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We consider the computation tree logic (CTL) proposed in (Set. Comput. Programming 1
(1982), 241-260) which extends the unified branching time logic (UB) of ("Proc. Ann. ACM
Sympos. Principles of Programming Languages, 1981," pp. 164-176) by adding an until
operator. It is established that CTL has the small model property by showing that any
satisfiable CTL formulae is satisfiable in a small finite model obtained from the small "pseudo-
model" resulting from the Fischer-Ladner quotient construction. Then an exponential time
algorithm is given for deciding satisfiability in CTL, and the axiomatization of UB given in
ibid, is extended to a complete axiomatization for CTL. Finally, the relative expressive power
of a family of temporal logics obtained by extending or restricting the syntax of UB and CTL
is Studied. © 1985 Academic Press, Inc.

1. INTRODUCTION

Temporal logic is a formalism for reasoning about correctness properties of con-
current programs [15, 13]. In practice, it has been found useful to have an until
operator p U q which asserts that q is bound to happen, and until it does p will hold
(cf. [10]). In this paper we consider the computation tree logic (CTL) proposed by
Clarke and Emerson [5] which extends the unified branching time logic (UB) of
Ben-Ari, Manna, and Pnueli [4] by adding such an until operator. We give an
exponential time algorithm for deciding satisfiability in CTL and extend the
axiomatization of UB given in [4] to one for CTL.
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Symposium on Theory of Computing, San Francisco, California, May 5-7, 1982.
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2 EMERSON AND HALPERN

Our first step is to establish that CTL has the small model property: if a formula
is satisfiable, then it is satisfiable in a small finite model. The standard way of prov-
ing such results for modal logics is to "collapse" a (possibly infinite) model by iden-
tifying states according to an equivalence relation of small finite index, and then
showing that the resulting finite quotient structure is still a model for the formula in
question. This technique is used, for example, by Fischer and Ladner to show that
PDL has the small model property (cf. [9]). We show that any method of trying to
prove the small model property directly by using a quotient construction must fail
when applied to UB or CTL. However, we can also show that the Fischer-Ladner
quotient structure obtained from a CTL model may be viewed as a small "pseudo-
model" which contains enough information to be unwound into a genuine (and still
small) model.

Both our algorithm for deciding satisfiability and our completeness proof are
based on trying to construct this pseudo-model. Our approach is similar to that
used in [3] to show the corresponding results for DPDL, which suggests that the
pseudo-model phenomenon may be a general one which is applicable to a variety of
temporal logics. We then reprove these results by using the fixpoint charac-
terizations (cf. [6]) of the temporal operators to construct a tableau which may
itself be considered a small pseudo-model. Our first method can be viewed as a
"top-down" approach, while the tableau method is "bottom-up." Although both
decision procedures given have the same worst-case complexity of exponential time
(which is provably the best we can do), the tableau method is likely to be better in
practice. (Another tableau-based algorithm for satisfiability in UB was proposed in
[4]. However, that algorithm claims that certain satisfiable formulae are
unsatisfiable. Ben-Ari [2] states that a corrected version is forthcoming.)

We also study the expressive power of temporal logics obtained by extending or
restricting UB. In UB a path quantifier, either A ("for all paths") or E ("for some
path"), is always paired with a single state quantiser, either F ("for some state"), G
("for all states"), or X ("for the next state"). Thus, the UB syntax allows the asser-
tions EFp (for some computation path, there is a state on the path where p holds)
and EGp (for some computation path, for all states on the path, p holds). If we
extend the syntax to allow assertions such as E[Fp A Gq~\ (for some computation
path, there is a state on the path where p holds and for all states on that same path,
q holds), where a path quantifier is paired with a Boolean combination of state
quantifiers, we obtain the language we call UB + . Similarly, CTL + is obtained by
extending CTL, to allow a path quantifier to prefix a Boolean combination of the
state quantifiers F, G, X, or U. Finally, UB" is obtained by restricting the UB syn-
tax to allow only the pairs EX and EF (AG and AX can be obtained by negation)
and corresponds to the nexttime logic of Manna and Pnueli [14]. We show that
these languages can be arranged in the following hierarchy of expressive power:
UB<UB<UB+ <CTL = CTL + .

The rest of the paper is organized as follows: Section 2 gives the syntax and
semantics of CTL+ (and by suitable restriction, of all the other languages). Sec-
tion 3 shows why quotient constructions must fail for UB and CTL and defines the
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technical machinery of Hintikka structures (cf. [4]) and pseudo-Hintikka struc-
tures necessary for our constructions. In Sections 4, 5, and 6 the first proofs of the
small model theorem, the decision procedure, and completeness of the axiom
system, respectively, are given. These results are reestablished in Section 7 using
tableau techniques. In Section 8 we give our expressibility results. Finally, in Sec-
tion 9 we make some concluding remarks.

2. SYNTAX AND SEMANTICS

2.1. Syntax

We define below a language which extends UB and CTL in order to provide a
framework for the expressiveness results of Section 8. We start with a set of
primitive (or atomic) formulae <£0= {P, Q,...}. We then inductively define a set of
state formulae and a set of path formulae:

(1) Each primitive formula is a state formula.

(2) If p, q are state formulae, then so are (p A q) and —\p.

(3) If p is a state formula, then Fp and Xp are path formulae (which
intuitively say that at some state (resp. the next state) on the path p holds).

(4) If p is a path formula then Ep is a state formula (which says some path
satisfies p).

(5) If p is a path formula then Ap is a state formula (which says all paths
satisfy p).

(6) If p, q are state formulae then (p U q} is a path formula (which says there
is some state on the path which satisfies q, and all states before it satisfy p, i.e., p
holds until q).

(7) If p, q are path formulae, then so are p A q and —\p.

We use the abbreviations p v q for — 1 ( — I / > A —\q),p^>q for ~\pvq, p = q for
(p=>q) A (<7=> p), and Gp for —\F~\p.

The size of formula p, written \p\, is its length over the alphabet {-i, A , (,) ,
E,A,F, U,X}v<P0. The state formulae generated by rules (l)-(4), rules (l)-(5),
and rules (l)-(6) correspond exactly to UB~, UB, and CTL, respectively. Define
UB+ to be the state formulae generated by rules (l)-(5), (7) and CTL+ to be the
state formulae generated by rules (l)-(7).

2.2. Structures

A structure M=(S, L, R) consists of a set S of states, an assignment L of for-
mulae to states, and a binary relation R^SxS. (Think of L(s) as the formulae true
at state s.) A path is a sequence (s0, s,,...) of states such that (Si,si+i)eR that is
maximal (i.e., either infinite or whose last state has no /^-successor). We can view a
structure as a labelled directed graph whose nodes are the states. Node 5 is labelled
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by the formulae in L(s), and there is an arc from s to / i f f (s, t)eR. The size of a
structure M=(S, L,R) is the cardinality of 5.

