs fol-
lowing text position 1+ — |z|. By the real-time result,
a multihead finite automaton can simulate one-way
access to this characterization in real time. How fast
can a multihead finite automaton simulate two-way
access to the characterization?
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Peterson for their criticism of earlier versions of this paper.

References

1. A. B. Borodin, M. J. Fischer, D. G. Kirkpatrick,
N. A. Lynch, and M. Tompa, A fime-space itradeoff
for sorting on non-oblivious machines, 20th Annual
Symposium on Foundations of Computer Science (San
Juan, Puerto Rico, 1979), IEEE Computer Society, Long
Beach, California, 1979, pp. 319-327.

2. R. 8. Boyer and J. §. Moore, A fast string search-
ing sigorithm, Communications of the ACM 20, 10 (Oc-
tober 1977), 762-7T2.

3. P. Durif and Z. Galil, Fooling a two way
sutomaton or One pushdown store i3 better than one
counter for two way machines (preliminary version),
Proceedings of the Thirteenth Annual ACM Symposium
on Theory of Computing (Milwaukee, Wisconsin, 1981),
Association for Computing Machinery, New York, 1981
{to appear).

4, M. J. Fischer and M. S. Paterson, String-
matching and other products, in: Complexity of
Computation (SIAM-AMS Proceedings 7), R. M. Karp
(Editor), American Mathematical Society, Frovidence,
Rhode Island, 1974, pp. 113-125.

5. Z. Galil, On smproving the worst case running
time of the Boyer-Moore string matching algorithm,
Communications of the ACM 22, 9 (September 1979), 505-
508.

6. Z. Galil and J. Seiferas, Recognising certain
repetitions and reversals within strings, 1Tth Annual
Symposium on Foundations of Computer Science (Hous-
ton, Texas, 1976), IEEE Computer Society, Long Beach,
California, 1976, pp. 236-252.

7. Z. Galil and J. Seiferas, Saving space in fast
string-matching, SIAM Journal on Computing 9, 2 (May
1980), 417-438.

8. 2. Galil and J. Seiferas, Linear-time string-
matching using only o fized number of local storage
locations, Theoretical Computer Science (to appear).

9. R. M. Karp and M. O. Rabin, personal com-
munication.

10. D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt,
Fast pattern matching in strings, SIAM Journal on Com-
puting 6, 2 (June 1977), 323-350.

11. R. C. Lyndon and M. P. Schiitsenberger, The
equation a™ = 8Ve” in 4 free group, Michigan Mathe-
matical Journal 9, 4 (1962), 289-298.

12. J. Seiferas and Z. Galil, Real-time recognstion of
substring repetilion and reversal, Mathematical Systems
Theory 11, 2 {1977), 111-146.


http:strin.gs
http:time-.,a.ce
http:AcA:n.owl.cI,.m.n.ts



