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ABSTRACT: 
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infinite ,article system with positive transition probabilities is ergodic. To compute reliably 
with unreliable components, von Neumann proposed Boolean circuits whose intricate inter
connection pattern (arising from the error-correcting organization) he had to assume to be 
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in ·software-, therefore errors threaten to disable it. The real technical novelty of the paper 
is thlarefore the construction of a self-repairing organization. 
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1. Introduction 

Gan we avoid the accumulation of errors in arbitrarily large computations 
using unreliable components? A partial positive answer was given in [vN 52]. 
(It was subsequently sharpened in [Ta 68]. See also [Kz73] and [D 77]). For 
any Boolean circuit A of some size N working with reliable components, one 
can construct a circuit B of size O(N log N) from components which can make 
(independent) errors with probability not exceeding some known p such that B 
computes the same Boolean function as A with error probability O(p). 

Von Neumann's formal solution does not address the reliability problem in 
sufficient generality. The intricate connectivity pattern of his reliable network B 
is unrealizable with constant-length connections in any finite-dimensional space. 
Increasing the length of connections strongly exposes the assumption that errors 
are confined to the logic elements while their connection pattern is reliable. 
The information storage devices described in [Ta 68] and [Kz 73]. however 
efficient they are, suffer from the same problem. A reliable 2-dimensionallocally 
connected information-storage device was described in [Ts 76]. Probably, it 
could be used to implement a 2-dimensional version of von Neumann's reliable 
circuits. However, the size of this device is proportional to the working time, 
and the type of automata varies from position to position. 

Is reliable computation (or just information storage) feasible in a finite
dimensional array of locally interacting automata (cellular automata, iterative 
array)! Such a simple connection pattern is already not necessarily subject to 
errol'S since it (or some analogous variant) may be enforced by physical law (e.g. 
the automata may be molecules in a crystal structure), or may even be just a 
geometrical framework for the description of physical phenomena. Such devices 
are also the easiest to manufacture (using e.g. VLSI) and assemble in large 
quantities. Work has been done on fault-tolerant cellular automata e.g. in [H 
75, N 75]. However, these papers make very strong assumptions on the pattern 
of errors. In the terminology of our Section 3, they assume that the errors occur 
on a l-sparse set (i.e. never come too close to each other). Hovever, if the errors 
occur independently with constant probability, we can only assume e.g. that 
they occur on a k-sparse set where k depends on the size of the space-time area 
we are concerned with. 

The problem of reliable information storage in a cellular structure arises 
naturally in statistical physics. Let us call medium an array of identical cellular 
automata where the state of every automaton depends stochastically on the 
state-s of its nearest neighbors. A medium can be the model of magnetic spins in 
a crystal, certain states of cells in a tissue, voting behavior, etc., see [L 76, Gr 
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82]. The subsequent states in time of the whole medium form a Markov process, 
and the first thing a probabilist askes about such a process is whether it is 
ergodic. If a process is ergodic it eventually loses every single bit of information 
about its initial state. 

We are interested in media where all local transition probabilities are positive. 
It required great ingenuity to show that not all such media are ergodic. Toom 
constructed in [T 74] several examples of nonergodic media of dimension 2 or 
higher. The one-dimensional case seemed harder. Toom's media accomplish a 
sort of local voting and preserve only a few bits of information, using even the 
whole infinite medium. In [K 78], G.Kurdyumov proposed some ideas for the 
construction of one-dimensional nonergodic media, using an infinite hierarchy 
of Turing machine-like media simulating each other. The presentation is so 
vague that the problem is still considered unsolved by most specialists ([S 80]). 
Rigorous but more modest results about simpler media are proved in [G 78]. 
If his ideas are realizable, Kurdyumov can also use his media to implement 
reliable computation. It seems now that because of the restrictions of the one
dimensional medium (local voting does not work), one cannot solve the problem 
of information storage (even of one bit) without solving the general problem of 
reliable computation: an unsolved problem even in higher-dimensional media. 

Here, I construct a one-dimensional nonergodic medium M, solving there by 
the above problems. Since the construction is partly based on Kurdyumov's 
ideas, medium M is also capable of reliable computation. Section 2 states the 
result, and the next sections outline the proof. Refinements of the result will 
be given in subsequent papers. 

The present paper benefited from conversations with L.Levin and G.Kurdyum
ov, coauthors of [G 78], and C.H.Bennett, whose work on algorithmic depth 
further stimulated my interest in the question whether deep sequences can arise 
in nature. 
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2. Statement of the result 

2.1 Media and Markov systems 

A (one-dimensional homogenous deterministic) medium is a uniform chain of 
locally interacting automata, working in discrete time t = 0,1, .... The medium 
is defined by the finite set 8 of automata states and the transition function 
D : 8 3 ~ 8 which we will also use to name the medium. Let Z be the set of 
integers. For a partial function x [t, n] over Z2, we will say that x agrees with 
D if the relation 

x[t + 1, n] = D(x[t, n - 1], x[t, n], x[t, n + 1]) 

holds whenever both sides are defined. (We will generally write the time and 
space variables as "array indices" in square brackets.) 

For a set E C Z, let e= (e[t, n] : (t, n) E E) be a system of random 
variables with values in 8. For any function v : E ~ 8, we denote by C(v, t) 
the event that e[i, n] = v[i, n] for all i < t, n E Z. In this paper, we will use 
an ad hoc terminology and call ea Markov system if for each v, t, the random 
variables (e[t + 1, n] : n E Z) are conditionally independent under condition 
C(v" t). A Markov system eis a p-perturbation of a medium D if for all v, t 
the conditional probability under condition C(v, t) of the relation 

e[t + 1, n] = D(v[t, n - 1, v[t, n],v[t, n + 1]) 

is greater than 1 - p whenever it is defined. We will say that an error occurred 
at (j~, n) if 

e[t + 1, n] ¥- D(e[t, n -1], e[t, n], e[t, n + 1]). 

To denote intervals of integers, we combine a notation from the programming 
language PASCAL with one from real analysis. Let a, b be two real numbers. 
Then 

[a b] = [a, b] n Z = {n E Z a < n < b}, 

[a b) = [a, b] n Z = {n E Z a<n<b}, 

etc. For an interval I C Z and a partial function x[n] over Z, we denote the 
sequence (x[n] : n E I) as xiI. Similarly, for a function x[t, i] over Z2, we 
denote the sequence (x[t, i] : m < i < n) by x[t] I [m ... n]. 
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We will always suppose that an ordering 8 = {so, Sl""} is given on the 
set 8 of automata states. This permits us to speak of a distinguished state So 
automatically. 

We imagine our space-time as a plane with a left-right space axis and an up
ward time axis. For a point p = (Po, pd, the time coordinate is Po and the space 
coordinate is Pl. For a space-time rectangle R = [k ... k + h) X [m ... m + n) 
in Z2, we call n its width, and h its height. 

Let € be a Markov system on [k ... k + h] X [m ... m + n]. For strings u, v, w 
we say that € satisfies the input condition u and the border conditions v, w if 

€[k] I (m ... m+ n) = u, 

€[k + t, m] = v[t], 

€[k + t, m + n] = w[t] 

for t E [0 ... h). The border conditions are standard if v[t] = w[t] = So for 
all t. The string €[k + h] I (m ... m + n) is called the output of the rectangle 
R. If € is a a-perturbation of a medium D then the "contents" of the whole 
rectangle, and thus its output, are completely determined by the strings u, v, w. 
We will denote this output by Dh(u; V, w). For standard border conditions, we 
will write Dh(u). 

2.2 Coding and simulation 
Our purpose is to find a medium M and a positive constant p such that M 

can simulate the work of any medium D (and thus perform any computation, 
e.g. just information storage) reliably: we get the desired results with high 
probability even if M is subject to p-perturbation. A stable simulation must 
receive its input and deliver its ouput in some encoded form. Otherwise, it loses 
significant information already in the first or last step. 

Let 80 and 8 1 be two state sets. A (P1, Pol-code is given by a pair (f, ¢) 
where the encoding function f : 8f1 -+- 8b'° and the partial decoding function 
¢ are connected by the property 

¢(f(x)) = x. 

The quotient PolP1 is the space factor (rate) of the code. We can extend a code 
f to strings whose length is a multiple of P1 by putting 

The decoding function is extended correspondingly. The extension does not 
change the space factor. 
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A simulation (or "block simulation") of a medium D l by a medium Do is 
given by the work period T, blocklength P and the code (I, ¢) with I : SI -+- sf. 
We require for any symbols SI, S2, S3 E SI and strings v, w with I(si) = 'Ui 
that; the following simulation relation holds: 

D6('Ul'U2'U3;V,W) = I(D l(SI,S2,S3)). 

Thus the medium Do computes in T steps the code of D l(SI, S2, S3) from 
'Ul 'U:2'U3 under any border conditions. A medium is 'Universal if it can simulate 
any other medium. 

To make the reliable medium "universal" it is enough to make sure it can 
simulate reliably a medium U which is universal in the above sense. In Section 
4, we will find a universal medium U. For the purpose of the following theorems, 
let U be an arbitrary but fixed universal medium. 

We want to construct a medium M with the following property. For any 
string x there is a code (F, <1» such that if we input F(x) to M with standard 
border conditions, wait some number of steps and get the output y then 
<I>(y) = ut(x) with large probability. Let us discuss some vague points in this 
formulation. 

Is it not unnatural to assume that coding is error-free? No, because the 
process of encoding and decoding is only there to interpret the meaning of the 
computation for an outside observer. In an unreliable environment, information 
must live in encoded form. Moreover, the larger amount of information we have 
and the more processing steps we plan to perform on it (e.g. the longer we 
want to keep it) the larger space factor (redundancy) must our code have. If the 
output of one computation is not decoded (and the redundancy is large enough), 
it can be immediately used as the input of another one. It may happen that the 
redu.ndancy of the code must be increased or decreased during the computation. 
This: also can be done with unreliable elements, but involves some additional 
problems, hence in this publication we will work with fixed redundancy. We 
imagine that input and output strings are "padded" to include all memory space 
needled during the computation. 

Is it not possible to cheat, hiding all computation into the coding process? 
We will give the code explicitely, and it will be clear that no cheating is involved. 
But cheating is unlikely already given the following properties of our code: 
decoding is inverse to encoding, and the code is simple to compute. It takes 
only linear time to compute F and <I> on a serial machine, and only logarithmic 
time on a suitable parallel machine. (This machine must be able to produce n 
copies of a symbol in log n time, therefore must be more powerful than cellular 
automata.) 
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i 
To define our code we introduce the notion of concatenation of codes. For 

= 0,1, let (Ii, ¢i) be (Qi, Pi)- codes. Suppose that Ql divides Po. Then the 
code (fl 0 l», ¢o 0 ¢d is defined as follows: 

(fo 0 hHu) = fo(fl(U)). 

If the string 1.£ has length Qo then the string (fo(fl (1.£)) has length PIPO/QI. 
The decoding is applied, of course, in reverse order. Example: if f(O) = 000 
and f(l) = 101 then f(f(l)) = 101000101. The code fog is called the 
concatenation of f and g. The k-th iteration of f is fk = f f (k0 ••• 0 

times). It is defined for a code f : SQ -. sP if Q divides P. In this paper, we 
will consider codes which are essentially iterations of some fixed (1, P)- code 
f. Since P is constant, the code fk is computable in O(k) steps on a suitable 
parallel machine. 

We will suppose that the first and last symbols A and p, of the word f(s) are 
independent of s (view them as delimiters). Then the strings 

A, f(A), f2(A), ... 

form a sequence where each previous string is a prefix of the following one. The 
limit is an infinite string f'+ = 'UO'Ul •••• Similarly, the strings p" f(p.), f2(p,) . . . 
form a sequence where each string is a postfix of the next one. The limit of this 
sequence is a string 

foo = .. .tJ-3tJ-2 tJ- l 

infinite toward the left. If we join these two strings we get a doubly infinite 
string foo = f~f'+. . 