2.3. Models

Given a structure M=(S, L, R), we want to define the notion of truth in M via
the relation |=. Given a state s (resp. path x) in M, and a state formula p (resp.
path formula p') we write M, s (= p (resp. M, * (= p'), which means p is true of
state s (p' is true of path x) in M. We define ^= inductively as follows:

( M l ) For a primitive formula P, M, s \= P iff P e L(s).
(M2) If p, q are state formulae, M, s \= p A q itt M,s \= p and M, s \= q;

M,s\= -ip iff M, 5 (jt p.
(M3) If x = (s0,s lv..) is a path, then M, x \= Fp iff for some sf on x,

M, 5, \= p; M,x \= Xp iff M, 5t (= p.
(M4) M, 5 (= Ep if for some path x starting at 5, M, x \= p.
(M5) A/, x f= Ap if for all paths x starting at s, M, x (= p.
(M6) M , x ^= (p U q) if for some initial prefix (s0,..., s^) of x, M,sk\= q and

M, 5, |= p for all z' < k.
(Ml) If p, g are path formulae, M, x \= p /\ q iff A/, x (= p and M, x (= 9;

M, x (= -ip iff A/, x |£ p.

A mode/ is a structure M - (S, L, R) such that J? is total and for all states seS
and all state formulae p, we have M, s f= p iff p e L(s). Note that in a model
Af = (5, L, /?), L is completely determined by the primitive formulae in L(s).

2.4. Remark

For technical reasons, we have used L here, an assignment of formulae to states,
rather than the more usual 71, an assignment of states to formulae (cf. [3, 4]). It is
easy to see that this slight change does not affect any of the results. Of course, (= is
still defined in the usual way. We also follow [4, 6] in requiring that in a model R
be total. This restriction can be removed without affecting any of the main
theorems (cf. Sect. 6.3).

2.5. DEFINITION. A state formulae p is satisfiable (resp. valid) iff for some model
(resp. all models) M= (S, L, R) and some (resp. all) seS, M, s \= p. Similarly for
path formulae. We write \=p if p is valid. Note that p is satisfiable iff — ip is not
valid.

The following lemma shows that the temporal operators may be viewed as
fixpoints of appropriate functionals (see [6]). For example, EFp is a fixpoint of
f(z) = p v EXz. This forms the basis of the tableau construction of Section 7.

2.6. LEMMA. The following formulae are valid:

(1) \=Fp = (trueU p)
(2) \=EFp = p v EX(EFp)
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(3) \=AFp = p vAXAFp
(4)
(5)

Proof. Immediate from the definitions in 2.3. Note that by part (1), it follows
that (2) and (3) are just special cases of (4) and (5) obtained by taking p to be true.
We include the special cases for UB here and in future lemmas and theorems to
show that our techniques apply directly to UB. |

For the next five sections we focus our attention on UB and CTL.

3. HINTIKKA STRUCTURES AND THE QUOTIENT CONSTRUCTION

In order to help us obtain a decision procedure and axiomatization for CTL, we
use Hintikka structures, which are based on Smullyan's semantic tableaux (cf. [18]).
Roughly speaking, a Hintikka structure is a structure where the formulas of L(s)
"true" at a state s satisfy certain consistency conditions which seem weaker than
those required for a model, but, in a certain sense made precise in Proposition 3.2,
are equivalent.

3.1. DEFINITION. A Hintikka structure (for pQ) is a structure M= (S, L, R) with
R total (and p0eL(s) for some seS) which satisfies the following constraints:

(HI)
(H2)
(H3) p A qeL(s)=>p, qeL(s)
(H4) -i(/? A q)e L(s)=> —\peL(s) or — \qe L(s)
(H5) EFpeL(s)=>peL(s) or EXEFpeL(s)
(H6) ^EFpcL(s)=>^p,^EXEFpeL(s)
(HI) AFpeL(s)^peL(s) or AXAFpeL(s)
(H8) -^AFp€L(s)^^p, -\AXAFpeL(s)
(H9) E(p Uq)<= L(s) ̂ qe L(s] or p, EXE(p Uq)e L(s)
(H10) -^E(pUq)eL(s)^^q, ^peL(s) or -n<?, -^EXE(p Uq)e L(s)
( H l l ) A(pUq)eL(s)=>qeL(s) or p, AXA(p Uq)e L(s)
(H12) ^A(pUq)eL(s)=>~iq, ^peL(s) or ~iq, ^AXA(p Uq)eL(s)
(H13) EXp€L(s)^lt((s, t)eR and peL(t))
(H14) -iEXpeL(s)^Vt((s, t)e R^ ^pe L(t))
(HIS)
(H16) -iAXpeL(s)^3t((s, t)eR and
(HI 7) EFp e L(s) => for some path x starting at j and some state t on x,

peL(t)
( H I S ) AFp € L(s) => for all paths x starting at s and some state t on x,

peL(t)
(H19) E(p t /^ )eL(^)=>for some path x starting at s, some state / on x, and

all states /' before / on x, qeL(t) and peL(t')
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(H20) A(p U q) e L(s) ^>for all paths x starting at s, for some / on x and all
states t' before t on x, qe L(t) and peL(t').

3.2. PROPOSITION, (cf. [4, Theorem 1]). A model for p is a Hintikka structure for
p. Conversely, a Hintikka structure (S, L, R) can be extended to a model (S, L', R),
where L(s) £ L'(s) for all s e S.

Proof. A model for p is clearly a Hintikka structure for p. Conversely, given a
Hintikka structure M=(S,L,R), define L'(s)—{p\Mts^p}, where \= is as
defined in Section 2.3. M' — (S, L', R) is clearly a model. We can now show by
induction on the structure of q that if qeL(s), then qeL'(s), and so L(s)^L'(s).
We leave details to the reader. |

3.3. DEFINITION. We define the Fischer-Ladner closure (cf. [9]) of a CTL for-
mula PQ, which for technical reasons we close under negation. Let H(p0) be the
least set of formulae containing p0 such that

(1)
(2) p A qeH(p0)^p, qeH(p0)
(3) EFpeH(p0)*>p,EXEFP€H(pQ)
(4) AFpeH(Po)^p,AXAFpeH(Po)
(5) E(pUq)eff(p0)=>q,p,EXE(pVq)eH(Po)
(6) A(pUq)eH(p0)^q,p,AXA(pUq)eH(Po)
(7) EXpeH(p0)=>PEH(Po)
(8) AXpeH(p0)=>peH(p0).

FL(p0) = H(p0)v-iH(Po) (where -iH(p0)= {-ip\peH(p0)}).

3.4. LEMMA (cf. [9, 4, 3]). \FL(p)\^2\p\.

Proof. An easy induction on \p\ shows that \H(p)\ ^\p\. The result follows
immediately. |

3.5. The Quotient Construction

One elegant way to establish that a propositional temporal logic has the small
model property is to use a quotient construction. Let M = (S, L, R) be a model of
p, let H be a set of formulae, and let =H be an equivalence relation on S defined via
5! =Hs2 iff for all qeH, M,s{\=q iff M, s2^=q. Use [5] to denote {teS t =Hs}.
Then the quotient structure of M by =H is defined to be the structure M/=H —
(S',L',R), where S' = {[5] \seS}, R' = {([5], [*])! (*, t)e R}, and L;([J]) =
L(s)nH. We remark that although |FL(/>)| ^2|p|, there are at most 2I/)| s^,,,,
equivalence classes.

