Reprinted from JOURNAL oF COMPUTER AND SYSTEM SCIENCES 3 chruary
All Rights Reserved by Academic Press, New York and Loadon Vol 28, NoPtl'inid in m}m

Database Relations with Null Values

CARLO ZANIOLO

Bell Laboratories, Holmdei, New Jersey 07733
Received June 21, 1982; revised June 13, 1983

A new formal approach is proposed for modeling incomplete database information by
~ means of null values. The basis of our approach is an interpretation of nulls which obviates
the need for more than one type of null. The conceptual soundness of this approach is
demonstrated by generalizing the formal framework of the relational data model to include
null values. In particular, the sct-theoretical properties of relations with nulls are studied and
the definitions of set inclusion, set union, and set difference are generalized. A simpie and
efficient strategy for evaluating queries in the presence of nulls is provided. The operators of
relational algebra are then generalized accordingly. Finally, the deep-rooted logical and
computational problems of previous approaches are reviewed to emphasize the superior prac-
ticability of the soiution.

1. INTRODUCTION

Database programmers have long recognized the convenience of using special
symbols to fill in for incomplete or missing information in database records; these
special symbols are commonly called null values. Recently, a number of formal
investigations have focused on the topic of incomplete information and null values |3,
5,9, 1, 13, 14, 16, 19, 23, 24, 26]. Along with interesting results, these works have
shown that complex topical issues and problem areas remain open. In this paper we
briefly review some of these issues and then concentrate on the problem of
generalizing the formal framework of the relational data model to include null values.

A basic problem with null values is that they have many plausible interpretations.
The ANSI/SPARC interim report, for instance, cites 14 different manifestations of
nulls. Most authors, however, agree that the various manifestations of nuils can be
reduced to two basic interpretations. These are:

(a) the unknown interpretation: a value exists but it is not known; and

(b) the nonexistent interpretation: a value does not exist.

A formal treatment of null values under the “unknown” interpretation was
proposed by Codd [5]. This approach uses a three-valued logic which, along with the
usual TRUE and FALSE, also features the additional value MAYBE. In Codd’s
approach a relational expression such as X > Y evaluates to TRUE or FALSE in the
usual fashion if neither X nor ¥ is null. But if either X or Y is null, then this
expression evaluates to MAYBE. Thus, Codd proposes an extended relational

142

0022-0000/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

DATABASE RELATIONS WITH NULL VALUES 143

algebra, where the operations of select, join, and divide come in two distinct versions:
the TRUE version and the MAYBE version. For instance, the result of a TRUE
selection operation contains only tuples where the selection expression evaluates to
TRUE. The MAYBE version instead contains those tuples where the selection
expression evaluates to MAYBE. Codd also suggests that relational query systems
can be extended to enable the users to retrieve, not only those tuples which satisfy the
query in the “TRUE” sense, but also those which satisfy it in the “MAYBE” sense.

There exist a number of problems in Codd’s treatment of null values. A first area
of practical concern is simply the high cost, for little additional information, charac-
terizing the MAYBE versions of queries (due to their low selectivity). Therefore, most
relational systems implement execution strategies which, with minor variations,
correspond to Codd’s TRUE version of queries [1,29]. A second area of concern
relates to logical problems. First of all, Codd’s three-valued logic does not always
model correctly the intended “unknown” interpretation of nulls [9]: expressions that,
under the “unknown” interpretations, should always evaluate to TRUE (tautologies),
evaluate instead to MAYBE.

There is also a second logical problem area not previously mentioned in the open
literature. This relates to the set properties of relations and their update behavior.
Say, for instance, that we have the following two instances of a parts—suppliers
relation (here we follow Codd in using the symbol w to denote the null value).

PS’(P#, S#) (1.1)
w 5l
pl 52

PS"(P#, S#) (1.2)
w sl »
pl 52
p2 s

Under Codd’s approach, an expression such as PS” 2 PS’ is evaluated using the so-
called null substitution principle [5]. This replaces each occurrence of w by a possible
distinct nonnull value. Then, an expression which yields TRUE (FALSE) under every
substitution evaluates to TRUE (FALSE) in the three-valued system. However, an
expression which yields both TRUE and FALSE, depending on the values used in the
substitution, evaluates to MAYBE in the three-valued system. Therefore the
expression PS” 5 PS’ evaluates to MAYBE: For if the w in PS’ and the w tn PS” are
both replaced by one value, say by pl, then the expression yields TRUE; but if the
null value in PS’ is replaced by p2, while the null value in PS” is replaced by pl, then
this expression evaluates to FALSE.

Note now that PS” can be obtained from PS’ by adding the tuple (p2, s2). Now,
the everyday user, after adding in new information, expects that his new database

144 CARLO ZANIOLO

properly contains his old information as a matter of fact (TRUE) and not of
speculation (MAYBE). Indeed, whatever data he could find in the old database he
canalso find in the new one. Thus, the definition of set containment in Codd’s three-
valued logic does not model one’s intuitive understanding of the dynamic behavior of
an information system. Moreover, the set operations proposed in [5] do not possess
even the most basic set algebraic properties, since:

PS' U PS” 2 P§’
and
PS'MPS" = PS’
do not evaluate to TRUE but rather to MAYBE. Even more surprisingly,
PS’' =PS§’
and
PS’ = PS”

both evaluate to MAYBE and not, respectively, to TRUE and FALSE as expected.

Thus, the generalization of the set-theoretic properties of relations in the presence
of nulls represents an open problem—and a very important one since set theory
provides the bedrock on which the relational modet is built and a complete relational
algebra includes the operations of set union and difference | 22].

Interesting notions relating to the treatment of nulls under the “unknown” inter-
pretation have also been proposed by other authors [11, 16, 24]. We discuss them
later. Our more immediate concern is to illustrate the many facets of the problem at
hand. Among these we find the “nonexistent” interpretation of nulls. This problem
was studied by Lien [14]. He proposes join and select operations which basically
coincide with the TRUE version of Codd's operations. Then Lien proceeds by
formalizing the concept of multivalued dependencies with nulls, for which he derives
a complete set of inference rules.

The third facet of the null-value issue is how to deal with both the “unknown” and
the “nonexistent” interpretations at once. This problem was addressed by Vassiliou
[23] who notes that serious semantic problems arise if one tries to extend the three-
valued logic to a four-valued one. Vassiliou then shows that the query interpretation
problem in the presence of nulls of both types can be solved in the framework of
Scott’s denotational semantics. A drawback of this approach is the high
computational cost of evaluating certain queries (Vassiliou shows that in his
approach query evaluation is Co-NP complete [8]). .

A final facet of the null value scenario does not address the problem of
generalizing oild concepts and constructs (such as query execution, relational
operators, etc.) in the presence of nulls, but rather explores and pursues new
conceptual tools and applications which are made possible by the use of nulls.

DATABASE RELATIONS WITH NULL VALUES 145

Generally recognized as useful, for instance, are the information-preserving joins
independently introduced in [13,25]. Also, null values have been found useful in
mapping network schemas into relational schemas [15,26,27], in distributed
databases, and in ensuring the universal relation assumption [6]. There is a need for
integrating these new concepts and ad hoc applications in a complete and consistent
framework.