The encoding we use will involve another step. An appropriate function 
g: SM X Su -. SM will be used with a partia}nverse 1 such that 1(g(a, b)) = 
a. The function g will be extended to strings as follows. 

g(al . ..am , b1.. .bn ) = g(al, bd·· .g(ak, bk) 

where k = min(m, n). We view the operation g as entering the "data" string b 
into the "software" string a. The function g is called the entering operation. 

The code (F, <1» of the theorem uses a base code (f, ¢) and an entering 
operation (g,1). With their help, we define 

Fk(1.£) = fk(g(f+., 1.£)) 

for an appropriate number k. Thus to obtain Fk(U) we enter 1.£ into a large 
enough segment of our standard "software" string f+., and then apply k more 
times the encoding f. Of course, the inverse is <I> k = 1 0 ¢k. We will say that 
any base code f and entering operation g determine in this way a standard code 
(F, <1». The space factor of F is the same as the space factor of f. 
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THEOREM 1 There is a universal reliable medium M I constants p,P, T, c and 
a standard code (F, cI» with space factor PI with the following property. For 
any n,t,E, any string uESul putting N=nt/EI k=rcloglogNll for 
any p-perturbation of M on a rectangle with input Fk(U)1 height Tkt l standard 
border conditions and output 'fJI we have 

The present paper is essentially devoted to the proof of this theorem. The 
remainder of this section is devoted to its discussion, and a related theorem 
which is applicable to statistical mechanics. 

The simulation promised in the theorem has a space factor p k = log~ N 
and time factor T k = log? N for some constants a, f3. For the time being, 
the role of E is not important. We want to avoid that the output be garbage 
witb high probability as a result of the accumulation of errors. For this, even 
E = 1/3 would do. Thus, the space and time redundancy we pay for reliability 
is log" of the number of elementary operations to be performed in the original 
computation. In a subsequent publication, we will show how to improve the 
time factor to log N o(log N). The space factor can be made almost constant as 
long as log t = O(n). 

It is not possible to keep even one bit of information in n cells of an unreliable 
medium longer than exponential time, since the n cells form an ergodic Markov 
chain whose state converges this fast to a unique equilibrium state. The product 
of these time and space factors comes close to von Neum ann's factor log N, 
whic:h is shown in [D 77] to be in some sense optimal. I would like to emphasize 
that the present paper answers not only the question what are the optimal time 
and space factors of reliable computation, but also whether reliable computation 
(in the sense defined) is possible at all. 

'Ne now formulate a theorem which immediately implies the existence of a 
nonergodic one-dimensional stochastic medium. For any symbol s, let SOO be 
the doubly infinite string each element of which is S. 

TH.~OREM 2 There is a medium M I constant p and a standard code with 
base code (I, ¢) and entering operation (go, 'Yo), with the following property. 
For any p-perturbation € of M on [0 ... (0) X Z with input go(I OO , SOO)I 

for any integers n, t we have 
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We refer to the work [T 74] for the definition of ergodicity, and to the simple 
proof of how the nonergodicity of any p-perturbation of M follows from this 
theorem. But without any technical definition of ergodicity, it is evident that 
after we used the sequence g(J00,5 oo ) as initial configuration of our Markov 
system €, the theorem states that € "remembers" 5 forever. 
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3. The sparsity of errors. 

The error-correcting structure we choose is an infinite hierarchy of simula
tions. Medium M1 simulates (whenever it works correctly) some medium M2' 
which simulates some medium M3' etc. In the present paper, all these media 
will be the same appropriately chosen medium M, and all the simulations will 
use the same code (/, ¢), work period T and blocklength P. 

These simulations form a structure strong enough to carry the load of an 
arbitrary miscellaneous computation, the one we really want to perform. The 
input of this miscellaneous computation will be injected using the entering 
oper.ation g. The iterated simulation will give rise to higher order blocks. Put 

We omit the superscript k for k = 1. For any subset B of R2 and numbers a, b, 
put 

(a, b) +B = {(x + a, Y+ b) : (e, y) E B}, 
aB = {(ax, ay) : (x, y) E B}. 

Similar definitions apply in R. The first of these sets (the shift) will also be 
called a copy of B. 

The cells in the k-th order block pk would, under error-free conditions, 
perform a coordinated activity over the working period pk. Of course, they will 
make errors, but they will be designed to work satisfactorily as long as the set 
of errors in the rectangle yk and a few of its neighbors is k-sparse. 

Let Co be an arbitrary positive constant. In this paper, we set 

Co = 3. 

A set E C Z2 is O-sparse if it is empty. It is k-sparse, if for every copy I of 
Coyk there is a copy J of 3co yk-l such that En I - J is (k -I)-sparse. The 
concept of k-sparsity is similarly defined for sets in Z. Ignoring the multipliers 
in the definition, we could say that a l-sparse set is one whose elements are far 
enough from each other so that no two of them belong to the same copy of Y. 
With a two-sparse set, it may happen that more than one element occurs in 
some copy J of Y but such events J are so rare that no two of them happens 
in the same copy of y2. 

Let Pk denote the probability that the set of errors in 2co yk is not k-sparse, 
i.e. 'that a "k-error" occurs. It turns out that 

Pk+l = O(p~), 
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since a k+ l-error means approximately the occurrence of two k-errors in V k + l • 

The following lemma gives thus an upper bound on the probability to have a 
k-sparse set of errors over a certain space-time rectangle. This lemma is our 
only tool for estimating the error probability. Its proof does not contain any 
essentially new idea, therefore I recommend to skip it at the first reading. 

LEMMA 1 There is a C > 0 such that for every p < c, every k, n, t, every p
perturbation of a medium over a rectangle of height 2co tTk and width 2conpk, 
the probability that the set of errors is not k-sparse is less than 

Notice that for k = 0 the lemma gives the obviously valid estimate ntp. 

Proof: Let e be some set of subsets of Z2, and E the set of errors in some 
p-perturbation of our medium. It is easy to see that for any rectangle R we have 

Prob[E nRC e] < L p-IFI. 
R":)FEt 

We can therefore assume that the errors occur independently with probability 
p, since in this case equality is achieved in the above estimate. 

Notice that a set E is k-sparse if and only if its intersections with every copy 
of Co v- are k-sparse. 

We prove the lemma by induction. If the errors occur independently, it 
is convenient to deal with a lattice consisting of disjoint rectangles. Since 
the lemma speaks about arbitrary copies of v- and V k - l , we will use two 
overlapping lattices of rectangles. Let R be a rectangle of height 2c otTk and 
width 2conpk. We define two partitions Po and PI of R into copies of 2co V k 

as follows. Partition Pj consists of the intersections with R of all rectangles of 
;'the form 

Thus, the corners of the rectangles in partition PI are in the centers of the 
rectangles of Po (and vice versa). The number of elements in any of these 
partitions is at most 

(n + 2)(t + 2) < 9nt. 

Suppose that R contains a copy I of CoVk such that In E is not k-sparse. 
Then I is contained in an element K of Po U PI, hence En K is not k-sparse. 
Hence 18ntpk bounds the probability that R n E is not k-sparse. 
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We now estimate Pk. Let us subdivide K in the manner described above, 
into two partitions Ro and R1 consisting of copies of 2coVk-1. The number of 
elements in Rj is at most (T + 2)(P + 2). Let U be the event that there are 
two disjoint elements J 1, J2 of RoU R 1 such that J, n E is not k - 1
sparse. We prove that Pk < Prob[U]. Indeed, suppose that U does not occur, 
and Jo is a rectangle of Ro U R1 such that Jo n E is not sparse. Then all 
other such rectangles J1 must intersect with Jo and each other. It is easy to see 
that there can be at most one such J1, and JoU J1 is contained in a copy J of 
3co V k - 1• Then the set K - J n E is k - 1- sparse. 

Thus we have 

< Prob[U] < (2(T + 2)(P + 2)) 2 
Pk - - 2 Pk-1 

< 2(T + 2)2(p + 2)2p~_1' 

Using the inductive assumption on 2coV k-1, we have 

Hence the total probability is estimated by 

18ntpk < antp2
k

-
1

+ 1 

with a = 36(T +2)2(P +2)2. Putting c = a-2 makes the induction work. • 
Our purpose is to design the medium M and the simulation f in such a way 

that the work of a small group of k-rectangles is essentially undisturbed by a 
k-sparse set of errors. Let us reflect on this requirement. Put 

V k[h, i] = (hTk, ipk) +V k, 

Tk[a] = aTk + T k, 

pk[a] = apk + r, 
zk [h, i] = ¢k(z[hTk] I p k[iD. 

(The definition of zk will be slightly changed later.) Thus zk [h, i] is the element 
of SM represented, via the encoding fk, by the segment Pk [i] at the time vt«, 
Le. in the starting row of the rectangle Vk[h,i]. 

If no errors occurred we would have the relation 

Zk [h + 1, i] = M(zk [h, i - 1], zk [h, i], zk [h, i + 1D. 
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Our purpose is to maintain this relation despite a k-sparse set of errors. The rec
tangles directly involved in this computation are ylc[h, i +p] for p = -1,0,1. 
It turns out that a few neighbor rectangles may be indirectly involved. We will 
suppose the set of errors to be k-sparse over these rectangles. The concept of 
k-sparsity is defined in a way facilitating proof by induction. Let I be a rec
tangle containing all rectangles involved in the computation of xk[h, i] from 
xlc[h, i +p] for p = -1,0,1. Then k-sparsity will guarantee that there is a 
rectangle J whose size is of the order of yk-l such that the set of errors is 
k - 1 on 1- J. Therefore two issues need only concern us. 

First, that since we cannot suppose anything about the nature or errors 
within the rectangle J, all structure can be destroyed within J or, what is 
worse, replaced by some "malignant growth". Second, even if we are able 
to reestablish the structure of hierarchical simulation on the heirs of J, all 
information contained in J is lost or altered. The second problem is less serious: 
redundancy takes care of it. But the problem of reestablishment of structure is 
new, and is in some sense the central problem of this paper. 

Originally by "structure" we mean the hierarchy of simulations described 
above, and by "information" just the data connected with the miscellaneous 
computation it carries. But fortunately, on any level of our structure, the struc
ture of the higher levels appears to be just like any other kind of information. 
And the structure of the lower levels need not concern us since the present level 
would not even exist without the proper functioning of the lower levels. It fol
lows that it is enough to care about the structure of one level (or maybe two to 
achieve a rippling effect of certain operations over all levels). 

Let the rectangle J be the product of the time segment Jo (we will later 
define Jo somewhat differently) and space segment J1• Since in the rectangle J 
anything could happen, we are concerned with 

Preserving structure around J1 in the time segment Jo; 

Rebuilding structure on J1 after J«. 

The procedures described in Section 5 serve mainly the second goal, but they 
are designed with extra care to achieve the first goal too. The "normalization" 
of J1 will happen in the following three steps. 

1. We conclude by induction that a few steps of size T k - l after Jo, the segment 
J1 is covered with a few islands which are structured up to level k - 1. 
The structures of the different islands may be inconsistent with the original 
one (e.g. their k - 1 -blocks may start at a place which is not a multiple 
of pic) or each other. 
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The area between the islands is "dead". Being dead is one of the possible 
states of a cell of our medium. A peculiar property of our simulation is that 
dead cells are encoded essentially by an array of dead cells. Thus if a k-cell dies 
it dies on all levels. All of its structure decays, freeing the place for any new 
structure. 

2.	 The islands inconsistent with the neighborhood of J1 will recognize this 
inconsistency in their normal k - 1 -level activity and commit suicide. 

3.	 The healthy neighborhood of J1 reoccupies the dead areas and reestablishes 
the k - 1 -structure over them. 

We define M in Section 5. In Section 6J we introduce a certain property (called 
k-ol'ganizedness) implying that the sequence of events 1-3 takes place and for
mulate the Main Lemma which asserts that k-sparsity implies k-organizedness. 
In Section 7J we use the Main Lemma to prove Theorems 1 and 2. We prove the 
Main Lemma in Section 8. 
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4. A universal medium 

The literature contains examples of universal media with a very small number 
of states. I propose the following medium, which is though not minimal but easy 
to program and simulate. Let z = {Yo, Yl, Y2} be a "pairing" operation with 
Yi = {Z}i denoting the inverse. Let T be a universal machine (Turing or other). 
Let 7b(p, z, Y, z) be the output of T after b steps of computation, with program 
p, arguments z , Y, z all of which are strings of length < b of integers with 
absolute value < b. We put 

Thus a cell of the medium Ui computing its new state treats the first part of 
its present state as a program, and applies it to the states of its three neighbor 
cells (including itself). 