Fischer and Ladner showed that for a PDL formula p, if M is a model for p, then
M/=FL(P) is a Hintikka structure for p with the property that satisfiability is preser-
ved for formulas in FL(p); i.e., for qeFL(p), M, s \= q iff M/=FL(p},\_s']\= q.
Unfortunately no such quotient construction will directly show that UB (or CTL)
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has the small model property. The following theorem is analogous to those in
[16, 18] showing that the property of looping is not expressible in PDL.

3.6. THEOREM. For a finite set H o/UB (or CTL) formulas, the operation of for-
ming the quotient structure by =H does not preserve satisfiability for the formula
AFP. In particular, there is a model M which satisfies AFP such that for every finite
set H, M/=H is not a Hintikka structure for AFP.

Proof. Note that in the structure depicted in Fig. 1, where M, s0 (= P and
M, s, f= ~iP for />0, we clearly have M, sf \= AFP for all />0. Yet, if H is any
finite set, we must have 5, =HSj for some i>j>Q. Thus M/=H looks like Fig. 2.
Now if AFP$H, then clearly M/=H cannot be a Hintikka structure for AFP. And
if AFPeH, then we must have AFPeL(\_si']\ which violates (HIS), so again
M!=H is not a Hintikka structure for AFP. |

Nonetheless, the quotient structure M/=FL(p) does provide useful information. It
is easy to check that M/=FL(p) satisfies all the constraints of Definition 3.1 except
possibly ( H I S ) and (H20) (which, as shown in the proof of Theorem 3.6, it does
not, in general, satisfy). Instead, M/=FL(P) satisfies another important property
which will allow us to view it as a "pseudo-model" that can be "unwound" into a
genuine model. To make these ideas precise, we need the following definitions.

3.7. DEFINITION. Given a directed acyclic graph (dag), an interior (resp. fron-
tier) node of the graph is one which has (resp. does not have) a successor. The root
of a dag is the unique node (if it exists) from which all other nodes are reachable. A
fragment M=(S,L,R) is a structure whose graph is a finite dag whose interior
nodes satisfy (H1)-(H16), and whose frontier nodes satisfy (H1)-(H12). Given
Mi - (S,, L I , RI) and M2 = (S2, L2, R2), we say A/, is contained in M2 and write
MI £ M2 iff 5, £ S2, L{ = L21 Si and R^R2. We say Af, is embedded in M2, and
write Af^A/2, iff Af, ^Af2 and (s,, s2)eR2r\(St x (S2 — S,)) implies s{ has no
7?,-successor (i.e., the only arcs from nodes of M{ to nodes of M2 begin at frontier
nodes of M,).

3.8. LEMMA. Let M=(S,L,R) be a model for p0, and let M'= M/=FL(po) =
(S',L',R'). Suppose AFq (resp. A(p Uq))eL'([s'~\). Then there is a fragment N

FIGURE 2
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rooted at [>'] contained in'M' such that for all the frontier nodes t of N, qeL'(t)
(resp. and for all interior nodes u of N, peL'(u)).

Proof. We give the proof for AFq. The proof for A(p U q) is similar. We first
assume that in the original structure M, each node has a finite number of suc-
cessors. (The case where some node has an infinite number of successors is con-
sidered at the end of the proof.)

Choose se (V]. Then it is easy to see that embedded in M there is a fragment
rooted at s of the form claimed by the lemma. Simply take all nodes on paths
starting at s up to (and including) the first node containing q in its label. This must
be a finite dag; otherwise, by Koenig's lemma, (HIS) would be violated.

If the labels on the nodes are all distinct, then this fragment is also contained in
M' and we are finished. If not, we will systematically eliminate "duplicate" nodes
from this fragment until we finally obtain a fragment which is contained in M'.

We proceed as follows (see Fig. 3). Define the depth of a node f, d(t), in a dag as
the length of the longest path from the root to /. Then suppose that we have two
distinct nodes / , and /2 with identical labels, !'(/,) = L'(tz), such that d ( t i ) ^ d ( t 2 ) .
We let the deeper node t l replace the shallower node ?2 to get a new fragment; i.e.,
we replace each arc (u, t2) by the arc (u, / , ) and eliminate all nodes no longer
reachable from the root, as shown in the diagram below. Note that /2 itself is no
longer reachable from the root, so it is eliminated.

The resulting graph is easily seen to still be a fragment rooted at s such that for
all frontier nodes t,qeL'(t}. We continue this process until the labels on all the
nodes are distinct. This process must terminate after a finite number of steps since
the original fragment was finite. The resulting fragment is contained in M' and
meets the conditions of the lemma.

If the original structure M had one or more nodes with an infinite number of suc-
cessors, we construct a structure M' with no such nodes as follows: For each node t
and each formula of the form EXq' or -\AXq" in L ( t ) r \ F L ( p Q ) , choose an arc
( t , u ) e R such that q'eL(u) or -\q"eL(u), respectively. Eliminate the edges not
chosen. Let the resulting relation be R" and let M" = (5, L, R"). Each node of M"
has only a finite number of successors « \ p 0 \ ) , and it is easy to check that we can
carry out the above construction using M" instead of M since (HIS) still holds

FIGURE 3
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(although, in general, M" is not a model for p0 since the eliminated arcs may have
been necessary for fulfillment of formulae such as EFp). |

3.9. DEFINITION. A pseudo-Hintikka structure (for p0) is a structure
M=(S,L,R) with R total (such that p0eL(s) for some seS) which satisfies
(H1HH17), (H19), and for all 565,

(HIS') AFpeL(s) implies there is a fragment N rooted at s contained in M
such that for all frontier nodes t of N, pe L(t).

(H20') A(p U q)eL(s) implies there is a fragment TV rooted at s contained in
M such that for all frontier nodes t of N, qeL(t), and for all interior nodes u of
N,peL(u).

4. A SMALL MODEL THEOREM FOR CTL

4.1. THEOREM. Let p0 be a CTL formula with \ p0\ = n. Then the following are
equivalent:

(a) PO is satisftable.

(b) There is a pseudo-Hintikka structure for p0 of size <2".

(c) There is a Hintikka structure for p0 of size ^«8".

(d) p0 is satisfiable in a model of size ^«8".

Proof. (a )=>(b) follows from Lemma 3.8; (c)=>(d) follows from the proof of
Proposition 3.2; and (d) => (a) is immediate. It remains to prove (b) => (c). We need
the following definition:

4.2. DEFINITION. Let M be a structure, s a state in M, and p e L(s), where p is
an eventuality formula, i.e., p is of the form EFq, AFq, E(q' U q), or A(q' U q). We
say p is fulfilled in M for s if (HI 7), (HI 8), (HI 9), or (H20), respectively, holds for
p and s.

