*
POLYNOMIAL TIME COMPUTATIONS IN MODELS OF ET

Deborah ‘Joseph

TR 82-500
June 1982

Computer Science Department
Upson Hall

Cornell University

Ithaca, New York 14853

This paper is an extension of the abstract, "Fast programs for initial segments

and polynomial time computations in weak models of arithmetic," which was presented
at SIGACT in 1981. It contains additional results from the author's Ph.D.
dissertation, which was written at Purdue University under the direction of Paul
Young. Much of this research was done with the support of NSF Grant MCS-7609232 AO2.

POLYNOMIAL TIME COMPUTATIONS IN MODELS OF ET'

Deborah Joseph

Computer Science Department
Cornell University
Ithaca, NY 14853

ABSTRACT

We investigate formal notions of computations in nonstandard models of
the weak arithmetic theory ET - the theory of exponential time. It is
shown that ET is a sufficiently weak theory that many of the natural
notions are not preserved.

+ This paper is an extension of the abstract, "Fast programs for initial
segments and polynomial time computations in weak models of arithmetic,"
which was presented at SIGACT in 198l1. It contains additional results
from the author's Ph.D. dissertation, which was written at Purdue Univer-
sity under the direction of Paul Young. Much of this research was done
with the support of NSF Grant MCS-7609232 A02.

POLYNOMIAL TIME COMPUTATIONS IN MODELS OF ET"

Deborah Joseph

Computer Science Department
Cornell University
Ithaca, NY 14853

l1. Imtroduction

In this paper we study two alternative approaches for investigating
whether NP-complete sets have fast algorithms. One is to ask whether there
are long initial segments on which such sets are easily decidable by rela-
tively short programs. The other approach is to ask whether there are weak
fragments of arithmetic for which it is consistent to believe that P = NP. We
show that the two questions are equivalent: It is consistent to believe that
P = NP in certain models of weak arithmetic theories iff it is true (in the
standard model of computation) that there are infinitely many initial segments
on which satisfiability is polynomially decidable by programs that are much

shorter than the length of the initial segment.1

In a paper presented at SIGACT in 1980 DeMillo and Lipton, [D&L-801],

tThis paper is an extension of the abstract, "Fast programs for
initial segments and polynomial time computations in weak models
of arithmetic,™ which was presented at SIGACT in 1981. It con-
tains additional results from the author's Ph,D. dissertation,
which was written at Purdue University under the direction of Paul
Young. Much of this research was done with the support of NSF
Grant MCS-7609232 A02.

1. The relationship between independence results and fast algo-
rithms for NP-complete sets is also discussed, but in a different
light, by DeMillo and Lipton in [D&L-79].

-2-

brought model theoretic techniques to bear on the P =? NP question. They
presented a weak theory of arithmetic, which they called ET (Theory of
Exponential Time), and showed that there is a model, ML of ET in which
every NP-complete A predicate is equivalent to a predicate in a class which
they call P (we will refer to it here as PD&L)' One believes intuitively that
the predicates in PD&L should be polynomially computable. Nevertheless ET is
a weak theory and models like Mb&L have some fairly unusual properties. For
example, we will show that the fact that every predicate in PD&L has a program
whose runtime is bounded by a polynomial in models of Peano arithmetic, does
not imply that the predicates in Ppsr are actually computable in models ot

ET.

In Sections 2 and 3 we discuss polynomial time computations in models of
ET, and we give examples of simple functions that are not total in MD&L as
well as predicates in PosL that are not computable in MpyeLe We then, in Sec-
tion 4, investigate a slightly richer theory, ET(Elem), and characterize the
sets that are polynomially computable in some model of ET(Elem). In doing so,
we show that satisfiability (SAT), or for that matter any elementary set, is
polynomially decidable in certain models similar to ML it and only if in
the standard model of computation there are short, fast programs (polynomial
or linear time) for arbitrarily long initial segments. In this way we show
that the question of polynomial time computation in models of ET(Elem) is
strongly tied to a fairly natural and important question concerning the feasi-
ble computation of hard sets: What types of hard sets have arbitrarily long
initial segments that can be efficiently decided by short programs? This
question is important in its own right. From a certain finitistic point of
view such sets might be considered easily decidable even if there is no single

program that uniformly decides the entire set in polynomial time. Section 5

-3-

is devoted to a discussion of this question. We show that it is easily
resolved for P and EXP-time complete sets by observing that these sets never
have arbitrarily long initial segments that are efficiently decided by short
programs. Unfortunately, the question for NP-complete sets is lett open,
leaving it unclear whether these sets are actually polynomially computable in

models similar to MpsLe
2. The Theory ET and a Theorem of DeMillo amd Liptom

The theory ET is based on a language that is an extension of the language
for Peano arithmetic. In addition to function symbols for + and * the
language for ET includes function symbols: * for monus (subtraction on the

x
s eee foOr constant exponen-

natural numbers), min(x,y), max(x,y) and 0*, 1%, 2
tiation. It also contains predicate symbols, PO(;)’ Pl(;), PZ(;)’ eeo for each
of the standard polynomially time testable relations. DeMillo and Lipton
detined ET to be the theory that has as axioms all of the true universal sen-
tences over this extended language. That is, all of the sentences in prenex

form involving only universal quantifiers that are expressible in the language

of ET and are trye in the standard model -- the natural numbers.

In [D&L-80] DeMillo and Lipton investigate whether or not ET is a rich
enough theory to prove that P # NP, They begin by defining a class of predi-
cates which they call P; we will refer to this class as PD&L' Intuitively,
one believes that all of the predicates in PD&L should be testable in polyno-
mial time and with this assumption DeMillo and Lipton show that is comsistent
with ET to believe that P = NP. Thus showing that ET is not strong enough to
prove P # NP even if this is the case. The main theorem of DeMillo and

Lipton's paper is the following:

-4=

2.1. Theorem (DeMillo and Lipton): Let A be a predicate so that
{x: (3;) A(x.;) } is NP-complete. Then for some predicate dA(x) €P
ET + (Vo)L (F)A(xay) <=> ¢, (x)]

D&L’

is consistent. (The class PD&L is defined formally below.)

As we have mentioned, PD&L is intended to be a class of polynomial time

testable predicates. Formally, the class P is detined syntactically using

D&L
a fixed constant symbol. (DeMillo and Lipton use the symbol o, however we will
use the symbol a so as not to confuse this symbol with its interpretation in

the nonstandard model, which will be a.) DeMillo and Lipton defined PD&L as

follows:
2.2. Defimition:

i) every ET predicate symbol is in PpaL®

ii) PhsL is closed under Boolean operations,

iii) if 4(x) € Poer? then (3Ix<a)ld(x)] € L
For the proof of Theorem 2.1 it appears that the class PD&L also needs to be

closed under substitution of constants, in particular a. That is,

iv) if d(;.y) € P then #(x,a) € PD&L'

D&L
Notice that for every choice of a € N the predicates in PD&L are polynomially
testable in any of the standard models of computation, e.g. Loop programs2

over the natural numbers.

2. Using Peano arithmetic, or even weaker systems such as Basic
Number Theory, [J&Y-8lal, one can prove that all of the natural
notions of computation: Loop programs, Turing machines, RAMs, Mar-
kov Algorithms, Partial Recursive Functions, ... s are equivalent
and in fact time and space requirements for these different
schemes are polynomially related. However, as we will discuss
later, ET is a sufficiently weak theory that this may not be the

-5-

DeMillo and Lipton's proof begins by constructing a nonstandard model,
MD&L’ of ET that contains a nonstandard element o, In this model the constant
a in the definition of PD&L is interpreted as the element a. With this
interpretation they show that for every NP-complete set described by a quan-
tifier free predicate in the language of ET, there is a predicate in PD&L that

is equivalent in MD&L'

DeMillo and Lipton's proof can in fact be carried through for every
existential predicate (3;)A(x,;) in the language of ET and a. That is, the
proof holds for nonstandard predicates as well as standard predicates and does
not depend on the predicate (gg)A(x,;) characterizing an NP-complete set3.

