
I

TIME-SPACE-OPTIMAL STRING MATCHING

(preliminary report)

Z'ri .Ga1il and Joel Seifer ..

TR 87
February 1981

Abnr&di. We de.ign aDd aDalYle a linear-time .tring-makhing alcorithm. which u ••
only a :lixed number of local .torage location.. Thi. completely eliminate. the need for
the tabulated tlfailure function" in Knuth, Morril, aDd PraW.linear-time alcorithm.. U
make. pollible a completely pneral implementation ... a Fortran IUbroutine or eYen on
a .ix-head finite automaton.

Part of this work w .. done while the first author Tilited the Uni"fWlity of Tokyo. The work of the fim author
w.. supported in part by the National Science Founda"on under grant MCS-2S301 at the University of California
at Serbley, and the work of the second luthor was supported in pan by the National Science Foundation under
l1'ant MCST9-05008.

Authors' addresses: Z. Gam, Department of Mathematical Sciences, Tel-Aviv Univerlity, Tel-Aviv. ISRAEL; J. I.
Seifer... Department of Computer Science, Univerlity of Rochester. Roche.ter. New York, U. S. A. 1U27.

TIME-SPACE-OPTIMAL STRING MATCHING

(preliminary report)

(

/

Zvi GalH
DepartmeDt of Mathematical ScieDce,

TeJ..Ayjy UDivel,icy
TeJ..Ayjy, lBRAEL

Jnirodue1iion

The string-matching problem is to find all full in
stances of a -pattern" character string:l: as a subword
(contiguous substring) in a ~xt" string y. While
the naive algorithm (trying the pattern from scratch
starting at each successive text position) requires time
proportional to the product 1:1:1 . 1111 of the string
lengths in the worst case, Knuth, Morril, and Pratt
[10] and Boyer and Moore [2, 10, 5] designed algo
rithms which require only linear time (proportional to
1=1+1111). Their algorithms, however, require numbers
of local storage locations proportional to the length
1=1 of the pattern in every case, making a general im
plementation impossible without plenty of dynamic
storage allocation.

In [7] we designed linear-time algorithms requir
ing only O(1ogl:l:1) (at most some constant times 10gl:l:I)
local storage locations in the very worst case, and we
designed "lmost linear-time algorithms requiring no
dynamic storage allocation at all (0(1) local storage
locations). Both we [8J and Karp and Rabin [9] have
Subsequently developed linear-time algorithms requir
ing no dynamic storage allocation, but these algo
rithms require other special capabilities. The algo
rithms in [8} are just our earlier linear-time algo
rithms, modified to fill their relatively small dynamic
storage needs by temporarily borrowing some of the
space occupied by th! input pattern. While extremely
Part of this work"... done whUe the first author visited the
University of Tok;ro. The work: of the Ilrst author wu sup
ported in part by the National Science Foundation under erant
MCS-2SS01 at the Univarsity of California at Berkeley and
the work: of the second author "... supported in part b1 the
National ScieDce Foundation under erant MCS79-0S00S.

Joel Seiferas
DeparcmeDt of Computel ScieDce

UDivel,icy of Roche.tel

Rocbe,cel, New YOlk 14621

simple conceptually, the Karp-Rabin algorithm re
quires operations such as multiplication (by the al
phab~t size) and a source of random numbers. (The
al~o.rlthm can err, but randomization keeps the prob
ability of error small and independent of the input
pattern and text.)

In this paper we describe a new linear-time
string-matching algorithm requiring neither dynamic
storage allocation nor other high-level capabilities.
The algorithm can be implemented to run in linear
time even on a six-head two-way finite automaton.
Moreover, the automaton requires only -{ =, #-}
branching- [1]. (Decisions depend on which of the
six scanned pattern or text symbols and positions are
the same, but not on the particular symbols or how
many symbols there are. Hence the same algorithm
works even for an infinite alphabet.) A -real-time"
implementation is possible on such a multi head finite
automaton with a few more heads.

Preliminaries

Throughout this paper, let Ir; be some fixed com
fortably large integer. In retrospect, Ir; = 4 wili have
been large enough.

For 1 SiS Iwl, let we,) denote the t-;th charac
ter of the character string w. For 0 SiS i S Iw I,
let [i,,;}w = wei + 1) ... wei).