We will construct a finite Hintikka structure for p0 by "unravelling" the pseudo-
Hintikka structure M for pQ. For each node 5 of M and for each eventuality for-
mula pe L(s), there is a fragment DAG\_s, p~] which certifies that p is fulfilled for s.
We show how to use these DAGs to construct for each node s of M, a fragment
FRAG[s~\ such that every eventuality formula in L(s) is fulfilled within FRAG[s~\.
We then splice together these FRAGs to obtain the desired finite Hintikka structure.
This is described in detail below.

The following lemma says that if an eventuality formula is not fulfilled in a
fragment then the conditions required to fulfill it are propagated down to
appropriate frontier nodes of the fragment. The proof is straightforward, and is
omitted here. (Note, however, that substantial use is made of the fact that a
fragment is acyclic.)
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4.3. LEMMA. Let M be a fragment, s a state in M, and p an eventuality formula in
L(s). Either p is fulfilled in M for s or

(a) If p is of the form EFq (resp., E(q' U q)), then there is a path in M from s
to a frontier node t such that EFqeL(t) (resp., E(q' Uq)eL(t) and q' e L(t') for
every state t' on the path). Moreover, if M is embedded in M' and EFq (resp.
E(q' Uq)) is fulfilled in M' for t, then EFq (resp. E(q' U q)) is fulfilled in M' for s.

(b) If p is of the form AFq (resp., A(q' U q)), then for every path in M from s
to a frontier node t, either q e L(t')for some t' on the path, or AFq e L(t')for all t' on
the path (resp., either q e L(t') for some t' on the path and q' 6 L(t") for all t" on the
path from s before t', or q', A(q' U q)e L(t")for every t" on the path). Moreover, if
M is embedded in M' and AFq (resp., A(q' U q)) is fulfilled in M' for all frontier
nodes t of M, then AFq (resp. A(q' U q)) is fulfilled in M' for s.

4.4. LEMMA. Let M be a pseudo-Hintikka structure of size N0, s a state of M,
and p an eventuality formula in L(s). Then we can find a fragment, DAG[s, p], with
^N0 interior nodes and root s (i.e., labelled L(s)) in which p is fulfilled for s.

Proof. That we can find DAG\_s, AFq] (resp. DAG[s, A(q' U q)]) follows
directly from (HIS') (resp. (H20')).

For DAG[s, EFq], note that if EFqeL(s) then by (H17) we can find a path in M
starting at s to some state / with qeL(t). Choose a shortest such path. Its length
must be ^NQ (otherwise, some state must be repeated and there would be a shorter
path). Take the path from s to /, and for every state other than /, add enough suc-
cessors to ensure that (H13) and (H16) are satisfied. (Recall that interior nodes of a
fragment must satisfy (H1)-(H16). The interior nodes on the path clearly satisfy all
the properties besides (H13) and (H16). By adding on these successors, we ensure
that they satisfy these properties too.) The resulting graph defines DAG[s, EFq]
and it is easy to check that all other conditions are satisfied. The construction for
DAG[s, E(q' U q)] is similar. |

In the proof of Lemma 4.5 we explain how to construct FRAGs from DAGs. The
observations of Lemma 4.3 will allow us to "glue" together the fragments
DAG\_s, p] constructed in Lemma 4.4 in such a way as to get a fragment where all
the eventuality formulas of L(s) are satisfied.

4.5. LEMMA. Suppose s is a state in a pseudo-Hintikka structure M of size N0.
Then we can find a fragment, FRAG[s], with ^ \L(s)\ N% interior nodes and root s
(i.e., labelled L(s)) such that all eventuality formulae in L(s) are fulfilled for s in
FRAG\_s].

Proof. We construct FRAG[s] in stages. Let q\,..., qk be a list of all eventuality
formulae in L(s). We will build a sequence of fragments M 0 ^M,^ • • • ^Mk =
FRAG[s] all with root s such that, for eachy, M} has at most jN% interior nodes, at
most Wo frontier nodes, and <?lv.., q} are all fulfilled for s in My.

We define the sequence inductively. Let M0 consist of s with just enough sue-
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cessors to ensure (H13) and (HI6) are satisfied. Mj+, is obtained by extending the
frontier of Af,- as follows: If qj+l is fulfilled for $ in Af,-, let MJ+, = Mj. Otherwise,
suppose qj+, is of the form EFq. Then, by Lemma 4.3, there is a frontier node t of
Mj, with EFqeL(t). Let M)+1 be the result of replacing t by (a copy of)
DAG[t, EFq}. Since EFq is fulfilled for t in M'J+l, by Lemma 4.3, EFq is fulfilled
for s in M'J+l. To ensure that MJ+l has at most N0 frontier nodes, let Mj+l be
obtained from Mj by identifying any two frontier nodes with the same labels. A
similar construction works if qj+l is E(q' U q).

If qj+i is AFq, then let t{,...,tm be all the frontier nodes of Mj such that
AFqeL(ti). By induction, m^N0. Let Mj+1 be the result of replacing each /,- by
DAG[tj, AFq~\ and again identifying any frontier nodes with the same labels. MJ+l

satisfies the required properties: clearly, Mj+l has ^N0 frontier nodes. By
Lemma 4.3, qj+l is fulfilled for s in Mj+l. Finally, MJ+l has ^(j+l) NQ nodes
since Mj has ^jN^ nodes (by induction) and each of the at most N0 DAGs attached
to Mj to form Mj+, has at most 7V0 nodes. A similar construction works if qj +, is
A(q'Uq). |

The proof of Lemma 4.6 shows how to construct a finite pseudo-Hintikka struc-
ture for p0 from FRAG?,.

4.6. LEMMA. Let M be a pseudo-Hintikka structure for p0 of size N0. Then there
is a Hintikka structure M" for p0 of size < \pQ\ N%.

Proof. We first replace L(s) by L(s)nFL(p0) for each state s in M. The
resulting structure M' is still a pseudo-Hintikka structure for/J0 of size NQ. We con-
struct M" by splicing together FRAGs from M'. For each node s of M', FRAG[s]
will have at most one occurrence in M". The construction is performed inductively,
in stages. Let Af, be FRAG\_s~\ for some state s of M' with p0eL(s). In general, to
obtain Mi+ , from Af,, do the following: For each frontier node s of Af,-, if there is
an interior node s' of A/, such that L(s) = L(s') and FRAG[s'~\ is embedded in Af,
then identify s and 5'; otherwise, replace s by (a copy of) FRAG[s] (as constructed
in Lemma 4.5). The construction halts at m = the least / such that the frontier of Af,
is empty. Take M" = Mm.

It is straightforward to check that Af" satisfies all the requrements for a Hintikka
structure for p0 with the possible exception of having unfulfilled eventualities (i.e.,
violations of (H17)-(H20). To see that this cannot happen, observe that, by the
construction of Af",

(i) every node of Af" is contained in some fragment embedded in Af" which
is of the form FRAG[s] (seM'),

(ii) each frontier node of some fragment FRAG[s~\ embedded in Af" is the
root of still another fragment FRAG[s'~\ embedded in Af".

(To see this, recall that in the construction ol Af", a frontier node is identified with
another node only if the other node is itself the root of some fragment FRAG[5'].