This paper presents a new approach that avoids the dilemma of the “unknown”
versus the “nonexistent” interpretation and provides an extension that preserves two
key advantages of the relational model:

(1) its set-theoretic foundations—which are preserved through a lattice-based
generalization of the relational algebra, and

(2) efficient query-evaluation algorithms based upon the well-known
correspondence between the relational calculus and the relational algebra.

The paper is developed as follows: In Section 2 we introduce the notion of no-
information nulls that provides the basis of our approach. In Section 3 we formally
define the notion of relations with null values. In Section 4 we examine the set-
theoretic properties of these relations. In Sections 5 and 6 we discuss the treatment of
nulls in queries and relational operators. In Section 7 we discuss the algebraic
properties of relations with nulls, and prove that they have the closure property with
respect to relational algebra.

2. A NEw APPROACH

QOur approach is based upon the observation that the “unknown” and the “nonex-
istent” interpretations do not constitute the most basic and elementary intérpretations
for the nuil vaiue. There exists a more primitive and unpretentious interpretation
underlying these two. To illustrate this point we will consider a typical application of
null values. Say that a database contains a relation (or if you prefer a record type or
a file) EMP with columns (attributes), E#%, NAME, SEX, and MGR# (the E# of the
employee’s manager):

EMP(E#, NAME, SEX, MGR#). (2.1)

TABLE 1
The Employee Relation

EMP (E#, NAME, SEX, MGR#)
1120 SMITH M 2235
4335 BROWN F 2235
8799 GREEN M 1255

146 CARLO ZANIOLO

Say that the current content of the relation is that represented in Table . Say now
that the database administrator (anticipating future needs of the enterprise) decides to
change the schema to include a new column TELw#,

EMP(E#, NAME, SEX, MGR#, TEL#) (2.2)

to contain the home number of each employee. This change in the schema does not
imply that each employee will be requested to supply his or her telephone number at
once. This piece of information will be entered in the database when it becomes
available. Therefore, the database administrator is faced with the problem of having
to operate, at least for the immediate future, with an expanded schema, while no
change in the information content of the database has occurred. The obvious solution
is to view the database as in Table II. Thus, the TEL# entries in the rows of our
relations have been filled with the symbol “~" which, from now on, we use to denote
a null value. Table II demonstrates a very plausible and useful usage of null values.
Clearly, neither the “unknown” nor the “nonexistent” interpretation is applicable in
this situation. Here the symbol “—" neither denotes that a telephone number of a
given employee does not exist, nor that the telephone number exists but is not known.
Here the null value simply denotes that no information whatsoever exists on the
TEL# of an employee. Thus our null value can be regarded as a place holder for
either a nonexistent or an unknown value.!

On the contrary, if “—" were interpreted as either “unknown” or “nonexistent,”
then Table II would contain more information than Table I, and this would
contradict the assumption that no additional data were gathered and stored when the
schema was modified. Under the “no information” interpretation of nulls, it is correct
to say instead that Table I and Table II are information-wise equivalent. The notion
of information-wise equivalence is central in our approach and will be further
discussed and formally defined later. (Obviously, the above relations are equivalent in

TABLE Il
The Employee Relation after the Addition of the New Attribute TEL#

EMP (E=, NAME, SEX, MGR#, TEL#)
1120 SMITH M 2235 —_
4335 BROWN F 2235 —
8799 GREEN M 1255 —

" A nonexistent value can be formalized either in a local context or in a global one {28]. Both
contexts are equivalent in the sense that they produce the same end results, but the mechanics of their
treatments are somewhat different. Here, we assume that our no information null is a place holder for an
unknown value and for a nonexistent value interpreted in the local context.

DATABASE RELATIONS WITH NULL VALUES 147

terms of content, but the intentional information represented in the two schemas is
different. For instance, if E# is a key then the functional dependency of TEL# on E#
is embodied in schema (2.2) but not in (2.1).)

In summary, no viable solution is currently available for handling both the
“unknown” and “nonexistent” concepts. Moreover, even if this becomes available,
there will remain the problem of those situations such as the one of Table II where
neither of these interpretations can correctly be assigned to the null {since an
arbitrary assignment would result in non-factual information being recorded in the
database). '

On the contrary, if a “no information” null value is used to model every kind of
missing or incomplete information, then all the information stored in the database is
factual and correct. However, partial knowledge which may be available to users may
be lost in the process—a price that, as discussed next, is worth paying in many
situations.

Our basic argument for the soundness of the “no information” approach relies on
the observation that a database can only provide an approximation to the real world.
Different types of nulls can be assessed for the extent by which they can improve this
approximation.” For instance, take our database schema (2.2). If no null value is
allowed in the TEL# field then no information can be stored about employees who
do not have a telephone, or whose telephone number is, for some reason, not
available. The use of “no information” nulls allows a dramatic improvement in the
accuracy and completeness of our database, since the information available about the
E#, the NAME, the SEX, and the MGR# of these employees can be stored in
records with null TEL# values. Admittedly, this approximation may be improved
even further, if these emplioyees are known to have or not to have telephones, by
using two kinds of nulls: one to denote the nonexistence of a number, the other that
the number is unknown. However, the added complexity which results from the use of
several nulls will not provide the ultimate solution but only a somewhat better
approximation. Let us illustrate this point with an example. A case of incomplete
information, often occurring in the real world, can be expressed by a sentence such
as, “Bob Smith’s manager is a woman.” This sentence states that although the
identity of Smith’s manager is not known the sex of this manager is known. To
preserve this information one will have to use marked nulls [11, 17] to link together
different tuples. For our EMP relation, for instance, there must be a tuple with a
unique null E# where the value of SEX is F (female) and also the same unique null
must appear in the MGR# of Bob Smith’s record. Thus, while this marked nuil wili
be treated as a regular “unknown” when a select operation is performed, it will be
treated as a regular nonnull value when performing a join on MGR#.

In practice, moreover, much is often known about an “unknown” value. For

? Horgan recently provided a rigorous setting to the concept of “better approximation” using a lattice
where ni is the bottom and the “nonexisting” and “unknown” nulls are two incomparable nodes. Thus
join, project and select, and various dependencies are continuous functions in the lattice of generated
relations | 10].

148 CARLO ZANIOLO

instance, although we do not know the specific color of an object, we may know that
it is either red or biue. An approach to this kind of information has been described in
[16]. More generally, a probability distribution for an unknown value within a
domain may be either given or computable from the current database. A systematic
approach to this problem is described in [24|. Moreover, additional information may
be available on a specific instance of a null (e.g., although the exact age of an
employee is not known, we could in fact know that he is young). This information
could be preserved using a very sophisticated kind of null, but the expected
improvement in the quality of information may not justify the additional complexity.
In fact, when additional knowledge is important enough it is generally easier to
preserve it through schema modifications than through complex null values. For
instance, if it were necessary to record the fact that an employee has no telephone,
the attribute NO _OF _TELS, with a value zero for this employee, could be added.
In conclusion, a database system can approximate the real world only to a certain
degree of accuracy. The degree chosen for a system is a matter for practical trade-
offs. In choosing to operate under the “no information” interpretation, we accept a
somewhat coarser approximation, but we obtain significant benefits in return. The
first obvious advantage is the generality which follows from the fact that one type of
null can be used as the place-holder for every manifestation of missing or incomplete
information. The second is conceptual simplicity, which leads to a simple
generalization of the relational data model, as discussed later in this paper. A final
advantage, as we shall also see, is computational efficiency in evaluating queries.