The medium Ui is obviously universal for a sufficiently large b. Here is the 
outline of a simulation of an arbitrary medium D by Ui, Each cell of D is 
represented by a group of consecutive Ub-cells delimited by markers. A group 
divides into a subgroup of length O(IogIDI) to store the current state of the D
cell, a working area of the same length, and a subgroup of length O(IDI3IogIDI) 

for the transition table of D. During the simulation period, first the states 
z , Y, z represented by the three neighbor groups are read into the working area, 
then D(x, Y, z) is looked up in the transition table and stored as the new value 
represented by the group. It is clear that for a suitable b independent of D, we 
can write a program for 7b to control all these operations. Let us thus choose a 
constant b for which Ui is universal and write U = Ui, 

Medium U is not obliged to carry out the simulation in the way outlined in 
the previous paragraph. In fact, if there is a "small" medium E "efficiently" 
simulating D then we get an efficient simulation of D by U combining the 
simulation of D by E and that of E by U. 

For a U-cell in state z; let us write Prog(x) = (x}o, Rep(x) = (xh, and call 
these parts of the state the program of the cell and the value represented by it. 
For a string u. = u.[1] ... u.[k] we will write 

Prog(u.) = Prog(u.[l]) ... Prog(u.[kD, 

and we will proceed similarly with other functions of states. Let f3(R) be the 
binary representation of a number R. 

Let us restrict a little the simulations we will talk about. We can assume 
that for every medium D there is a simulation Sim(p) = (I, ¢) of D by U with 
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time period R o and space period R 1, with the following properties. We have 
R I < R o. For any s E SD and u. = f(s), the string Prog(u.) is 

P = P1 *f3(Ro) *f3(R1) *P2 

possibly followed by zeroes. Here PI does not contain the symbol * and the 
strings Pi do not depend on s, Also, (u.b = o. Thus the program P of the 
simulation determines R o,R I , the decoding ¢(u.) depends only on Rep(u.), and 
the strings P, Rep(u.) determine u. We will call any string u with (ub = 0 
the starting configuration of a simulation. This name reminds us that during 
the simulation period, we can get (u.b ~ o. 

We can often view the states s of the medium D to be simulated as r-tuples 
(Sl, ... , s.). Then we can require from the U-simulation that for any u. = f(s), 
the string Rep( u.) have the form 

where Vi does not contain *, has fixed length and depends only on Si. We are 
also free to choose the encoding of the symbols s, by whatever strings Vi we 
want. 
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5. The medium M 

We define a medium M which, besides making many error-correcting efforts, 
"simulates" itself. The trick to do self-simulation is well-known: it is closely 
related to the proof of the recursion theorem. First we define a medium Mp • 

A block of medium M p will, besides many error-correcting efforts, follow the 
work of a block of the universal medium U when the latter is performing the 
simulation Sim(pp). (The repetition in pp is no misprint. The program of the 
U-simulation we want to follow is the string pp.) It will turn out that there is a 
string q such that Sim(qp) is a simulation of the medium M p for all p. Choosing 
M = Mq gives the desired self-simulation. 

Suppose that the working period and the blocklength of the simulation 
Sim(pp) are Ro and R 1 respectively. The blocklength of the simulation M p 

is 
P = 3R1 + 2. 

The working period is T = O(Ro + Rd. The block P is divided into the two 
endcells 

ej = j -1 (mod P)
2 

and three subintervals K1, K2, K3 of length R1• Their union is denoted by K. 
Thus we have 

A block of M p will contain essentially three copies of the contents of a block 
of Sim(pp). During a working period of M p , the work of a working period of 
Sim(pp) will be performed three times. We will see in detail, how to organize 
this activity. Tripling in space and time would sufficiently protect us from a 
sparse set of errors if these errors were confined to the "information" contained 
in our cells, and each cell remembered at each step of the working period, what 
to do with whatever information it has. 

To distinguish the different sorts of inform ation present in a cell, the 
cell states :z; [t, n] of Mp are determined by a collection of variables 
Zdt, n], ... ,Zr[t, n]. To represent the word of values of a variable Z over an 
interval I, we will write ZII for (Z[n] : n E 1). We will write zj[t, n] for 
Z[t, n + j]. When speaking about the present step and a fixed cell, we may omit 
t, n and write Z-, Z, Z+ for the value of the Z variable of the left neighbor, 
the current cell and the right neighbor respectively (writing sometimes, as here, 
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+,'- instead of 1, -1) . We list some of the main variables, leaving the rest 
to the procedures which use them. Each variable has a default value. 

Every cell of Mp knows what kind of step to perform at a certain stage by 
looking at its variables T,1r (let us call them "counters"). The variable 
T[n] E T shows which step of the working period is now being performed by 
cell n, while 1r[n] E P shows the place of cell n in its block. To distinguish 
newly "occupied" cells (see later) from the rest we let the variable 1r vary in the 
enlarged range [-LIP ... 2.1P). The default operation is, of course, to increase 
T in each step by 1 modulo T, and to leave 1r unchanged. 

We will have several variables "of type U": 

for i = 1,2,3, k = 0,1, i = -1,1. These take values from the set 
Su U {Dead, Out}. The variable X contains the value "represented" by the cell 
in the simulation. In general, it is changed only in the last step of the working 
period. 

If X = Dead or Out we are in a unique state and no other variables 
matter. If X = Out the cell is in the distinguished state So of its state set 
SM = {s 0, S 1, ..• }. This state is used only to delimit the whole working area, 
and no cell is supposed to assume it. Thus 

(5.1.1) If in a cell we have X = Out then in the next step we put X of- Dead. 

We will say that the cell is live if X E Si), When X is Dead, we will say that 
the whole state x is dead. The default value of a variable of type U is some 
distinguished element a of Suo Ideally, all three words XIK s for s = 1,2,3 
are equal to the state of the same block in the simulation Sim(pp), and X = a 
in the end cells ej . 

(5.1.2) If X = a and X- = X+ = Out then X of- a. 

This rule keeps the cell alive which on its lower levels contains our whole 
configuration. 

If a cell is live it always has T,1r-values. If it is dead then it uses the T,1r
values of one of its live neighbors for orientation. (If it has two inconsistent live 
neighbors it remains dead). Thus, a cell n defines its home block as the interval 
n - 1r[n] + Pl. It divides the line into blocks which are shifts of the home block 
by multiples of P. 

The various information transfer operations are performed with the help of 
the "mailbox variables" Mail_, Mail+ of type U. Variable Y (of type U) is used 
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to actually imitate the computation of U. The variables Output; containing the 
results of the three imitations are only altered when they receive the new values 
computed. 

These devices limit the consequences of a small group of errors. An error is 
dangerous if the values of the counters are changed. But such a change will be 
recognized and corrected since it creates inconsistency between neighbor cells. 
If the counters are restored the block continues to function according to the 
program and the effects of the error on the other variables remain localized to 
a third (in space or time) of a work rectangle. 

The variables Misco, MisCl, of type U, are used to perform a miscellaneous 
computation. Error-correcting steps will keep Misco constant. If X = Out 
then MisCl assumes the distinguished symbol So of Suo Further, we put 

ut«, +- U(Misc1,sa«; Misct)·	 (5.1.3) 

In regions where there is even one error the Mise, values are meaningless. Thus 
their usefulness is confined to the highest level where errors are improbable. 

We describe the function M p in terms of procedures, which are then combined 
at the end. The block will perform two functions essentially simultaneously: 
simulating a cell of M and maintaining consistency. The two functions manipu
late different variables, therefore they will not conflict with each other. We 
begin with the simulation. 

5.1.	 Computation. 

The procedure Readin reads in the information found in the variable X in the 
current block K and the two neighbor blocks K ± P. Since in these blocks all 
information is repeated 3 times, we write the three supposedly identical thirds 

XIKs - P for s = 1,2,3 

of the left neighbor block into the corresponding variables InputslK 1 of the left 
third of the current block, and proceed similarly with the other two blocks. All 
transfer operations use the mailboxes Mail_, Mail+. Normally, a cell would 
put Mailj +- Mai1~ for j = ±1 in every step. 

(5.1.4) If we read from a neighbor whose state is Dead or Outl we write 
Dead or Out respectively. 

But at times determined by our goal, a cell will put Mailj +- X or 
Input k +- Mailj for the appropriate j and k. Finally a majority vote decides 
among the three pieces of information read in over each other. 
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Procedure Readin 
for k = 1,2,3, i = -1, 0,1 do 

InputklKj +2 +- X I (iP + Kk); 
Y +- the majority of Input k for k = 1,2,3; 

After we read in the information we do some initialization, using the procedure 
lnit. This step is crucial, and makes the work of our block different from ordinary 
simulation. The block rewrites the part of the information which is not really 
information since it is known by the definition of the medium. (Despite the 
voting, it does not trust what was read in. This is an important step to avoid 
"cancers" or "viruses", i.e. working blocks with a wrong program.) Especially, 
knowing p it knows the format of a starting configuration of a block of Sim(pp). 
Therefore it imposes this format on YIKs . Such a precaution guarantees that the 
only' activity a consistent block of M p is capable of is the imitation of Sim(pp). 

Let us recall the format of a standard simulation Sim(pp). If the states 
of the simulated medium consist of several variables Zl, ... , Zr, then in the 
configuration u of the simulating group, Rep(u) = VI * ... *Vr • Let 1m denote 
the interval occupied by TJm in [0 ... Rd for mE [1 r]. Let I 1(s), ... , Ir(s) 
denote the subintervals of K; corresponding to II, , L, 

Now we remember that the medium whose simulation we are imitating, will 
turn out to be M p itself. Hence its state is given by a collection of variables. 
Without loss of generality, let the first of these be X. Suppose that in Sim(pp), 
the values Dead, Out are represented by the numbers 0,1. 

Procedure Init 
for s = 1,2,3 do ( 

if Y = Out on K; then Rep(Y) I I 1(s) +- 1; 
else if Dead or Out occurs in YIKs then put a in the same place; 

(Together with (5.104), this step achieves that e.g. the left input is Out if we are 
at the left border and Dead if the left neighbor block is partial.) 

if Y ({Su then Y +- a; 
Separate by * the intervals II (s), ... , I r(s) in Rep(Y) IK s; 
Prog(Y) I K s +- pp; 

(Y)2 I tc, +- 0; 
)' 

In the last two steps, we do not alter Rep(Y). 
After initialization, the procedure Core(i) performs the actual simulation. In 

this, we pretend that the three blocks Y IK; for s = 1,2,3 are just three 
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consecutive blocks of length R 1 of the medium U and iterate on them Ro times 
the transition rules of U. The result will be found in Y I K 2 . Then it sends the 
result out in three identical copies into Output, I K; for s = 1,2,3. 

Finally, if the result represents a dead cell, we write Dead everywhere in 
Y, preparing the whole block to die. This is another essential element of the 
construction. If our simulation says that the cell represented by our block 
becomes a dead cell, then the whole block will die at the end of the working 
period. Thus if according to the nested simulation, the cell represented by some 
higher-order block dies, it will die on all lower levels, and become an interval of 
dead cells. 

Procedure Core(i) 
Perform the Ro steps of a job of Sim(pp) with YIK. 

if you read Dead or Out use a instead;
 

if Rep(Y) 111(2) = 0 then 0 utp utiIK +- Dead .
 

else for s = 1,2,3 do OutputilKs +- YIK2;
 

Here is the whole computational side of the program. 

Procedure Comp 
Idle 5.5P steps; 

(This parallels the repetitions of Ocp, to be defined later on.) 

for i = 1,2,3 do( 
Idle P steps; 

(To separate the three thirds from each other in time.) 

Readin; Init; Core(i); 
) 

Idle a few steps for divisibility by Cs (see later); 
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5.2. Consistency 

In this subsection, we define the part of the program designed to maintain 
consistency. It runs parallelly with the computational part. 

The variable Cons, is 0 if the cell is inconsistent with its neighbor in direction 
i, i.e. the following does not hold: 

r = r', Misco = Miscb, Xi E SU, 

1rJ' =1ri + j - i (mod Pl. 

If Cons]' =;e 0 then Consi = 2 if 1rJ' = 1ri + j - i, and 1 otherwise. As we see, 
we do not really need Cons;, since its value is computable from other variables. 
The places where Cons = 1 are usually the meeting places of neighbor blocks, 
except during times when a block is overtaken by two neighbor blocks. In this 
case, the occupying blocks reach beyond their boundary. We have Cons = 2 
at the old block boundary and 1 at the meeting place of the left and right 
occupying arms. 

The auxiliary procedure Conform makes a cell consistent with its left of right 
neighbor. 

Procedure Conform(J') 
If( 

X = Dead, X;' E Si), 

(X-;' ~Su or 1'- = 1'+) 

(Due to this condition, a dead cell can determine which neighbor it has to 
conform to.) 

1rJ' - j E [-l.1P ... 2.1P)
 

)
 
then ( 

l' ~ rt:, 1r ~ 1ri -J", 
X ~ d[1r (mod P)]; Misco ~ Miscb; H ~ 0; 

All other variables get their default values; 

) 

There are certain procedures which we want to start again and again. Let us 
introduce the following notation. The length of a procedure P is IPI. If P and 
Q are two procedures and c a positive interger then we get the procedure 

P[c]Q 
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in the following way. First we perform P. Then we perform c steps of Q. Then 
we interrupt Q and again perform P. Then we again perform c steps of Q, etc. 
until there are any steps of Q left. We have 

P[c](Q[cd]R) = (P[c]Q)[(c + IPl)d](P[c]R). (5.2.1) 

whenever c divides IQI. 
The maintaining program is 

Purge[c2] (Recover[cs]Maintain), (5.2.2) 

where the procedures Purge, Recover and Maintain and the constants C2 and 
Cs will be defined below. To have (5.2.1), we will make both Cs and IRecoverl 
divisible by C2. 

The procedure Maintain consists of some repetitions of a procedure Ocp 
(which has length 5cs) followed by some repetitions of the procedure Integrity 
(length cs). 

Procedure Maintain 
repeat l.IP/ Cs times Ocp; 
(H +- 1; 7r +- 7r (mod P)); 

(Middle) 

repeat until the end of Comp Integrity; 
if H = 0 then X +- Dead 
else (X +- the majority of Output(i) for i = 1,2,3;) 

(End) 

The role of the variable H will be explained later. Let us agree that the 
steps Middle and End are performed simultaneously with the preceding step (to 
preserve divisibility). 

In the procedure Ocp, a healthy block tries gradually to impose its own 
structure on a neighbor block of dead cells, by extending an "occupying arm". 
The occupying arm will be partially withdrawn (in the "retreating" part of Ocp), 
to make sure that a spurious block does not kill a good one due to an error. 

The block we created by applications of Ocp will represent a dead cell, and 
only actual computation decides whether we will really convert it to a block 
representing a live cell, or kill it. Therefore Ocp assigns the X-variables the 
values they would get in Init, with Rep(X)jl1(s) = 0 for s = 1,2,3. Let us 
denote the sequence of X-values thus obtained by d[i] for i E P. 
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Procedure Ocp; 
( Attack) 

repeat 2cs times 

for i = -1,1 do 
if 1rJ" - i f/ P then GonformU); 

( Retreat) 
repeat cs times 

for i = -1, 1 do 

if (i(1r - ei ) > 0, Cons, = 0, 

(X ~ Out or 1r ~ ei (mod P)) 
(This condition makes sure we do not retreat from the border of the whole 
computing area.) 

) 

then X +- Dead; 
( Wl~it for a possibly damaged good block to recover. ) 

Idle 2cs steps; 

The procedure Integrity is the block's way of checking its own integrity. The 
variable H is a if the cell thinks its block is a partial one and 1 otherwise. 
Initially, it is 1, but the procedure Integrity propagates H = a from any 
discontinuities with the speed C2/ Cs. To achieve unanimity in the final decision, 
there will be a final time T3 after which no new signal H = a does arise, only 
the old ones propagate. We do not consider a block partial if it ends with Out. 

Procedure Integrity 
repeat C2 times 

for i = -1,1 do 
(The step that follows is called a marking step.) 

if ( 1r ~ ei (mod P), (Hi = a or (GonsU) = 0, r < T3 )) ) 

then H +- 0; 

Idle Cs - C2 steps; 

The constant T3 is defined by the requirement that it is the last time in the 
program after which still 1.1P marking steps remain. 

As seen above, the procedure Purge will be performed after every C2 steps of 
anything else. It kills small groups of cells inconsistent with their neighborhood 
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or sets H = 0 in them. How large can such groups be! An error rectangle in 
a 1-sparse set of errors has the size 3cQ X 3cQ. It will turn out that the created 
damage can extend 3 more cells on both sides, bringing it to 

Cl = 3cQ + 6 

cells. Before the time influenced by the error ends, the damage can grow Cl 

units on both sides. Since C2 steps can pass before a next application of Purge, 
the size of the damage can already be 

The procedure Purge consists of two parts. In the first part, from any place 
of inconsistency, a message gets propagated to the right about the kind of 
inconsistency found there. The second part sets H = 0 in the marked cells or 
kills them if the message met some inconsistency on the right. 

The intermediate cells are marked using the variable Cn which remembers 
the consistency problem found on the left. The values 0,1,2 correspond to these 
values of Cons:», while 3 means H- = O. We kill a small homogenous group 
if it has Cn E {O, 1} on both sides. We write H = 0 in the group if H = 0 
on one side and Cn E {0,3} on the other side. 

The details of the organization, here 'as well as in Recover, though given 
below, are not particularly important, since the effect of these procedures will 
be considered only in error-free space-time areas. However, it is important to 
note that Purge does not affect a large homogenous group of cells, and does not 
revive dead cells. 

Procedure Purge 
Cn +- 2; 
repeat C3 times 

if (Cn- # 2, Cotis.: # 2) then Cn +- 0 
else if en": # 2 then Cn +- en": 
else if Cons.: # 2 then Cn +- Cons
else if H- = 0 then Cn +- 3; 

repeat C3 times 

if {Cons+, Cn} C {0,1} then X +- Dead 
else if « Cn = 3, Cons+ E {O, 3}) or (Cn E {0,3}, H+ = 0) ) 
then H +- 0; 
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The program before the interjecting of Purge has already the procedure Recover 
interjected after every Cs steps. This procedure tries to resurrect the cells in a 
small gap. The procedure Conform used for this marks all new cells by H = O. 
Then Recover tries to restore H = 1. The variable Tempo marks newly created 
cells, and TemPI marks the ones in which we wrote H = 1. The temporary 
changes will be repealed if they do not close a gap. 

Procedure Recover 
T'empo ~ 0; Temp; ~ 0; 

Repeat C4 times 

for j = -1,1 do ( 

Conform(J'); Tempo ~ 1
 

if (H = 0, Hi = 1, Consi = 2)
 
then (H ~ 1; TemPI ~ 1);
 
);
 

(Repeal the changes if they did not close a gap.) 

Repeat C4 times 

for j = -1,1 do 

if '1l" ~ ei 

then ( 

if (Tempo = 1, Consi = 0) then X ~ Dead;
 

if TemPI = 1
 

then if «Consi = 0, T < T3) or (Consj = 2, Hi = 0) )
 
then H ~ 0;
 

); 

How large is C4? If the distance of the damage from the left end of the block is 
not more than C3 then Purge can kill the cells between the damage and the end 
of the block creating a gap of size CI + C3. It will turn out that before Recover 
can really reclaim these cells, the message H = 0 may be carried to the right 
to a distance of 6C2. Hence the total number of cells to restore may be 

If we put 
C2 = 2cI, 

this area can be recovered in C4 steps where we put 

C4 = 9C2· 
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We will find that 
Cs = 6C4 

is also an appropriate choice. This completes the definition of our procedures. 

5.3. The program. 
The program is thus a parallel performance of Comp and (5.2.2). Let us 

remind that the variable". is updated continuously and we had the special rules 
(5.1.1-3) for	 Out and Misel. 

Some turning points of our program have names. 

T1	 is the time when the retreating part of the last application of Oep starts. 

T2	 is the start of the first application of Integrity. 

T3 (defined earlier) is the time after which the marking steps do not start a 
message H = 0 anymore from a place of inconsistency. 

To be comfortable with the structure of the program and see that it is not 
too sensitive to small modifications, let us note that the choice of the earlier 
members in our sequence 

of constants imposed only lower bounds on the later ones. 
Let us show now that the string p can really be chosen so as to make M p 

self-simulating. It can be seen without difficulty that there is a program q and 
constants C, such that for all p, 

the	 simulation 
Sim(q *{3(ro) * ,8(rl) *p) 

is a simulation of Mp on U with periods ro, rl. We choose now an R 1, Ro 
permitting to make ri = R, and put 

Put M = Mp • Let (h, X) denote the code belonging to the simulation Sim(pp). 
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'Thus by the simulation Sim{pp), the medium U simulates one operation of 
a cell of M with R o operations of a block of R 1 cells. Medium M imitates a 
working period of an above simulating block by T steps of a group of P cells, 
giving rise to a code / : SM -+ sfA. To obtain /(s) for a state s, we put 

u[O] ... u[P - 1] = ah(s)h(s)h(s)o, 

and form the string /(s) = z = x[O] . .. x[P - 1] as follows. 
The value of each x[n] will be determined if we give value to all the variables 

We put r[n] = 0, 7r[n] = n (mod P), Misco[n] = something independent of n, 
Misc! [n] = arbitrary, Cn = 2, TemPi = 0, X[n] = urn], and 

Inputi[n] = Y[n] = Mai1i[n] = Outputi[n] = Dead. 

To decode a string z E sfA into s = ¢(x), we first try to reverse the above 
process, finding h(s) from the three candidates by majority decoding in every 
symbol, then apply x. 

The entering operation gi(a, b) for i = 0,1 is the operation of writing b into 
the Mise, variable of a, and the inverse 'Yi is reading it out from there. 
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6. Traces 

Informally, Lemma 2 asserts that if in a space-time rectangle B the set of 
errors is k-sparse then the activity of the cells within the "interior" of B is 
"organized" up to the k-th level of simulation. Of course, by "organized" we 
can only mean a condition which is not affected by a k-sparse set of errors. 
Moreover, we cannot assert that all space-time points in the interior will belong 
to the same organization, only that the interior can be broken up into disjoint 
organized islands swimming in a see of dead cells. These islands will be called 
"traces". They are not necessarily connected, rather they are defined by the 
type of their organization. 

We want to incorporate into the lemma the case when B contains the edges 
of the domain of definition (with standard border conditions) and the case when 
B is not a rectangle because some bad parts were cut out from it. Therefore, 
more generally, we will be concerned with a triple (R, B, e) where B is a set of 
lattice points in space-time Z2, which is contained in a rectangle 

R = [ma ... ml] X [no ... nIl. 

The function z : Z2 -+ SM is defined on R with standard border conditions. 
The shifted triple (a, b) + (R, B, z] is defined as 

(R + (a, b), B + (a, b), z) 

where z[t, n] = x[t - a, n - b]. 
Informally, a canonical k-trace L k is a subset of B such that within it, the 

function x agrees with the work of the medium M satisfactorily up to the k-th 
simulation level. If we shift a canonical k-trace by any nonzero vector in space
time, we get some other k-trace L k inconsistent with the canonical one. But 
even canonical k-traces can be inconsistent between each other, since consistency 
depends not only on the values of the counter variables but also on the variable 
Misca. Therefore to completely specify a canonical k-trace, we have to fix a 
sequence 

where ITi E Su is the value of Misc« required on the i-th level. 

A k- frame F = (a, b, IT) consists of a base vector (a, b) with a E T k+l, 

b E pk+l, and the program sequence II. For any k-frame F = (a, b, IT), we 
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define the k -I-frame F' = (a',b',TI') by 

a' = a (mod T)k, 

b' = b (mod rv, 
TI~ = TIi for i = 0, ... , k - 1. 

Two k-frames F and F are called locally consistent if F' = F'. The set Ck of 
canonical k-cells is the set of all n such that 

We will call any n not in C k a partial cell. A partial cell i is proper if 
pk[1q n (no ... nil = 0. 

For a k-frame F = (ao, bo, TI) and a vector (a, b) we define the shifted 
k-fr:~me 

F + (a, b) = (ao + a (mod T)k+l, bo + b (mod p)k+l, TI). 

A k-frame (a, b,II) is canonical if a = b = 0. The notions of canonicity and local 
consistency will also be applied to the k-traces arising from the corresponding 
k-frames. From now on, we suppose that some canonical k-frame F has been 
fixed. For a noncanonical k-frame F = (a, b,Il), we define the working rectangle 

-Ie Ie
Y [t, n] = (a, b) + Y [t, n]. 

The sets ?Jk, Lie [h] are obtained just like the set Lk [h], but from the shifted triple 
(R, B, z] - (a, b) and the canonical k-frame F - (a, b). When we speak of the 
work of the (canonical) k-cell n at (the period) t, we mean the work rectangle 
yk[t:, n]. If it cannot lead to confusion then we may simply speak of a canonical 
k-cell as a cell. 

Each canonical k-cell i represents at each period h a value x k [h, i]. 
As an element of S M, this value is the collection of variable values 
X(xk)[h, i], r(xk)[h, i], .... The function x le will be defined recursively and simul
taneously with the set Lie [h] of live cells. We put 

kPut :z:O = z, For k > 0, suppose that X - 1, Lk-l are defined already. We 
say that cell i is formatted at period h if there is an interval I of length 
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C1 + 2C3 such that 
(K + iP) \ Lk-l [h] C I, 

and the sequence 
X(Zk-l)[hT] I K + iP 

can be changed on I to have the form 'U'Uti. for a string tI. in SG1. For cells i we 
put Zk [h, i] = Dead if i is not formatted at n, and 

otherwise. 
Let us extend the definition of zk [h, i] to be Out for proper partial cells i, 

and Dead for improper partial cells as well as cells i with hTk < rna. Put 

For k > 0, that the cell i is protected in period h if the rectangle 

[(h - l)Tk ... (h + l)Tk) X [(i - 2.1)pk ... (i + 3.1)pk) nR 

is contained in B. The O-cell i is protected at h if (h, i) is in B. The set of k-cells 
protected at period h is denoted by Bk[h]. 

The cell i is in Lk [h], or it is a live cell of F if it is protected, formatted and 

X(zk)[h, i] E Su, 

r(zk)[h, i] =h (mod T), 

1r(zk)[h, i] =i (mod P), 

Misco(zk)[h, i] = Ilk. 

We say that cell or partial cell i is proper dead at h if P[i] nLk-dhT] can 
be covered by an interval of length C3. Let F be a k-frame locally inconsistent 
with F. We say that the cell or partial cell n of F at t disturbs the cell i at h 
if n is not a proper dead k-cell of F at t and the set 

intersects with V k 
[t, n]. A cell i is proper at h if it is either proper dead, or 

formatted and not disturbed (by any cell of any other frame). The behavior 
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of xk is not predictable for unprotected cells and less predictable for improper 
cells. We will see that improper cells are a transient phenomenon. 

From now on, we suppose about every triple (R, B, x) we deal with that the 
bottom row of R is contained in L l for alll < k. This condition implies that the 
time projection of R begins at a point of the form hTk , and the space projection 
is the union of whole copies of pk. 

'He say that the triple (R, B, x) is k-organized if for any canonical k-frame 
F and any shift of the triple (R, B, z), the conditions (01-03) hold. Suppose 
that. i is a protected k-cell in both the periods hand h + 1. 

(01) (Regularity.) 

1.	 Each protected cell is either proper dead or formatted. 

2.	 The k-traces corresponding to different k-frames are disjoint. 

3. If both i - 1 and i + 1 are protected and formatted at h then i is proper 
at h. 

4.	 If an inner cell i is proper dead or undisturbed at h or mk [h, i] = Dead 
then it is proper at h + 1. 

(02) (Computation.) 

xA:[h+ 1,i] is either mk[h,i] or is Dead. We have the former case if i is proper 
live at h. 

The last condition tells when a k-trace is able to "advance into a no man's 
land". It is formulated for advance to the right, but we assume that it holds for 
left advance as well. 

(03) (Advance.) If k > 0 and i - 1 ... i + 2 are protected and undisturbed at 
h, then xk[h + 1, i] = mk [h, i]. 

OVE!r a k-organized domain, we can make many assertions about the function 
z", For each h, the live k-cells form intervals. New intervals do not arise out 
of nothing, except possibly at the left and right ends of B. The old intervals 
can grow with time, shrink or break up. The inner points or new endpoints of 
any of these intervals are proper. If i - 1, i, i + 1 are live then xk[h + 1, i] 
depends only on xk[h,i+f] for f=-1,0,1, and is equal to mk[h,i]. 
If the middle cell i is not live but its neighbors are then if the neighbors are 
in the appropriate phase of their working period they will "overtake" i, thus 
we will have i E Lk[h + 1]. A live cell i can can die at period h only if it is 
an improper endpoint or mk [h, i] = Dead. The condition (03) asserts that an 
interval can increase at a proper endpoint if it is in the appropriate phase of the 
working period, and other traces are not too close to block the growth. 
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LEMMA 2 (MAIN LEMMA) If the set of errors is k-sparse over B then our triple 
is k-organized. 

The lemma is obviously true for k = o. Section 8 is devoted to the proof of 
the Main Lemma by induction. 
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7. Proof of Theorems 1 and 2. 

We use the medium M, the code f and the entering operations gi defined in 
Section 5. 

Proof of Theorem 1: Let the standard code (F, 4» use the entering operation 
(gI, -rd defined at the end of Section 5. Let u be a string in SB-. We can 
suppose without loss of generality that n = P" for some r . (We can "pad" the 
input string u if this does not hold.) 

Let ebe a p-perturbation of M defined over a rectangle 

with. input !Ie (f)) and standard border conditions. 
It follows from Lemma 1 that for any f, we can choose 

k = O(log log nt]f) 

such. that the set of errors is k-sparse with probability 1 - f. Let us thus 
suppose that the set of errors in our sample realization z of eis k-sparse. Given 
the input string u, the bottom of R obviously belongs to t». We have to prove 
that 

(7.1) 

The Main Lemma implies that the triple (R, R, z] is k-organized. If also 
R C L k then the values '11 (xk[h, i]) will be the record of the work of the 
universal medium U with input u. Therefore (7.1) holds. 

'lYe will prove R C L k • Suppose that, on the contrary, there is a h such that 
not the whole row [0 ... n) belongs to Lk[h]. Let hk be the first such h. Then 
the cases (01),(02) apply to all (h,i) with h < hk. If fflk[h,i] is live then 
i E Lk[h] and xk[h+ 1,i] = fflk[h,i]. Therefore if hk < t then fflk[hk -l,i] 
is dead for some i. 

To prove that fflk [h, i] is always live, we must convince ourselves that 
there are only two cases when our program kills a cell. First, this can happen 
if th.ere is an inconsistency. But the only way the program can introduce an 
inconsistency is the same as the second way to kill a cell: namely in the last step 
of Comp, if in some cells we have Y = Dead. Without inconsistencies, this will 
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happen only if the last step of Core finds that in the computation simulated by 
z", a cell gets killed. Thus a cell can get killed in the computation xk only in a 
step of the form hk = hk+lT, and only if a cell gets killed in the computation 
xk+ 1 by step hk+l. 

The input to our computation was the string fk(v) where v = gl(f+', u). 
Therefore the strings Xl [0] are consistent for all natural numbers I. Hence the 
above argument applies to all I > k: a cell of Xl can get first killed at step hl 

only if a cell of Xl gets first killed at step hl+ 1. There is only one k + r
cell in our computation, namely O. According to our definition of foo, and our 
program, we have X(xk+r)[w, 0] = Q for all tu (since a is an endcell for the 
k + r + 1 -block 0). Therefore on level k + r, no inconsistency ever arises. 
Concluding back from 1+1 to I for k < I < k + r we find that mk[h, i] 
is always live. • 

For Theorem 2, we will deal with triples (R, B, x) where R = [0 ... 00) X Z, 
and the bottom of R is contained in L l for all I. We need another lemma, which 
comes as a side result of the proof of the main lemma. 

We define the following rectangles. 

w~ = [0 ... 2Tk) X [_3pk X 3pk), 

W~ = [Tk/2 ... 2Tk) X [_pk X pk) 

WJ [h, i) = WJ + (hTk, ipk). 

For Lemma 3, let (R, B, z) be triple, k > O. Suppose that the set of errors is 
k-sparse over Band k - 1 -sparse over the set Wg[h, i] C B. 

LEMMA 3 Suppose that W~ [h, i) C t», and the values mk [h, i -1], mk [h, i] 
are live. Then W~ [h, i] eLk-I. 

This lemma, together with the previous one, says that if our input differs in 
something like a k-sparse set of errors from a string of the form fk( u), and the 
set of errors over our local space-time domain (a few copies of yk) is not only 
k-sparse but also k - 1 -sparse, then the largest errors in the input will soon 
be corrected. For example, the information ITo can be read out from every copy 
of yk-l which is well inside the domain. 

Proof of Theorem 2: Let the entering operation (go, 'Yo) be the one defined 
in Section 5. Under the assumptions of the theorem, let us look at a space-time 
point (t, n). Let R o, R 1, . .• be a sequence of rectangles where R« = {(t, n)}, 
while n, for k > 1 has the form W~ [h, i) with 

R k - 1 C W~[h, i). 
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Such a sequence obviously exists. 
Let U be the event that for all k > 01 the set of of errors in eis k - 1 

-sparse over Ri: By Lemma 11 for any k > 01 the set of errors will not be 
k - 1 -sparse over Rk only with probability p21c-2+1/2. The sum of these terms 
for all k > 0 is O(vp). Therefore U holds with probability 1 - O(vp). 

Let x be a realization of efor which U holds. It remains to show that 

Misco(x)[t, n] = s. (7.2) 

Let r be the first k such that Rk intersects the start line {O} X Z. If r = 01 

there is nothing to prove. We will show that R k is contained in L k for all 
k < r . Especially, (t,n) E LO I which implies (7.2). 

Let us first show that R r - 1 C trr>. Without loss of generality, we can 
suppose that n; is either W6 or W~ [-I, 0]. 

First Case: R; = W6. Then the bottom row of R; is the starting line, hence 
it is contained in L" for any k . We conclude from Lemma 3 that Wf is contained 
in L r - 1

1 hence also R r - 1 is contained in tr:». 
Second Case: R; = W~ [-110]. Let us look at the triple (R I B I x) 

The set of errors is r - I-sparse over B, and the input to R is contained in L" 
for any k; especially, it is contained in Lr-l. We conclude from Lemma 2 that 
the triple is r - 1 -organized. 

Let us show that the rectangle 

is contalned in Lr - 1• We already know that [-2P ... 2P] consists of proper 
cells of Lr-dO]. Just as in the proof of Theorem 11 we can conclude that if row 
(h -t- I)Tr-l is the first one not contained it Lr- 1 then mr-dhl i] = Dead 
for some i in [-2P ... 2P). But since 0 < h < T - 2, the only cause of killing 
a cell during this time is an earlier inconsistency within the block I which we did 
not have. Thus we proved A C tr :», and with it, R r - 1 C u :', 

Now we can prove that for all k E [1 ... r - I], if R k C L" then 
Rk-.l eLk-II using Lemma 3 in exactly the same way as in First Case above. 
Therefore by inductlon, we proved Rk C L k for all k < r, • 
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8. Proof of Lemmas 2 and 3 

Throughout this section, we are given a triple (R, B, e) satisfying the con
ditions of Lemma 3. In particular, the set of errors is k-sparse over B. By 
induction, we assume that the lemma holds for k - 1. We will always assume 
that the constant P is as large as needed with respect to the constants Co, Cl, ••• , 

and T as large as needed with res pect to P. 
It follows from k-sparsity that in any copy of CoV k there is a copy J of 

l3co V k - such that the set of errors is k - 1 -sparse outside J. We will call J 
the error rectangle. We will generally not explicitely specify the enclosing copy 
of Co v-, but it will always be clear from the context that it can be easily chosen. 
Instead of J, it is more convenient to work with the intervals Jo, Do which we 
now define. Let Do be the interval of all those i for which the strip 

lZ X [(i - 2.1)pk - 1 ••• (i + 3.1)pk - ) 

has a nonempty intersection with J. Then the length of Do is at most 
Cl = 3co + 6. Similarly, let J» be the interval of all those h for which the 
strip 

l	 1((h - l)Tk
- ••• (h + 1)Tk

- ] X Z 

intersects with J. Its length is at most 3co + 2. Any interval disjoint from Jo 
is called error-free. 

8.1	 The effect of Purge and Recover. 
It is simple to show that the procedure Purge kills small islands. But for 

Recover to work, the gap it has to close must be purged of all remainders of 
k - 1 -traces. This will happen since sooner or later each of these k - 1 
-traces uses its own Purge; but it is convenient to formalize this observation in 
Lemma 4. 

Let a, b, t, n be integers. Let E C B be a rectangle 

(a, b) + [0 ... t] X [0 ... n] 

not intersecting with J. 

LEMMA 4 Suppose that t > C2 + 4C3. Suppose further that the left and right 
ledges rectangle of E do not intersect with L k - , and the intersection of its 

bottom with Lk-l can be covered by an interval of length 3c l P k - l . Then its 
top does not intersect with Lk-l. 
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Proof: Put h = la/Tk-l J, i = lb/ple-l J, 

L[5] = LIe-l[s] n [i ...i+ n]. 

The intersection of LIe-l with the bottom of E is 

{a} X U{ pk-l[q] : q E L[h]}. 

Thus L [h] is contained in an interval of length 3Cl. Let to be the first t > h 
where an instance of Purge starts. Then 

to < i + C2 + 2C3, 

since a Purge starts after every C2 steps and its length is 2C3. 
The elements of L [to] can be covered by an interval of length C3. It follows 

from the k - 1 -organizedness of x over our rectangle E that after the 2C3 
steps of Purge, the k - 1 -cells in this interval, being isolated from other live 
k-ce!lls, will be killed. After it, no element of L can arise. • 

Due to the general position of the rectangle E +(a, b), Lemma 4 is applicable 
to any k - 1 -trace, not only the one arising from the frame F; and it is 
typically applied simultaneously to all other traces. Put 

ca = IPurge[c2]Recoverl. 

LE,MMA 5 Let us use the notation of the previous lemma, with 
a =0 (mod T)k-l, b=0 (mod P)Ie-l. Suppose that 

and a/T Ie - l + t is the end of an application of Recover. Suppose further that 
lthe edges of the rectangle E are contained in L Ie - , and no k - 1 -trace ir:: 

locally inconsistent with F bas an intersection with the bottom of E longer than 
3cd:;,k-l. Then the top of E is contained in Lk - l • 

Proof: The part of E above the level 

doee not intersect with tr:: for any k-frame F locally inconsistent with F. 
Indeed, let F = (al, bl l m be such a frame. It follows from the k - 1 
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-organizedness that Lk-l does not intersect with L Ie-I, hence the left and 

right edges of E are disjoint from tr:'. Therefore we can apply Lemma 4 to 
the k-frame F and the set E = E - (aI, bd. Any horizontal segment through 
E above t2 can play the role of the top of E for the k-frame F. 

After tl, the next application of Recover recovers all cells between the two 
edges of E to Lk-l. Indeed, since it now finds undisturbed cells in the gap, 
it can rely on (03) of Lemma 2. This application of Recover starts certainly 
before a + Cs + Ca. • 

8.2.	 The integrity of blocks. 

The goal of Lemmas 6-10 is to show that each protected cell is either proper 
dead or formatted. We will assume that the k-cell 0 is not proper dead at 1. 
Lemma 6 shows that then its k - 1 -cells occupy the whole block for most 
of the working period O. Lemma 8 says that most of the k - 1 -cells in the 
block 0 have H = 1 at time T - 1, i.e. will not be killed for H = 0 
in the last step of the working period. 

We will say that the rectangle [u ... v] X [i ... i] is regular if for all t in 
[uT ... (v + l)T] we have 

[(i - O.l)P ... (i + 1.1)P) n o, C BIc-dt]. 

From now on, put 
Lj[t] = P[i] n Lk-dt]. 

As usual, we write L = L o. Let further )(j [t] denote the set of those i in Lj[t] 
for which 

H(Xk-I)[t, i] = 1. 

Let us remember the definition of a marking step given in the procedure 
Integrity. The last LIP marking steps of the program are called concluding. 
We know that they will already only propagate a message H = 0 but not 
create one. 

LEMMA 6 Suppose that (0,0) is regular, and 0 is a k-cell which is not 
proper dead at 1. Then for all but P values of t in [T2 ••• T3J we have 
)([t] = Pn(no ... ntJ. 

Proof: A gap at time t is any contiguous interval of P \ )( [tJ. An interval in 
P \ L[t] will be called a dead gap. The part of space-time outside the error 
rectangle J is k - 1 -sparse, hence we can apply the inductive assumption 
there. We will say that an endgap opens if an improper cell dies at an end of 
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C. When an endgap is closed and we are outside the error rectangle then the 
endcell becomes proper, by (01). 

Any error-free marking step can only widen existing gaps. In an error-free 
application of Recover, all newly created cells will be repealed if they did not 
close a dead gap. Similarly, only Recover can unmark the marked cells, and it 
does so only if it closes a gap. Thus after T2 and outside Jo, gaps are never 
diminished unless closed completely. 

Put m = Cl + 2C4 + 1. Let us call a free run any m consecutive error-free 
nonconcluding marking steps. We will show that any gap disappears in the first 
free run after its appearance. Suppose that a gap persists throughout some free 
run. Then the size of this gap will be at least m by the end of this run. Any 
error-free marking step coming after the appearence of this large gap increases 
it by at least 1. The effect of the error rectangle can decrease it by at most 
Cl .+ C4 (changing a piece of size ci and cutting off by it a piece of size 3C2 

which can be recovered). Since this still leaves a gap larger than C4, it will not 
be recovered completely. Therefore since there are at least 1.lP more marking 
steps after our free run, at least P of them widen all possible gaps, hence the gap 
will eventually cover the whole P. An error coming after this time can create 
an island of size C3 but not larger, because the first application of Purge erases 
this island again. The last step of the program kills all cells in L [t] - )I [t]. 
Thus if a gap persisted in our free run then 0 would become a proper dead k-cell 
at 1. 

Suppose now that no gap persists in a free run. It is easy to see that there are 
only a few kinds of gap, and since each quickly disappears after its appearance, 
the lemma will be proved. The original inner gaps must disappear in the first 
free run. A further inner gap can be opened by the error rectangle, but it will 
also be closed by the next free run. A left endgap may also show up. When it 
disappears, it is replaced by a proper endcell, hence it can reappear only due to 
the error rectangle. But after this, it disappears forever. The same applies to 
the right end. 

Thus, apart from the error interval plus a few contaminated free runs, gaps 
may appear only before T2 and after T3 . • 

Notice that this proof is also applicable to the case when 0 is an improper 
partial k-cell. We can conclude that then 0 is always proper dead at 1. 

For the next two lemmas, suppose that the conditions of Lemma 6 hold. 
Lemma 7 is a preparation for Lemma 8. Let t > T2 be such that Jo does not 
occur between T2 and t. Suppose that t is u marking steps away from the end 
of the program. 
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LEMMA 7 The set L[t] is an interval containing [1 ... P-2]. Further, Jl[t] is 
an interval which either contains L [t] or is at most 'U - O.lP long. 

Proof: From the proof of the previous lemma we know that there is a time 
before T2 +D.1P at which ){ = P. After this time and until the error, 
a gap can arise only if an improper endcell dies. Suppose that this happens 
on the left end. If it happens before T3 then the marking on the cells begins 
to be propagated from the left end by every marking step. Until the marking 
travels farther than C4, two events can interrupt it. First if the endcell gets 
restored. Second, if". becomes larger than T3. In both cases, Recover unmarks 
the marked cells. Of course, similar events may occur on the right side. If the 
marking travels farther than C4 then these events do not change it anymore, 
and the first v concluding marking steps mark at least v cells (until there is 
any unmarked cell left). If an improper endcell dies after T3 this event does not 
create any new marked cells. • 

LEMMA 8 Under the assumptions of Lemma 6, there is an interval D of length 

containing Do such that 

[1 ...P - 2] \ D C Jl [T - 1]. 

If {O} X {O,l} is regular and 1 is not a proper dead at 1 then P - 2 can be 
replaced by P - 1 here. 

Proof: Let to be the time when Jo occurs, t 1 the time of the first application 
of Purge after Jo. Then 

t 1 < to + Cl + C2. 

Let t2 be the time of the first application of Recover after t l , and 

be the end of this Recover. 

Let us first prove that there is an interval D I of size CI + C3 such that 

K\D ICL[T-1]. (8.2.1) 

By the previous lemma we have [1 ... P - 2] C L [to]. The effect of Jo can kill 
cells within Do. Further cells can be killed only by Purge, and this happens 
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only if there are ca or less cells between Do and one of the endcells. Then Purge 
rna)' kill these intermediate cells. If the endcell is improper and dies then the 
joint effect of these two events can kill cells within an interval of maximal size 
Cl .+ C3 in K. This proves (8.2.1). 

Suppose that JI [tol is empty. Then new cells of JI can only arise in Do. 
Before the next Purge, these can be propagated within an interval of size 

No further growth is possible. Therefore 0 is a proper dead k-cell at l. 

Suppose that L[tol = JI[tol and u < l.lP. Then cells of JI can be erased 
only either by the death of an improper endcell, or by the error. The former 
event now does not lead to further decrease of JI since our marking steps are the 
concluding ones. The error can erase the elements of JI in Do. If this happened 
closer than C3 steps to a perished endcell then the intermediate cells can be 
killed by Purge. At the same time, markings can be propagated into the block 
to C:2 further cells before the arrival of the next Recover, making the maximum 
size of the damage in K as large as 

Since Recover unmarks all marked cells that belong to a large interval of JI, the 
damage does not grow any further. 

Suppose that T < t2' Then since Recover gets applied every Cs steps and is 
Ca steps long, we have to > T - Cs - Ca. By the previous lemma, then either 
JI[tol or L[tol- N[tol is empty. We have considered these two cases in the 
previous paragraphs. 

Now we can suppose that t2 < T, i.e, that an application of Recover is left 
between to and T. 

Vie first show that L[t3l is an interval. The set L [tol - Do consists of two 
(possibly empty) intervals 10 and Ir. We can suppose without loss of generality 
that II is longer. Only Purge can erase cells outside Do, and if this happens 
then. it erases the whole of 10 or II' 

Suppose that both 10 and II exist by the time t3. Since the gap between 10 
and II is Do and thus short, it will be closed, as shown in Lemma S. Thus L [t3l 
contains s: 

If 10 disappears by t3 then it is shorter than Ca + 1 cells, hence the number 
of cells outside II is at most Cl + C3 + 2. It follows that after Purge, the cells 
of L outside II, if there are any, will be either contiguous with II or form one 
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long interval I. If I survives until t3 then by Lemma S, it will be joined to 11. 
We thus proved that L [t 3 ] is always an interval. 

The gap between the two (possibly empty) intervals of N[to] - Do can 
by the time t z increase to the size C3. Nevertheless, it is easy to show by an 
argument similar to the one used for L, that J( [t3] is an interval. Obviously, 
if P is large enough then the size of the difference between N[t o] and J( [t3] is 
bounded by a.asp. 

Suppose that N[to] -:j; L[to]. Then by Lemma 7 we know that the number of 
cells in J([to] is at most 'U - a.1P. If 'U < a.1P then N[to] is empty. This case 
was considered in a previous paragraph. Suppose that 'U > a.1P. Then the size 
of J( [t3 ] is at most 'U - a.sP. Since after t3 there are still at least 'U - a.sP 
marking steps left, by the time T - 1 they mark all cells of I, and JI [T - 1] 
is empty. 

Suppose that JI [to] = L[to]. The case 'U < l.lP was discussed in a previous 
paragraph. On the other hand, if 'U > l.lP then the discussion of the preceding 
lemma can be applied to the events after t3, and we can conclude that JI [T - 1] 
is either empty or contains L[T-l]. • 

8.3. Occupation and computation. 
Let us examine the work of the procedure Ocp. For j E [-2 ... 2]' let Gi[t] 

denote the set of elements n of Lk-dt] with the property that 

7r(X 
k- 1 )[t , n] = n - jP. 

The set Gi[t] is an extension of the proper elements of the k-cell j by its 
"occupying arms" . 

For Lemma 9, suppose that {a} x {a, I} is regular and a is a proper dead 
k-cell at a. 
LEMMA 9 For j = -1,1, t ~[to ... t3] the set G·i[t] is an interval. If also 

t < T2 then GO [t] is empty. 
The size of L[t3] differs from the size of L[to] by at most a.asp cells. If 

t3 < T4 then the size of the interval Gi[ts] differs from the size of Gi[to] by at 
most a.asp. 

The proof of Lemma 9 is similar to the proof of Lemma 8. This lemma 
enables us to reason about the growth intervals directly in terms of the program, 
knowing that the the intervention of the error will not change the situation 
greatly. 

The first property in (01) says: "Each protected cell is either proper dead or 
formatted." We prove this in the next lemma. 
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LEMMA 10 Suppose that the set {-1,0} X {-1, 0, 1} is regular. Then 0 is 
either a proper dead or a formatted k-eell at 1. 

Proof: It follows from the proof of Lemma 6 that if 0 is not proper dead at 
1 then that there is a t4 < T2 +O.lP such that L[t4] = P. 

Suppose first that Jo occurs before t4. Then the three identical computa
Xk- 1)tional parts of the program in its application in V[l,O] (on are 

undisturbed by any error within K, Thus in applications s = 1,2,3, three 
copies of the sequence 'Us are written to Outputs in the three thirds )(1, )(2, )(3' 

If any element of 'Us is Dead then all of its elements are Dead, since an errorless 
computation produces such outputs. We cannot claim any relation among the 
three sequences 'Ul, 'U2, 'U3, only that Outputsl)( will be 'U~ = 'Us'Us'U s' 
ThE! final step of the program will leave us with dead cells wherever H = 0 
and with the result of cell-for-cell voting among the three strings 'Ur, 'U~, 'U~. 
The result of this voting may be a string which does not "code" anything, but 
its three parts will be equal, and it is either all dead or all live. As shown in 
Lemma 7, if an improper endcell dies and this does not kill the whole block then 
it does not kill any other cell. 

Let us suppose now that Jo does not occur earlier than t4 • Then the previous 
paragraph can be applied to the work of each of the k-cells among -1,0,1 
at the period -1. Hence each of these k-cells is either proper dead or formatted 
at O. 

Let us look at the three blocks P[;] at time T1 • If i is a cell not proper 
dead at 0 then X(xk-1)[Td has the desired triple structure over )( + [P, 
If i is proper dead at 0 then its live k - 1 -cells all belong to two occupying 
arms of the neighbor blocks, and we have 

in cell n. If these occupying parts do not meet by T1 then the gap between them 
will be widened so much by the retreating part of the last Ocp that Integrity 
will kill the block by the time 2T. This cannot happen for i = O. 

Thus at time T1, each k-cell among -1,0,1 either has the information in 
X(3:: k - 1) in the desired triply redundant form or has the (triply redundant) code 
of a dead cell in each of its live k - 1 -cells. Moreover, we have P C L[Td. 

To make sure that the computation can make proper use of this information, 
let us notice that if 1 is formatted at 0 then 

[1 ... 2P - 2] C L[Td. 

8.8 



Indeed, if 0 is also formatted at 0 then according to Lemma 6, already Lk-l [T] 
contains [1 ... 2P - 2] and this situation does not change until the appearence 
of the error. If 0 is proper dead then the right occupying arm in P must be a 
continuation of L +. 

Similar reasoning shows that if 1 is a proper dead k-cell at 0 then 

consists of two intervals. Thus Lk-l [Til contains an interval containing K, 
which we can call the input interval. It covers the live neighbors of the block 
O. 

Having the desired input to the computational part of the program, it is not 
difficult to see that it comes up with the desired form of output. Indeed, the 
error rectangle will be separated in time from at least two of the three identical 
parts of the computation. The error may change or kill at most ci + C3 

cells of the input interval. If these cells are well inside the input interval then 
Lemma 5 implies that they will be restored to Lk-l in at most Cs + 2C6 

steps. The error may also affect the X{X k - 1) values in a short interval. But 
due to the triple redundancy, these errors will be suppressed by voting. The 
Outputi{Xk - 1) in the part of the computation affected by the error is probably 
worthless. 

In the two error-free parts of the program, the input coming from the input 
interval is therefore restorable by voting. This is true even if e.g. the k-cell 1 
was proper dead at 0 (e.g. because it is an improper partial cell). In this case its 
block may not be covered by the input interval. If the error-free reading part 
encounters a discontinutiy in block 1 it will record Dead, and Init implies from 
this correctly that 1 is dead. If no discontinuity is encountered then all but a 
very small interval of the block 1 has X[n] = d[n], from which it will again be 
concluded that 1 is dead. 

Thus in the error-free thirds, the Output values computed will be equal to 
the same triply redundant string (with the possible exception of the interval 
D1) . The final voting produces the desired result. • 

Examining the previous proof yields us some additional facts. 

LEMMA 11 Suppose that [-2 ... 1] X {-1, 0, I} is regular and 0 is not a 
proper dead k-cell at 1. Then there is an interval D of length 2.5c4 containing 
Do such that 

K - D C L[t] (8.3.1) 

for t in [T1 ••• 2T - 1]. 
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Proot: By Lemma 10, the k-cell 0 is either proper dead or formatted at O. In 
the first case, (8.3.1) holds for t in [T1 ••• T). Indeed, if the two occupying arms 
were further apart than 2.5c4 by this time, they would no longer grow to meet 
later, and the gap is too big to be closed by Recover. This would cause block 0 
to die by Lemma 6. 

In the second case, (8.3.1) holds for all tin T; indeed, nothing diminishes L in 
this: interval (or causes a large gap in L[0]) but the error rectangle or an improper 
endcell. This argument also extends the validity of (8.3.1) to [T1 ... 2T - 1]. 

• 
xk[l,O]LEMMA 12 Suppose that [-2 ... 1] X [-2 ... 2] is regular. Then 

is either mk[O, 0] or Dead. In the latter case, the k-cell 0 is proper dead at 1. 

Proof: It follows from Lemma 10 that each of the k-cells -1,0,1 is either 
proper dead or formatted at O. Now we can follow the part of the proof of 
Lemma 10 which concludes all the assertions of our lemma from this assumption. 
True, in that proof we also knew that Jo does not occur until T2 • However, we 
did not use this fact in a significant way. If Jo occurs earlier then the error can 
either open a gap in the set Lk-l which, by Lemma 5, will be closed in due 
time, or change the length of an interval of Lk-l by a constant amount. None 
of these will affect the input to the computation significantly. • 

8.4.	 The disjointness of k-traces. 

The following lemma proves that the occupation procedure never brings a 
k-trace into contact with a k-trace with which it is locally inconsistent. Let 
F be a k-frame locally inconsistent with F. Suppose that T k has a nonempty 
intersection with T'k [t] and the intervals pk and ,-k [n] are less than cs/2 steps 

apart (Le. the rectangles V k and Vk[t, n] "disturb" each other). 

LEMMA 13 Suppose that either 0 is a proper dead cell of F at 0 or n is a 
proper dead cell of F at t. Then either 0 is a proper dead cell for F at 1 or n is 
a proper dead cell of F at t + 1. 

Proof: We can suppose without loss of generality that t = n = 0, and 

where a E T k and b E [0 ... pk + 0.5csPk-l). Since we want to prove the 
contrary, we can also suppose that 0 is formatted at 1 both in F and F. 
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In this case, it follows from Lemma 11 that for some intervals D, 15 of length 
2.5c4 the set 

{u} X pk-l(K \ D) (8.4.1) 

is contained in L k - 1 for all u in T k - 1 [T1 .,. 2T), and 

(8.4.2) 

is contained in tr:', for all u in 

In the case of b < pk /2 we can immediately arrive at a contradiction from 
1here. Indeed, put u = a + T1T k - • Then the two sets (8.4.1) and (8.4.2) have a 

large intersection, which contradicts the disjointness of L k - 1 and L k-l. Hence 
b is in (pk/2 ... pk +0.5csPk-l). 

Let us suppose first that °is a proper dead cell for F at 0. Then cell °of F 
can come to life in the period °only by the procedure Ocp of its right neighbor. 
Indeed, -1 is a proper dead cell of F by a reasoning analogous to the one in the 
preceding paragraph. We can now apply Lemma 9 to the interval consisting of 
the block -,k and its two neighbor blocks. We get that if 1 is also a proper dead 
cell of F at 0 then the occupying arms t:- 2 and (J2 intruding from the ends of 
the interval b+ [_pk ... 2pk] never meet. Thus 1 is a formatted cell of F at ° 
and the originator of the growth interval 'G+ which eventually overtakes 15k

• 

However, a+ can grow only about P + cs/2 steps to the left, because then 
it meets the set (8.3.1). The last retraction part of Ocp will therefore retract 
the growth interval to a size P - cs/2. The set r; will no more be able to cover 
P, hence Integrity marks all occupied cells. The error rectangle can only change 
the length of the intervals encountered here by an amount less than cs/2, hence 
does not change the validity of this reasoning. 

Let us now suppose that °is not a proper dead k-cell at 0. By our assumption, 
o is not a proper dead F-cell at 1. Therefore we have (8.3.1) for all u in 
a + [0 ... 2T). Since we assumed that °is a proper dead cell at °for either F or 
F, it follows that 0 is a proper dead cell at °for F. But then we can repeat the 
argument of the preceding paragraph showing that the occupation procedure 
which would bring the canonical cell °to life will balk at the sets (8.4.2). • 

The second property listed in (01) is proved in the following lemma. 

LEMMA 14 Any two different k-traces are disjoint. 
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Proof: Suppose that the different k-traces are not disjoint. Then we can 
suppose without loss of generality that there is a k-frame F = ((a, b), IT) such 
that our canonical k-trace L k has a nonempty intersection with the k-trace 
-kL. 

If a' = b' = 0 then the k-frames F and F differ only in values which can 
be computed from the function :z:[h]lpk[i] whenever i is formatted for F. This 

makes L k and L k 
disjoint by definition. Suppose therefore that either a' or b' 

differs from O. 

'He can assume without loss of generality that L k and r k 
intersect in such 

a way that yk[l,O] is contained in L k while yk[l,O] = (a',b') + yk[l,O] 
is contained in L k 

and intersects with v-u.o; We will arrive at a contradiction 
from this assumption. 

We assumed that 0 is in both Lk [1] and L k [l ]. It follows from Lemma 13 
that, 0 is not a proper dead k-cell at 0 for either F or F. It follows from Lemma 
6 that 

1{u} X pk C L k-

for most elements u of the set [0 ... 2T k ], while 

{u} X (b' + pk) C tr:' 
for most elements 'U of the time segment 

Since pk and b' + pk have a nonempty intersection and the latter time segment 
is contained in the former one, we obtain a contradiction with the disjointness 

k	 1 -k-lof the sets L - and L . • 

8.5.	 Proper cells. 

The next unproved statement of (01) reads: "If i-I, i, i+1 are in Bk[h] and 
i-I, i + 1 are formatted at h then i is proper at h." 

If i is proper dead at h there is nothing to prove. Otherwise, all three cells 
in question are formatted at h. Thus a disturbing rectangle yk [n, t] would 
intersect with one of the three rectangles yk [h, i] (i = -1,0,1). But this is 
excluded by Lemma 14. 

The next unproved statement reads: "If i is proper or undisturbed at h or 
fflk [h, i] = Dead then it is proper at h + l' '. Without loss of generality, let us 

8.12
 



take h = i = o. If mk[O,O] = Dead then our statement follows from Lemma 
12. 

Suppose now that 0 is proper dead at o. We can also suppose that 0 is 
formatted at 1, otherwise it is proper dead and we are done. We must prove 
that 0 is undisturbed at 1. Suppose that, on the contrary, there is a k-frame 
F locally inconsistent with F and t, n such that the rectangle Vk[t, n] 
disturbs the rectangle v-u, 0]. It follows from Lemma 13 that since 0 is proper 
dead at 0 and formatted at 1, the cell n of F must be proper dead at t. Hence 
1 is undisturbed at 1. 

The case remains when 0 is undisturbed at o. Then, using the notation of 
the previous paragraph, n must be a proper dead k-cell at t - 1 for F. It 
again follows from Lemma 8 that it must be proper dead at t too. Thus 1 is an 
undisturbed k-cell at 1. 

The next unproved statement is (02). From Lemma 13 we know that 
x[h + 1, i] is always either mk[h, i] or Dead. We must show that if i is proper 
live at h then xk[h + 1, i] is mk [h, i]. It is easy to see that all turns on the 
following fact. 

LEMMA 15 Suppose that {-I, O} X [-2 ... 2] is regular, and 0 is an undisturbed 
formatted k-cell at o. Then there is an interval I of length C4 such that N[t] 
contains P \ I for all t in [O.lP ... T - 1]. 

Proof: Since the k-cell 0 is formatted at time 0 there is a time v > -O.ST 
such that J/[v] = P. In general, we want to show that for any 1J in 
[-O.ST ... T - 1], if J/ [v] = P and J/ [v + 1] ;j; P then we will have 

H[v + IOcpl] = P, 

i.e, the set J/ soon recovers from any damage. We already know from Lemma S 
that any gap deep in the interior of J/ will be closed soon. 

Here we want to see how the k-cell 0 can close a gap at the boundary, before 
the procedure Integrity widens the gap too much. The only obstacle to closing 
the gap may be if the k - 1- cells near the end of P are disturbed, thus hindering 
the procedure Recover. We must thus understand what can be implied about 
these potential disturbances on level k - 1 from the assumption that the k-cell 
o is undisturbed at o. 

Let F = (a, b, IT) be a k-frame locally inconsistent with F. Suppose, without 
loss of generality, that a E T k and 

k-CSp k- 1/ 2 E b+ p • 
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It follows from the assumption of the undisturbedness of the k-cell 0 of F at 
o that the k-cells 0 and 1 of F are proper dead at 0 and -1. Let us apply 
Lemma 9 to the cells 0 and 1 of F in periods -1 and O. Let to, t l , ... 

denote the quantities corresponding to to, tl, ... in F. 
It follows from Lemma 9 that for any t ~(to ... t3), the cells of 

t.,», [t] n [b ... b + 2P - 1] 

belong to a growth interval aj [t] (j = -lor - 2) on the left of b + P and a 

similar growth interval on the right of b+ P + P. If lP[t] is nonempty then we 
say that F is threatening on the left at time a + T k - l t. In this case, Gj[t] is 
the right "occupying arm" of cell j of F. Let 

denote the actual area occupied by the threatening cells. 

Obviously, if F threatens on the left at time t£ then no k-trace locally 
inconsistent with F can threaten on the left until the cell j of F is alive, i.e. 
at least until t£ + T k /2. The threat itself arises only in the time intervals 
[0 ... TITk-l] + a and 

T k.[0 ...T1Tk- l] + a 

Hence, most ~f the time there is no threat. If there is no threat and t ~[to ... t3] 
then the k - 1- cells in P are undisturbed. 

It follows from Lemma 6 that we have )([t] = P for most values of t in 
[T2 ·- T ...0]. Since also for most of these t the elements of P are undisturbed, 
the left and right endcells of P are proper. Hence the only way that )( can 
decrease is by the occurrence of J. We can thus suppose that )( [to] = P and 
that. Do occurs closer than C3 to the left end of P. 

It follows from the undisturbedness of cell 0 of F at 0 that if to comes after 
the retreating steps of the last Ocp in the program, then r [to] does not reach 

l-O.ScSp k - • Let us put 1.£ = cs in this case. We put t£ = i if to is the i-th 
retraction step of the current Ocp, and 1.£ = 0 in all other cases. Then the 
dista.nce of r [to] from 0 is at least min( 1.£, cs/2)pk- l. 

Suppose first that 1.£ > O. If to + CI is a retreating step then let t4 be the 
last retreating step after it, otherwise t4 = to + Ci- Then it is easy to see that 
the distance of r[t4] from 0 is at least (cs/2 - 3cdpk-l. 

Suppose that 1.£ = O. Let t4 be now the last one of the next group of 
retreating steps after to. Then the distance of r [t4]and 0 is at least csPk-I/2. 
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The retreating steps of Ocp are followed by 2cs idling steps. Thus we have 
a period of length 2cs (dovetailed properly with Recover and Purge) when r 
remains at a distance (cs/2 - 3cdpk-l from O. During this period, the frame 
F has an execution of Recover, which can recover the damaged left end of L 
undisturbedly, provided the damage has not grown too large by this time. How 
large can this damage be? It grows fastest if C2 steps of Integrity are performed 
in every period of length Cs between instances of Recover. Since in the worst 
case we had to wait 5cs steps of Ocp in F, it could mean already 6C2 steps of 
Integrity in F. Adding this to the instant end damage of maximum Cl + C3, 

we get the upper bound 
Cl + 6C2 + C3. 

Our choice for the length of Recover made it possible to recover from a damage 
of this size. • 

From the knowledge accumulated by now, the proof of (03) and Lemma 3 
is straightforward. 
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9. Conclusions 

Both the construction and the following analysis of the reliability of our 
medium are disturbingly complicated. This is especially striking in view of the 
fact. that several possible improvements (to decrese the number of states of the 
medium, or the size of the working period) were sacrificed in an attempt to 
keep the construction transparent. The number of states could be, for example, 
radically decreased if we stored most of our variables in small blocks next to 
each other instead on top of each other. This can be done without dropping the 
nearest-neighbor interaction. 

For me, the ergodicity problem of one-dimensional media is attractive just 
because despite its simple formulation, it seems to require such a monstrous 
solu.tion. The question is open whether a much simpler solution exists. I consider 
any work toward simplification (even if it only means decreasing the number 
of states) very ipteresting. A bottleneck seems to be the necessity to simulate 
a universal medium, since no really simple one-dimensional universal cellular 
automaton is known (in contrast to 2 dimensions, where e.g. the "Game of 
Life!", with two states and nearest-neighbor interaction, is close to the ideal. 

The medium M is flexible enough to permit small changes without losing 
reliabllity. For example, if we prefer two states but permit a longer (constant) 
range of interaction, this can be done almost mechanically. 

A less trivial change which also seems possible is to introduce continuous, 
instead of discrete, time as a more realistic one from a physical point of view. 
In such a model, the transition of each cell to the next state occurs at a random 
time with exponential distribution. It is not immediately clear how we can 
miss synchronization in our model. But it turns out that we can force just 
enough local synchronization on our cells, if we permit greater and greater 
synchronisation slacks between our blocks as we rise in the hierarchy. I intend 
to elaborate this construction in a later paper. 

To achieve logarithmic time redundancy and almost constant space redun
dancy, we have to write a program which resists more than one error in a work
ing rectangle. It turns out that a working rectangle of size e.g. ,4 X ,3 
can cope with' errors. The occurrence of more than, errors in such a rectangle 
is allready exponentially improbable. This permits wider spacing for the levels 
in the hierarchy. The sequence Ml, M 2 , . •. of media where M, simulates Mi+l 
will consist of different media, and the blocksize on level i + 1 is an exponential 
function of the blocksize on level i. The small error-probability makes algebraic 
codi.ng methods profitable (to replace the simple-minded tripling), and provides 
for dense information-packing. To minimize space-redundancy, we can trade 

9.1
 



time for space if we let many cells share e.g. one mailbox. The details will be 
given in a next paper. At this point, it seems possible to have a space-factor 
which grows slower than any unbounded recursive function of N. The question 
whether it can be made constant remains open. 

To me, the philosophically most challenging question is whether we can avoid 
the use of foo, at least in the case when the input to our computation is just 
a few bits. Technically, this requires a medium which creates the hierarchical 
simulation out of "scratch", at a random place and time. Thus, a medium which 
exhibits self-organization, not only the maintenance of an existing organization. 
Our medium M definitely lacks this property, since in it, any small group of 
cells not part of a consistent organization kills itself. This property must thus 
be changed, but cautiosly enough to still preserve error-correction. One can e.g. 
permit slow growth to such a group of cell, with suicide only if the growth is 
inhibited. The details, and especially the analysis, require much further work. A 
result of this kind will have the following consequence in the technical language 
of nonergodic media. There is a one-dimensional medium with the property that 
it has two different invariant measures which are also space-homogenous. 

9.2
 



REFERENCES 

[D 77] Dobrushin R.L., Ortyukov S.I.: Lower Bound for the Redundancy of
 
Self-Correcting Arrangements of Unreliable Functional Elements. ibid. 13/1
 
(1977) 59-65.
 
Upper Bounds on the Redundancy of Self-correcting Arrangements of Unreliable
 
Elements. Problems of Inf. Transm 13/3 (1977) 201-218.
 

[G 78] Gacs P., Levin L.A., Kurdyumov G.L.: One-dimensional Homogeneous 
Media Dissolving Finite Islands. Problems of Inf. Transm. 14/3 (1978) 92-96. 

[Gr 82] Gray L., Grift'eath D.: A Stability Criterion for Attractive Nearest
 
Neighbor Spin Systems on Z. The Annals of Probability 10 (1982) 67-85.
 

[H 75] Harao M., Noguchi Sh.: Fault Tolerant Cellular Automata. J. of Compo 
and Sys. Sci. 11 (1975) 171-185. 

[KJr 78] Kurdyumov G.L.: An Example of a Nonergodic Homogeneous One
dimensional Random Medium with Positive Transition Probabilities. Soviet 
,Math.Dokl.19 (1978/1) 211-214. 

[Ks 73] Kuznietsov A.V.: Information Storage in a Memory Assembled from 
Unreliable Components. Problems of Information Transm. 9/3 (1973) 254
:264. 

[L '76] Liggett T .M.: The Stochastic Evolution of Infinite Systems of Interacting 
Particles. Lecture Notes on Math. 598 Springer ·1976. 

[N 75] Nishio H., Kobuchi Y.: Fault Tolerant Cellular Spaces. J. of Compo and 
Bys. Sci. 11 (1975) 150-170. 

[S 80] Snell L.: Personal communication. 

[Ta 68] Taylor M.C.: Reliable Information Storage in Memories Designed from 
Unreliable Components, Bell Syst. Tech. J. 47/10 (1968) 2299-2337. 
Reliable Computation in Computing Systems Designed from Unreliable Components, 
ibid. (1968) 2339-2366. 

[T 74] Toom A.L.: Nonergodic Multidimensional Systems of Automata.
 
Problems of Information Transm. 10 239-246.
 

[Ts 76] Tsirel'son B.S.: Reliable Information Storage in a System of Locally 
Interacting Unreliable Elements. In "Interacting Markov Processes in 
Biology. Lecture Notes on Math. 653 Springer 1978. 

10.1 



[vN 52] von Neumann J.: Probabilistic Logics and the Synthesis of Reliable 
Organisms from Unreliable Components. Automata Studies 
(Shannon, McCarthy, eds.) Princeton Univ.Press NJ 1956. 

10.2
 