12 EMERSON AND HALPERN

And if a frontier node is not" identified with another node, it becomes the root of a
fragment FRAG[s'] at the next stage of the construction.)

So suppose AFqes for some node s of M". By (i), s is contained in some
fragment FRAG\_s'~\. If AFq is fulfilled for s in FRAG[s'~\ we are done. Otherwise,
by Lemma 4.3, AFqet for every frontier node / of FRAG[s'] such that q does not
occur somewhere on each path from s to /. By (ii), each such t is the root of
FRAG\_t~] embedded in M" and AFq is thus fulfilled for t in M". Using Lemma 4.3
we can easily show that AFq is also fulfilled for s in M". The argument that even-
tualities of the form A(p U q), E(p U q), or EFq are fulfilled is similar and left to the
reader.

To see that M" is of the required size note that it consists of at most N0 FRAGs,
each containing at most \p0\ N% nodes. |

Returning to the proof of Theorem 4.1, we note that we can take 7V0 = 2" to
obtain the result. |

5. A DECISION PROCEDURE FOR SATISFIABILITY IN CTL

5.1. THEOREM. There is an algorithm for deciding whether a CTL formula is
satisfiable which runs in deterministic time 2cn for some constant c>0.

Proof. Given a formula p0, we try to construct a pseudo-Hintikka structure for
Po of size <2lpo1. The algorithm is similar to Pratt's algorithm for deciding
satisfiability of PDL formulae (cf. [17]). We proceed as follows:

(1) Define s^FL(p0) to be maximal if for every formula of the form
-\qeFL(p0), either -11765 or qes. Let S0 = (s\s^FL(p0), s maximal}. For each
s e S0, define LQ(s) = s. Define a relation R0 on S0 x S0 such that for every s,teS0,
(s,t)eR0\tt

(a) AXpes =>pet, and

(b) — \ E X p e s = > —\pet.

(2) Let S, = {seS0|s satisfies (H1}-(H12)}. Take I, and /?, to be the
restrictions of L0 and RQ to 5, and 5, x 5,, respectively.

(3) Repeat for i = 2,...,N, where N is the least number such that
|S/vl = |S,v+i | : compute M,= (Sit Lt, R,) by taking Sf = {seSi_, |s has an /?,._,
successor, and \iEXp (resp. ~\AXp, EFp, AFp, E(p U q), A(p Uq))€s, then (H13)
(resp. (HI) , (H17), (HIS'), (H19), (H201) holds for s in M,_,}, and L, and R, to be
the restrictions of L0 and R0 to 5, and 5,-x 5,, respectively.

(4) Return "/?0 is satisfiable" iff for some s e SN, pQ e s.

Claim. The algorithm above is correct and can be implemented to run in time
T" for some constant c>0, where n=\p0 .
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Proof. First note that Si+ , ^-S,. Thus we must have A^^ |S0|, and the algorithm
terminates. Moreover, since SN = SN + l, no seSN can violate any of the conditions
(H1HH17), (H18'), (H19), (H207), and RN must be a total relation on SN. Thus, if
p0es for some seSN, then MN must be a pseudo-Hintikka structure for p0, and
hence pQ is satisfiable by Theorem 4.1.

Conversely, if p0 is satisfiable, say by M, let M' = M/=FL(po) = (5", L', /?'). M' is a
pseudo-Hintikka structure for p0, and for all s' e S', L'(-O is maximal. Let/: 5" -» S0

via /(a') = L'(O- Then it is easily checked that (s, t)eR'=> (f(s), /(*)) e R0. We can
then show by induction on / that for all /^ N, we have/(5") £ S,-, and (s, t)e R' =>
( f ( s ) , f ( t ) ) e R i . (This can be argued by a case-by-case analysis on how nodes of 5,
are eliminated. For instance, if AFpes, where se 5, and for some s'e 5', s = f(s'\
then 5 cannot be eliminated due to a violation of (HIS') because the image under/
of the appropriate fragment contained in M' is a fragment contained in M,. The
details are straightforward and left to the reader.) It follows that for some seSN,
we will have p0es.

Now we consider implementation details. Since \FL(pQ)\^2\p0\ (=2n), S0 has
^22" members. Step (1) can clearly be done in time quadratic in the size of S0,
while step (2) can be done in linear time. Step (3) will be repeated at most |S0|
times. Thus, it suffices to establish that each check in step (3) can be done in time
polynomial in the number of nodes remaining in the graph. The case of EXp or
—\AXp is straightforward. We sketch the algorithm for A(p U q)

(1) Mark all nodes s for which q, A(p U q)es.

(2) Mark all unmarked nodes s with p, A(p U q)es such that for each p' es
of the form EXq' or —\AXq' there is a marked .^-successor s' of s with q' es' or
~~\q'es', respectively. Repeat this step until no more nodes can be marked.

(3) Eliminate all unmarked nodes / such that A(p Uq)et.

We leave it to the reader to check that this algorithm is correct and has the
desired complexity. Similar algorithms work for AFq, EFq, and E(p U q). |

5.2. Remark. The proof that deterministic exponential time is a lower bound for
PDL ([9]) carries over directly to UB~ (and hence both UB and CTL). Thus the
decision procedure given above is essentially the best we can get.

6. A COMPLETE AXIOMATIZATION FOR CTL

6.1. Consider the following axioms and rules of inference:

AXIOMS

( A x l ) All (substitution instances of) tautologies of prepositional logic
(Ax2) EFp = E(true U p)
(Ax3) AFp = A(true Up)
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(Ax4) EX(p v q)-= EXp v EXq
(Ax5) AXp= -\EX~\p
(Ax6) E(pVq} = q v (p * EXE(p U q))
(Ax7) A(pUq) = qy (p A AXA(pUq))

A

of Inference.

( R l ) p=>q
(R2) r ^ (^9 A
(R3) r^ [^<? A ̂ (r v
(R4) p , ( p = > q } \ — <? (modus ponens).

These axioms and rules of inference are clearly sound and are also complete as
shown below. If we replace/? by true in (Ax6), (Ax7), (R2), and (R3) above and use
the equivalences in (Ax2) and (Ax3) we get a complete axiomatization of UB
equivalent to the one given in [4]. (For example, (Ax7) becomes AFq^
q v AXAFq.)

6.2. THEOREM. The above set of axioms and rules of inference is complete for
CTL.

Proof. We say that a formula p is provable, and write H/?, if there exists a finite
sequence of formulae, ending with p, such that each formula is an instance of an
axiom scheme or follows from previous formulas by one of the inference rules. A
formula p is consistent if not \-~\p, i.e., if —\p is not provable. We want to show that
any valid CTL formula is provable. It suffices to show that any consistent formula
is satisfiable.

So suppose PQ is a consistent CTL formula. We try to construct a model for p0

just as in the proof of Theorem 5.1. For each seS0, define the formula ps as the
conjunction of the formulae in s; i.e., ps- /\,,esq. Note that since s is maximal, if
qe FL(p0) then qes iff \-ps =><?.