3. Basic CONCEPTS

From now on, we will refer to relations with null values simply as relations. To
denote relations without nulls we explicitly say “fully defined relations” or “total
relations.”

A relation R, defined over a set of attributes W = {4,,...,4,}, is denoted R(W).
Underlying each variable attribute 4; € W, there is a domain denoted DOM(4;). We
extend each domain to include the distinguished symbol ni which denotes the null
value under the “no information” interpretation. For 4 € W, an A4-value is an
assignment from the extended A-domain. Generalizing this notion, an X-value, where
X< W, is an assignment of values to the attributes in X from their respective
extended domains. A relation R(W) is a set of W-values. The elements of this set are
called rows or tuples of R.

A relation can be represented as a table, where the rows represent the tuples of the
relation and the columns correspond to the attributes of the relation. In our tables we
represent ni by the dash “—"" (see Table II). Say that r is a W-value, ¢.g., some tuple
of R(W). Also, let A € W and X< W. Then r[4] and r{X|, respectively, denote the
A-value and the X-value of r. We will assume, without loss of generality, that all the
attributes of our relations are contained in a finite universe of attributes, U. We use

DATABASE RELATIONS WITH NULL VALUES 149

the first letters of the alphabet, such as 4, B, and C, to denote single attributes in U,
and the last letters, such as W, X, Y, and Z, to denote subsets of U.

The notion of more informative tuple [26]| supplies the cornerstone of our
approach.

DeriviTION 3.1. An X-value r is said to be more informative than a Y-value t
when for each B € Y, if t[B] is not ni then B € X and r[B] =¢[B].

Thus, must match ¢ in each nonnull value of t. We write r > ¢ to denote that r is
more informative than ¢. Conversely, if r > r we say that ¢ is less informative than
and write 7. If r2>¢ and ¢ > r, then we say that r and ¢ are (information-wise)
equivalent and write r = 1.® For instance, say that

r, = (5555, JONES, —, 2231), r, ={5555,JONES, F, 2231}
denote values of {Es#, NAME, SEX, MGR#}, and
r; = (5555, JONES, F, 2231, =), ry= (5555, JONES, F, 2231, 2639452)

denote values of {E#, NAME, SEX, MGR#, TEL#}. Then, r,<r,,r,=r, and
ry<ry. (Also, note that each tuple in Table I is equivalent to the corresponding
enlarged tuple in Table IL.) Let X < ¥ < U. Given an X-value r, an equivalent Y-value

= r can be constructed from r by filling the (¥ — X) values with nulls. Therefore, we
will prescribe by convention that, if » is an X-value and the attribute 4 is not in X,
then r{4] = ni. Therefore, any two tuples consisting only of null values are equivalent
and any such tuple is equivalent to the tuple consisting of ni. These tuples will be
called null tuples. A tuple without nulls will be called fotal and a tuple with a total X-
value will be called X-total.

Say that U* denotes the set of all possible tuples (i.e., the set containing every X-
value for each X < U). Then, the notion of more informative, being transitive and
reflexive, establishes a quasi-ordering of U*|2]. A tuple ¢ will be called a meet of two
tuples r, and r,, denoted ¢t = r, A r,, when for each 4 in U,*

tiA] =r,[4] if r[d]=r]4],
= ni if r[d]#+r,]A4].

Clearly, if r{=r,, then r, Ar,=r| Ar,. Therefore, if one does not distinguish
between equivalent tuples, then there always exists the meet of any two tuples in U*,
and it is unique. The meet of r, and r, is more informative than any tuple which is
less informative than both r, and r,.

* The relationship > is reflexive and transitive. Thus, "= is an equivalence relation since it is also
symmetric.
‘ Notice that, in this definition, it is immaterial whether we assume that ni = i, or ni # ni.

150 CARLO ZANIOLO

While there exists a meet for every two tuples in U*, a join may not exist. Two
tuples r, r, will be called joinable when the following is true for each 4 € U:

If r{4] # r,[4], then either r,[4] =ni or r,[4] = ni.

A tuple ¢ will be called a join of two tuples r, and r,, denoted ¢ = r. A\ r,, when r,

and r, are joinable and for each 4 € U,
tflAd] =r{4] if r[d]2>r,[4],

=nrfd] if rl4]>r 4]

Clearly, if r{=r, then r; and r, are joinable if and only if r, and r, are, and so
reVry=rVr,and riAr,=r, Ar,. Often we will disregard distinctions between
equivalent tuples and speak of rhe join or the meet of two tuples.’ In this context we

may say that the join (the meet) of r and r, is the least (the most) informative
among the tuples which are more (less) informative than r, and r,.

4. EXTENDED RELATIONS

The notion of being more informative can be extended to relations, which will be
said to be more informative than or to subsume other relations.

DEFINITION 4.1. A relation R, subsumes a relation R,, written R, 2 R,, when
for each nonnull tuple r, € R, there is a tuple r, € R, with re2r,.

This 2 relationship is transitive and reflexive. We can now define the notion of
information-wise equivalence as

DEeFINITION 4.2. The relations R, and R, are information-wise equivalent, written
R, =R,, when R, 2R, and R, 2R,.

The equivalence relation = (reflexive, symmetric, and transitive) partitions the
universe of relations into disjoint subclasses. We can thus use the basic generalization
mechanism used to extend natural numbers to real numbers [20] to introduce the
notion of extended relations (written x-relations for short).

DEFINITION 4.3. An x-relation is an equivalence class under = The class of
relations equivalent to R is denoted R. R is called a representation of R.

Thus R, =R, iff Ry=R,. If R{=R, and R;=R,, then R} subsumes R} iff R,
subsumes R,. Therefore, we can now define the notion of set inciusion or set
containment for x-relations.

DEFINITION 4.4. R, contains R,, written R, = R, when R, subsumes R,.

*If one does not distinguish between equivalent tuples then the relation > defines a partial
ordering—actually a semilattice.

DATABASE RELATIONS WITH NULL VALUES 151
Clearl‘y if R,=R,, R4~ R, and R, 2 R, then R| 2 R}, as expected. It also follows
directly from the definitions that:

ProposiTION 4.1. R =R, iff R, 2R, and R,2R,.

We will also say that R, properly contains R,, and write R, o R,, when R, 2 R, but
R, # R,. The converse of 2 and D will be denoted by < and <, as usual.

It is also convenient to generalize the notion of a tuple bemg an element, or a
member, of an x-relation as

DEFINITION 4.5. A tuple ¢ is said to x-belong to, or to be an x-element of R
written t € R, when, for some R’ in R, t€E R’".