Hence with only minor modifications to their proof ome obtains the following:

2.3. Theorem: Let (3;)A(x,;) be any existential predicate detinable in

L(ET,a). Then for some predicate ¢(x)A € PD&L’

ET + (VR)[(Fp)A(x,y) <=> 4, (x)]

is consistent,

At least on the surface Theorem 2.3 is very strong and therefore it seems
appropriate to look carefully at what is actually being said. In an attempt to
do this, we will spend the remainder of this section and the next section dis-

cussing the following questions:

i) What types of sets can be characterized by existential predicates in
L(ET,a)?

ii) What does it mean to say that a predicate is computable in polynomial

case.

3. This observation has been made independently by L. Kirby, [un-
published].

time in a model of ET?
iii) Are the predicates in PD&L in fact polynomially computable in models

of ET?

One commonly used characterization of the r.e. sets is that they are
exactly the sets that are 21 definable in L(PA). That is, they have charac-
teristic predicates of the form (3x)d(x) where #(x) may contain bounded quan-
tifiers. Matijesevic has shown, [MAT-70], that every r.e. set is the solution
of a diophantine equation and hence every r.e. set is definable by an existen-
tial predicate. However, it is unlikely that Matijesevics' theorem is prov-
able in ET. Wilkie and Manders [WIL-81], [MAN-81], have shown that Matijesev-
ics' theorem is provable in PA + ISO if and only if NP = coNP, (PA™ + ISO is
Peano arithmetic with induction restricted to formulas whose only quantifiers
are bounded.) Thus there may be nonstandard models of ET in which an r.e.
set's El predicate does not agree with its diophantine description. From a
computational viewpoint perhaps the most natural description ot the r.e. sets
is based on Turing machines and Kleene's T(i.;.y,z) predicate4. However the
normal formulation of the T-predicate in the language of Peano arithmetic uses
bounded quantifiers and hence is 51 rather than existential. What's more it
seems unlikely that there is a natural formulation of the T-predicate in
L(ET,a) - {PO(;), Pl(;), e« ¢ « } that does not use bounded quantifiers and it
also seems unlikely that there is a natural "T-1like"™ predicate that works for
NP-complete sets, but perhaps pot all r.e. sets, that is formulated in L(ET,a)
- {PO(;). Pl(;), e ¢« o } without using bounded quantifiers. Nevertheless,

the T-predicate 1is polynomially testable (or at 1least there are

4. T(i.;.y,z) = y is a halting computation of program i on input
x with output z.

-7~

computationally natural variations of it that are), so there is a predicate
symbol in L(ET) that represents T(i,x,ysz). We will refer to this symbol as

PT(i.;.y,z). However, it should be noted that the fact that P, was included in

T
L(ET) to represent T does pot mean that

ET |- (VisXays2)[Br(isXsysz) <=> T(isx,y,2)].
In fact it is only the universal sentences and their consequences involving PT
and various instantiations of T that are guaranteed to hold in all models of
ET. It seems quite likely that by carefully examining the T-predicate ome

could construct models of ET that contain elements i, X, y and z for which

PT(i.;.y.z) but not T(i.;.y.z) and vice versa.

It appears that DeMillo and Lipton's claim that ET + P = NP is consistent
requires that the sets in NP be characterized by existential predicates.
Since it is not known whether there are computationally natural existential
predicates in L(PA) that do this, one of the ways to characterize them in an
existential manner is to use the predicate symbols in L(ET). The predicate
symbol PT can be used for this purpose, and in addition it can be used to pro-
vide a notion of computation in models of ET. However, the reader should be

warned now that P, may present a very inaccurate notion of computation.

T
Throughout the remainder of Sections 2 and 3 we will investigate the use of

the predicates T and PT as formal notions of computation in models of ET.

Since PT provides a characterization of each r.e. set in existential
form, Theorem 2.3 could be interpreted as saying that ET + Mevery r.e set is
decidable in polynomial time"™ is consistent, which leads one to seriously
question whether ET is rich enough to accurately capture our intuitive notions

of computation. In order to understand what sets are really polynomially com-

putable in models of ET one needs to carefully analyze models similar to those

-8~

constructed by DeMillo and Lipton. Therefore we will begin by sketching the

construction of such models and the proof of Theorems 2.1 and 2.3.

DeMillo and Lipton's proof begins by expanding the theory ET to form a
new theory, which we will call ET*. This is done by adding a new constant
symbol, a, to the language of ET and axioms that force a 2 i for each i € N.
Next, DeMillo and Lipton take an r.e. list {si} of all the quantifier free
sentences over L(ET,a) and in stages add to ET either s, or ws, depending on
which is consistent. The resulting theory, ET*, is consistent and hence it
has a model, M. However for the proof one needs to look at a submodel of M.
Define M, . C M as follows,

Mo = {ti(a): t. is a term in L(ET)}.
First, DeMillo and Lipton show that MD&L |= ET*. This follows from the fact
that ET* has as axioms only universal sentences over the language L(ET,a) thus
the only elements of a model that the axioms can assert anything about are the
terms of the language applied to @, 0 or 1. Second, they show that the set,
{s: s is a quantifier free sentence over L(ET,a) and Myl |= s}
is arithmetically definable. This follows from the fact that the quantifier
free sentences of ET are arithmetically detinable and when the consistent
quantifier free sentences over L(ET,a) were added to ET" this was done in an

arithmetically definable manner.
The proof of the theorem now rests on the following lemma:

2.4. Lemma (DeMillo & Lipton):
i) The standard elements of MD&L are defined by a formula in PD&L'

ii) There is a formula B(x) € PD& such that,

L
My = (s <=> B("s™))

for every quantifier free sentence s in L(ET,a).

Sketch of the Proofs:

i) Claim: x € N iff x < log*(a).
Since the relation "x < log*(y)“ is polynomially testable in the standard
model, there is a predicate symbol R(x,y) in L(ET), and hence in PpLe that
represents the relation. DeMillo and Lipton show that the predicate R(x,a)
correctly characterizes the standard elements of MD&L' (Here we need the

fourth part of the definition of P_...)

D&L

To show that R(x,a) iff x € N first suppose that x = n € N, Then for some
meN, My |= R(n,m). Also Myt |= (Vy>m)R(n,y) and Mpsr |= a>m. Therefore,
Mper |= R(n,a). On the other hand, suppose x is nonstandard. Then x = ti(u)
for some term t in L(ET). It can be shown that every unbounded term of L(ET)

(k)

grows faster than log for some standard integer k. (See DeMillo and
Lipton's paper for details.) In addition this fact is expressible as a true

universal sentence over L(ET):

Suppose that ti(z) 2 1og(k)(z) a.e. Then,

ti(z)

Vz>m, 2 > z for some m € N,

Therefore if j = 2 then,
M 1= Wzom)le () > 21,
So M. = ti(a)J = x) > a., Note also that Jn € N such that,
MD&L |= (Vzm)(Vy)[R(x.y) & ti(z)J >y =>y«< n],
since N |= log(k)(y) > log*(y) a.e. So if y = ¢ and z = x then,

MD&L |= [R(x,0) & xj >a => a < nl.

_10—
Therefore MD&L |= 4R(x,a).

ii) We need to show that the set of all true, quantifier free sentences
in ML is defined by a predicate in PhsLe Since the set of all true quantif-
ier free sentences in MpsL is arithmetically definable there is a predicate,

' = oo o v
B'(x) = Qy; QY, «--Qy, b(x:y)

with b quantifier free, such that

= = = 1 g”
MD&L I= s <=> N | B'(s).
Now suppose that a € N and c¢ € N". Then either N |= b(a,c) and b(a,c) is an
axiom of ET or N |= 1b(a.:) and ﬂb(a.Z) is an axiom of ET. Therefore if we

relativize the predicate B' to N in the following manner:

replace each occurrence of

(Hyi)c(X.yi) by (3yi<a)[yi €N & C(x.yi)]

OVyi)C(X.yi) by OVyi<a)[yi € N => c(x,y;)1s

then, we will have formed a new predicate B(x) such that
= Bt (s = = rsd = =
N [=B'("s') <=> MD&L I=B(s') <=> MD&L I= s,

Clearly, B(x) € P This proves the lemma, [J

D&L°®

It remains to show that if A is a quantifier free predicate for a set

S = {x: (j;)A(x,;)}. then there is a predicate ¢(x) € P such that,

D&L
Mg 1= (VEL(FAGxY) <=> d(x)].
Roughly, the idea is to define 4(x) to be:
(3i<e)(Jj<a) [x=t (o) & B(rA(ti(u),tj(a)f‘) & i,j € Nl.
This definition would work provided we could decide "x = ti(x)" using a

predicate in PD&L‘ DeMillo and Lipton show that this is in fact possible.