We will show that if a state seS0 '
s eliminated in the algorithm in the proof of

Theorem 5.1, then ps is inconsistent. Once we have shown this, we can argue as
follows: It is easy to check by propositional reasoning that for any qeFL(p0) we
have

t-1 = V{sl<,es,p,co™*lcni}Ps
 and •" true = V{s\se So.p, consistent } Ps- (*)

In particular. H/?0sy{,(wsi/,iCongiMen,j/>,, so if p0 is consistent, some ps is con-
sistent. This particular s will not be eliminated in the course of our construction.
Thus, at the end we will be left with a pseudo-Hintikka structure for p0, so by
Theorem 4.1, p0 is satisfiable.

We now show, by induction on when a state is eliminated, that if state s is
eliminated then H~ \ps:

( 1 ) It is easy to check that if s is eliminated in step 2, then ps must be incon-
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sistent due to (Axl)-(Ax7) and the fact that for each qeFL(p0), either *-ps=>q or

(2) Claim. If (s, t)$R0 as constructed in step 1, ps A EXp, is inconsistent.
Proof. If AXpes and p$t, then i-p^/lA/? and \-p,=>—\p. By (Rl) ,

\-EXp,=>EX-(p. Thus \-(ps A EXp,)=>AXp A fA'-i/?. But by (Ax5) it follows that
AXp A EX~\p, and hence />,. A £Ap,, is inconsistent. The proof in the other case is
similar.

(3) Claim. If ps is consistent, then 5 is not eliminated at step 3.

Proof. *-ps = ps A EX true by (Ax 8)

= P, A EX(\/pl consistent/',) by (*), ( R l )

= />, A (V,, consistent £A>,) by (Ax4)

= Vp, consilient (/>, A &*>/) by (Axl ) .

Thus, if /^ is consistent, /?,. A EXp, must be consistent for some / with p, consistent.
By (2) above, (s, t)eR0. By the induction hypothesis, / is not eliminated and s will
have an /?0-successor. Thus ps will not be eliminated by step 3.

(4) Claim. If ps is consistent, then s is not eliminated at step 4.

Proof, (a) If EXpes, then by the same reasoning used above t-ps =
V {, ip, consistent,^ ((P* A EXp,). Thus, for some / with p, consistent andpe/ , we have
(s, t)eR0, so s satisfies (H13).

(b) A similar proof shows that if ~\ AXpes, s satisfies (H16).
(c) Suppose s is eliminated at step (4) on account of (H19) failing at s with

respect to E(p U q). We will show that ps is inconsistent. Let V= {t\E(p Uq)et
and / is eliminated at step (4) because (H19) fails for E(p U q}}. By assumption,
seV.

Since (H19) fails, t-p,=>—\q for each te V. Let r = \fleyp,. Note we also have
\-r=>~\q.

Suppose we can show t - r = > A X ( r v — i E ( p U q ) ) . Then \-r => ~\q A AX(r v
-\E(p Uq)). By (R3), i-r=> ~\E(p U q). Since se V, H/v=>r, so by (R4), t-ps=>
-iE(pUq). By assumption we have E(pUq)es, so ps must be inconsistent, as
desired.

In order to show t-r => AX(r v ~\E(pUq)), it suffices to show that for each
te V, \-p,=> AX(r v ~\E(p U q)). Suppose not. Then for some te V, p, A EX(—\r A
E(p U q)) is consistent. But -ir = V / - # vPf> so by (Ax4), p, A EX(p,, A E(p U q))
is consistent for some / '£ K It follows that both p, A £A/7,. and /v A £(p t/^)
are consistent. The former implies (t,t')eR0 by (2) above, while the latter
implies E(pUq)et' since one of E(p U q), ~\E(pUq)et by maximality. But if
E(p Uq)et' and t' $ V, then (H19) must hold for /'. Since (t, t')eR0, (H19) must
also hold for t, contradicting the fact that / e V.

A similar argument shows that if EFpes and ^ is eliminated at step (4) because
(H17) is not satisfied, ps is inconsistent.
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(d) Suppose s is etiminated at step (4) on account of (H20') failing at s
with respect to A(p U q). Again we show that ps is inconsistent.

Let W={t\t is eliminated at step (4) because (H20') fails for A ( p U q ) } . By
assumption, se W. Note that by (Ax7), t-p,=>AXA(p U q) A ~iq for each te W.
Let r = \J ,eWp,. Clearly nr=> —\q.

Suppose we can show \-r=>EXr. Then, \-r=> ~\q A EXr. By (R2), i-r=>
~\A(p U q). Since 56 W, \-ps=>r and thus t-ps=> ~\A(p U q). It follows that ps is
inconsistent.

In order to show \-r=>EXr, it suffices to show that for each te W, \-p,=>EXr.
Given teW, let Et**{q\EXqet}u{-\q\-(AXq€t}v{true}, and let A,=
{q \AXq 6 t } u { ~\q \ ~\EXq e (}.

For each q'eE,, define fq. = q' A (hq.eAlq") and let X9-= { t ' \ ( t , t')e R0,
\-p,.=>q'}. It is easy to check that

(i) \~pl^EXfc/. and

(») •-/,• = We *,•/>«••

Note also that for each t'eX^., A(p Uq)et' (since AXA(p Uq)et). Now, if for
each q'eE, there is a t'eXv- such that A(p U q) satisfies (H20') at t', then we see
that A(p U q) satisfies (H20') at t as well, which contradicts the assumption that
teW. So it must be that for some q'eE, and for all t'eXq-, we have t' e W. For
this q', Xq' £ W. By ( i i ) above, it follows that i-/9-=>r. Using (i), we obtain
(-/?,=> EXr.

A similar argument applies if AFq e s. We have now shown that only states s with
ps inconsistent are eliminated, thus completing our proof. |

6.3. Remark. As we mentioned in 2.4, the condition that R be total can be
removed from our definitions of model, Hintikka structure, and pseudo-Hintikka
structure. But in this case, Lemma 2.6.(3) must be modified to read \=AFp =
p v (AXAFp A EX true}. The clause EXtrue must also be added in 2.6.(5), (H7),
(H l l ) , and (Ax7) and removed from (Ax8). We can then eliminate step (3) in both
Theorems 5.1 and 6.2. All other results go through unchanged.

7. TABLEAU TECHNIQUES

7.1. Constructing the Tableau

The algorithm for deciding satisfiability presented in Theorem 5.1 has a worst-
case running time of 2C". This is the best we can do in light of the remarks in 5.2.
However, its average-case performance is also 2C" since the first step involves
creating all the subsets of FL(p0). Just as for DPDL (cf. [3]) there is a "bottom-
up" procedure for constructing a pseudo-Hintikka structure which is likely to per-
form better in practice.