Consider any nonnull string z. z is a period of
the character string w if w is a prefix of the infinite
string ZOO = zzz.... Equivalently, z is a period of
w if and only if w is a prefix of zw [10]. For each
l' < Iwl, let reachw(p) =

max{ q S Iwll [O,p]tD is a period of [0, qJw}
= l' + max{ q S Iwl-p I [0, q]w = [p,p + q1tr1}·

Z is b"sic if it is not of the form 21' for any integer
i > 1. z is a prefi:l: period of w if it is basic and Zk is
a prefix of w. Equivalently, [0, plw is a prefix period of
w if it is basic and reachw(p) 2: "1'. (Since Ie is fixed,
we do not bother to include it in the terminology.)

1

I

E:tu.mples. The string a.ba.ba.b = (a.b)3 is not basic,
but the string aba.ba.ba. is. Both strings have periods
a.b, abab, a.ba.bab, and even a.bu.ba.bu.. (Every extension
of a string w is a (relatively uninteresting) period of
w.) The string w = (a.babu.bu.).taba.b has reachw(l) =
1, reachw(2) = 7, and reachw(7) = Iwl = 7k + 4. If
Ie ~ 4, then w has only the one prefix period [0,7]ft! =
u.ba.ba.ba; if Ie = 3, then ab is also a prefix period.

Periodicity lemma [11, 10]. If u. string of length PI +
1'2 h(J8 perioels of lengths PI and 1'21 then it h(J8 a
perioel of length ged(p1, 1'2)'

Proof: Note that it has a period of length 11'1 - 1'21,
and cite Euclid's algorithm. •

Coroll&rJ. Distinct preji:r. perioels of the ",me string
eliffer in length b, at least a fa.ctor of Ie - 1.

Proof: Suppose, to the contrary, that w has prefix
periods oflengths PI and 1'2 with PI < 1'2 < (le-l)p1'
Then 1'2 + PI S lePl S reachW(pl); so [0,1'2 + p11ft!
has periods of both lengths, hence also one of length
gcd(Plrp2l. Therefore the prefix [0,1'21111 has a period
of length gCd(pl,p2) S PI < 1'2 and is not basic, a
contradiction. •

Searching for a Fixed Pattern

Several earlier Dring-matching algorithms follow
a single general scheme. That scheme considers posi
tions I' for the pattern in the text in increasing order,
and it maintains the length q ~ 0 of a pa.ttern prefix
known to match the text starting following position
I' ([0, q]!f = [P, I' + q],). For appropria.tely calculated
'P' > .I' and q', then, the algorithms search as follows:

(P, q) - (0,0)
.1'1001':

whUe,(p +q+ 1) = :r.(q+ 1) do q - q + 1
(P,q) - (pI,q')
goto 1'1001'

Each time q reaches the pattern length 1.2:1, a full in
stance of the pattern has been found following posi
tion I' in the text (.2: = [p,p + 1.2:11,); the search can
be continued by dropping out of the while-loop. (We
consider ,(p + q + 1) = .2:(q + 1) to be false when
ever p + q + 1 > 1,1 or q + 1 > 1.2:1, so this will
be automatic.) Of course the algorithms should halt
when the end of the text is reached (p = I,D.

The earlier algorithms differ only in how they cal
culate tI and q'. The naive algorithm conservatively
calculates 'P' = I' + 1 and q' = O. Since [0, q]!f =
[p,p + q]" however, consideration of 1" = .I' + shift
is futile unless [0, q - shift]!f = [shift, q]c; so the
Knuth-Morris-Pratt algorithm calculates tI = I' +

shift!f(q), where shifts(q) =

min{ shift> 0 I [shift, q1~ = [0, q - shift]~ },

and then can even salvage q' = q -shifts(q) if q >
O. To get by with a skimpier tabulation of the shift
function, algorithms from [7] calculate (pi, q') =

(p + shift!f(q), q - shift~(q)) if shift~(q) S q/Ie,
{ (p + max(l, r q/lel), 0) otherwise.

It Ie is large, the ease shift~(q) ~ q/Ie above
should be relatively rare. Our new algorithm below
is inspired by the vain wish that such cases could be
ignored en«rel,. Lemmas 1 and 2 below characterize
such eases in terms of prefix periods of the pattern.

Lemma 1. If shiftc(q) ~ q/Ie, then [0, shift!f(q)]!f is
a prefi:r. .I' erioel of:r..

Proof: By definition, [0, shift!f(q)]~ is a (shortest)
period of [0, q]~. It appears Ie times because q ~ Ie •
shiftc(q). It it were of the form zi for some integer
i > 1 (i.e., not basic), then z would be a shorter
period of [0, q]:e. •

Lemma 2. If [0, .th.iftl~ " u. preji.2: perioel of.2:, then

shift = shift:e(q) S q/Ie
{::} Ie • shift ~ q ~ reachz(shift).