Their proof involves showing that MD&L can be constructed in such a way that

-11-

Moy 1= (x =t (a) <=>
(WVm,k € N)[m = x (mod k) <=>m = ti(c) (mod k) 1).
Since x = y (mod z) is a polynomially testable predicate there is a predicate
symbol Pmod(x.y.z) € L(ET) that represents it which one can use to test
whether or not m = x (mod k)s. To test whether or not m = ti(c) (mod k) omne

can use the predicate B of Lemma 2.4. That is,

- o = - - R(Tm = 1
Mosl l=m = ti(a)(mod k) <=> MosL |= B('m ti(a) (mod k)).
Working out the details of this argument is techmically fairly tricky and
since we will not use this technique again the details have been omitted.
(They can be found in DeMillo and Lipton's paper.) This completes the proof of

Theorems 2.l. and 2.3. [

Now that we have outlined the construction of MD&L we are in a position

to discuss the behavior of polynomial time predicates in models of ET.

3. The Behavior of Polynomial Time Predicates im Models of ET

If we analyze the complexity of the predicates in PD&L we see that the
natural Loop programs6 for computing them consist of some standard number, n,

of possibly nested loops each with index running from 0 to o, enclosing tests

5. Throughout DeMillo and Lipton's paper it is implicitly assumed
that the predicate symbols behave properly. That is, if R(x) is a
standard polynomial time testable relation and PR(x) is the symbol
in L(ET) which represents it, then

ET |- (Vx)R(x) <=> PR(x).

As we have already remarked and will discuss in detail later, this
is not always the case. However the predicate symbol used in the
proof of Lemma 2.4 to represent log and the predicate symbol used
here to represent mod can be shown to behave properly.

12

for a standard number, m, of Pi's. Since the Pi's are polynomially testable in
the standard model there are standard subroutines for testing these predi-
cates. For example a natural Loop program for the predicate dA(x) constructed
in the proofs of Theorems 2.2 and 2.3 would look like:

PROGRAM dA(x.y):

y <+ 03
LOOP a3
i<« 0; *
SubroutineLog (xi,i);
IF xi =1
THEN;
LOOP aj
j*0; *
SubroutineLog (xjsj)s
IF xj =1
THEN;
Code for x0 <« 1 <=> x = ti(a);
Code to compute gn = rA(tj(a).ti(a))1;
SubroutineB(xl,gn);
IF x0 =1 & x1 =13
THEN ;
y<+«1;
END;
ELSE;
j « j+1;
END;
;
;
i+ it+l;

*) *) . .
Subroutinelog (xi,i) tests whether i < log (a) and if so assigns xi
the value 1.

SubroutineB(xl,gn) tests whether the predicate B of Lemma 2.4 (ii)
holds for gn and if so assigns x1 the value 1.

A Goedel number for the program dA(x.y) can be computed using some

6. Brainerd and Landweber define a syntax and semantics for Loop
programs in [B&L-74] and show that all of the partial recursive
functions are computable by Loop programs. It can also be shown
that the natural time measure for Loop programs is polynomially
related to the time measure for Turing machines.

-13-

standard encoding function for finite sequences. Notice that we can rewrite
the program so that the element a appears only once since we can begin by
assigning o to a program variable a and then use a throughout the rest ot the
program, Thus,

a €« o;

]
é,(x,y)
A PA(X.y)

where PA(x.y) is the appropriately modified version of dA(x.y). There are
reasonable encoding functions that allow one to compute the number ot the pro-
gram d;(x.y) from the numbers for the programs a + a3 and PA(x.y) in such a
way that the number for the program d;(x.y) will equal some standard polyno-
mial applied to o and the number for PA(x.y). If this is done, one obtains a
number i¢ for Program ¢;(x.y). Notice that, provided a reasonable encoding is
used, the number id is in MpysLe In fact for any predicate Q(;) in PD&L there
is a number i, that is in MD&L for a program for Q(;). However this does not

Q

necessarily mean that,

M 1= VOLEN TG exys1) <= Q).
or even that,

My 12 (VOLEREexeysl) <=> Q1.

In fact, unless M is a model of a theory about as strong as Basic Number

Theory7 it need not even be the case that,
M |= wx)[(BY)T(istsy’l) <=> Q(x)]o

This is because both M and Mpe1 may only be models ot very weak theories.

7. Basic number theory is a sufficiently strong theory that w.r.t.
polynomially time computation it proves the same sets computable
as does Peano arithmetic.

=14~

Recall our earlier discussion concerning the extension of ET to form ET" and
the models M and MD&L: ET had as axioms all of the true universal sentences
over L(ET). To form ET" we added to ET axioms that said a 2 i for each i € N
and more importantly for each quantifier free sentence s in L(ET,a) we added
either s or =s depending on which was consistent. In particular this means
that for each predicate symbol Pi(xo,xl.....xn) in L(ET) we added

either Pi(tjo(a)looo.tjn(a))

or "'Pi(tjo(a)sooo!tjn(u))

for each n-tuple of terms t. 5 eees t. « If t. (@)s eees t. (a) are all equal
ig i ig i

to standard natural numbers then there was no choice - we added which ever one

is true in N, However if some of tj (@)s eoes tj () are nonstandard then it
0 n

is less clear - we could add either provided that it is consistent with ET and
the sentences that we have already added. If we begin with an arbitrary r.e.
list of quantifier free sentences it is not clear which sentences are added to
ET. However it seems conceivable that the resulting theory ET" may not be con-
sistent with Peano arithmetic. That is, there may not be a model of Peano
arithmetic, in which the predicate symbols of L(ET) are interpreted as they
are intended to be, that is also a model of ET*. If this is possible then the
analysis of models of ET" becomes all that much more difficult. To forestall
these difficulties we will assume that ET" and MD&L are constructed in the

following manner:

As before we begin with the theory ET and add axioms that say a 2 i for
each i € N, Next let M be a nonstandard model of the theory of Peano arith-
metic + the true 112 sentences, which contains a nonstandard constant o.

Such models can be arithmetically defined.8 In M the function and predicate

8. The Henkin proof of the completeness theorem provides an arith-

-15-

*
symbols of L(ET) can be naturally interpreted. Therefore M |= ET. Now let ET
be the set of all true universal sentences in the model M., At this point we

can define MD&L as before:
MD&L = {x: M |=x = ti(a) for some i € N}.

The function and predicate symbols in L(ET) are interpreted in Mysq 88 their
restriction from M. As before MD&L is a model of ET* and the true quantifier
free sentences of MD&L’ over L(ET,a), are arithmetically detinable. In addi-
tion, with this construction, for each standard polynomial time testable rela-

tion R(;). the following is true:
(Vx € M.,) [M |= R(x) <=> Mo 1= Pp(x)]

where Py is the predicate symbol in L(ET) which represents R. Also since M is

a model of THl (the true Bﬁ sentences of arithmetic) it behaves as a model ot
2

full arithmetic with respect to polynomial time decidability.9 Thus,
M |= OVX)[(Hw)T(iR,X.yol) <=> R(x)],

for a standard Loop program i In fact for every predicate Q € PD&L there is

R.

a Loop program similar to the one described earlier, that runs in polynomial

metically detinable model provided the consistent set of sentences
that one starts out with is arithmetically definable. The
theorems of Peano arithmetic and the true'lI2 sentences of arith-
metic are arithmetically definable.

9. For each standard polynomially (linearly, exponentially, etc.)
decidable set there is a description of the set for which the for-
mal statement that asserts that the set is polynomially (linearly,
exponentially, etc.) decidable is a true II, sentence and hence is
preserved in every model of TD:' (One can ‘of course come up with

other descriptions of the setzfor which one can not even prove
that the set is decidable.) In addition, Peano arithmetic or TDZ

is rich enough to prove that all of the predicates in PD&L are po2
lynomially computable (w.r.t. T).