The following proposition. supplies a simpler characterization of €. (Its proof
follows directly from the definition.)

ProPOSITION 4.2. (€ R iff there exists a tuple rER s.t. r > 1.

Thus a tuple ¢ belongs to an x-relation iff its representation contains a tuple which is
more informative than ¢. Also we will say that a tuple t x-belongs to a relation R, and
write ¢ € R, to denote that for some rER, r > t. Although € is now used in two
different contexts no confusion arises, since ¢t € R iff t € R. We also write t & R or
t € R to denote that —(¢ € R) or —(t € R) holds.

Given a set of tuples {¢,,¢,,...,£,}, one can eliminate all tuples that are less infor-
mative than some other tuples, and enlarge the others to their equivalent U-values.
The x-relation represented by the set of U-values so obtained will be denoted

{tys Lyseens L}

We can now define union, x-intersection, and difference using this handy notation.
(The reason for the term x-intersection will become clear later.) We have

union: ﬁluﬁz-—ﬂiﬂrélflorréﬁﬁ, (4.1)
x-intersection: R NR,= ?rl réR,andr € ﬁ;}, (4.2)
difference: ﬁlﬁﬁzz'{‘rlréﬁlandréﬁz‘f (4.3)

Also, it follows from the. definitions that these operations have the substitution
property, with respect to equality.

ProposITION 4.3, [fR{=R, and R, =R, then

(1) RIUR=R,UR,,
(2) R AR,=R,NR,,
(3) R;—R;=R,—R,

152 CARLO ZANIOLO

The union and the x-intersection, respectively, define the least upper bound and the
greatest lower bound with respect to the partial ordering 2. In fact:

PropoSITION 4.4. [fR2 R, and R2 R, then R2 R, UR,.

Proof. IfrER U R, then rER, or rER,. Say that r€R,. Then r€ R2R,.
Thus, R 2 R, UR,.

- -

ProposiTionN 4.5. IfR< R, and RS R, then RS R,NR,.
Proof. Easy.

Thus we have a lattice of x-relations, with the well known properties associated with
it {2]. This lattice is also distributive since

RAR,VUR)=R AR)UR,AR)) (4.4)
and
RUR,AR)=R,UR)N (R, UR,). (4.5)

- The proof of these properties follows from the definitions and is left to our reader.
(Only one of the above needs to be proven since the validity of either one implies the
validity of the other in a lattice.)

Our lattice has a bottom element, denoted @ which is characterized by the property
that for every x-relation R, RN @ = 3. @ can be represented by an empty relation.
The top of our lattice, denoted TOPU, is characterized by the property that
RUTOP,=TOP,, for all R. If U= {4,,...,4,} then TOP,, can be represented by

TOP,=DOM(4,) X --- X DOM(4,).

(Note that TOP,, is a proper subset of U*.)

In general an x—relatlon R does not have a complement (i.e., there is no relation R
for which RN R’ =@ and R\U R’ =TOP,). This can be seen from the following
example:

U= |{A4,B}, DOM(4) = {a,}, DOM(B) = {b,, b,}.
Thus the following two tuples are x-elements of TOP,,:
r.'z:(alsbl)ﬁ rZ:(alsb2)'

Now take a relation R x-containing r, but not r,. Then an x-relation R/, to yield
RU R’ =TOP,, must have r, as an x-element: r, € R’. But then the tuple (a,, —) x-
belongs to both R and R’. Therefore it also belongs to RAR #02.

Likewise, the intersection (R —R)N R, may not be empty. However, the
following two properties hold:

DATABASE RELATIONS WITH NULL VYALUES 153

PROPOSITION 4.6. For any two x-relations R, and R,, where R,2R,,

(ﬁx —}iz)Uﬁz'_'Rt-

Proposition 4.7, IFRUR,=R, then R2 (R, —R,).

Thu§ (13l —R) i_s the smallest x-relation (in terrﬁs of <, of course} whose union
with R, will give R,. The proofs of these propositions follow immediately from the
definitions.

The notion of minimal representation is convenient for representing and handling
x-relations.

DEFINITION 4.6. A relation R constitutes a minimal representation for R, when
no proper subset of R is also a representation of R.

A minimal representation can be constructed by starting with an arbitrary one and
removing the nuil tuple, if present, along with every tuple which is less informative
than some other tuple. This process can be regarded as an extension of the one of
removing duplicate tuples in tables representing conventional relations.

The minimal representation of an x-relation over a given attribute set is unique. As
shown by examples (2.1) and (2.2), however, an x-relation can have two distinct
minimal representations over two different sets of attributes. To introduce the notion
of a minimal attribute-set, we will define the notion of scope.

DEFINITION 4.7. The set of attributes ¥ is said to be the scope of R, when R can
be represented by a relation on W but cannot be represented by any relation with an
attribute set smaller than W.

Definitions (4.1)-(4.3), in their present form, are not conducive to efficient
implementation. In fact, the definition of € suggests a combinatorial explosion in
which a plethora of less informative tuples are tested and possibly included in the
result relation. This problem can be solved by deriving equivalent formulations which
do not use €. For instance, the following three can easily be derived from (4.1)-(4.3)

R-lUR‘2=ir|r€R10ffERz‘}‘, (4.6)
R, AR,=1r,Arr,€R, andr, € R,}, (4.7)
ﬁ,—lizz‘irlrER,anthERg-—.(t}r)‘i. (4.8)

Therefore, the scope of a union is the union of the scopes of its operands; the scope
of an x-intersection is not larger than the intersection of the scopes of its operands;
the scope of a difference is not larger than the scope of the minuend.

A simple-minded implementation of (4.6) yields a running time of order
|IR,| +|R,| while (4.7) and (4.8) suggest an upper bound of order |R,| X|R,l.
However, more sophisticated techniques. such as combinatorial hashing [12], can

154 CARLO ZANIOLO

provide more efficient solutions. These techniques are also useful for reducing
relations to minimal form. For instance, if R, and R, are minimal representations for
R, and R,, then the result of (4.8) supplies a minimal representation for R, —R,
(indeed a subset of a minimal representation is always minimal). However, even if R
and R, are minimal, the application of (4.6) or (4.7) may introduce less informative
tuples, which will have to be eliminated to reduce the relations to minimal form.

5. QUERY EVALUATION

As noted in [16], if a query Q is formulated on a database with incomplete infor-
mation, then there are two important bounds of interest:

(1) A lower bound || Q|| : the set of objects which, on the basis of the available
information, can be concluded to satisfy Q, for sure, and

(2) An upper bound || Q| *:the set of objects which may possibly satisfy Q
(i.e., on the basis of the available information, they cannot be ruled out).

In this paper we are interested in the problem of evaluating the lower bound |l
for a language based upon relational calculus or relational algebra. This is the bound
of more direct interest in real-life situations. The evaluation of the upper bound I|Qll*
is of less practical interest and also the source of some difficult problems which will
be treated in future reports.® The solution here proposed is similar to Codd’s solution.
since it employs a three-valued logic. However, it uses a different interpretation of
this logic and a new treatment of sets.