Proof: Only the proof of the backward implication
(*=) requires a nontrivial observation: By the peri
odicity lemma (assuming Ie ~ 2), Ihift!f(q) < shift
would contradict the assumption that [0, shiftl~ is
basic. •

The following decomposition theorem, proved in
the next section, now leads to an eftlcient algorithm
to search for any fixed pattern :r.:

Decomposition theorem. Eu.ch p4ttern:r. h(J8 a pu.'fSe
.2: = u!/ such that !/ h(J8 at most one preji:r. perioel
anel lui = O(shiftt/(I!/I)).

(We cannot insist that v have no prefix period: For
:r. = an, we would have to have lui > n - Ie and
shift,,(lvD = 1.) The eftlcient algorithm uses the
general scheme discussed above to search for full in
stances of the pattern BUftlX!/. If!/ has no prefix
period, then the crucial values are always

(tI, q') = (.I' + max(l, rq/lel), 0).

If v has one prefix period, and its length is .I'll then
the crucial values are (pi, q') =

(p +1'1, q - "1) if 1e"1 ~ q ~ reach,,(.Pl),
{ (p + max(I, rq/lel),O) otherwise.

2

http:reach,,(.Pl
http:u.ba.ba.ba
http:a.bu.ba.bu
http:aba.ba.ba

l

On a text 11, the time to find all instances of v will be
O(lvl + 1111), because the nonnegative, nondecreasing
integer quantity (k + 1)1' +q = O(lvl + 1111) is bound
to increase every 0(1) steps. The algorithm checks
naively (in time 0(1'1.&1» whether the pattern prefix
1.£ occurs to the immediate left of each discovered in
stance of v. Since v can occur at most 11111 shiftv(lvl)
times in a text 11, the total time for the naive checks
will be 0(1'1.&1)11111 shift!J(lvl) = 0(1111). So the total
time is O(lvl + 1711) =0(1:1 + I7ID, and the number of
local storage locations is some small constant.

Proof of Decomposition Theorem

To prove the decomposition theorem, we need one
more lemma.

Lemma 3. For each ba8ic string wJ there is a
pa.rse w = W1W2 such tha.t, no matter what w' uJ

W2Wk-1W' ha.s no preft: period shorter than Iwl.

Prool: By the periodicity lemma, any offending prefix
period would have to be shorter than Iwl/(k - 1); so
w' is irrelevant, and we may as well use the infinite
suffix w' = wOO.

The obvious way to seek the parse is to start with
'Woo and repeatedly delete offending prefixes:

While the remainder has a prefix zk with Izl < Iwl,
delete a shortest such z.

If this terminates, then a satisfactory parse of (the last
entered copy of) w has been found. Here is a termina
tion argument: When z is deleted, zk-l remains a
pretlx of the remainder. Therefore, the ne:t deletion
z' ca.nnot be shorter. (Otherwise, by the periodicity
lemma,. z'1c would have to be a prefix of Z2, contradict
ing the previous choice of z as smallest.) Therefore,
either z' =z, or 1z'1 > Izi. (In fact, Izl > Izi implies
1z'1 > (Ie - 2)lzl, by the periodicity lemma; hence,
zJ:-2 will be a pretlx of ner71 subsequent remainder.)
But, since w is basic, the periodicity lemma implies
that no same z continues to work forever. Therefore,
the length eventually reaches Iwl. •

Rema.rk. A stronger claim can be made for the algo
rithm in the proof of Lemma 3 above: Not even one
lull w get8 ddded.

Prool 01 rema.rlc: Suppose some deletion z ends at
position l' > Iwl in woo. (Our convention is that
position l' separates characters number l' and l' + 1.)
The algorithm would now loop (contradicting our ter
mination argument) if some deletion z had started one
period back, at position l' - Iwl. Therefore, position
p-Iwl must have been withi.n some deletion Zo start
ing at some position Po (p -Iwl- Po < Izol). By our

observation in the proof above, zok-2 occurs starting
at position p. Therefore, it occurs at both positions
Po and l' -Iwl. From this, it follows that zok-2 (and
hence ZOk) has a period of length l' - Iwl - Po <
Izol, contradicting the choice of Zo as a shortest prefix
period starting at position Po. •

Prool 01 decomposition theorem: We obtain v =
[s, 1:llz by deleting appropriate prefixes from the pat
tern until the remainder has at most one prefix period:

s+-O
while [s, 1:1121 has more than one prefix period do

begin
Let 1'2 be the length of the second shortest

prefix period.
By appeal to Lemma 3, find I < s + P2

such that [s', 1:llz has no pretlx period
shorter than 1'2.