-16-
time in M:

M |= (V;)(By.Z)[T(iq.;.y.Z) (3.2)

& NumInstdescrip(y) < P; (1x1)1]
Q
for some polynomial P; - (By carefully examining the programs for predicates

in PD&L we see that 1Q is in MD&L and that piQ is a polynomial with coeffi-

cients from Mﬁ&L and exponents from N,)

Notice that with this construction of M and MD&L’

(V;:Yaz € MD&L) M |= T(iq.;,y.Z) (3.b)

iff MD&L |= PT(iQ.;QYQZ)o

However, the fact that a program's runtime is bounded by a polynomial in M is
still not sufficient to insure that it is computable in Mo even Werote Pre

It may be the case that (3.a) and (3.b) are true but nevertheless,

(3 € MD&L) such that M'D&L |=(Vys2z) "PT(]-Q’X'Y'Z)-
This malady in fact plagues programs for some of the predicates dA of Theorems

2.1 and 2.3:

3.1. Theorem:

i) For every predicate Q(x) in P there is a polynomial p such that

D&L
p(lx|) bounds the run time of a program for Q(x), wer.t. T and PT’ in M.
ii) Nevertheless, there is a predicate Q(x) in P that is not comput-

able (w.r.t. PT) in My, . When we say "not computable™ we mean there does not

exist iQ € MD&L such that,
M 1= VOLENPGgmyal) <>],

Proofs:

-17_

i) Follows from the discussion surrounding statements (3.a) and (3.b) and
a detailed examination of the axioms of ET and the structure of the predicates

in P, necessary to prove these statements.

ii) We need to construct a set S that in ML is characterized by a

predicate ds which is in Pj ., but is not computable (w.r.t. PT) in Mp. .

Suppose S = {x: uk(x) #Z 1} where L& is the xth polynomially computable

program and let S(x,y) be a standard polynomially testable relation such that
S(x,y) = 1y is a computation of nx(x) with output # 1.

Thus S(x,y) implies y witnesses the fact that x € S. We will use the predi-
cate S(x,y) to provide a formal characterization of S. Since S(x,y) is a
standard polynomial time testable relation there is a predicate symbol
Ps(x.y) € L(ET) that represents it. As we have already observed, for each

n,m € N
either N |= S(n,m) in which case Ps(n.m) is an axiom of ET,
or N |= «+S(n,m) in which case ﬂPS(n.m) is an axiom of ET.
Also recall that for each i,j € N,
either Ps(ti(a).tj(c)) is an axiom of ET,
or ﬂPs(ti(a).tj(a)) is an axiom of ET ,

depending on which was added in our extension of ET to ET*. If the extension
. . . . ¥
was carried out as described above, then Ps(ti(a).tj(a)) is an axiom of ET

iff M |= S(ti(a),tj(a)). Now consider the predicate,

-18-

ds(X)

(3isj < @)t (a) = x & B('ps(ti(a).tj(a))“) & i,j € N]

of Theorem 2.3. We will show that ds can not be computable w.r.t. Pr. Again,

when we say computable we mean that there is a program is € MD&L such that

MD&L |= OVX)(EW.Z)[PT(iS,X.y-Z) & (z=1 <=> ds(x)]'

Suppose that ds is computable in MD&L’ Then there is a program i € MD&L
and an i € N such that is = ti(a). We will consider two cases:

First, suppose that M .. |= ds(is). Then by definition
Mpal I= (3j<a)LB(rPS(ti(a),tj(a))1) & N(j)I,

where N(j) is the predicate in P described in Lemma 2.4, for testing

D&L’

membership in N. This is true if and only if

Mg 1= (Fi<o)lPg(e; (@)t (@) & N(DI;

which implies that
M |= (3j<c)[s(ti(a).tj(a.)) & N(j)I.

Thus in M, ti(a) = is € S. However by the detinition of S,

i € s = uis(ls) # 1. That is,

M= OVYoZ)[T(is-is’YDZ) =>z # 1].

Therefore

MD&L "-’ (Vy:z)[PT(is.is,y,z) = z & 1].
But this contradicts the assumption that i computes ds in MD&L'

Therefore if ds is computable by is then it must be the case that

...19_

Mpsp, 1= (i),

Again, by definition this means that

Mygr 17 (Fi<e)[B("Rg(t; (@)t (@))7) & NI,
Thus,

Mg, 1= (Vi<dlBg (e, (@)at (@) V = N(3I.

So if j e MoeL and N(j) then Ml I= = Ps(ti(u).tj(a)) which means that
M |= = S(ti(a),tj(a)). Thus in M, tj(a) does not witness the fact that

o (is) # 1. This means that either,
8

tj(a) is not a computation of o, (is)
s

or tj(a) is a computation of o, (is) but the output equals 1.
s

Both of these contradict the assumptions that ds is computable and that
ML = = ds(ls). Thus we have shown that wer.t. Pp, ds is not computable in

Mpsp» Which completes the proof of the theorem. a

A reasonable question to raise at this point is whether Theorem 3.1 (ii)
can be proved using a standard T-predicate, instead of PT’ as the notion of
computation. Once again we see that the answer is dependent on whether or not
the predicate PT means what it ought to in MyarLe That is, if we look at the
proof of Theorem 3.1(ii) we see that MpsL I= ds(ls) implies that
M |= GVY.Z)[T(iS.is.y.z) => z#1] which in turn implies that
MsL I= OVY.Z)[PT(is.is.y.z) => z#1]. Now, the predicate P, is supposed to
represent the T-predicate and if it accurately does then
Mper 1= OVyaz)[T(is.is.y.z) => z#1] which would contradict the assumptions

that Mb&L |= ds(ls) and i, computes ds (Wwerete T). A similar contradiction

arises if we assume that M .. |= ﬂds(is). Thus if P, accurately represents T

_20-
we can show that ds is not computable, w.r.t. T, in M., .

3.2. Corollary: If the predicate symbol Pr accurately represents the T-
predicate in MysL then there are predicates in PosL that are pot computable

(W.r.t. T) i.n MD&L.

This result is best illustrated if we consider the set

for a standard programming system { di } and the standard predicate
k(i,j) = j is a halting computation of di(i).

Specifically, let k(i,j) be the sentence (3Jz<|jl)T(i,isjsz) for a fixed,
standard, polynomially testable T-predicate for { ¢i }, and let P be the
predicate in PD&L that represents k. It follows from the proof of Theorem 2.3

that in the model MD&L

6, (x) = (3i,j<0)[i,j e N &t . (a) =x& B("-'Pk(ti(a).tj(a)")].

Then by the argument present above, either ¢1k is not computable in MD&L

(wer.t. T) or ﬂPk(i,j) does not accurately represent -+k(i,j). That is, either

not 3i € M such that (Vx)(Jysz)[T(isxsys2) & (z =1 <> x e K)]

or
not M., |= (Vx,y)[-P, (x,y) <=> k(x,y)l.

In essence this says that either dk is pot computable in Mﬁ&L or it 1is a

predicate for the wrong set.

21
4., Vitmess Functions and Polynomial Time Decision Procedures

In this section we consider the relationship between witness functions
for P # NP and P # EXP-time and the existence of nonstandard models of ET con-
taining polynomial time decision procedures for problems complete in NP and

EXP- t ime .

Suppose that a set S is decidable but not polynomially decidable, then

there is a total recursive witpess function L such that,

ws(x) =i = uk(i) 7 Cs(i).
where m is the function computed by the xth polynomial time Loop program1
and cg is the characteristic function for S. Typically, LA is detined to be
the minimum i such that uk(i) z cs(i). In addition, if S is provably recur-
sive and provably nonpolynomial (w.r.t. Peano arithmetic) then there is a

total recursive witness function L such that

PA |- CVX)(Hy)[ws(x) = yl. (4.a)

& PA |- OVX.y)[ws(X) =y => nk(y) z cs(y)] (4.b)

Therefore in every nonstandard model of Peano arithmetic S is not polynomially

decidable.

Witness functions for distinguishing P and NP have been studied by
several previous authors, [K0Z-80], [K&M-80], [0DO-79]. In particular,

0'Donnell [0DO-79] observed that if P # NP but Peano arithmetic + TI[is not
1

10. Throughout this section and Section 5 we will use an enumera-
tion of polynomial time programs with the following properties:
if x is the Goedel number of the xth program them it is the result
of encoding the instructions of a Loop program together with a
clock which controls its runtime. Thus we cgn assume that the xth
program runs in time bounded by p(lyl) < |yl +x.