Predicate calculus based languages contain simple relational expressions such as

tAOm.B
tAd Ok,

where ¢ and m are tuple variables, 4 and B are attributes, k is a (nonnull) constant,
and & is one of the comparison operators, >, <, = >, <, #. If the A-value of ¢ is null
then these two relational expressions evaluate to ni. Also if the m.B value is null then
t.A 6 m.B evaluates to ni. Otherwise these expressions evaluate to TRUE or FALSE
as usual. Boolean expressions combining relational expressions like the above are
evaluated according to Table III.

The lower bound ||Q||«under the ni interpretation is computed by selecting only
those tuples which evaluate to TRUE. Tuples which evaluate to FALSE or ni are
discarded.

The three-valued logic and method of query evaluation described above are
equivalent to Codd’s TRUE-evaluation strategy. It has been shown that this strategy
does not produce the correct lower bound for the “unknown” interpretation, for

® These problems resuit from the difficulty of preserving the closed world assumption 18] when
dealing with incomplete databases (3}

DATABASE RELATIONS WITH NULL YALUES 155

TABLE III
Three-Valued Logic Tables

OR T F ni AND T F ni NOT
T T T T T T F ni T F
F T F ni F F F F F T
ni T ni ni ni ni F ni ni ni

queries which correspond to tautologies [9]. Fortunately the ni interpretation avoids
this problem. To illustrate this point let us consider the issue of tautologies in more
detail. Take for instance the QUEL [21] query of Fig. I,

Q.: range of eis EMP
retrieve (e.NAME, ¢.E#)
where (e.SEX =“F” A e TEL# > 2634000)
V (e.TEL# < 2634000)

Fic. |, In EMP find the NAME and E# of all female employees with TEL# > 2634000 and all
employees with TEL# < 2634000.

Since a null value is a place-holder for another value, the correct strategy, for
deciding whether a tuple satisfies a where expression, consists in substituting for each
null in the tuples under consideration all values which do not violate the integrity
constraints of the schema. If, under every possible substitution, the where clause
evaluates to TRUE then it must be included when constructing || Q, ||«. Otherwise, it
must be discarded. Now, consider query Q, of Fig. 1, and the second tuple in
Table II, :

(4335, BROWN, F, 2235, —).

If the null value “—” is interpreted as the place holder of an existing although
unknown TEL:#, then it is clear that whatever number we substitute for “—" the
where clause of Q, evaluates to TRUE. Thus under the “unknown” interpretation,
(4335, BROWN) should be included in ||Q,[l«. Under the ni interpretation, however,
the null value fills in for both unknown and nonexistent values. Now, in conformity
with [15,23], we assume that a nonexistent value does not satisfy any relational
expression (i.e., one that involves a comparison operator, such as the three of
Fig. 1).” Therefore a TEL# which does not exist is neither greater than 2634000, nor
smaller than, nor equal to it. Thus, EMP tuples having a null TEL# cannot be

" The rational behind this policy is that a nonexistent value is outside the domain where valued-based
comparison operators are defined. Also, it leads to a consistent and complete formal framework for the
treatment of nonexistent values |28].

156 CARLO ZANIOLO

included in the lower bound ||Q,|lx. Therefore, the ni interpretation of nulls avoids
the need for detecting tautologies in queries—a problem which besets the unknown
interpretation.® From the practical viewpoint, this constitutes an important advantage
of the ni interpretation: as we show in the Appendix detecting tautologies in queries
represents an inordinately difficuit and complex problem for any database system.
We can now define the operation of selection in conformity with the query inter-
pretation discipline just discussed. The selection operation comes in the two flavors,

R[A6B] and R[ABk],

where A and B are two attributes in U from the same underlying domain, k is a
constant from DOM(A)—not the ni symbol—and @ denotes a relational operator
such as =, >, etc. The definitions of these two operations for x-relations are

R[ABB] = {r|r € R is A-total and B-total and r(4 |6r{B|}, (5.1)
R[ABK] = {r|rE€R is A-total and 7[A 16k}, (5.2)

The cartesian product of two relations R, and R, is defined as
R, X R, =Er1V r,|r, €R, and r, € R, are not nullA}. (5.3)

As in the case of total relations, the various §-joins can thus be defined as selections
on the cartesian product,

R [A6BIR,=(R, x R,)[48B]. (5.4)

In the case of equijoins one need not repeat the join columns. This lead to the
definition of the join on X of R, and R,, denoted R, (-X)R,, as

R (X)R,= Tr, Vr|r, €R,,r,ER, are X—total‘;.

When both operands of a selection or a join operation are in minimal form then the
results calculated according to (5.1)}-(5.4) are in minimal form as well. This
convenient property does not generalize to the projection and union—join operations
discussed next.

The projection of a relation B on a set of attributes X, denoted R[X], is defined as

R[X] = {r[X]|r €R}. (5.5)

It was first noted in [25}, and independently in [13], that the use of null values
allows the definition of new information preserving joins. These have been called or-
joins {25], extended joins [13}], and also outer joins [5]. As we will see next, the

®In |28] we show that, in addition to these propositional-calculus tautologies, those tautologies that
can oceur in the more general framework of Relauonal Calculus (with quantifiers) are avoided as well.

DATABASE RELATIONS WITH NULL VALUES 157

name union-join best fits their nature. Indeed, the union—join on X of R, and R,,
denoted R, (xX)R,, is defined as

R (xX)R, =R, (-X)R,UR, UR,.

Thus the union-join contains those tuples of the joined relations that do not
participate in the join.

In passing, we note that the concept of natural join does not find an obvious
extension in this framework. The fact that x-relations are not explicitly associated
with a set of attributes represents a first source of difficulties. A second one is that
both equijoins and union-joins are candidate as the basis for such an exten-
sion—each having some, but not all, of the desirable properties.

As our reader may have observed in the previous definitions, we have used the
operator € rather than €. The inconsistency here is only apparent, since the
replacement of “€” by “€” in all the formulas above yields relations which are
information-wise equivalent to the originals. It is also easy to see that x-relations
have the equality substitution property with respect to the operators above, as
expected.

6. UNIVERSAL QUANTIFIERS AND NEGATION

The operation of division need not be considered to obtain a compiete relational
algebra since it is derivable from cartesian product, difference and projection [22}.
Yet it deserves explicit consideration because it supplies the gateway to a correct
treatment of universal quantifiers in a world of incomplete information.

Let R and S be x-relations and let R denote the set of Y-total tuples of R. The Y-
quotient of R divided by S is defined as

RS =R(Y] - (R[Y] x § — R,)[Y]. (6.1)

For total relations this reduces to the usual definition of division. From this definition
we have that tuples which are not Y-total do not contribute to the quotient. Thus we
can also write '

R(+Y)S =R,[Y]| - (R,[Y] x § —R,)[Y). (6.2)

The only case of practical interest is when the scopes of R[¥} and § are disjoint. In
this case, the following equivalent definition of division can be obtained from (6.2):

ﬁ(—:-Y)S:‘{.yly is Y-total and Vz € SA',széIﬁ. (6.3)

A third equivalent characterization of division can be derived from (6.3) by letting
R(y) be the Z—1mage of the Y-value y, under R,

ZR(y)={z|3r€R:r[Y]=y and r[Z}:z.}. (6.4)

158 CARLO ZANIOLO
Then we have that
B(+1)§=1y|yis Y-total and § € Z,(»)}. (6.5)

Thus, the operation just defined constitutes a natural extension of the division
operation for totai relations. To better understand the properties of this operation let
us consider the PARTS-SUPPLIERS relation of display (6.1). To enable an easier
comparison with Codd’s approach we have not eliminated less informative tuples.
Display (6.6) shows a sample PARTS-SUPPLIER relation,

PS (S#, P#) (6.6)
sl pl
sl p2
sl —
s2 pl
s2 —
s3 —
s4 p4d.

Consider the
Q. Find each supplier who supplies every part supplied by s2.

The answer to this query can be computed as
. A -
A =PS{(+S#)P,,. (6.7)

Where P, denotes the P#-image of 52 constructed by a selection followed by a
projection as

P, = PS[S# = s2][P#]. (6.8)

We can now compare the results under the previous definition of division against
those under Codd’s TRUE and MAYBE version of the this operator. The application
of (6.8) to (6.6) yields the following result under the TRUE version of selection:

P,={pl,-} (6.9)

The MAYBE version returns the empty set.
Our definition produces the corresponding result: P.,. However, Codd’s TRUE
evaluation of (6.7) now returns,

A =0 (i.e., no supplier).
Codd’s MAYBE evaluation produces

A, ={sl. 52,53}

DATABASE RELATIONS WITH NULL VALUES 159
Instead, using our definition of division we obtain
A, ={s1, s2}.

Thus, Codd’s TRUE-evaluation implements the following reformulation of Q:

Q.. Find every supplier who, for sure, supplies every part which may be supplied
by s2.

Codd’s MAYBE interpretation corresponds to the following reformuylation of Q:

Q,: Find every supplier who may be supplying every part supplied for sure by
52,

Finally, our proposed evaluation corresponds to the following version of Q:

Q;. Find every supplier who, for sure, supplies every part supplied for sure by
s2. .

These examples bring into the open an important issue regarding the meaning of
the universal quantifier, and the set formation process specified therewith, in the
presence of null values. The unanimous consensus of previous researchers on this
topic is that queries such as:

“Find all the employees who earn more than $20k,”

“Find every supplier who supplies red parts,”

become ambiguous when dealing with incomplete information. One must accompany
the words all and every by quantifiers such as “for sure” and “maybe” [5] or by a
specification such as “with more than 50% probability” [24]. In queries such as Q,
and in general those involving divisions and universal quantifiers, the set formation
process specified by the word “all” or “every” occurs more than once. We have
elected to be consistent and to interpret all the occurrences of the words “all” and
“every” in the “for sure” sense. This consistent policy is simple for the user to
understand and for the system to support (since it eliminates the difficult problem of
computing upper bounds). It also avoids the following paradox which besets Codd’s
treatment of division and universal quantifiers: Since 4,(S#) = @ one must conclude
that

“For sure, 52 does not supply all the parts s2 supplies.”

(Note that this contradiction then arises under any interpretation of nulls.)
The difference operator alse implies a universal quantification as described by
(4.8). Thus, for instance, a query such as:

Q.. Find all parts supplied by sl but not by s2.

160 ' CARLO ZANIOLO

can be computed as
- 2 N .
R, =PS[S# =s1|[P#] — PS[S# = s2][P%]. (6.6)

Clearly the result is R, = T pZT. This corresponds to the set of parts that are supplied,
Jor sure, by s1, and that are not among those supplied for sure by s2.

7. A GENERALIZATION OF THE RELATIONAL MODEL

In the early seventies Codd laid the foundations of relational database theory. His
main contribution [4] was the introduction of the data type relation with a complete
set of relational operators (the relational algebra) to model databases and query and
update operations on databases mathematically. Codd’s notion of completeness was
based upon the equivalence, that he proved to exist, between the expressive power of
relational algebra and relational calculus. A complete relational algebra consists of
the following operations [4, 22]: union, difference, selection, cartesian product, and
projection. The relational calculus is a generalized version of predicate calculus from
which most relational data' manipulation languages evolved.

Database updates also find a precise definition in terms of the relational algebra.
The result of adding a set of tuples to a relation is defined as the union of the set with
the relation; likewise deletion is defined by set difference: a modification can be
viewed as a deletion followed by an addition.

In the previous sections we have extended the traditional relations (let us call them
Codd relations) to model incomplete information through the use of null values. The
objective of this section is to prove that our extension (1) is correct and (2) completes
the relational model with respect fo the operators of relational algebra. For this
purpose our reader should refer to the analogous problem of extending natural
numbers to real numbers, which is discussed in most textbooks on algebra
(e.g., [20]). A step in this generalization is the definition of rational numbers from
integers. Rational numbers are defined as equivalence classes of integer pairs (the
pair a,/b, being equivalent to the pair a,/b, iff a,b, =a,b,). Say that Z denotes the
set of all integers and K the set of all rational numbers. To prove correctness one
only needs to show that for a subset K, < K, there exists a one-to-one correspondence
between Z and K, which preserves the operations on Z, i.e., preserves addition,
subtraction, multiplication, and division, and also preserves order. This makes it
totally immaterial whether one operates on Z or on the corresponding elements of K,
thus ensuring the correctness of the extension. The importance of the generalization
to rational numbers follows from the fact that they complete the number system with
respect to the four arithmetic operators. In fact while rational numbers have the
closure property with respect to all four operators, integers do not have the closure
property with respect to division. ,

In Section 4 of this paper we have defined an x-relation R to be the equivalence
class under = which contains R as an element. Say that R(W) is a traditional relation

DATABASE RELATIONS WITH NULL VALUES 161

without nulls—let us call it a Codd relation. Then R(W) is a total x-relation with
scope W. Moreover two distinct Codd relations map into two distinct total x-
relations. Thus there exists a one-to-one correspondence between Codd relations and
total x-relations. This correspondence preserves all the operators of the complete
relational algebra: union, difference, cartesian product, selection, projection. To verify
this, one only needs to recall the conditions under which the relational operators are
defined for Codd relations and to apply definitions (4.1), (4.3), (5.1), (5.2), and (5.5)
and the definition of cartesian product to conclude that:

(1) if R, and R, are union-compatible Codd relations, and
if R,UR,=R,, then R UR,=R,,
and
if R,—R,=R,, then R,—R,=R,,
and
if R,2R,, then R,2R,;
(2) if R, and R, are Codd relations and
R,XR,=R,, then R, X R,=R,;
(3) if 4 is an attribute of a Codd relation R, and if
R[A6k] =R, then R[A6k} =R ;
(4) if A and B are attributes of a Codd relation R, and if
R[AOB] =R, then R[46B] =R ;
and
(5) if W is a subset of the attributes of a Codd relation R, and if

R[W|=R,,then R[W|=R,.

In conclusion, one can operate on the realm of total x-relations instead of operating
upon Codd relations, for all situations in which operations on the latter are defined.’
However, operations on Codd relations are defined only if their attribute sets satisfy
conditions (1)-(5). Not so for x-relations, as our reader can verify by referring back
to the definitions (4.1), (4.3), and (5.1)-(5.5): x-relations have the closure property

? Therefore, it is correct to use the same notation to denote the corresponding operands for x-retations
and Codd relations. A similar conclusion applies to the 2 notation inasmuch as, when R and S are
union-compatible Codd relations, then R2 S iff R 2 §.

162 CARLO ZANIOLO

with respect to union, difference, cartesian product, selection and projection.
Therefore the extension of Codd relations to x-relations completes the data-type
relation with respect to the relational algebra.

For the reasons given above, x-relations are of great interest for database
management systems. Moreover they provide an interesting example of generalization
in basic set theory. Unlike sets, they do not constitute a Boolean algebra. Rather they
constitute a distributive, pseudo-complemented lattice [2], where the pseudo-

complement of R, denoted R*, is defined (U being the universe of attributes of
discourse) as

R*=TOP,—-R. (7.1)

Thus, R* is the smallest x-relation which when unioned with R gives TOP,,. Pseudo-
complemented, distributive lattices are also known as Brouwerian lattices after
Brouwer and Heyting (1930), who characterized an important generalization of
Boolean algebra having very similar properties |2, pp.45, 128, 138, 281].'°
Brouwerian lattices have many interesting properties |2, 7]. In particular it is known
that the pseudo-complements of such a lattice form a Boolean lattice. In our case the
set {R*} is simply the family of total x-relations with scope U, the universe. It is also
known that every Brouwerian lattice (our x-relations) and the Boolean lattice of its
pseudo-complements share the join, i.e., the union, and the (pseudo)-complement
operation. However, the proof that the two may have two different meet operations
was published in-its full generality only in 1962 [7]. Now, x-relations supply a most
interesting example of such a difference: The meet for the complements (U-total x-
relations) is the usual set intersection while the meet for x-relations is the x-
intersection (4.2). Obviously these two are different, as illustrated by the simple case
of the two x-relations on the universe U= {4, B},

R.I = —?(aa b])‘}.: an = ?(as bz)‘}‘-

Here the set intersection of R, and R, is empty while the x-intersection of R, and R,
x-contains the tuple (a, —).

8. CONCLUSIONS

Database systems are designed to store large amounts of real-world knowledge and
to answer questions on the basis of this knowledge. However, unlike the knowledge-
based question—-answering systems of A/, database systems do not attempt to preserve
the boundless thesaurus of real-world knowledge as it is structured in human minds
and communicated through the rich nuances of natural languages. Databases can
approximate this complex and boundless thesaurus only in a very limited and

12 More precisely x-relations form the dual of a Brouwerian lattice, where the pseudo-complement of
an element a is usually defined as the largest element a* for which a A a* = bottom.

DATABASE RELATIONS WITH NULL VALUES 163

imperfect way. All this being well understood, database users have long accepted
reasonable limits on the scope and sophistication with which their databases can
model the real world. In return, they demand systems which perform correctly and
efficiently, and are simple to understand and to use.

The solution proposed in this paper ensures logical simplicity and correctness
combined with computational efficiency. In particular, it extends the set-theoretic
foundations of the relational model, and guarantees efficient query-evaluation
algorithms through the well-known correspondence between the relational calculus
and the relational algebra.

This has been accomplished by using the ni interpretation of nulls, which is
capable, although imperfectly, of modeling and retaining incomplete real-world
knowledge. This ni interpretation avoids the serious computational problems which
occur when even a slightly more accurate approximation, such as the “unknown”
interpretation, is used. Thus, we suggest that our approach is of superior prac-
ticability in many real-life situations. '

In this paper we have proven the theoretical soundness of the ni approach, We
have seen that this allows the definition of informationwise equivalence on relations
with arbitrary attribute sets. Then we have introduced the concept of extended
relations as classes of informationwise equivalent relations, and generalized the
operators of the complete relational algebra to apply to extended relations. Finally,
we have shown that the proposed generalization is correct and completes database
relations with respect to relational aigebra. Therefore, the approach is theoretically
sound and practical and avoids many of the complexities and inconsistencies
presented by other approaches.

However, there remain many problem areas that require further research. An
investigation of practical interest is to derive a taxonomy of null values and
understand their relative tradeoffs, and two approaches to this problem are presented
in [10, 11]. In particular, one would like to know to which extent the ni interpretation
is adequate in “real life” applications, and study those that require more informative
interpretations.]

An important topic not addressed by this paper is that of data dependencies and
formal approaches to schema design. Basic constraints, such as uniqueness of keys
and referential integrity, can be extended and enforced in the presence of null values,
without major problems [5]. However, at the time of this writing, we do not know of
any generalization of concepts such as functional or multivalued dependencies, which
preserves all the properties that makes them so useful in the formal analysis and
design of relational schemas. This fact, combined with the lack of a satisfactory
generalization for the notion of natural joins, suggests that much more work is needed
before a clear understanding—perhaps a solution—is reached on this complex topic.

164 CARLO ZANIOLO

APPE'NDIX: THE TAUTOLOGY PROBLEM FOR UNKNOWN NULLS

In this Appendix we discuss the difficult problem of dealing with tautologies in
executing queries under the “unknown” interpretation of null values.

For concreteness we will use the language QUEL as the syntactic framework for
our discussion. This can, however, be easily generalized to queries expressed in other
relational query languages. Consider the queries of Fig. | and 2. As one can see, a
query statement consists of a range clause which identifies a set of tuple variables, a
retrieve clause which identifies the target list, and a where clause which gives the
qualifying conditions on the range variables. Say that a query Q has the range
variables r,.....r, with respective ranges R,,.., R,. To answer a query on total
relations one only needs to consider all tuple occurrences r, € R,,...,r, € R, in all
possible combinations (i.e., the cartesian product of the range relations) and to test
whether they satisfy the where clause. If so, they contribute to the final resuit as per
the target list; otherwise they do not.

For relations with null values, each null occurrence must be assigned ail legal
nonnuil values. A value is legal when it does not violate the integrity constraints
expressed by the schema. If, under every legal assignment, the where clause evaluates
to TRUE, we say that the set of tuples under consideration defines a tautology (for
the query Q). Tuples which define a tautology must be included in the computation of
|Qll« under the “unknown” interpretation of nulls. All the remaining must be
excluded.

Therefore, for the correct execution of queries under the “unknown” interpretation
we need to decide whether a set of tuples defines a tautology by taking into account
the query and the database schema as well. The brute force approach consists in
replacing null values in tuples with all possible nonnull values, within the integrity
constraints given in the schema. Since the cardinalities of domains underlying the null
attributes are usually very large, and tuples often contain several null values, this
approach is not feasible in general. The alternative approach is the symbolic
evaluation of the where clause in the query expression. For instance, for the query Q,
of Fig. 1, the system could start by recognizing that the two conditions involving
TEL# are logical complements of each other, and then proceed by detecting that the
resulting Boolean expression is a tautology. However, even in the simple framework
of propositional logic, the detection of tautologies is NP-hard [8]. Moreover, this is
only a very benign situation. For instance, consider a somewhat more complex
situation involving the domain variables ¢4 and ¢.B,

where tA>3A(tB<I12V LB >tA)

Here every tuple ¢ which has a non-nult 4-value satisfying the inequality 3 < t4 < 12
defines a tautology (i.e., the where expression is TRUE independent of the value
assigned to a null ¢.B). It appears that it is not feasible to design efficient algorithms
to solve symbolically this type of equation containing Boolean expressions involving
inequalities. If expressions such as

where E#> E#— 1

DATABASE RELATIONS WITH NULL VALUES 165

Qs range of eis EMP
range of mis EMP
retriecve (e.NAME)
where mSEX =“M" A
e MGR# =m.E#A
e.MGR# # e.E# A
e.E# + mMGR#

Fig. 2. Find the employees who have a male manager and do not manage themselves or their
managers.

are allowed, then our system for detecting tautclogies will also have to “understand”
simple mathematics. The picture becomes even gloomier if we take into account that
our system will also have to “understand” the semantic constraints of the schema.
Consider, for example, the query @, of Fig. 2.

Clearly, any pair of tuples m and e which satisfy the first two conditions in the
where clause, define a tautology for the remaining two, since an employee cannot be
his own manager, neither can he be the manager of his manager. Clearly, a system
which “understands” the integrity constraint in-the schema will often be complex and
expensive. Moreover, no system may ever be built to interpret constraints declared
and enforced via database procedures.

In summary, it appears that any system which attempts to handle tautologies will
not succeed in all cases and may be inordinately expensive to build and to use.
Needless to say, this cost will have to be paid for all queries, even those not invoiving
tautologies. This scenario suggests that the ni interpretation supplies a desirable alter-
native in practical situations.

ACKNOWLEDGMENTS

The author would like to thank Bob Horgan, Ed Lien, Eric Wolman, and the referees for the many
improvements they suggested.

REFERENCES

I. M. M. ASTRAHAN er al, System R: Relational approach to data base management, ACM Trans.
Database Systems 1(2)(1976), 97-137,

2. G. BIRKOFF, “Lattice Theory,” Amer. Math. Soc., Providence, R.L., 1967.

3. J. Bisxup, A formal approach to null values in database relations, in “Advances in Data Base
Theory™ (H. Gallaire, J. Minker, and J. M. Nicolas, Eds.), Vol. |, pp. 299-341, Plenum Press, New
York, 1981.

4, E. F. Copp. Relational completeness of database sublanguages in “Data Base Systems” (R. Rustin,
Ed.), pp. 65-98, Preatice—Hall, Englewood Cliffs, N.J., 1972.

166 CARLO ZANIOLO

5.

6.

11

12.

13

1S.
16.

17.

18.

19,

20.

21

22,

23.

24.

25.

26.

27.

28.
29.

E. F. Copp, Extending the database relational model to capture more meaning,” ACM Trans.
Database Systems 4(4)(1979), 397-434.

R. FAGIN, A. MENDELZON, AND J. ULLMAN, A simplified universal relation assumption and its
properties, ACM Trans. Database Systems 7(3)(1982), 343-360.

O. FRINK, Pseudo-complements in semilattices, Duke Math. J. 29 (1962), 505-514.

M. R. GAREY aND D. S. JoHNsoN, “Computers and Intractability: A Guide to the Theory of NP-
Completeness,” Freeman, San Francisco, 1979.

. J. GRANT, Null values in a relational data base, Inform. Process. Lett., 6(5)(1977), 156-157.
. J. R. HORGAN, “The Semantics of Relations and Nulls,” Bell Laboratories Internal Memorandum,

1981.

T. IMIELINSKI AND W. Lipsk1, On representing incomplete information in a relational data base, in
“Proceedings, 7th Int. Conf. on Very Large Data Bases, Cannes, France,” pp. 388-397, 1981.

D. E. KNuTH, “The Art of Computer Programming—Vol. 3: Searching and Sorting.”
Addison-Wesley, Reading, Mass., 1973.

M. LACROIX AND A. PIROTTE, “Generalized Joins,” SIGMOD Record, Vol. 8, No. 3, Assoc.
Comput. Mach., pp. 14-15, 1976.

. Y. E. LiEN, Multivalued dependencies with null values in relational databases, in “Proceedings 5th

Int. Conf. on Very Large Data Bases, Rio de Janeiro,” pp. 155-168, 1979.

Y. E. LIEN, On the equivalence of database models, J. Assoc. Comput. Mach. 29(2)(1982). 333-362.
W. Lipski, On semantic issues connected with incomplete information databases, ACM Trans.
Database Systems 4(3)}(1979), 262-296.

D. MAIER, “Discarding the Universal Instance Assumption: Preliminary Results,” Tech. Report,
No. 80/008, Dept. of Computer Sci., State Univ. New York at Stony Brook, March 1980.

R. REITER, On closed world databases, in *Logic and Databases” (Gallaire and Minker, Eds.), pp.
55-76, Pienum, New York, 1978,

R. REITER, Towards a logical reconstruction of relational database theory, in “Perspectives on
Conceptual Modelling” (M. L. Brodie, J. M. Mylopoulos, and J. W. Schmidt, Eds.), Springer-
Verlag, Berlin/New York, in press.

R. StoLL, “Set Theory and Logic,” Freeman, San Francisco, 1963.

M. STONEBRAKER, E. WONG, P. KREPS, AND G. HELD, The design and implementation of INGRES,
ACM Trans. Database Systems 1(3)(1976), 180-187.

J. D. ULLMAN, “Principles of Database Systems,” 2nd ed., Computer Science Press, Potomac, Md,,
1983.

Y. VassiLiou, Null values in data base management: A denotational semantics approach, in
“Proceeding, ACM SIGMOD Int. Conf. Management of Data, Boston,” pp. 260-269, May 30-June
1, 1979.

E. WONG, A statistical approach to incomplete information in database systems, ACM Trans.
Database Systems 1(3), 470488, September 1982

C. ZANIOLO, “Analysis and Design of Relational Schemata for Database Systems,” Ph.D. thesis,
Univ. of California, Los Angeles, Tech. Rep. UCLA-Engineering, No. 7669, July 1976.

C. ZaNIOLO, Relational views in a database system; Support for queries, in “Proceeding, IEEE
Computer Applications and Software Conf,, Chicago,” pp. 267-275, November 8-11, 1977.

C. ZaN10LO, Design of relational views over network schemas, in “ACM SIGMOD Int. Conf. on
Management of Data, Boston,” pp. 179-190, May 30-June 1, 1979.

C. ZaNIOLO, A formal treatment of nonexistent values in database relations, 1983, submitted.

M. M. Zroor, Query-by-example: A database language, IBM System J. 16, No. (4)(1977),
324--343,

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