We say that an elementary formula is one of the form P, ~iP, EXp, AXp, —\EXp,
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or —\AXp. We classify each nonelementary formula as either a conjunctive formula
a = a, A a2 or a disjunctive formulae /? = /?, v /?2. Clearly, p A ^ is an a-formula and
-|(/> A q) (which is equivalent to -\p v ~i<7) is a /7-formula. A temporal operator is
classified as either a or ft based on its fixpoint characterization (cf. [6]) as in
Lemma 2.6. Thus, AFp = p v AXAFp is a ^-formula and ~\AFp = —\p A — \AXAFp
is an a-formula. The table below summarizes the classification of nonelementary
formulae as either a or /?:

a - p A q a, - p a2 - q
a - ~~i ~i/> a, - /? &2- P
a - ~\EFp < X [ - ~i/> «2 - —\EXEFp

a2 -
02 -
p2-

p - A F p p t - p /J2- AXAFp
p - E ( p U q ) f i t - p p 2 - p , E X E ( p U q )
p-A(pUq) ^-q p2-p,AXA(pUq)

Given a formula />0. we proceed to build a structure in stages:

(1 ) Label the "root" node by { p 0 } .

(2) Inductively assume we have constructed a graph with nodes labelled by
subsets of FL(po). At each node certain formulae in the label are marked "expan-
ded." For every frontier node labelled by F^FL(p0), choose some nonelementary
formula q which is not marked, and expand it according to the table above: if q is
an a-formula, create one son of this node labelled by F\j (a , , a2} and mark q. If q
is a /J-formula, create two sons of this node, one labelled Tu {/?,} and the other
Tu {/?2}- In the label of each son, mark q. As usual, any two nodes with the same
label and the same formulae marked expanded are identified. Thus, there are at
most 24" nodes, where n — \p0.

(3) If all the nonelementary formulae at a node are marked, this node is
called a state. Let EXq{,..., EXqk, —iAXqk + ],..., —\AXqm, ,4 A> ,,..., AXr,-,...,
—\EXri+ | ,..., —\EXrn be the nonatomic elementary formulae in the label of a state s.
Create m + 1 sons of s, labelled by

?,.}, j= 1,..., k,

{r,,..., r,, ~\ri+ ,,..., ~irn, "n?,}, j = k+ I,..., m,

{r,,..., /-,-, -ir,+ ,,..., -irn}, respectively.

(4) Repeat steps (2) and (3) until no more nodes can be added.

From this structure we create a tableau, M' = (S0, L0, R0). S0 consists of exactly
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those nodes which were stales in the construction above. For seS0, LQ(s) is the
label on s. For s, teS0, (s, t)€R0 iff there is a path from s to t in the above graph
which does not go through any other states. For a node labelled by F, define
Ps = /\rerr.

Once we have constructed the tableau, we just repeat steps (1), (4), and (5) of the
algorithm in the proof of Theorem 5.1; if there is a state containing pQ which is not
eliminated, we have constructed a pseudo-Hintikka structure for p0, so p0 is
satisfiable.

For the converse, we can show as in Theorem 6.2 that if a state is eliminated then
\=~\ps. (Note that this will also give us another proof of the completeness of the
axiomatization presented in 6.1.) Not surprisingly, the details of this proof are
similar to those in 6.2; we omit them here. |

8. EXPRESSIVENESS

8.1. THEOREM. AFp is not expressible in UB~.

Proof. An argument completely analogous to that given in [9] for PDL shows
that the quotient construction preserves satisfiability for UB~ formulae. In the
notation of Section 3.5, if/7 is a UB~ formula and H^FL(p), then for all qeFL(p)
and all models M, we have M, s\=q iff M/=H, [s]|=<?. (That the proof should be
analogous to PDL should not be too surprising. We can view CTL models as
models of PDL with one primitive program r, whose semantics are given by the
relation R. If we now translate CTL formulas into PDL formulas via the translation
EXp->(ryp and EFp^>(r**)p, then a UB~ formula q is satisfiable in a CTL
model M iff the translated formula is satisfiable at the same state of M when M is
viewed as a PDL model.) Now suppose AFP is equivalent to the UB~ formula p.
Let M be the model from the proof of Theorem 3.6, and let H = FL(p)(j {P}. Since
M, s\=AFP for all states s in M, and p is equivalent to AFP by hypothesis, we must
have M, s\=p for all states s in M. Since the quotient construction preserves
satisfiability for UB~ formulae, we must also have M/=H, [s~]\=p for all s. But the
proof of Theorem 3.6 shows that M/=H) {_Sj~\\=~\AFP, contradicting the
equivalence of p and AFP. |

8.2. THEOREM. E(FP A (7(2) is not expressible in UB.

Proof. We will define inductively two sequences of models A/,, M2, M3,..., and
TV,, N2, N3,..., such that for all i, we have A/,, s,• \= E(FP A GQ) and
Ni, sf \= -\E(FP A GQ). We will show that UB is unable to distinguish between the
two sequences of models, i.e., for all UB formulae p with |p| O', M,-,s(-1= p iff
Nt, 5, \= p. To see that the result follows suppose that E(FP A GQ) is equivalent to
some UB formula p. Then M\p\,s\p\ \= p iff N\p\, slp\ [= p contradicting the fact that
A/,,,, 5H \= E(FP A GQ) and N^,s^ \= ^E(FP A GQ). The details of the proof
are given below.
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M, N,

FIGURE 4

Define Ml,Nl to have the graphs shown below in Fig. 4. where
5) f= -tp A g, «, (= P A 2, / , (= ~\P A Q, and w, \= P A -ig.

Suppose we have defined Mt and Nj. Then M/+ , has the graph shown in Fig. 5,
where si+l \= ~\P A Q, ti+1 \= ~iP A g, ",+ 1 (= P A "'Q* ^i'» ^<" are copies of
A/,, and N" is a copy of Nt. Ni+ , is defined similarly, except that M\ is replaced by
N'j, a copy of N,. It is straightforward to show by induction on / that

(1) Mt, sf |= E(FP A GQ) (since the path through M'i_l satisfies FP A GQ)
and TV,, 5, f= -i£[F/) A Gg] (since the state w, prevents the possibility of a path
satisfying FP A G£> going through M" or A^-).

(2) Each path in Af, and in TV, ends in a self-loop through some state ?7.

We now show by induction on \p\, that for all LIB formulae p, if \p\ ̂ i then

Mh Si iff #,-, -s1, N (**)

Since ^AXq= -\EX~\q and t=AFq= -\EG~iq, we can take EX, EG, and £F as
the primitive temporal operators in our induction. The cases where p is an atomic
formula, a conjunction p{ A p2, or a negation —1/7[ are easy and left to the reader. If
p is of the form EXq,

Mi+l,si+i H EXq

iff Mi+i,s\=q, where j i s / / + , , « , - + , , or 5,',

iff N,+ ,, ^ (= q, where ^ is r,+ , ,« ,+ ,, or 5- , (see below for details)

iff A^, , ,^ 1

FIGURE 5
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The first two cases of the third equivalence are obvious from the definitions of
Mi+ 1, Ni+i~, when s — s'j, we have

Mi + } , s'i (= q

iff A/,, st (= q

iff Nj, 5, (= q (by the induction assumption)

iff A r / + l , j ; h = t f .
If p is of the form

A/, + 1 , 5 , + 1 h EGq

iff there is a path in Mi+ 1 starting at si+l all of whose nodes satisfy q
iff Mi+i,si+i\=q and Mi+ ,, r/ + , |= 4 (by (2) above)
iff Ni+ i , si+ ! \= q and N,- + ,, ti + , (= 17 (by the induction hypothesis)
iff there is a path in Ni+ l starting at si+ , all of whose nodes satisfy q
iff Ni+l,s,+ ]\= EGq.