...22-
adequate to prove P # NP, then

WsAT(X) = (min i)[nk(i) z SATopt(i)]

(where SA'I‘opt is the near optimal algorithm for the satisfiability

problem described by Levin [LEV-72] and Schnorr [SCH-76]),
must grow faster than every provably recursive function.

Notice that in order to formally express the facts,
(Vx)(3Jy)lw(x) = y] and (Vx,y)lw(x) =y => o (y) # ¢ (¥)]s
in the language of Peano arithmetic, one must have some formal notion of com-
putation. That is, implicitly these statements involve a predicate which is
in essence a T-predicate. Therefore when we said that (4.a) and (4.b) imply
that in any model of Peano arithmetic S is not polynomially computable, we

meant polynomially computable in the sense of this predicate.

Although we formulated statements (4.a) and (4.b) in terms ot Peano
arithmetic, they can just as well be formulated for ET or any other theory of

arithmetic with the same consequences. That is,

4.1. Obserxrvation:

If there is a formula ws() in L(ET) for which
ET |- (V x)(3 y)w (x) =y] (4.1.a)

ET |- (Vx,y)lw (x) =y => r (y) # c (y)] (4.1.b)

then S is not polynomially computable in any model of ET.

In Section 2 and 3 we considered two formal notions of computation:
first, the standard Kleene T-predicate and second, the notion provided by the

predicate symbol PT. In this section we will look at the use of each of these

—23...
notions in defining witness functions.
Witmess fumctions that use rr as their notiom of computation

In Section 3 we showed that there are recursive sets which are character-
ized by predicates in Pp.; that are not polynomially computable (wer.t. PT) in
MD&L‘ However the set constructed in the proof of Theorem 3.1 was not in NP,
If we could show that in Mb&L there is a total witness function for an NP-
complete set (assuming P # NP) then we could significantly improve upon

Theorem 3.1.

We doubt that the witness functions for all NP-complete sets are total
(again, assuming P # NP) in Mgp,» However, we will show that the witness func-
tions for certain hard sets in NP (assuming P # NP) and EXP-time are total,
WeTete Poo in all models of a slightly richer theory, ET(Elem), provided that

they do not grow too rapidly, i.e., they are elementary.

&4.2. Theorem: If S is an elementary set then S is polynomially computable

(werote PT) in some model of ET(Elem) iff

w, = (min ny)[nk(y) z S(y)]

is not bounded by any elementary function.

While this theorem does not deal solely with sets in NP or EXP-time, it
does characterize, in terms of behavior of the witness functions, the cir-
cumstances under which it is consistent with ET(Elem) to believe that hard

sets in NP and EXP-time are polynomially computable.

The theory ET(Elem) is an extension ot ET. Our motivation for looking at

it comes from remarks made by DeMillo and Lipton. In Section 5 of [D&L-80]

-24~

they discuss other theories for which Theorems 2.1 and 2.3 are provable.
While it does not appear that these theorems are provable for ET(Elem), DeM-
illo and Lipton suggest that they may be provable for very similar theories.

We will discuss this in more detail after proving Theorem 4.2.

Proof of Theorem 4.2
We begin by defining the theory ET(Elem).
4.3, Defi-itio-: Let

L={+, ¢, - min(x9Y)0 max(xa}’)’ Coa Clg Czt ¢ o o
f0. flp fzg e o o
Po! Pl. le ¢ o o }

where

i) the ci's are function symbols for each standard constant func-
tion; we will assume ci(x) = i for all x,
ii) the fi's are function symbols for every polynomially honestll.
elementary function that grows faster than some iterate of the log
function almost everywhere, (If fi is an n-ary function then we will
assume that for some integer k,

f(x x) > log(k)(max{x X }) a.e.)

1’...’ n 1’ L] L] []] n L] L

iii) and as before, the Pi's are predicate symbols for all of the

standard polynomially time testable relationms.

ET(Elem) is the theory of all true universal sentences over L.

11. A polynomially honest function is a function whose complexity
is bounded by a polynomial function of its input and output.

-25-

For the proof of Theorem 4.2 we need to show that if S is an elementary

set then S is polynomially computable in some model of ET(Elem) iff

ws(x) = (min y2x)[m (y) 2 s(y)]
is not bounded by any elementary function. We will assume that Cq is a stan-
dard Loop program which decides membership in S and we will use cg as the for-

mal definition of S. We begin by proving the forward implication:

We will show that if LA is bounded by an elementary functiom, i.e., it is
elementary, then S is not polynomially computable w.r.t. P in any model of
ET(Elem). First, notice that statement (4.1.b) can be formulated as a true
universal sentence in L if we take PT as our notion of computation. That is,
for each standard recursive set S we can construct a standard program iw that
computes the witness function for S. Therefore if Cg is a standard program

for the characteristic function for S then,
ET(Elem) I- (vx'yl’zl)[PT(iW’x'yl'zl) => (4.203)
-1(Byz.zz.y3.z3)[PT(X.zl.yz.zz) & PT(cs.zl.y3.z3) &z, = z3]].

This means that if iw is total in a model M of ET(Elem), that is 1if

M = OVx)(Ebsz)PT(iw.x.y.z). then S is pot polynomially computable in M,

Weret. P Thus it remains to show that iw is total in all models of

T.
ET(Elem).

Assume that iw is the Goedel number of the following Loop program for LA

-26-

Program witnesss(x):
z + X3
REPEAT
x; + output of n&(z) computed for x|z|* + x steps;
x, * output ot the char. function for S on input z;
z « z+l;
UNTIL X, z x,

i<« z-1;

We will show that if the witness function LA is elementary, then program

witness_ is total, w.r.t. Pp, in every model M of ET(Elem).

Suppose ws(x) = i, then Program witnesss iterates the REPEAT-UNTIL 1loop

. s X 2°
at most i times and each iteration requires max{xe|i| + x, 2

steps, for some fixed integer m and polynomial p which depends on S. Thus if
the function ws(x) is elementary then the runtime of Program witnesss is ele-
mentary as is the function which given x produces the encoding of the computa-
tion sequence of Program witnesss on input x. This latter function is also
polynomially honest and grows at least linearly. (The size of the computation
sequence y is polynomial related to the time required to compute it.) There-
fore there is a function symbol, fcomp’ in L which represents this function,
Also, if one has a computation sequence for witnesss then one can compute the
output of witnesss using a polynomially honest function which grows faster

*
than log . This is because the REPEAT-UNTIL iterates at most i times and each
(il

e m
iteration requires time 2 for large i; thus the variables values
,pClil)
2 "
never exceed about 2 . Since there are a fixed number ot variables,

-27-

n, the computations sequence is an encoding of fewer than ien numbers each

RULD
2° i\ . - :
less than or equal to 2 « If a reasonably etficient encoding func-
pUin @D
20 ™
tion is used the computation sequence y will be less than 2 .

Therefore there is a function symbol, fou in L which represents the output

t’

function and we have that

M |= (VX)PT(iw.x.fcomp(X) ,fout(fcomp(x)))

i.ees iw is total in M, w.r.t. Pre This, coupled with statement (4.2.a),
shows that if LA is elementary then S is not polynomially computable (w.r.t.

PT) in any model of ET(Elem).

For the proof of the reverse implication suppose that the witness func-
tion LA for an elementary set S is not bounded by any elementary functionm.
We will construct a model M, |= ET(Elem), which is very similar to Myeps and
show that S is polynomially computable, w.r.t. PT’ in MO' That is, not only

is

My 12 (Vx)(Jy)Lw (x) = y]
but more importantly, in Mo there is a polynomially computable Loop program L

such that
M, |= (VX)[(HyI,Z)PT(cs.X.yl.z) => (3y2)PT(ao.X.y2.z)].

Mo will be the restriction of a nonstandard model M of Peano arithmetic +

ET(Elem) which contains a nonstandard constant a. We will begin by construct-

ing M:

-28-

Since LA is not bounded by an elementary function, for any finite set ot

terms to. coes ti € L, there is an m € N such that

N |= ws(m) > ti(m).