Set s +- s'.
end

It remains only to prove that lui = O(shift.,(lvl))
finally holds. For each s, let

te,) = length of the shortest period of [s, 1:1]21,
pl(S) = length of the shortest preft: period

of [s, 1:1121 (if there is one).

(If 1'1(') exists, then [s, s + p1(S)]2: is the shortest
period of some preft: of [s,I:I12:' guaranteeing that
p1(S) ~ t.) By induction, we prove the loop invariant
s < 2min(p1(s),t(s»:

s' < s +1'2
< 2 min(Pl(s),t(s» +1'2
= 2p1(S) +1'2
~ 2p2/(1c -1) + 1'2
~ 21'2
~ 2 min(p 1 (s'), t(s'}).

(The periodicity lemma ensures that 1'2 ~ t(8').)
Finally, therefore, lui = s < 2l(s) = 2shiftv(lvl}.•

Preprocessing a Pattem

Even the algorithm for ftnding the decomposition
.:I: = uv = [0, s],:I:[s, 1:112: above can be implemented
efficiently. First note that, by Lemma 3 and the sub
sequent remark, there is a very simple algorithm for
finding s':

I+-s
while [s', I:IJ,:I: has a prefix period shorter than 1'2

do Delete a shortest one.

3

Now an efficient implementation is natural in terms
of efficient subroutines to find the one or two shortest
prefix periods of a string.

The general scheme discussed above, and inter
preted as in [7J, provides an efficient algorithm to
determine whether a string w has a prefix period and
to find the shortest one if it does. The algorithm
matches '10 against itself, starting with (p, q) = (1,0).
Of course no full instance of the pattern will be found,
but for each i we will have shiftw(i) = P the first
time P + q = i holds. To see this, consider any i
(1 ~ i ~ 1'101). The first time P + q = i holds, no
symbol beyond '10(,) has been examined, so shiftw(') is
still a prospective position for the patterni I.e., P ~
shift.,(i). Since the algorithm guarantees that [p, il w
is a prefix of [0, ilw at this point, we cannot have P <
shiftw(i)i so P = shiftw('), as claimed. The algorithm
we want simply watches for the first i with shiftw(i) ~
illr. (p ~ (p +q)1 Ie). (By Lemma 2, these inequalities
will be eqf.l,a.lities.) Until such an i is found, the cal
culation

(tI, eI) = (p + max(l, rqllel),O)
..

will always be appropriate, since shiftw(q) > qllr. for
all q < i. If the shortest prefix period exists and has
length Pl, then the final values of P and q will be Pl
and (Ie -l)Ph respectively. Therefore, the total time

will be O(1e + l)p + q) =

O(Pl) if Pl exists,
{ .0(lwi) in any case.

To determine whether '10 has a prefix period shorter
tha.n some gifJen P2, we can use the same algorithm
until preaches P2i the running time for this variant
will be

O(Pl) if Pl < P2 exists,
{ 0(P2) in any case.

Similarly, there is an efllcient algorithm to deter
mine whether a string '10 has two prefix periods and
to find the second shortest one if it does. First,
the algorithm seeks the shortest prefix period as
above. It the shortest prefix period exists and has
length PI, then the algorithm straightforwardly deter
mines reachw(Pl) in time O(reachw(Pl»' Finally,
the algorithm matches '10 against itself, starting with
(p, q) = (1,0) as above, now watching for the first

i > reachw(Pl) with shiftw(i) = illr.. Until such an i
is found, the calculation (p', q') =

(P +Pl, q - Pl) if lepl ~ q ~ reachw(Pl),
{ (P +max(l, rqlIe1),0) otherwise

will always be appropriate, since every q < i will
have either shiftw(q) > qllt: or shiftw(q) = Pl- If the
second shortest prefix period exists, then its length P2
will have to be at least reachW(Pl) - Ph by the peri
odicity lemma. By looking at the quantity (Ir.+l)p+q
again, therefore, we see that the total time will now
be

O(Pl) +O(reach.,(Pl» + 0(P21 if P2 exists,
O(Pl) + O(reachW(Pl» + 0(1'101) if only PI exists,

{
O(lwl) in any ease

0(P21 if P2 exists,
{= 0(1'101) in any case.

Now consider using these efficient subroutines
to implement the outlined decomposition algorithm.
The time for the one failed entry test for the outer
loop will be O(lul). In terms of the current value of
P2, the time for finding s' will be O(s' - 8) +0(P2) =
0(P2)' Therefore, the time for the entire loop body,
including the passed entry test, will be O(p21. By the
periodicity lemma, each successive P2 will be at least
It: - 2 > 2 times the preceding one. So the total
decomposition time will be

0(lfJl)+0(lfJl(1+1/2+ 1/ 4+...)) = O(lfJI) = 0(1:1).

Combining this preprocessing _algorithm with the
searching algorithm described earlier, we finally get
an algorithm which can find all full instances of an
arbitrary pattern: in an arbitrary text 11 in time
proportional to 1:1 +l:vl, without dynamic storage al
location.

An Integrated Implementation

Having established the existence of our algo
rithm, we turn now to integrated and improved
implementation. The following implementation of
the entire algorithm will lead to a multi head finite
automaton implementation in the next section.

I

(p, q) ~ (0,0)

(S,Phqtl ~ (0,1,0)

(P2, q21 ~ (0,0)

newp1:
while :(s + PI + ql + 1) = :(s + ql + 1)

do ql ~ ql + 1
if PI + ql ~ /cPl

then [(P2, q2) ~ (ql, 0); goto newp21
if s + PI + ql = 1:1 then goto sea.rch
(Pllql) ~ (PI + max(l, fqt!/cl), 0)
loto newpl

newp2:
while :(s + P2 + q2 + 1) = :(s + q2 + 1)

and P2+ q2 < kP2 do q2 ~ q2+ 1
if P2 + q2 = kP2 then goto pa.rse
if s + P2 + q2 = 1:1 then goto sea.rch
if q2 =PI + ql

then (P2, q2) ~ (P2 +Ph q2 - PI)
else (P2, q2) ~ (P2 + max(l, fq2/kl),O)

goto newp2

parse:
while :(s + PI + ql + 1) = :(s + ql + 1)

do ql- ql + 1
whUe PI + ql ~ kPl do (I, ql) ~ (s +Ph ql - PI)
(Ph ql) ~ (P 1+ max(l, fql/kn, 0)
if PI < P2

then loto parse
else loto newp1

sea.rch:
while y(P + s + q + 1) = :(s + q + 1)

doq~q+1

if q = 1:1-' thenif lP,p + ']y = [0, 'Iz
then announce instance of: at text position P

if q = PI + ql
then (p,q) ~ (P + l1x.q - PI)
else (p, q) ~ (P + max(l, fq/kl), 0)

If P+ s !5; Iyl then goto lea.rch

(Note: The variables P and q are introduced only for
clarity. By the time they are used (in the segment fol
lowing search), P2 and q2 are free and could be reused
instead.)

The main purposes of the program segments
above are as follows:

newp1:
-~ Find the shortest prefix period of [s,I:l1z'

newp2:
Find the second shortest prefix period of [',I:lIz.

pa.rse:
Increment ,.

learch:

'.

Search the text for: = [0, ']z[', 1:lIz.

A more detailed direct analysis relies on the validity

of the following assertions at the labeled checkpoints:

newp1:

[s, 1:I]z has no prefix period shorter than Pl'

[s +PI, s +PI + qtlz = [s, s + qllz

P2 !5; Pl·

P2+q2= kp2.

newp2:
[s, 1:11.21 has shortest prefix period of length PI
[s" + PI + qdz has period of length PI
[s, s + PI + ql + lIz does not.
P2 ~ ql·
[s,I:!]:r: has only one prefix period shorter than P2.

[s + P2, s +P2 + ~]z = [s, S + q21z
P2+ q2 < kp2.

pa.rse:
[s,I:llz has no prefix period shorter than Pl.
[s +PI,S +Pl + ql]z = [s,s + qdz-
PI < 112
P2+q2= kP2

search:
[s,I:lls has at most one prefix period.

If [I, I: II z does have a prefix period,

then its length is Pl'
[s, s + 111 + qllz has shortest period of length PI
[s, s + PI + ql + lIz does not have

period of length Pl.

All instances of: starting at text positions

before P have been announced.

[P+S,I1+ S+q]y= [",+q]z'

s < 2pl.

First consider the very last assertion, which is
crucial for the time analysis. Assuming all the other
assertions hold, the integrated implementation incre
ments s in the same way as the original algorithm. So
the validity of the assertion follows from our proof of
the decomposition theorem.

Verification of all the other assertions is routine,
frequently by appeal to the periodicity lemma. Note
that we have replaced the test kPI !5; q2 !5; PI + ql
with the simplified test q2 = PI + ql in the segment
following newp2. This is justified by the mismatch
:('+112+ q2+ 1) ;C :(S+q2+1) (and the periodicity
lemma). Similarly, we have replaced the test kPl !5;
q !5; PI + ql with just q = PI + ql in the segment
following sea.rch. The last two assertions for newpl
are included for their aid in the time analysis below.

5

.I

For a direct time analysis, consider the expreuion

s2 + (k + 1)1'1 + ql)

+ (k + 1)1'2 + q2)
+ (k + 1)1' + q).

The value of this expression is always an integer
0(1=1 + Iyl). Its initial value is positive, and every
assignment increases its value. (This is immediately
clear for every assignment except (P2. q21 - (qt, 0).

" 	 Since that assignment occurs only when PI +ql ~ kpi
(by the test) and 1'2 ~ PI and 1'2 + q2 = leP2 (by
assertions at newpl), however,

(Ie + 1)1'2 + q2 = kP2 + (1'2 + q2)
= 2kp2
~ 2kpl
~ 2kqd(k -1)
< (Ie + l)ql;

hence, the contribution by 1'2 and q2 is greater after
the auignment than before.) Some such assignment

(
is executed every 0(1) steps, except for tests [p,p +
81, = [0, s1z. But we have seen already that the total
time for these tests is O(lyl), because s = 0(1'1) holds
at search. Therefore, the algorithm's total running
time must be 0(1=1 + Iyl).

Multihead Finite Automaton

For an eleven-head finite automaton implementa
tion, maintain text heads at positions I' + s + q and
I' + s, and pattern heads at positions s + PI + ql,
s+qll S+lePl, S+p2+q2, S+q2, S+leP2, s+q,
s, and s again. (The values s + ieI'I and s + kP2
might exceed 1=1, but they will certainly be bounded
by (Ie + 1)1=1. The pattern head maintaining such
a value can reverse direction whenever it reaches an
endmarker, and the finite control can keep track of
the net number of reversals for the current value.)
With heads at these positions, each test [p,p + sj, =
[0, s1z requires only O(s) steps, as before; every other
test requires only 0(1) steps, provided the finite con
trol keeps track of the order of the head positions; and
each assignment requires at most a number of steps
proportional to the resulting increase in the expres
sion used in the time analysis above. Therefore, the "
total time remains 0(1=1 + Iyl).

We can save two pattern heads above by letting
positions s + lePh S + leP2, and s + q share a single
head. We let that head maintain position s + kPl in

'. 	 the segments following newpl and parse, s + leP2 in
the segment following newp2, and s + q in the seg
ment following search. The time to relocate the head

to position s + q = s the one time control enters
the segment following search is certainly 0(1=1}. The
time to relocate the head from position s + kpt (via
position s) to position 8+kp2 = s+kql when control
enters the segment following newp2 is O(PI + qt) =
O(ql), but we were already allowing that long for the
immediately preceding assignment (1'2, q2) - (ql, 0).
The time to relocate the head from position s + leP2
(via position s) to position S+lePl when control enters
the segment following parse is 0(1'2 + PI) = O(P21,
but 1'2 will be at least Ie - 2 ~ 2 times as large the
next time this is necessary. Therefore, the total time
still remains 0(1:z:1 + Iyl).

To save one more pattern head, note that the
head at position s + 1'2 + q2 is needed only in the
segment following newp2, and that the second head
at position s is needed only outside that segment (in
fact, only for the assignment (s, ql) - (s + PI, ql
PI»' As above, there is time for one shared head to
shift roles on entering and leaving the segment.

If both the pattern and the text are provided on
the same input tape, then we can save two more heads.
The two text heads are needed only after search is
reached. At that point, however, it becomes unneces
sary ever again to maintain pattern positions s+1'2+
q2 and s +q2; 10 the corresponding pGttern heads can
relocate to te:z:t position s and begin to serve as the
tut heads. The final result is the promised six-head
finite automaton requiring only {=,:;t: }-branching.

Real-Time Algorithms

In [12] we reported real-time Turing machine
algorithms for string matching, for recognition of
squares (strings of the form ww) and palindromes
(strings which are their own reverses), and for a num
ber of generalizations of these problems. Using our
new algorithm as a building block, we can adapt all
of these algorithms to run in real time even on a
multihead finite automaton. In this context, "real
time" means that, for some constant c, the input tape
is extended by one symbol every c: steps, and that
the automaton must rule immediately on the accept
ability of the extended input string. For the string
matching problem, the pattern (while it lasts) and the
text are extended simultaneously, and each verdict
must indicate whether an instance of the pattern-so
far ends at the current end of the text. (The problem
would be much easier if the entire pattern preceded
the entire text.)

Adaptation of the real-time algorithms from [12l
is beyond the scope of this report, but the key is
to use a variant of our new string matcher wherever
in [12J we used the Fischer-Paterson string matcher
[4J. The latter linear-time algorithm already required

6

linear space on an off'-line Turing machine; so for con
venience in [121, we freely allowed ourselves the luxury
of marking all the instances of % on a copy of y for
examination in latter passes. In addition, we made
use of the Fischer-Paterson algorithm to find not only
full instances of %, but also ·overhang" instances. An
otlerhang instance of % occurs following position P in
y (lyl ~ 1%1) if either

-1%15 P 5 0 and [O,p + 1%1], = [-p, 1%11:.:,
or

• Iyl-I%I 5 P 5 Iyl and [p, Iyll, = [0, Iyl- pIs .

In the first case, we call it a left otlerhang instance,
and in the second, we call it a right otlerhang in
stance.

Careful examination of the algorithms in [12] and
those in the preliminary report included in [61 reveals
that, with one possible exception, it is never really
necessary to record the instances of a pattern in a text
for later examination. Instead, it sufflces to be able
to detect the instances one at a time, in order. The
one possible exception is in the algorithm for Lemma
1.2 in [12], but an alternative algorithm is available
from [6].

/ As described above, our multi head finite
automaton algorithm already detects the full in
stances of % in y in order of their appearance. It
remains only to modify the algorithm to detect all
instances (both full and overhang) in order.

As a first step, we describe how the algorithm can
detect all (left) overhang instances following positions
P in the range -1%1/2 5 P 5 0, in time O(lzl). Let
% = Uti, where lui = Llzl/2J. First the algorithm
should find the length Po of the shortest period of tI.

(To do this in time O(ltll), it should search as above
tor the second full instance of the pattern tI in the text
tltI.J In the case that po ~ ItlI/2, the algorithm should
search as above for full instances of tI in [0, Izll" and
check naively (in time O(lul) = 0(1%1)) whether each
discovered full instance of tI extends to a left overhang
instance of the entire pattern z. Since:e can occur
at most Izl/po = O(lzl/ltll) = O(l:el/l%l) = 0(1) full
times in y, the total time for the naive checks will be
O(lzl).

In the remaining case that Po < Itli/2, the
algorithm should reparse :e, in time 0(1%1), into
[0, 'Is[i, l:el]s such that

i 5 Izl/2,

[i, l:ells has (shortest) period of length Po,

[i - I, Izlls (if i > 0) does not.

Using the fact that [i,I:elJs has a period of length po <
Itll, the algorithm should search first for the left over
hang instances which are left overhang instances of

[i,I:ell s. To do this, it should first determine qo =
min(reach,{pQ}, Izl- ,) in time O(lzl - ,j = O(l:eD,
and then search for full instances of tI in [0, l:el- i],.
A discovered instance of fI extends to a left overhang
instance of [i, 1%lJs if and only if it ends at a position
p 5 qo. To find the left overhang instances of:e which
are not left ovsrhang instances of [i,lzlls (assuming
i > 0, so that there might be some), the algorithm
should search for full instances of [i - 1, l:ell s, and
check naively whether each discovered full instance
extends to a left overhang instance of the entire pat
tern. By the periodicity lemma, the length of the
shortest period of [i -1, 1%1l", must exceed Ifll- Po>
Itli - Itll/2 = Itl1/2; so the total time for the naive
checks will again be 0(1%1).

An algorithm to find all the nontrivial left over
hang instances of :e in order can simply apply the
algorithm just described to the sequence of patterns
[1:e1-2, l:ell s, [I:e1-4, l:el]s, [1%1-8, 1%1]31,"" [0, IzlJs =
%. (If l:el is not a power of 2, then :e can be padded
on the left out to the next such length, and the last
few left overhang instances can be ignored.) The
total time will be 0(2 + 4 + 8 + ... + Izl) =
0(1:e1). A similar algorithm, applied to the sequence of
patterns:e = [O,lzl]s, [0, Izl/2]s, [O,lzl/4]s,"" [0, 2]2:,
can detect all right overhang instances of % in time
0(1%1). Combining results, then, we conclude that
a multihead finite automaton, with only {=, -:t: }
branching, can detect, in order, all instances (left
overhang, full, and right overhang) of an arbitrary
pattern % in an arbitrary text y in time 0(1%1 + Iyi).

Remaining Issues

We have refuted previously formulated versions
of the conjecture that a two-way multihead finite
automaton could not perform string matching
efflciently [I, 8], but. a number of questions remain,
especially in retrospect. We list some of these below.

1. How much time and local storage are needed
for a string matcher which cannot back up or reread
the text? Our earlier algorithms [7, 8] had this
property, but our new one sometimes has to reread
some of the last Izi many text characters. In terms
of storage of the -restricted- variety, in other words,
the new algorithm uses nearly twice a.s much as the
earlier ones.

2. Can anyone-way multihead finite automaton
perform string matching at all? (Any such string
matcher could not help running in linear time.)

3. How few heads sufflce for a linear-time string
matcher? For a real-time string matcher! For a real
time palindrome recognizer? Note that two heads
sufflce for the naive, quadratic-time string matcher.
DUriS and GaUl [3J have shown that a two-head finite

7

automaton cannot perform string mati:hing at all if
one 	of the heads is "blind" (can distinguish only
endmarkers).

4. The instances of pattern z in text y can be
characterized by a binary string of length Izl + Iyl,
the iwth bit indieating whether the pattern occurs fol
lowing text position i -izi. By the real-time result,
a multihead finite automaton can simulate one-way
access to this characterisation in real time. How fast
can a multihead finite automaton simulate twowWIJV
access to the characterization?

t

AcA:n.owl.cI,.m.n.ts. The authol'l thank Pater GaCi and Gary • Peterson for their criticism or 8&rlier versions or thil paper.

Reference.

1. A. B. Borodin. M. J. Filcher, D. G. Kirkpatrick.
N. A. Lynch, and M. Tompa, A time-.,a.ce tra.d.eoll
lor ,ortin.g on. n.on.-obliviou ma.cMn. ... 20th Annual
Sympolium on Foundations of Computer Science (San

/ 	 Juan, Puerto Rico, 1919), IEEE Computer Society, Long
Beach, California, 1919, pp. 319-321.

2. R. S. Boyer and J. S. Moore, A INt ,tri"" ,eArch
in.g Glgorithm, Communications of the ACM 20, 10 (Oc
tober 1m), 162-112.

3. P. Dl1riJ and Z. Galil, Foolin.g A two WA,
Automa.ton. or On.e ,uhd.own. dore i, better tAAn. on.e
coun.ter lor two wa., mAchift.. (,relimin.Ary verlion.),
Proceedings of the Thirteenth Annual ACM Symposium
on Theory of Computing (Milwaukee, Wisconlin, 1981),
Allociation for Computing Machinery, New York, 1981
(to appear).

4. M. J. Filcher and M. S. PaterlOn, Strin.g
mAtchin.g a.ftll other ,rod.ucts, in: Complexity of
Computation (SIAM-AMS Proceedingl T), R. M. Karp
(Editor), American Mathematical Society, Providence,
Rhode Island, 1914, pp. 113-125.

5. Z. Galil, On. im,rovi"" the word CNe run.n.in.g
time 01 the Bo,er·Uoore "rin.g mAtcMn.g Glgorith.m,
Communications of the ACM 22, 9 (September 1919), 505
508.

6. Z. Gam and J. Seifer ai, Recogftirin.g certAin.
re,etitio"" An.(/. re'IJerlAlI witAin. "rin.g', 11th Annual
Symposium on Foundations of Computer Science (HOUl
ton, Texas, 1916). IEEE Computer Society, Long Beach,
California, 1916, pp. 236-252 .

• 	 T. Z. Galil and J. Seiferal. Sa.vin.g ..,Ace in. INt
drin.g-ma.tchin.g, SIAM Journal on Computing 9, 2 (May
1980), 411-438.

8. Z. Galil and J. Seiferaa, Lin.ea.r-time .triftg
mAtcMn.g 'lUin.g only a. fi=ed. n.umber 01 locAl dorAge
lOCAtio"", Theoretical Computer Science (to appear).

9. R. M. Karp and M. O. Rabin, perlonal com
munication.

10. D. E. Knuth, J. H. Morris, Jr., and V. R. Prait,
Fa.st ,a.ttern. ma.tehin.g i" strin.gs, SIAM Journal on Com
puting 6, 2 (June 1971), 828-350.

11. R. C. Lyndon and M. P. Schuhenbergel, The
Mequa.tion. a. = bNcP ift a.lree grou'P, Michigan Mathe

matical Journal 9, 4 (1962), 289-298.

12. J. Seiferas and Z. Galil, Re4l-time recogn.ition. 01
.ubltrin.g re,etition. a.n.d. re'IJersa.l, Mathematical Systems
Theory 11, 2 (1911), 111-146.

8

http:strin.gs
http:time-.,a.ce
http:AcA:n.owl.cI,.m.n.ts