Finally, suppose p is of the form EFq and Mi+l,si+l \= EFq. Then Mi+t,s \= q
for some state s in Mi+ , . There are several cases to consider:

(a) If s = si+l, then Ni+l,si+l (= q by the induction assumption.

(b) Of s = tl+i or ui+i, then Ni+l,s (= ^ since the world "below" f , + , or
M,- + I looks the same in Mi+l and ^V, - + i .

(c) If s is in M" or vV,", then 5 is also a state in Ni+1, so Ni+l,s (= ^.

(d ) If 5 is some 5' in M,' then there is a corresponding s" in M,", and thus in
yV,+ l , with Ni+i,s" h q-

In each case we conclude that Af,+ 1 , 5 , + 1 (= EFq. The converse is identical (upon
interchanging the roles of M and N).

This comples the proof of (**) and the theorem follows. |

The following result for branching time is analogous to the corresponding result
for linear time due to Kamp (cf. [11]).

8.3. THEOREM. E(p U q) is not expressible in UB + .

Proof. We define two (doubly-indexed) sequences of models Mki and Nki. The
graph of each model is just a straight line:
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For Mki we have

Sj\= P A —\'Q if j^i+ tk for some /,
sj -\= P A Q if j=i+ tk for some even /,

Sj • f= ~~ i P A — i Q if j=i+ tk for some odd t.

For Nki,

Sj -\= P A — i Q if j^i+tk for some /,

Sj\= —\P A ~]Q if j=i+ tk for some even /,

Sj\= P A Q if j = i + tk for some odd /.

Thus, for both Mki and Nki, P A ~i Q is true at all states not congruent to
/mod k. P A Q and ~\P A ~i£) alternate being true at states congruent to /mod &.
Since P A Q is true first in Mki, while ~\P A ~iQ is true first in TV*,, we have
Mki, s0 (= £(P t/Q). However, by a straightforward induction, we can show for all
UB formulae p that if \p\ ^ /, Mki, SQ \= p iff Nki, s0 (= p. The proof uses the obser-
vation that Mkl, s0 \= p iff Nki, sk ^ p. We omit the details here. Now we can argue
just as in the previous theorem that E(P U Q) is not equivalent to any UB formula.
Moreover, since UB+ reduces to UB in Mki and Nki (since there is only one path,
we have E(p A q) = Ep A Eq, etc.) E(P U Q) is not equivalent to any UB+ for-
mula. |

Although Theorem 8.2 shows that UB is less expressive than UB"1", this result
does not extend to CTL as the following theorem shows (cf. [6, Theorem 5.1]).

8.4. THEOREM. For all CTL+ formulae p, there is a CTL formula p' such that
\=p = p'. Moreover, \p'\ ̂  21""081"1.

Proof. We describe an algorithm for translating a CTL"1" formula p0 into a
equivalent CTL formula p'0. We can assume without loss of generality that A and F
do not occur in p0 since Aq= — \£—\q and Fq = true U q. We can then reduce the
problem to one of translating a CTL+ formula with at most one E by recursively
applying the algorithm to nested subformulae containing an E. So we can assume
Po is of the form Eq0, where <?0, a path formula, is a Boolean combination of sub-
formulae of the form p U q, ~] (p U q), Xr, and —\Xr, where /?, q, and r are CTL for-
mulae (found by recursive applications of the algorithm).

Observe that the following equivalences hold:

(1)

(2) |=-i(/>£7 ?)=[( /> A -i?) C/(-i/> A

(3) \=E(pyq) = Epv Eq

(4)
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(5)

(6) f=£( A; = , ..... n(pj Uqj) A AY, A Gr2)
= V/={ i ..... n j L A y e / t f y A r2 A EAVi A E(f\JiJpJ -U qt A Gr2)]

(7) M(A,.= 1 ..... H(pjUqj)*Gr)
= \/{E((/\jPj A r) £/(<?„„> A E((/\j + x(l}Pj A r)

A £((/>*<") A r) U(q,(n) A £Gr)))))))): ?r is a permutation of
{!,-,«}}.

Intuitively, the right side of the last equivalence is a disjunction over all the
possible orders in which the q - s can be satisfied along the path.

We proceed as follows: Using DeMorgan's laws, drive negations inward until q0

is composed of conjunctions and disjunctions of formulae of the form p U q,
—\(pUq),Xr, and —\Xr. After applying equivalences (1) and (2), we assume q0 is
made up of disjunctions and conjunctions of formulae of the form p U q, X r { , and
Gr2. We put this into disjunctive normal form and apply equivalences (3), (4), and
(5). We have now reduced the problem to one of translating a formula Eq', where
q' is of the form

A (PjUQj) A A'r, A Gr2.
y=i,...,«

Using equivalence (6), we can eliminate the Xr term from consideration. Finally,
using equivalence (7) gives us a formula in CTL.

Note that using equivalence (7) introduces a factorial blowup in the sign of the
formula. We can show that this is the worst blowup that happens in the translation
process. Since n\ = O(2nlogn), we can show that \p'\ <c2wl°8H. We omit details
here. |

Thus we get the following hierarchy of branching time logics (where < indicates
"strictly less expressive than" and = indicates "exactly as expressive as"):

< U B < U B + <CTL = CTL + .

Finally, putting together Theorems 8.4 and 5.1 we get

8.5. THEOREM. There is a decision procedure for satisfiability of CTL+ formulas
which runs in time 22™ "for some c>0.

9. CONCLUSION

We have shown that, while the Fischer-Ladner quotient construction fails to
preserve satisfiability of CTL (and UB) formulae, it still provides enough useful
information to give a decision procedure for satisfiability of CTL formulae that runs



TEMPORAL LOGIC OF BRANCHING TIME 23

in single exponential time. CTL is sufficiently expressive to allow the specification of
many interesting synchronization problems. A method of automatically synthesizing
solutions to these problems based on a variant of the tableau-based decision
procedure of Section 7 is described in [5]. We also classify the relative expressive
power of a number of languages obtained by extending or restricting the CTL syn-
tax.

These issues are further studied in [7]. There we define a language CTL* which
contains CTL + as a proper sublanguage, and obtain a number of results similar in
spirit to those of Section 8. We also show that CTL* is closely related to the logic.
MPL of Abrahamson [1]. MPL is shown in [1] to have a double exponential time
decision procedure, and it would be nice if we could apply these techniques to
CTL+ and CTL* as well. However, the semantics of MPL differs in one crucial
way from those of the languages we have been studying: the computation paths are
not necessarily generated by a binary relation. Thus they do not necessarily have
the "limit closure" property; i.e., if all the prefixes of a path are in the structure, the
path itself is present in the structure (cf. [8]). Thus there seems no obvious way of
transferring results on MPL to CTL+ or CTL*. We refer the reader to [7] for a
more detailed discussion of these points.
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