This is because from to. cees L. we can form a new term
t(x) = ty(x)et;(x)e « « « ot;(x) that is greater than anmy of t; through t;
almost everywhere, and since t is a term of L, LA is greater than t infinitely
often. Thus for each term t,, it is consistent with Peano arithmetic +
ET(Elem) to believe that ws(a) > ti(a). By compactness, let M be a model of
the following theory:

i) @« > i, for each i € N

ii) w (a) > ti(a). for each i € N

iii) Peano arithmetic

iv) ET(Elem).

We can now define M, = {x e M\t M |=x = ti(a) for some i € N}. The
predicate and function symbols of L can be interpreted in MO as their restric-
tion from M. With this interpretation MO is a model of ET(Elem). (Notice that
we have constructed M, in exactly the same manner as MD&L was constructed in

0

Section 3.)

Now we need to show that S is polynomially computable in Mb. It is

important to recall that

(Viex,ysz € My)IM, |= Pr(isx,y,2) <=> M |= T(i.x,y,2)].
Since M is a model of Peano arithmetic and we constructed it in such a way

that

M |= ws(a) > ti(a). for all terms ti.

-29-

we know that in M, the ath polynomial time program computes the set S for some
segment that is greater than (o, ti(a)) for every term t; in L. What's more
we can patch program a on the segment [0,a] so that it decides every segment
Lo, ti(a)) correctly. The patched program, call it @ is not a great deal

larger than o and its runtime is about the same as a's. That is, a, = f(a)

0
for some polynomially honest, elementary function, f, that grows faster than

log(k) for some k € N, Therefore a, € MO. Since for every i,

M |= OVYsZ)LT(iw9“0’YnZ) = y> ti(a) &z > ti(a)Js

M, |= (Vy.Z)-'PT(iw,ao.y.Z).

That is, Mo |2 (Wx)(3z) ws(x) =z,
Now we need to show that if

MO |= PT(cs.X.yl.Z)

then there is a Y, € Mo such that .

MO |= PT(ao.x,yz.z).

In order to show that this is true we need the following facts about enumera-
tions of polynomial time Loop programs: We can assume that program a was the
ath polynomial time Loop program from some syntactically "nice™ enumeration ot
clocked Loop programs. Thus for that enumeration we can assume that there is a
polynomially honest, elementary function g(i,x) which given polynomial program
i and input x, produces the computation sequence of program i rum on input x.
What's more we can assume g grows faster than some iterate of the log func-

tion.

Therefore, for all x € MO’

-30-

M |= T(c »Xsys2) => T(ao,X.g(ao.X).Z)

and hence
My I= PT(ao.X.g(ao.X).Z)

which completes the proof. [

At this point it is worth observing that the proof of Theorem 4.2 is not
particularly dependent on the fact that we are showing that it is consistent
to believe that S is polynomially computable as opposed to linearly comput-
able. Also the construction on Mo can simultaneously consider all elementary
sets whose witness functions are not bounded by an elementary function. Hence

with only minor modifications to the proof one can prove the following:

Theorem: There is a fixed model Mo of ET(Elem) such that if S is an elemen-

tary set then S is linearly computable, wer.t. PT' in MO if

v, = (min y2x)[N _(y) # S(y)]
is not bounded by any elementary function. (Where A\ is an enumeration of the

linearly computable programs.)

Theorem 4.2 reformulated using the T-predicate

Suppose that we reformulate Theorem 4.2 using the standard Kleene T-
predicate rather than the predicate symbol PT’ and suppose the witness func-
tion for a fixed elementary set S is elementary. Then whether or not S is
really polynomially computable (that is, we.r.t. T) in a model M, of ET(Elem)

is dependent on whether fc and fou behave correctly in MO’ i.e., whether

omp t

for the witness program iw’

-31_

My 1= (VEITCexaf o (0o (F o (00)) (4.2.b)
and Mo |= CVx,yl.yZ.zl,zz) (4.2.¢)
[T(x’fout(fcomp(x)) .yl 921)
& T(cs.fout(fcomp(x)),yz,zz) = z # z2]

Essentially, fcomp must correctly pair together instantaneous descriptions ot

the computation of iw’ and fou must correctly project out the output ot the

t

computation sequence fcomp(x)' So if fcomp(x) = y and fout(y) = i then y must

be the pairing

= <L <
y = <<IDy>, <ID

where each instantaneous description IDi is the pairing of an instruction

>s eees <ID >
m

number together with the values of the variables

IDi = <n, X, Vlg eces Vn.Z>

for x the input variable, Vis eees VvV program variables and z the output

variable, and

(y) I (n+2,0+2,T(m,m,y))

fout

for some fixed uniform projection function II. So essentially, £ is a pro-

out
jection function that projects out the last element of the last instantaneous

description of y.

At this point we encounter one of the major deticiencies of ET and
ET(Elem) - these theories are not powerful enough to prove the existence of

projection functions. Herbrand's Theorem tells us that if

-3 2-

ET(Elem) |- (Vz)(Elx)lll(Z)

and ET(Elem) |- (Vz)(By)]Iz(z)

n
4]

n
«

then

r
ET(Elem) |- (Vz)[V 111(2)
i=0

ti(z)]

s
and ET(Elem) |- (Wz)[V 112(2)
i=0

ti(z)]-

This is because if we let z = <x,y> = (((x+1)/2) + y)2. then with some easy
algebraic manipulation, the formulas Dﬁ(z) = x and'ﬂz(z) = y can be expressed
in the language of ET (without predicate symbols) using only existential quan-
tifiers, and since the terms of these theories are either almost everywhere
constant or grow faster than log*, the projection functions can not be prov-
ably total. So at least on the surface there is little hope of adding pro-
jection functions to ET or ET(Elem) and still being able to prove Theorem 2.1.
This is because the proof of Lemma 2.4(ii) hinges on the fact that each term
of L(ET) grows faster than log*. in order to show that the standard elements
of M. are definable by a predicate in PhsL® Nevertheless our intuitions
tell us that projection functions behave nicely enough that their presence
should not interfere with this argument since they do not appear to allow omne
to define monotone functions which grow more slowly than 1og*. Adding a uni-
form projection function to Lt intuitively seems much more difficult since if
such a function exists then one immediately has the ability to discuss finite
sequences of any length without using quantifiers. (The projection functions
I[1 and 112 only give one the ability to discuss finite sequences ot a fixed
length.) However without the ability to discuss sequences ot arbitrary length

it seems hopeless to try to discuss Loop program computations in any natural

-33-
waye.

However if we return to the problem of showing that (4.2.b) and (4.2.c)
are true in all models of ET(Elem) we see that while the existence of total
uniform projection functions would certainly imply these statements, something
less would also be sufficient. The programs that are mentioned in statements
(4.2.b) and (4.2.c) are a concrete class of programs. We believe that i_ can
be modified so that fout applied to the input x rather than fcomp(x) is a
polynomially honest function which majorizes some iterate of the log function

and that polynomially honest functions fl and f2 which also majorize some

iterate of the log, can be constructed so that

My I= CVX)[T(X.fout(fcomp(X)).fl(X).fz(X))
& T(cs.fout(fcomp(X)).fl(X).fz(X)) =>

£,(cof L (X)) 2 £)(xaf (x))]

This would be sufficient to prove that if the witness function for S is ele-
mentary then S is not polynomially computable, wer.t. T, in any model of

ET(Elem).

The relatioanship between ET and ET(Elem)

The proof of Theorem 4.2 relied on the fact that L contains function sym-
bols for all of the polynomially honest monotone functions that grow faster
than some iterate of log x, in order to show that £ and f are total in

comp out
all models of ET(Elem). At this point it is worth discussing why it is doubt-

ful that Theorem 4.2 is provable for ET.

Many of the problems arise from the fact that the domain of Myss OFr any

similar model of ET, is small in comparison with nonstandard models of full

-34-

Peano arithmetic and this severly restricts the functions that are total in
Mpers (regardless of the notion of computation chosen). For instance there
are polynomials over the domain MD&L which are not total 1in MD&L merely

because they grow too rapidly:

&4.4. Example: Suppose p(x) = x*. Recall that ML, is the restriction of a
model M of Peano arithmetic; therefore p(x) is total in M. However, although
p(x) is a polynomial over the domain of ML (its coefficient and expomnent are
in MD&L)’ it is not total in Mb&L' This is because a® is too large to be an

element of MD&L i.e.s when we restricted M to form MD&L’ aa was not included.

The polynomial given in this example is not total in what we will call
the get theoretic sense. That is, there is an x € MpsL such that for aill
Y € Myers +p(x) = y. Therefore p(x) can not be computable regardless of the
notion of computation we select. Recall that a program i in MD&L computes a
total function wer.t P, if for each input sequence X € M. there exists a
computation sequence y and an output z in ML such that M .. |= PT(i,;,y,z).
(Alternatively, if we use the standard T-predicate to express the notion of
computation then there must exist y and z such that M. I= T(i.;.y.z).) The
polynomial in Example 4.4 is not total in MD&L because for some elements of

MD&L that are in the domain of the function, in particular a, there is no

corresponding range element in MD&L'

There are other very simple functions which are not computable in MD&L
because the function which bounds their computation time is not in the model.
For instance a characteristic function that has time complexity t(x) = Ix1*
can not be computable despite the fact that it is total in the set theoretic

sense.

3 5

In a set theoretic sense Herbrand's theorem [Her-30] characterizes many

of the relations that ET proves total. It tells us that if

ET |- (vx)(Jy) d(x,y)

for ¢ quantifier free, then there are terms to.tl.....tn of L(ET) such that

- n - -
ET |- (Vx)[VvV d(x,t;(x)) 1.

i=0

Essentially, this tells us that a quantifier free relation is provably total
using ET if it is a term of L(ET) or is defined by cases from the terms of
L(ET). Since it seems highly unlikely that the relation P, has this property,

i.e., we doubt that there are terms to. « o o ’tn and Bgrecessy such that

sl
ET |- (Vx)[\ PT(iw.X.ti(x)-si(X))].
i=0 .j=0

it seems unlikely that ET is rich enough to prove that a witmess function iw

is total even w.r.te. PT.
Theorem 2.1 reformulated for ET(Elem)

DeMillo and Lipton, [D&L-80, Thm 5.1], state that Theorem 2.1 (and hence
2.3) can be extended to any arithmetic theory T that has as axioms the true
universal sentences over a first order language L(T) that contains predicate
symbols for all of the standard polynomial time testable relations and func-
tion symbols for + and « and any additional function symbols provided that,

i) the terms of L(T) are r.e.,

ii) if t(x) is a term of L(T) and it is unbounded then t(x) > A(x) a.e.,s

where

A(x) is a fixed monotone total recursive function, independent of t,

iii) for each term t, of L(T), the relation x = ti(y) is testable in time

-36-

REEIEP

. m
e(i,x,y) =y + 22 for some fixed standard integer m,

provided y is large enough.

Essentially, their proof shows that if conditions (i) and (ii) are met then
Lemma 2.4 is provable and if condition (iii) is met then there is a predicate,
Eo(i,x.y). that tests x = ti(y) in time e(i,x,y) from which one can induc-
tively construct a predicate En(l.x,a) € PD&L which, in Mb&L’ tests whether

or not ti(a) = X,

However, as DeMillo and Lipton point out, extending L(ET) in the manner
we have done in Definition 4.3 does not appear to satisfy these conditions.
This is mainly because when one includes the functions - and min(x,y) and

allows the fi's to grow as slowly as the iterates of the log function, condi-

tion (i1i) seems to be violated. Nevertheless, if we follow a suggestion ot

DeMillo and Lipton's and exclude -, min and any of the fi's that don't major-
ize12 some iterate of \E. from the language L of Definition 4.3, then the

terms of the resulting language satisfy conditions (i) - (iii):

e ze=z + S -
4.5. Defimitiom: Let L =1L - {-, min(x,y), £.0 £, doesn't majorize an
. L + .
iterate of \k} and let ET(Elem) be the theory of true universal sentences
+ +
over L'« (We use the name L because all of the nonconstant functions are now

increasing.)

4.6. Lemma: Conditions (i) - (iii) above hold for the terms of L.

Clearly, conditions (i) and (ii) hold for the terms of Lt

Broof

12, DeMillo and Lipton merely exclude - and min however we can not
prove Lemma 4.al unless we also restrict the fi's.

-37-

however, it is less obvious that condition (iii) holds. Nevertheless the poly-
nomial honesty of the functions and the fact that the nonconstant functions

grow faster than some iterate of \k. will allow us to prove the result:

Since the functions included in LY are all polynomially honest, for each
base function g, either equal to an fi or a c;, there is a polynomial p such
that p(max|g(y)l.lyl) > Timeg(y). This means that in order to decide whether
x = g(y) one can merely compute g(y) for p(max|x|,|y|) steps and test the out-
put against x. Unfortunately this test handles only the functions given by
function symbols rather than all of the terms, and the polynomial is not uni-

form but rather depends on g.

. . +
Nevertheless if we consider the structure of the terms of L we see that
they are formed from the function symbols by composition. For example, each

m-ary function symbol g is a term and given terms tO(;b)' cees tm(;;)’

t(x) = 8(t0(;0). tme)). =0 Zi

is a term formed from the function symbol g and the terms to. coes tm by com-
position. What we would like to show is that t is polynomially honest pro-
vided that g and to, cees tm are. So we will begin by supposing that there are

polynomials pg, Pg, ***» Py such that
L
pg(max lg(to(xo), cees tm(xm))hlto(xo). cees tm(xm)l) >

Timeg(to (;0) 9 eeco tm(;m))

= = . = . 13
and pi(max lti(xi)l’lxil) > Tlmeti(xi) for each i s m™ ~,

Then for any reasonable programming system,

13. By Izl,....znl we mean Izll + o e o + Iznl.

-38-

Timet(;) < Timeg(to(;b). cees tm(;;)) + Timeto(;b) e e

+ Tlmet (xm).
m

Timet(;) < p, (max Ig(to(;b).....tm(;;))l. (4.6.a)

Ity (xg)senesty (X))

+ py(max g (x))slxy 1)

+ p (max |t (x)l.1x I)
What we would like to show is that there is a polynomial P such that

Time (x) < p (max lg(ty(xg)s «ees £ G))14IxI) (446.b)

If g is a constant function, that is, one ot the ci's. then (4.6.b) is clearly
+

true. Suppose that g is not ome of the ci's. Then by the definition of L , g

grows faster than the nth iterate of the square root function for some fixed

n € N, Thus,

g(;)n > max{zi} a.e.

n . lg(z)] > max{lz;|} a.e.
Therefore, for each term ti'
n . lg(to(;b)...tm(;;))l 2 max{lti(;i)l} a.e.

Now if we substitute into inequality 4.6.a) we obtain:

-39-

Time, (x) < p((m+1)enelg(ty(xg)eee(ty G))D)

m — — —
+ .50 Pi(maximlg(to(xo)...tm(xm))I. Ix; 1)
1=l

Clearly, from this expression we can construct a polynomial Py which satisfies

(4.6.b). Thus all of the terms of LY are polynomially honest.

Now observe that for every polynomial p the function 2% is greater then

max(|t(y)l,lyl)

p(x) a.e. Thus 2 > Timet(y) a.e. (In particular this will be

true when y = a.) This means that there is a standard predicate, Eo(i.x.y).

(max|x[,lyl) < 2|X| + y and provided y

which is computable in time eo(x,y) <2
is large enough E0 correctly tests whether or not x = ti(y). This predicate

satisfies condition (iii). O

It follows from this lemma and DeMillo and Lipton's Theorem 5.1 [D&L-80]
that Theorems 2.1 and 2.3 are provable for ET(Elem)+. However when one exam-
ines DeMillo and Lipton's proof difficulties arise. There is some notational
confusion throughout their paper as to when function symbols are being
referred to and when terms of the language are being referred to. In the proof
of their Theorem 5.1 this causes difficulties. The proof is clearly incorrect
if only the function symbols of L(T) satisfy conditions (i) - (iii). However

DeMillo and Lipton begin their proof by defining a function r(x,y):

Ix|+lyl+l if Ix|zly| or x=y
r(x,y) = (4.6.c)

Ix|+1 if |x|=ly| and x#y

where 1 is the first bit where x and y differ. They then claim that since the
function r(x,y) satisfies condition (ii) one can assume that L(T) contains a
function symbol for r. While this may or may not be true for some interesting

languages, if we add r to L condition (iii) seems to be violated, even though

-40-

r satisfies both conditions (ii) and (iii). This is because in order to test

+ . .
the terms of L 1in time z'x'

+ y we strongly rely on the fact that the
. . + .

decreasing functions of L can not shrink an argument, X, by more than some

: i +

iterate of \k. If we add r(x,y) to L then arguments can be reduced by some

. . + . .
iterate of log x and it is no longer clear that the terms of L satisfy condi-

tion (iii)l%.

Although at this time we do not know how to modify DeMillo and Liptomn's
proof to accommodate a function symbol for r we conjecture that their theorem

is true for L'.
S. Shert, Fast Programs for Initial Segments of Hard Sets

In this final section we make a few observations about the consequences
if the witness function LA for an NP-complete set S is not bounded by an eie-

mentary function.

Recall that ws(x) equals the first input greater than x on which the xthn
polynomial time Loop program does not agree with the set S. If L is not
bounded by an elementary function then there are very long segments on which S
is decided by a polynomial time Loop program. That is, the xth polynomial
time program correctly decides S on the segment (x, ws(x))' Since W, 8IOWS 80

rapidly, there are infinitely many x for which, the segment [0, x] is quite

2

short, x << log” w(x). Therefore by patching a polynomial time program that

runs correctly on (x, ws(x)) we can obtain a polynomial time program that

correctly decides S on the very long initial segment [0, w(x)).
14, This also seems to be the case for L(ET) - {-, min}. The
terms of this language clearly satisfy conditions (i) - (iii),
however if we add r it is no longer obvious that this is true. As
in the case of L this is because we can produce very complicated
terms which do not grow much faster than the identity function.

-4] -

More gemerally, we see that in order to decide which sets are polynomi-
ally computable in some models of ET(Elem), it is necessary to know which sets
have infinitely many very long initial segments that are polynomially decid-
able by short programs. Obviously any initial segment can be quickly decided
by table look-up, so we will restrict ourselves to programs whose size and
time complexity is at most the log of some fixed function f applied to the
length of the initial segment that it decides. If the set is polynomially
decidable we will require that f be linear and if the set is NP-complete or
requires exponential time we will require that the function f be polynomial.
If a set has infinitely many initial segments that are quickly decidable by

small programs, we will say it has Mefficiently decidable initial segments:"

The question of whether there are NP-complete sets that have efficiently
decidable initial segments was raised by Berman and Hartmanis, [B&H-77]. They

observed that if a set is sufficiently sparse, then such programs must exist.

x| that are

One can easily construct sets that require time le2 or 2
sparse, hence there are hard sets in P and EXP-time that have infinitely many
initial segments that are decidable by short, fast programs and for which it
is consistent with ET(Elem) to believe that they are linearly or polynomially
decidable. Also, if we assume that P # NP, then an extension of Ladner's
construction [LAD-75] allows us to obtain a noncomplete set S in NP - P that
has efficiently decidable initial segments. (Essentially, one just forces the
set resulting from Ladner's construction to have sufficiently long gaps.)
Hence if we assume P # NP, then it is consistent with ET(Elem) to believe that

certain sets, which in any model of Peano arithmetic are in NP - P, are poly-

nomially decidable. Thus we obtain the following theorem:

-42-

5.1. Theorem:
i) There is a set S € P such that,

PA |- "S requires time lxl2 to decide,™
but,

ET(Elem) + "S is linearly decidable,™ is a consistent theory.
ii) Assuming P # NP, there is a set S € NP - P that is not Cook complete but
for which ET(Elem) + ™S is polynomially decidable™ is a consistent theory.
iii) There is a set S € EXP-time such that,

= to decide,"

PA. |- "S requires time 2
but,

ET(Elem) + ™S is polynomially decidable,™ is a consistent theory.

However this is not the case for the class of P complete (w.r.t. log-

space reducibility) or EXP-time complete sets:

5.2. Theorem: It is pot consistent with ET(Elem) to believe that polynomi-
ally complete sets are linearly decidable or that EXP-time complete sets are

polynomially decidable.

Proof: By diagonalization one can easily construct sets requiring time lxI2 or

2le that do not have efficiently decidable initial segments15 and since log-

space and polynomial time reductions must map initial segments to initial seg-
ments, P complete and EXP-time complete sets can not have efficiently decid-

able initial segments. What's more, the diagonalization can be carried out in

X

.0

such a way that ws(x) <2

15. Many general results of this flavor can be found in [DEH-79]
and [L,L&R-81].

—43-

Theorem 5.2 leaves open the question of whether NP-complete sets can have
efficiently decidable initial segments. Not only do we believe the common con-
jecture that P # NP but we also suspect that NP-complete sets do not have
efficiently decidable initial segments, and hence that it is not comsistent
with ET(Elem) to believe that the NP-complete sets are polynomially decidable.
Nevertheless a proof of this seems difficult. As might be expected, the simple
diagonalization techniques used in the proofs for polynomially and EXP-time

complete sets do not shed light on the question for NP complete sets.

(Ben-771

[B&L-74]

[D&L-79]

[D&L-80]

[J&Y-81a]

[J&Y-81b]

[KIR-80]

[(koz-801]

[ker-801

(LAD-75]

(L,L&R-81]

[LEV-72]

[1:a13-801]

(11AN-81]

- 44 -
References

Berman, L., and Hartmanis, J.s "On the isomorphism and density of
NP and other complete sets," SIAU J. Comput. 6, pp. 305-322 (Dec.
1977).)

Brainerd, W., and Landweber, L., Theory of Computation, John Viley
& Sons, New York (1974).

Delillo, Re., and Lipton, R., ™Some connections between mathemati-
cal logic and complexity theory,™ Proc. of the llth Symp. on Lthe
Theory of Comput.s pp. 153-159 (1979).

DeMillo, R., and Lipton, R., "The consistency of 'P = NP' zand
related problems with fragments of number theory,"™ Eroc. of the
12th Symp. on the Iheory of Compute, pp. 45-57 (ilay 1980).

Joseph, D., and Young, P., "Independence results in computer sci-

ence?," J. Comput. Systems Sci. (1981).

Joseph, D., and Young, P., "Fast programs for initial segments and
polynomial time computation in weak models of arithmetic,™ Eroc.

of the 13th Svmp. on the Theory of Comput.s pp. 52-61 (iay 198l).
Kirby, L., Private cormunication (1980).

Kozen, D., "Indexing of subrecursive classes," Iheor. Comput. Sci.
11, pp. 277-301 (1980).

Kozen, D., and lachtey, M., "On relative diagorals,™ 1Bl Technical
Report RC 8184 (April 1980).

Ladrer, R.s "On the structure of polynomial time reducibility," J.
Assoc. Comput. lachinery 22(1), pp. 155-171 (1975).

Landveber, L., Lipton, R.J., and Robertson, E., "On the structure
of sets in NP and other complexity classes," Ihsoretical Conput.
Sci. 15 (1981).

Levins L., "Universal enumeration problems," Problemi 2Reredaci
Informacii 9, pp. 115-116 (1971).

llahaney, S., "Sparse complete sets for iiP: Solution of a conjec-
ture of Berman and Bartmanis,"™ Proc. of the 2lst Symp. con Lthe
Eound. of Comput. Sci.» pp. 54-60 (1930).

lianders, K., "Computational complexity of decision problems in
elementary number theory,™ in Proc. of the Set Ihcory and lieraxr-
chy Theory Couf., Springer-Verlag, Karpacz (1981). (Lecture iiotes
in Hathematics Series.)

[MAT-70]

{op0-791]

(scH-76]

(WIL-81]

- 45 -

Matijesevic, Y., "Enumerable sets are diophantine,™ Dokl dAkad.
Hauk SSSR 191, pp. 279-282 (1979).

O'Donnell, H., MA programming language theory which is independent
of Peano Arithmetic,™ Proc. of the llth Swymp. on Lthe Ibeory of
Conput.s pp. 176-188 (1979).

Schnorrs C., "Optimal algorithms for self-reducible problems,™ pp.
322-337, in Automatas Lonsuages and Brograzilngs Univ. Edinburgh
Press (1976).

Wilkie, A., "Applications of complexity theory to sigma-zero defi-
nability problems in arithmetic,"™ in Proc. of tibe Set Theory and
Hierarchy Theory Conf., Karpacz (1979), Springer-Verlag (1981).
(Lecture Lotes in lathematics Series.)

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif

