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THE COMPLEXITY OF OPTIMIZATION PROBLEMS

Mark William Krentel, Ph.D.

Cornell University 1987

We study computational complexity theory and define a class of optimiza-
tion problems called OptP (Optimization Polynomial Time), and we show
that TRAVELLING SALESPERSON, KNAPSACK and 0-1 INTEGER
LINEAR PROGRAMMING are complete for OptP. OptP is a natural gen-
eralization of NP (Nondeterministic Polynomial Time), but while NP only
considers problems at the level of their yes/no question, the value of an
OptP function is the optimal value of the problem. This approach enables
us to show a deeper level of structure in these problems than is possible in
NP.

OptP is a subset of FPSAT, the class of functions computable in poly-
nomial time with an oracle for NP. Our central result is that any FPSAT
function decomposes into an OptP function followed by polynomial-time
computation. The significance of this result is that it quantifies “how

much” NP-completeness is in a problem, i.e., the number of NP queries



it takes to compute the function. It also allows us to unify the classes
NP, DP and DELTA-2 in a natural way. For example, we prove that an
OptP-completeness result implies, as corollaries, NP-, DP- and DELTA-2-
completeness results.

We also prove separation results on subclasses of FPSAT by restricting
the number of calls to the NP oracle. For example, TRAVELLING SALES-
PERSON is complete for O(n) queries, CLIQUE is complete for O(log n)
queries and BIN PACKING can be solved in O(log log n) queries. We prove
these classes distinct under the assumption that P does not equal NP.

Finally, we consider generalizations of OptP to higher levels in the
Polynomial-Time Hierarchy. We define the DOUBLE KNAPSACK prob-
lem and prove that it is complete for DELTA-3, the first example of a
natural complete problem for this class, and the highest level in the Poly-

nomial Hierarchy with a known natural complete problem.
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Chapter 1

Introduction

This thesis is about optimization problems, and in particular, about NP-
complete optimization problems. We intend to study these problems at
a deeper level of structure and show that they indeed possess a very rich
structure.

The goal of complexity theory is to classify the difficulty of natural prob-
lems. Typically, you pick some interesting resource, such as the amount of
time or space needed for some computation, and then you define complexity
classes parameterized by the amount of this resource. That leaves two ma-
jor jobs for the complexity theorist. The first is to precisely characterize the
amount of this resource that various problems require. Ideally, of course,
we strive for matching upper and lower bounds, but this is, in general, a

very difficult task. The other job is to prove hierarchy theorems for the
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complexity classes. That is, show that given more of the resource allows us
to compute strictly more functions. This too is usually very difficult.

In this thesis, we focus on the important class of NP problems. A
language is in NP if it can be decided by a nondeterministic polynomially
time bounded Turing machine. For example, the CLIQUE problem (given a
graph G and integer k, are there k£ mutually adjacent vertices in G?) can be
solved by such a machine by guessing the set of vertices and then verifying
that the set has the correct size and that it forms a clique. NP is contrasted
with the class P, the class of languages decidable in polynomial time by a
deterministic Turing machine. P formalizes the notion of what is feasibly
computable, while NP formalizes the notion of what is feasibly verifiable.
The P =? NP question, currently the major open question in theoretical
computer science, boils down to whether or not the ability to (magically)
guess allows one to compute things faster. It goes without saying that this
is also a very difficult problem.

Since the problems of separating complexity classes and of proving lower
bounds are so difficult, complexity theorists often turn to completeness
results. A language Lo is complete for a class C if Ly € C and if all other
languages L € C can be reduced to Ly. For example, given a graph Gy, it
is possible to construct (in polynomial time) a graph G5 and an integer k

such that G contains a Hamilton cycle if and only if G contains a clique
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of size k. This shows that HAMILTON CYCLE is reducible to CLIQUE. The
significance of a completeness result for NP is that although we don’t know
how to prove that CLIQUE ¢ P (this would imply P # NP), we can show
that CLIQUE is NP-complete and hence is as hard as any NP language. This
is the best characterization of the complexity of CLIQUE that is currently
known.

The traditional approach to complexity theory is to first convert the
problem in question to a yes/no decision procedure. For example, the
TRAVELLING SALESPERSON problem (TSP) is, given a graph G with costs
on the edges, find a cycle in G that visits every node exactly once and
minimizes the length of the cycle. This problem is converted to the question,
given a graph G with costs on the edges and an integer k, does G have a TSP
tour of cost at most £? And because we could solve the original problem by
using this modified version as a subroutine, we say that this transformation
captures the essential difficulty of the TSP problem.

The main focus of this thesis is to consider NP-complete problems at a
deeper level of structure. In order to do this, we need to study the original
versions of these problems and not convert them to yes/no questions. We
define OptP to be the class of functions computable by taking the maximum
(or minimum) value of some function over a set of feasible solutions, and

we define OptP[z(n)] to be the subclass of OptP containing those functions
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restricted to z(n) bits of output. The size of the largest clique in a graph,
for example, can be computed in this manner. Consider any set of vertices
to be a feasible solution, and assign the measure of the number of nodes
in the set if it forms a clique and 0 otherwise. Valiant [Va79] used an
analogous approach in defining the class of functions #P by taking the sum
of the values of some function over a set of feasible solutions.

This approach has several advantages. The first is that it enables us to
show more structure in NP-complete problems than was previously known.
In chapter 2 we show that TRAVELLING SALESPERSON, WEIGHTED SATISFI-
ABILITY and KNAPSACK are complete for OptP under a generalized notion
of reducibility that we call the metric reduction. The techniques used in
these reductions generalize the NP-completeness proofs for these problems
and show that one problem can simulate much more of the structure of
another problem than just its yes/no question. Skiena [Sk85] defines a
Solitaire game Turing machine and the complexity classes SGP and SG'P,
identical to our notions of OptP and OptP[O(logn)]. He also independently
proves several problems complete for SGP and SG'P, including many of the
problems we give in chapter 2.

In chapter 3 we define FPSAT[z(n)], the class of functions computable
in polynomial time with z(n) queries to an NP oracle. It is immediate

that FPSAT[z(n)] contains OptP[z(n)] by using the NP oracle to conduct
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a binary search on the value of the OptP function. We prove as our main
result that any f € FPSAT[2(n)] can be reduced to some g € OptP[z(n)].
This shows that the parameter on OptP corresponds to the “amount” of NP-
completeness in the problem. For example, the answers to O(logn) yes/no
NP questions can be encoded into a single instance of CLIQUE. Similarly, the
optimal value of a TSP problem contains the answers to O(n) NP questions.
Gasarch [Ga86] also considers the number of queries it takes to compute
various functions and defines the class Q[z(n), NPC], identical to our notion
of FPSAT[z(n)]. He independently proves hardness results for many NP
functions, but unfortunately, his lower bound techniques don’t allow for
successive queries to depend on the answers to the previous ones and thus
he ends up with somewhat weaker bounds.

This result also allows us to tie together the classes NP, DP and Ag. We
show that under very general conditions, an OptP-completeness result also
yields NP-, DP- and Ag—completeness results. Although it was previously
known that different versions of some problem could give different complete-
ness results, it was not known how to prove a general result that tied these
classes together. For example, for the TRAVELLING SALESPERSON problem,
the question “Is the optimal value at most k?” is NP-complete [Ka72], the
question “Is the optimal value equal to k?” is DP-complete [PY84], and

the question “Is the optimal solution unique?” is Ab-complete [Pa84]. In
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chapter 3 we show that these results for NP and DP and a similar result for
Ag can be obtained as corollaries of the single OptP-completeness result for
TSP.

In chapter 4 we consider separation results among FPSAT (lasses. As-
suming P # NP, we show that FPSAT[O(logn)] is strictly contained in
FPSAT[O(n)] and also that FPSAT[f(n)] is strictly contained in FPSAT[g(n)]
for “sufficiently nice” f and g whenever f(n) < g(n) and f(n) < %log n.
Since TSP is complete for FPSAT[O(n)] and since CLIQUE is complete for
FPSAT[O(logn)], this result shows that TSP is strictly harder than CLIQUE
in this measure. Karmarkar and Karp [KK82] showed that BIN PACKING can
be approximated to within an additive constant of at most O(log2 n). This
implies that BIN PACKING is in FPSAT[O(loglogn)] and hence that CLIQUE
is strictly harder than BIN PACKING. Of course, all of these problems, con-
sidered as yes/no questions, are equivalent — they are all NP-complete.
Our approach allows us to make finer distinctions on their complexity.

And finally, in chapter 5, we consider extensions of OptP to the poly-
nomial hierarchy. We give a complete problem for the second level in this
hierarchy and show that it naturally yields a complete problem for Ag . This
is the first example of a complete problem for Ag and is also the highest

level in the polynomial hierarchy with a known natural complete problem.



Chapter 2

Optimization Problems

2.1 Introduction

In this section, we first give some preliminary notation, and then we define

the class OptP and some related notions.

Notation We write N = {0,1,2,...} for the set of natural numbers and

Q for the set of rationals.

First, we define metric Turing machines and the class OptP in order to

capture our intuitive notion of an optimization problem.

Definition An NP metric Turing Machine, N, is a non-deterministic

polynomially time-bounded Turing machine such that every branch writes
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a binary number and accepts; and for ¢ € £* we write opt™ (z) for the

largest value (for a maximization problem) on any branch of N on input z.

Definition A function f:X* — N is in OptP (optimization polynomial
time) if there is an NP metric Turing machine N such that f(z) = opt?(z)
for all z € £*. We say that f is in OptP[2(n)] if f € OptP and the length

of f(z) in binary is bounded by z(|z|) for all z € £*.

Note that OptP is the same as OptP[nO(l)]. Also note that OptP is
defined as a class of mazimization problems. We could equally as well
have used minimization problems, and although we will only define the
formalism for maximization problems, we will consider OptP as including
both maximization and minimization problems.

One motivation for the class OptP is its similarity to Valiant’s class #P
(sharp-P, or number-P) [Va79]. Valiant defined counting Turing machines
to be NP machines that magically output the number of accepting branches,
or equivalently, the sum of the values over all of the branches. Then, #P
is the class of functions computable by counting Turing machines. Valiant
goes on to show that #P is an interesting class of functions by showing
that several natural problems, including the PERMANENT and NUMBER OF
SATISFYING ASSIGNMENTS are complete for it. Thus it is natural to consider

other associative operators such as the MAX function.
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The natural notion of reducibility between OptP problems is the metric

reduction, the obvious generalization of a many-one reduction.

Definition Let f,g:Z* — N. A metric reduction from f to g is a pair
of polynomial-time computable functions (T}, T;) where T1: £* — £* and

Ty:3* x N — N such that f(z) = Ty(z, g(T1(z))) for all z € B*.

Note that we need a many-one reduction here. Eventually (see chap-
ter 4), we will want to bring out distinctions such as saying that computing
the size of the largest clique in a graph is harder than its corresponding
yes/no question. If we used Turing reductions, for example, then these dis-
tinctions would be blurred. Also note that because a metric reduction can
stretch its input by a polynomial amount, if f is complete (under metric
reductions) for OptP[z(n)], then f is also complete for OptP[z(n®(1)]. And
lastly, note that metric reductions are closed under composition.

We are now ready to show, for “sufficiently nice” bounds z(n), that
OptP[z(n)] has complete functions. We first show that LEX and the univer-
sal function, UNIV, are complete via generic reductions. In the next section,

we show natural complete functions for OptP and OptP[O(logn)].

Definition A function z: N — N is smooth if z is non-decreasing and if

the function 17 — 12(?) is computable in polynomial time.
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Lemma Let z(n) be smooth. The following functions are complete for

OptP[z(n)].

° UNIVZ(n)
instance: N #ac:;E;EOIc where N is an NP metric Turing machine.
output: UNIV () simulates N(z) for k¥ moves and outputs the same
value; branches that do not halt within k steps or output more than
z(|z|) bits have value 0.

* LEX,(p)
instance: Boolean formula ¢(z1,...,Tn).
output: The lexicographically maximum 1 - - - Z,(|y|) that can be ex-

tended to a satisfying assignment.

Proof: UNIV. By a generic reduction. Let f € OptP[z(n)], let N be
an NP metric TM that computes f, and let N run in time p(n) for some
polynomial p. Then, for z € £*, reduce z to T1(z) = N#:L'#Op(l“’l). By the

definition of UNIV,, we have
opt (z) = opt""V(Ti(2)),

which gives us a metric reduction from N to UNIV,. O
Proof: LEX. We reduce UNIV, to LEX,. Let y = N;ﬁ;(zac#olc be an
instance of UNIV,. By Cook’s theorem [Co71], there is a 3CNF boolean

formula (1, ..., zn), with |¢| polynomial in |y|, which says that “z; - - - zn
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encode a legal computation of some branch of UNIV;(y) and z1--- (o))

represent the output on this branch.” Then,
opt"™V(y) = opt"*X(¢),

so we have a metric reduction from UNIV; to LEX,. O

2.2 OptP-Completeness Results

In this section, we give the reductions to show that WEIGHTED SATISFIA-
BILITY, TRAVELLING SALESPERSON, MAXIMUM SATISFYING ASSIGNMENT,
0-1 INTEGER LINEAR PROGRAMMING and KNAPSACK are all complete for
OptP. Of course, these problems (converted to decision procedures) were
all known to be NP-complete. The reductions given here, in addition to
showing that these problems are NP-complete, also show how to embed

extra structure in them.

Theorem 2.1 The following functions are complete for OptP under metric

reductions.

e WEIGHTED SATISFIABILITY
instance: CNF boolean formula with (binary) weights on the clauses.
output: The maximum weight of any assignment, where the weight

of an assignment is the sum of the weights on the true clauses.
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e TRAVELLING SALESPERSON
instance: Weighted graph G.

output: The length of the shortest travelling salesperson tour in G.

o MAXIMUM SATISFYING ASSIGNMENT
instance: Boolean formula ¢(z1,...,Tn).
output: The lexicographically maximum z1---zn € {0,1}" that sat-
isfies ¢.
e 0-1 INTEGER LINEAR PROGRAMMING
instance: Integer matrix A and vectors B and C.

output: The maximum value of CX over all 0-1 vectors X subject to

AX < B.

e KNAPSACK
instance: Integers z1, ..., Tpn, N.
output: The largest value, less than N, of Y ;cs z; taken over all

SC{1,...,n}.

Proof: WEIGHTED SATISFIABILITY. We reduce UNIV, to WEIGHTED
SAT. For £ € £*, let n = |z| and define the boolean formula ¢z(z1,...,Zm,
Y1,-.-,Yn) to mean “zq,..., T, encode a legal computation of some branch
of UNIV,(z); and y; - - - yn is the binary representation of the output on this

branch.” Clearly, ¢z can be verified in polynomial time; therefore, by
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Cook’s theorem [Co71], we can encode ¢, as a CNF formula where m is
polynomial in n, the length of z.

Reduce z to the CNF formula &, = (<,01¢)22n(yl)2n_1(yz)2n_2 oo (yn)L.
We use the notation ()" to mean that all of the clauses in 1) have weight
w. Clearly, ¢, is satisfiable, since any branch of UNIV, will give a valid
computation; therefore, the optimal assignment to ®, must satisfy ¢. This
means that the maximum number of simultaneously satisfiable clauses in
®, must be equal to the optimal value of UNIV, on  plus 22" times the

number of clauses in ;. That is,
optW: 5AT(g,) = optY¥Vn(2) + const,.

This gives a metric reduction from UNIV, to WEIGHTED SATISFIABILITY,
and hence WEIGHTED SAT is complete for OptP. O

Proof: TRAVELLING SALESPERSON. We reduce WEIGHTED SAT to TSP.
The reduction is in two parts: first we reduce WEIGHTED SAT to CON-
STRAINED TSP and then we remove the constraints. Papadimitriou used
the same technique to show that the problem of deciding if an instance of
TSP has a unique optimum solution is A} complete [Pa84].

Suppose ¢ is an instance of WEIGHTED SAT with variables z1, ..., zp,
and clauses Cy, ..., Cy, with weights wy, ..., wp. Reduce ¢ to the weighted
graph G = (V, E,¢) as follows. G is basically a large cycle with occasional

multiple edges to represent choices for the variables and clauses in ¢. For
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\(Con folse)/

Figure 2.1: TSP construction.

each variable z;, include a pair of nodes and two edges between them: one
labelled z; and one labelled T;. It will turn out that any tour in G will use
either the z; or the T; edge; this choice represents a truth assignment to
z;. For each clause C; containing literals yjl-, yjz, and y?, include a pair of
nodes and four edges between them: three with labels (C;, y}), (C;, y]2) and
(Cj, yf) and one labelled (C}, false). Again, any tour in G will use exactly
one of these edges; this choice corresponds to a true literal, if any, in Cj.
Connect these nodes and edges in a large cycle as in figure 2.1. Although
the graph has multiple edges, we will later put constraints on the set of
allowed tours; replacing these constraints will remove the multiple edges.
The cost of edge (Cj, false) is wj, the weight on clause C;. The cost of

every other edge is 0, and the cost of the non-edges is +0o0. We disallow
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tours that represent illegal assignments by the following constraints. A
NAND constraint between edges e and e specifies that a tour is not allowed
to use both e; and e3. For each literal z; and each occurrence of Z; in clause
Cj, include a NAND constraint between z; and (C;,T;). Also include a NAND
constraint for each pair 7; and (Cj, z;).

A tour that obeys the NAND constraints represents a legal truth assign-
ment to the variables. Also, a tour can use the edge (Cj,y) only if y is set
to true. Thus the cost of a tour, the sum of the weights on the false edges,
is also the sum of the weights of the unsatisfied clauses in ¢. (Although
a tour may use the false edge of a true clause, this can’t happen in an

optimal tour.) Thus,
optW: 54T () = consty, — optTSP(G).

This gives a metric reduction from WEIGHTED SAT to CONSTRAINED
TSP.

The reduction from CONSTRAINED TSP to TSP uses a 108-node gadget
to implement the NAND constraints. This gadget, a combination of two
other gadgets, is described and proved correct in [Pa84]. O

Proof: MAXIMUM SATISFYING ASSIGNMENT. The reduction from UNIV
to WEIGHTED SAT also works here. Reduce z to ¢, and order the variables
Yly -+ Yn, 1, ---, Tm. Then, othNIv"(:v) can be found from the high-

order bits of optMAX SAT ASSGN(, ) 1
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Proof: 0-1 INTEGER LINEAR PROGRAMMING. We reduce WEIGHTED
SAT to O1ILP. Let ¢ be a weighted CNF formula with variables z1,...,zn,
clauses C4,...,Cm and weights wy,...,wm. Reduce ¢ to an instance I
of O1ILP with variables z1,...,%n, Z1,...,Zn, and ¢1,...,cm. For each
variable z;, include the constraint z; + Z; = 1, and for each clause C; =
(y1 + y2 + y3), include the constraint y1 + y2 + y3 — ¢; > 0. Then, a 0-1
solution to this problem represents a legal truth assignment to the variables
in ¢, and c; can be set to 1 only if at least one of the literals in clause C;
is set to true. Thus, by using ciwi + - - - + cmwm as the objective function,

we see that

optW: SAT() = optOLILP(]).

Thus, 0-1 INTEGER LINEAR PROGRAMMING is OptP complete. [OJ

Proof: KNAPSACK. We reduce MAXIMUM SATISFYING ASSIGNMENT to
KNAPSACK. In order to simplify the construction, we use a standard trick
in KNAPSACK-style reductions, as in [GJ79]. We write numbers in base r,
where r is a sufficiently large number to be chosen later. The idea is that
r will be large enough so that the bits of a base r number will represent
independent “zones.” Thus, we may assume that there are no possibilities
of carries in the numbers that we use.

Let ¢ be a CNF boolean formula with variables zj, ..., zn and clauses

C1, ..., Cm. We reduce ¢ to K, an instance of KNAPSACK. Altogether we
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Table 2.1: OptP KNAPSACK construction.

m% z} ac,lz C’ll c! C,ln Cf C? C,%, w% mf x,%

4 J
z; 1 1 for each 1
clause z; is in
T; 1 1 for each 0
clause T; is in
0
C; 0 1
1
C; 1 1
2
C; 2 1
N 1 1 3 3 1 1 1 1
M1 1 3 3 1 1 0 0

use 2n + 2m zones in four categories: for each variable z;, make zones :1:11

and x?; and for each clause Cj, make zones le- and C'Jz. We also use 2n+3m
numbers in five categories: for each variable z;, make integers z; and Zj;
and for each clause C;, make integers C’?, C} and CJZ. The construction of
K is summarized in table 2.1. Intuitively, the a:zl zone guarantees that z;
is set to either true or false but not both. The :1:22 zone is used to weight
z; = true heavier than z; = false; thus the weight of an assignment to
z1---Tp corresponds to its lexicographic order. The C’} and Cjz- zones are

used to verify that the asignment to 1 - - z, satisfies clause C;.
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Now we can choose the value for r. Since the largest digit in any column
is 2 (N and M don’t count), and since there are 2n + 3m numbers, setting
r = 2(2n + 3m) + 1 will guarantee that there are no possibilities of any
carries.

Thus we see that a solution to K that sums to a value larger than M
must correspond to a satisfying assignment. Conversely, given a satisfying
assignment to ¢, we can find a solution to K with value at least M. Thus
the optimal value for K is greater than M if and only if ¢ has a satisfying
assignment. Furthermore, by weighting z; = true heavier than z; = false

in the w% zone, we see that

OptKNAPSACK(K) — OptMAX SAT ASSGN((P) + M.

Thus, KNAPSACK is OptP complete. O

2.3 OptP[O(logn)]-Completeness Results

In this section, we give the reductions to show that MAX SAT, CLIQUE,
COLORING and LONGEST CYCLE are all complete for OptP[O(logn)]. Of
special interest is the reduction for COLORING. Karp’s reduction for k-
COLORING [Ka72] constructs a graph that is k-colorable if a given boolean
formula is satisfiable and (k + 1)-colorable otherwise. Similarly, the NP-

completeness proof for 3-COLORING [GJS76] constructs a graph with chro-
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matic number 3 or 4. These reductions, put in our framework, would only
show that COLORING is hard for OptP[1]. Our construction shows that
there is much more information in the chromatic number of a graph than

just the answer to a single yes/no NP question.

Theorem 2.2 The following functions are complete for OptP[O(logn)] un-

der metric reductions.

o MAXIMUM SATISFIABILITY
instance: CNF formula ¢.

output: The maximum number of simultaneously satisfiable clauses.

e CLIQUE
instance: Graph G.

output: The size of the largest clique in G.

e COLORING
instance: Graph G.

output: The chromatic number of G.

o LONGEST CYCLE
instance: Graph G.

output: The length of the longest cycle in G.

Proof: MAXIMUM SATISFIABILITY. The proof for WEIGHTED SAT can

be modified to give a reduction from UNIV|ys, to MAX SAT. We can remove
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the weights by repeating clauses, since the weights for UN1V),g 5, only need
to be polynomially large. O

Proof: MAXIMUM CLIQUE. The reduction from SAT to CLIQUE given
in [Ka72] or in [AHU74] has the property that the size of the maximum
clique is equal to the maximum number of simultaneously satisfiable clauses.
(]

Proof: COLORING. First we show how to reduce a boolean formula
¢ to a graph G, such that x(G) = n if ¢ € SAT and x(G) = 2n — 4 if
¢ & SAT, and then we use this result to show that MAX SAT is metrically
reducible to COLORING. In order to make the graph Gy, we need the idea of
a multicoloring. A (k,m)-multicoloring of a graph G = (V, E) is a function
f that assigns to each v € V aset f(v) C {1,...,m} such that |f(v)| =k
and such that f(u) and f(v) are disjoint whenever (u,v) € E. We write
xk(G), the k-chromatic number of G, for the smallest integer m such that
G has a (k, m)-multicoloring.

Let ¢ be a boolean formula, and pick an integer n. By the “True-False-
Red” reduction of SAT to 3-COLORING in [GJS76] and in [AHU74], we can
make a graph G such that x(G) = 3 if ¢ € SAT and x(G) = 4 if ¢ & SAT.

Now, define the graph H,, = (V,, E,) where

Va {{Z,],k}|1§z<]<k_<_n}

E, = {(u,v)|uAv=0}
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The key property of these graphs, described in [GJ79] and proved in [GJ76],
is that x3(Hp) = n and x4(Hpn) = 2n—4. It is straightforward to verify that
if x(G) = k and if xx(H) = m then x(H[G]) = m. So, let Gp = Hp|[G],

the composition of H, and G, and thus,

if o is satisfiable
X(Gn) =
2n — 4 if ¢ is not satisfiable.

Now let ® be a CNF formula with n clauses. From Cook’s theorem,
we can construct boolean formulas 1, ..., pnp4+1 such that ¢; is satisfiable
if and only if ® has an assignment of its variables that satisfies at least :
clauses. By the previous paragraph, we can construct graphs Gi,...,Gp41

such that

2n —1 if ¢; is satisfiable
xX(Gi) =
4n — 2i — 4 if ¢; is not satisfiable.

Define G* = G+ - -+ Gp41, the disjoint union of the G;’s, so that x(G*) =
max; x(G;), and let k = optSAT(®). Then, ¢1,...,¢} are satisflable but

@k41s---1¥Pnt1 are not, so X(G*) = x(Gr41) = 4n — 2k — 6 and hence
OptCOLORING(G*) —4n — 6 — 20ptMAX SAT((D).

Thus, COLORING is OptP[O(logn)] complete. O
Proof: LONGEST CYCLE. The reduction from WEIGHTED SAT to TRAV-

ELLING SALESPERSON can be modified to give a reduction from MAX SAT to
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TSP such that the weights on the edges are only polynomially large. Then,

we can remove the weights by repeating edges. O



Chapter 3

pNP Computations

3.1 Introduction

In this chapter, we consider functions computable in polynomial time with
an oracle for NP, and we show that they are closely related to OptP func-
tions. The main point of this thesis is that there is more structure in
NP-complete problems than was previously known. By counting, as a com-
plexity measure, the number of NP queries it takes to compute a function,
we have a precise way of measuring “how much” NP-completeness is in a
problem. It will turn out that, in this measure, some problems have more

NP-completeness in them than others.

Definition A function f:¥* — N is in FPSAT if f is computable in

polynomial time with an oracle for NP. We say that f is in FPSAT[z(n)]

23
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if f e FPSAT and f is computable using at most z(n) queries on inputs of

length n.

Definition A language L C £* isin PSAT if [ is decidable in polynomial
time with an oracle for NP. We say that L is in PSAT[z(n)] if L € PSAT

and L is computable using at most z(n) queries on inputs of length n.

Note again that FPSAT = FPSAT[RO())]. Our main result is that an
FPSAT function metrically reduces to an OptP function. This result says
that the parameter on OptP makes sense as a complexity measure. There
could be functions that are easy to compute that just have long outputs;
we don’t want to call them “hard.” This result says that an OptP[f(n)]-
complete function is also complete for FPSAT[f(n)], and thus the param-
eter on OptP does make sense as a complexity measure. Thus, TRAVEL-
LING SALESPERSON, WEIGHTED SAT, MAXIMUM SATISFYING ASSIGNMENT,
0-1 INTEGER LINEAR PROGRAMMING and KNAPSACK are all complete for
FPSAT[RO(1)], and MAX SAT, CLIQUE, COLORING and LONGEST CYCLE are
complete for FPSAT[O(logn)]. This gives a precise characterization of “how

much” NP-completeness these problems contain.
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3.2 Main Result

First we show that every function in FPSAT decomposes into an OptP prob-
lem followed by a polynomial-time computation. The difficulty in the proof
is in showing that an NP machine with the MAX function is as powerful as

PSAT ¢omputation

a PSAT machine. An NP machine could guess the entire
and could even verify the ‘yes’ answers, but it has no way of verifying the
‘no’ answers. We get around this difficulty by trying all possible sequences
of oracle answers and taking the maximum sequence for which all of the
‘yes’ answers are correct. In this way, the output of the OptP function

PSAT

represents the true oracle answers in the computation.

Theorem 3.1 Let z be smooth. Then, any f € FPSAT[z(n)] can be writ-
ten as f(z) = h(z,g(z)) where g € OptP[z(n)] and h:E* x N — N is

computable in polynomial time.

Proof: Let f € FPSAT[z(n)], and let M compute f, where M is a pSAT
machine making z(n) queries on inputs of length n. Except for the answers
to its queries to SAT, M’s computation is in polynomial time; so, on input
|z| = n, and given by,..., bz(n) € {0,1}, we can simulate M’s computation
in polynomial time, substituting by - - - bz(n) for the answers to M’s queries.

We construct N, an NP metric Turing machine, as follows. On in-

put |z| = n, N first computes z(n) and then branches for each string
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in {O,I}Z("). On branch by --- bz(n), N simulates M and constructs M’s
queries on this branch, say, ¢1, ..., ¥;(n)- Then N tries to guess satisfying
assignments for each ; such that b; = 1 and ignores the ¢;’s such that
b; = 0. If N successfully finds a satisfying assignment for each ¢; where
b; = 1, then N outputs the value b - -- bz(n) as a binary integer on this
branch; otherwise N outputs 0.

Now, we claim that opt® (z) represents the correct oracle answers for
M(z). Write opt?(z) as b; - “byn) € {0,1}#("). First, we show that by
is correct. Let 1 be M’s first query. If ¢ € SAT, then N(z) on branch
10---0 will find a satisfying assignment; so, opt? (z) > 10---0 and thus
b = 1. On the other hand, if ¢; ¢ SAT, then no branch of the form
ldg -+~ d,(y) for any d; € {0,1} will find a satisfying assignment to ¢y;
therefore, optN(a:) < 01---1 and hence b; = 0. In either case, the value of
by is correct.

By the same argument, we see that by is correct, given that by is correct;
and hence, by induction, all of the ;’s are the correct oracle answers in M’s
computation on z. And since we can run M(z) in polynomial time given
optN(x), we can write f(z) = h(x,optN(x)) where h is computable in

polynomial time. O
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The converse of theorem 3.1 is immediate; therefore, we can completely
characterize PSAT computations, for both functions and languages, in terms

of OptP.

Theorem 3.2 Let z be smooth.

o f € FPSAT[;(n)] if and only if f can be written as f(z) = h(z, g(z))
where g € OptP[z(n)] and h is p-computable.

o f € FPSAT[;(nOM)] if and only if f is metrically reducible to some
g € OptP[z(n)].

o L € PSAT[;(n)] if and only if L can be written as L = {z | P(, g(z))}

where g € OptP[z(n)] and P is a p-computable predicate.

3.3 Applications

Our next result is that OptP complete problems give rise to complete prob-
lems for Ag, DP and NP. We conjecture that if f is OptP-complete, then
{z#k | f(z) = k} is DP-complete. Unfortunately, the proof doesn’t seem to

go through directly: we need the additional hypothesis of a linear reduction.

Definition Let f, g: ©* — N. A linear reduction from f to g is a triple of p-
computable functions (Ty, Ty, T3) where T1: £* — T*, T5: £* — Q\{0}, and

Ts: ©* — Q, such that for allz € =* we have f(z) = To(z)g(T1(z)) +T3(z).
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Thus, a linear reduction is a special case of a metric reduction where
the function k — Ty(z, k) is linear. Note, however, that the coefficients of
the linear function may, in general, depend on the problem instance. All of
the problems in section 2 are complete for their respective classes via linear
reductions except for MAX SAT ASSIGNMENT. (Although the reduction for
KNAPSACK is from MAX SAT ASSIGNMENT, the composition of reductions
from WEIGHTED SAT to MAXIMUM SATISFYING ASSIGNMENT to KNAPSACK

can be modified to give a linear reduction.)

Theorem 3.3 Let f be in OptP.

(i) If f is complete for OptP, then there is a p-computable predicate P
such that L1 = {z#y | P(z, f(y))} is complete for AL

(i) If f is complete for OptP via linear reductions, then Ly = {z#k1#tk2 |
f(z) = k1 (modks)} is complete for AJ.

(iii) If f is hard for OptP[2] via linear reductions, then L3 = {z#k |
f(z) = k} is complete for DP.

(iv) If f is hard for OptP[1] via linear reductions, then Ly = {z#k |

f(z) > k} is complete for NP.

Proof: (i) Let L € Ag and let M be a Ag—machine recognizing L. Define
g(z) to be the sequence of correct oracle answers for M’s computation on

z. Certainly, g € F PSAT and we are assuming that f is OptP-complete, so
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by theorem 3.1, g is metrically reducible to f via (Ty,T2). Then, M(z)’s
oracle answers can be computed in polynomial time from z and f(T1(z)).
Construct P(z, z) to simulate M(z) using Ty(z, z) as the answers for M(z)’s
oracle questions. Thus, z € L if and only if z#T1(z) € L1, and thus L is
reducible to Lj.

(ii) Suppose L € PSAT and let M be a PSAT machine accepting L.
Define g(z) to be M(z)’s oracle answers followed by a 1 if M accepts or
a 0 if M rejects. Then, g € OptP by an argument similar to the proof
of theorem 3.1. If ¢ reduces to f via a linear reduction, then a question
of the form, “Is g(z) = 1 (mod2)?” reduces to a question of the form “Is
£(y) = by (modky)?”

(iii) Define the function g(z#y) = 2 if y € SAT; or 1 if ¢ € SAT and
y & SAT; or 0 if z,y & SAT. Then, g € OptP[2]. Also, the DP complete
problem SAT—UNSAT [PY84] can be expressed as {z#y | g(z#y) = 1}. If
g reduces to f via a linear reduction, then a question of the form, “Is
g(z) = 17" reduces to a question of the form, “Is f (y) = k?”

(iv) Define the function g(z) = 1 if ¢ € SAT, or 0 if ¢ ¢ SAT. Then
g € OptP[1]. If g reduces to f via a linear reduction, then a question of the
form, “Is g(z) > 17" reduces to a question of the form “Is fly) 2 k7 O

We conclude this section by giving natural complete languages for PSAT

and PSAT[O(logn)]. Previously, the only known example of a complete
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language for PSAT was the UNIQUELY OPTIMAL TRAVELLING SALESPERSON
problem [Pa84]. Kadin [Ka86] discusses PSAT[O(logn)] and gives natural

complete languages for this class.

Theorem 3.4 The following languages are complete for PSAT.
o {¢(x1,...,2n) | Tn = 1 in ¢’s max sat assgn}

o {G#k | length of min TSP tour in G is equiv to 0 mod k}

Theorem 3.5 The following languages are complete for PSAT[O(logn)].

o {p#Fk | max number of simul sat clauses in ¢ is equiv to 0 mod k}

o {G#k | size of max clique in G is equiv to 0 mod k}



Chapter 4

Separation Results

4.1 Introduction

In this chapter, we consider the question of which classes of OptP func-
tions are provably distinct under the assumption that P # NP, and we
show that these results have applications to approximation algorithms for
NP complete problems. Recall that one of the original motivations for
considering problems as functions rather than as languages was to make
finer distinctions on their complexity. We would like to say, for exam-
ple, that since TRAVELLING SALESPERSON is complete for FPSAT[nO()],
since CLIQUE is complete for FPSAT[O(logn)] and since BIN PACKING is
in FPSAT[O(loglogn)], that TSP is strictly harder than CLIQUE and that

CLIQUE is strictly harder than BIN PACKING. It turns out that these three

31
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classes are provably distinct, but only by considering them as functions.
There are oracles where these problems, considered as decision procedures,

PSAT

are equivalent. In fact, there is an oracle for which collapses to just

PSAT[1].

Lemma There is an oracle A such that P4 # NP4 and PSAT.A1] =

pSAT,A.

Proof: Pick an oracle A such that PA £ NP4 = coNP4 [BGS75]. Then,
NPA = coNP4 implies that NP4 = PSAT:4 and hence PSAT:A[1] = PSATA,
a

Thus, it is unlikely that current techniques are strong enough to answer
this question for languages. On the other hand, the corresponding question

for the optimization versions of the same problems can be resolved.

4.2 Separation Results

We prove two separation results: the first is that n queries are strictly more
powerful than O(logn) queries. As a corollary, this result shows that there
can be no metric reduction from TSP to CLIQUE, and hence TSP is strictly

harder than CLIQUE.

Theorem 4.1 FPSAT[O(logn)] = FPSAT[nO()] implies P = NP.
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Proof: Assume FPSAT[O(logn)] = FPSAT[RO(1)], Then we show that
P = NP by showing how to recognize SATISFIABILITY in polynomial time.
By hypothesis, LEX € FPSAT[O(logn)), so thereis a PSAT machine, M, that
computes LEX and makes at most O(logn) queries. Then, to determine
if ¢ € SAT, simulate M(y) for all possible oracle answers. This gives a
polynomial number of possible assignments, at least one of which must be
a satisfying assignment if ¢ € SAT. O

PSAT[f(n)] is prop-

We also prove a more general separation result: F
erly contained in FPSAT[g(n)] whenever f(n) < g(n) and f(n) < %—1og n.
A corollary of this result is that CLIQUE is harder than BIN PACKING. Kar-
markar and Karp [KK82] show that BIN PACKING can be approximated in
polynomial time within an additive constant of O(log2 n). The exact opti-
mal number of bins can then be found with only 2loglogn + O(1) queries

to SAT, and so BIN PACKING is in FPSAT[2]loglogn + O(1)]. CLIQUE, on

the other hand, is complete for FPSAT[O(logn)].

Theorem 4.2 Let f and g be smooth where f(n) < g(n) and f(n) <

Llogn. Then, FPSAT(f(n)] = FPSAT[g(n)] implies P = NP.

Proof: Assume that FPSAT[f(n)] = FPSAT[4(n)] where f and g are as
above. By hypothesis, LEXy € FPSAT[£(n)], so let M be a PSAT machine

that computes LEXy with only f(|¢|) oracle queries.
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To test for satisfiability, let ¢(z1,. - .,2n) be a boolean formula of length
at most n. Simulate M(yp) for all possible oracle answers; we can do
this because f(n) < logn. Then, we can write z1,...,Z,) as 2 func-
tion of yq,.. 5 Yf(n)> the oracle answers for M(p). Express this relation,
T(z1,---1Tg(n)> Y1s- - - ,yf(n)), as a truth table of size < g(n) - 2f(n) . logn.
Since we may as well assume that g(n) = f(n) + 1, this has size at most
n. Rewrite ¢ as ¢ = ¢ A T with the variables in the order yj, .. Y f(n)>
Tg(n)41r- 1 Tnr 153 Tg(n)> and say that yq,... »Yf(n) BT€ “independent”
and that z1,...,24@) are “dependent.” Then, ¢ is satisfiable if and only
if ¢’ is satisfiable. And since f(n) < g(n), we have eliminated at least
one independent variable in ¢ by increasing the length of ¢ by an additive
amount of at most n.

We can repeat this process with input ¢’ to make a formula ¢ of length
3n, and so on. Since we always eliminate at least one independent variable,
we never need more than n iterations to remove all but f(n) of the inde-
pendent variables. Then, we can try all possible values for the remaining

2

f(n) independent variables. Since the formula never grows beyond size n”,

we can solve SAT in polynomial time. O
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4.3 Applications

This last separation result has applications to approximation algorithms
for NP complete problems. If II is an OptP[f(n)] complete problem, then
embedded in the optimal value of II are the answers to f(n) NP complete
questions. This gives a lower bound on how closely II can be approximated.
If we can approximate II within an additive constant less than of ("), then
we can find the exact optimal solution with fewer than f(n) queries, a
contradiction to theorem 4.2. The result is a lower bound of % f(n®) rather
than f(n) because the reduction from LEX; to II might stretch the input

by a polynomial amount.

Theorem 4.3 Suppose I1 is OptP[f(n)] complete, where f € O(logn) is
smooth, and suppose P # NP. Then, there exists an € > 0 such that
any polynomial-time approximation algorithm A for II must have |A(I) —

opt(I)| > %-2f("€) infinitely often.

Proof: As a corollary to the proof of theorem 4.2, LEX; & FPSAT[f(n)—
1], unless P = NP. Now, if II is hard for OptP[f(n)], then there exists a
metric reduction from LEX to II. Since the reduction runs in polynomial
time, it can only stretch the input by at most n¥ for some k. Then, for
€ < 1/k, if a polynomial-time algorithm A could approximate IT within an

additive constant of %-Zf (”6), then we could solve II with f(n¢) — 1 queries,
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and hence we could solve LEXy with only f(n*) — 1 queries. This is a

contradiction to theorem 4.2 unless P = NP. O



Chapter 5

Polynomial-Time Hierarchy

5.1 Introduction

The main goal of this chapter is to show that OptP has a natural generaliza-
tion to higher levels in the polynomial-time hierarchy, and, as a corollary,
to give a natural complete problem for Ag . The polynomial-time hierarchy
was defined by Stockmeyer [St77,CKS81] as a generalization of the class

NP as follows.

Definition The polynomial-time hierarchy consists of the classes ZZ’ Hi
and A?, for each k > 0. Ef; is the set of languages decidable by a polyno-
mially time-bounded alternating Turing machine with k alternations of the
AND and OR functions. Hi is the set of languages whose complements are

in Eg. And Ai is P with an oracle for 21,:.

37
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Thus, NP = 2’1). Just as Ef; is a generalization of NP by considering
alternating AND’s and OR’s, it is natural to consider alternating MAX and
MIN functions. It turns out that this extension does indeed make sense and

defines an interesting class of functions.

Definition A function f:¥* — N is in E;CMM if f is computable by a
polynomially time-bounded alternating Turing machine with k alternations

of the MAX and MIN functions.

Definition A function f:* — N is in FA? if f is computable in polyno-
k

mial time with an oracle for Eg_l in the Polynomial Time Hierarchy.

Thus, OptP = E{VIM and FPSAT = FAg. The motivation for Z;yM,
besides being the natural generalization of OptP, is that it has applications
to game theory. For example, Zg’l M s the natural class for computing the
value of two-player, zero-sum games of perfect information with k¥ moves
and polynomial-time definable rules. The class FA’,; is the natural func-

tional analogue of Ai’ in the polynomial hierarchy.

5.2 Equivalence Theorem

Our first result is that an FA;; function decomposes into a Eg’j M func-

tion and a polynomial-time computation, in the same way that an FPSAT
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function decomposes into an OptP problem and a polynomial-time compu-
tation. The proof is essentially the same as the proof of theorem 3.1, just

with more quantifiers.

Theorem 5.1 Any f € FA5:+1 can be expressed as f(z) = h(z,g(z))
where g € E;’cu M and h: T* x N — N is computable in polynomial time.

Corollary Let f:* — N. Then f € FA;;_H if and only if f is metrically

reducible to some g € E;CWM.

Proof: Let f € FA% 41 and let M be a p-machine with an oracle for E‘Z
that computes f. Define g(z) = the sequence of oracle answers, interpreted
as a binary integer, in M’s computation on z. Since we can easily compute
f(z) in polynomial time given z and g(z), it suffices to show that g € ch"!M.

Suppose M runs in time p(n) for some polynomial p. Let w € £* and
let m = p(|w|). Then, let z = z1-- -z, € {0,1}™ be a sequence of possible
oracle answers for M(w). The question, “given w and z, run M(w) using
z1---zm for the oracle answers, compute all of the queries, and ask are
all of the ‘yes’ answers correct?” is a single Ei question. Thus there is a
polynomial time computable predicate R such that “all of the ‘yes’ answers
in 21 - - Tm are correct” if and only if |y1| < m V|yo| <m - Qlyg| < m
R(w,z,y1,..,Ym)-

By a similar argument to theorem 3.1, the maximum z such that all of

the ‘yes’ answers in z are correct is the sequence of correct oracle answers
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for M(w). Thus, we can compute M(w)’s correct oracle answers by a Eg’f M
machine in the following manner. Take the maximum over all |z| = m of
the maximum of all |y1| < m of the minimum of all |ys| < m of --- of the
maximum (or minimum) of all |y;| < m of either z if R(w,z,y1, ", y) is
true or else 0. For a fixed y1, ..., Yp_1, the minimum over the y;’s is either
z if Yy R(w,z,y1,...,yi) or otherwise 0. Continuing this argument back-

wards for yg_1, Yg—2, --- Y1, We see that this strategy computes M(w)’s

correct oracle answers, and hence g € Efc\/f M

5.3 Completeness Results

We now show that 2%’1 M is an interesting and natural definition by giving
natural complete problems for Eg"[ M and Ag . First we show that MAXI-
MUM UNIVERSAL CIRCUIT is E%l M complete by a generic reduction, and
then we reduce it to MAXIMUM DOUBLE KNAPSACK. The essential idea for
MAXIMUM DOUBLE KNAPSACK came from the Eg completeness proof of IN-
EQUIVALENCE OF CFG’S OVER A SINGLE LETTER ALPHABET [Hu82]. Con-
verting the INEQUIVALENCE problem to an optimization problem yielded
MAXIMUM DOUBLE KNAPSACK. Also, the idea for the A§ completeness
result for DOUBLE KNAPSACK came from the analogy that an OptP com-

pleteness result gives rise to a Ag completeness result. Thus it is natural
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to expect a close connection between a Zg’f M completeness result and a Ag

completeness result.

Theorem 5.2 The following problems are 2%” M complete.

e MAXIMUM UNIVERSAL CIRCUIT
instance: Boolean circuit C(z1,...,Tn,Y1,---,Yn)-

output: Max z1 - --xp such that Vy; ---Vyn C(z1,...,Zn,Y1,---,Yn)-

e MAXIMUM DOUBLE KNAPSACK
instance: Positive integers z1,...,Zn,Y1,---,Ym, N.
output: The largest M < N such that M = Yies, i for some

S C{1,...,n} andM;éZj€52 Yj for all Sy C {1,...,m}.

Proof: MAXIMUM UNIVERSAL CIRCUIT. The problem is clearly in £/ #;

we show hardness by a generic reduction. Given M, a E%’I M machine, and
input |w| = n, construct circuit C as follows. Inputs X = z3,...,zm repre-
sent M’s choices for its maximum alternations and the value M outputs on
a given branch, and Y = yj,...,ym represent M’s choices for its minimum
alternations. Then, circuit C(X,Y") says that X and Y encode a legal com-
putation and that the value M outputs is in X. By encoding M(w)’s value
in the high-order bits of X, we see that the value of M(w) can be recovered
from the maximum X such that VY C(X,Y) = 1. Hence, the MAX UNIV
sMM

CIRCUIT problem is complete. O
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Proof: MAXIMUM DOUBLE KNAPSACK. We first show that the problem
is in ZQJM. Given an instance of MAX DOUBLE KNAPSACK, we can express
M as the maximum over all S; C {1,...,n} of the minimum over all
Sy C {1,...,m} of either Yies, =i if Xjes, yj # Lies, i < N or else
0. Then, for a given Sj, the minimum over all Sy is either 3 ;¢ Sy Ti if
Eiesl z; < N and ZiGSl x; # EjeSg yj for all S5 or otherwise 0. Thus
the maximum over all S; of the minimum over all Sy is the value of the
MAX DOUBLE KNAPSACK problem.

We show MAX DOUBLE KNAPSACK is hard for E%’IM by a metric re-
duction from MAXIMUM UNIVERSAL CIRCUIT. The first step is to modify
MAX UNIV CIRCUIT slightly. In order to simplify the notation, we will
write X and Y for z1,...,zn and y1,...,yn, etc. Given a circuit C with
inputs =1, ..., Tn, Y1, --., Yn, we rewrite p(X) = VY (C(X,Y) = 1) as
VY -(C(X,Y) =0).

Now, the predicate C(X,Y) = 0 is certainly decidable in polynomial
time, so by Cook’s theorem, there is a 3CNF formula 1 such that ¢(X) =
VY -(3Wy(X,Y,W) = 1) = VWVYW =((X,Y,W) = 1). Thus, without
loss of generality, we may assume that C has the form -1, where % is in
3CNF.

The second step is to reduce 7 to K, an instance of the KNAPSACK

PROBLEM. We use the same reduction as in the OptP completeness proof
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Table 5.1: DOUBLE KNAPSACK construction.
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z] znly1 vi ya|Cl C} ChL|c} ¢ CZ |a} z2
x; 1 for each
clause z; is in
T; 1 for each
clause T; is in
Yi 1 1 for each
clause y; is in
Ui 1 1 for each
clause 7; is in
0
C § 0 1
1
C; 1 1
2
C; 2 1
z;
N1 1 1 1 3 3 1 .- 1 1 1

for KNAPSACK with the following addition. Also include, for each variable

z;, an integer z; with a 1 in the .7:12 zone. The purpose of the z}’s is to use

up the slack between M and N. The entire construction is summarized in

table 5.1.

Thus a solution to K that sums exactly to N corresponds to a satisfying

assignment for 7. Conversely, given a satisfying assignment to 7, we can

find a solution to K by choosing the integers corresponding to the true
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literals in 7. Thus, K has a solution if and only if 7 is satisfiable. This also
implies that a given assignment to z1 - - - 5 can be extended to a satisfying
assignment in 7 if and only if there is a subset of the y;, 7;, C?, Cz-l, Cl-z,
z; integers that sums to N minus the sum associated with the assignment
toxy---2zn. And z1--- 2z, can not be extended to a satisfying assignment
if and only if VY —=7(X,Y"). Thus, we have reduced the problem to: given
integers ay, ..., an, b1, ..., by, N, find the largest sum ZieSl a; such that
no subset of the b;’s satisfies

Z a; + Z bj=N.

i€S) j€Sy

The final step in the construction is to reduce this last problem to MAX

DOUBLE KNAPSACK. First, notice in the above construction, it turns out
that the b;’s are all much smaller than the a;’s. In fact, we may assume
that b; < N/m. Replace the b;’s by 21 = N/m — b1, ..., zm = N/m — bn,
Zm+1 = -+ = 29;m = N/m. Then, any integer larger than N — N/m can be
expressed as N — }_b; if and only if it can be expressed as 3° zj. Thus we

have reduced this last problem to MAX DOUBLE KNAPSACK. [J

Theorem 5.3 The following problem is A} complete.

DOUBLE KNAPSACK

instance: Positive integers z1, ..., Tn, Y1, -+, Ym, IV, k.
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question: Is the k™ bit of M a 1, where M is defined as in the MAXIMUM

DOUBLE KNAPSACK problem?

Proof: By a generic reduction from an arbitrary Af language. Let
Le Ag and let M be a Pzg machine recognizing L. By theorem 5.1, there
is a function f € SMM such that f(z) is the true oracle answers in M(z)’s
computation. A simple modification to this theorem lets us also assume
that the lowest order bit of f(z) is a 1 if M(z) accepts and a 0 if M(z)
rejects. Thus L reduces to the problem of computing the least significant
bit of f.

Looking at the Z‘%’I M _completeness proof of the MAX UNIV CIRCUIT
problem, we see that in the reduction the value of f is represented in the
high-order bits of the MAX UNIV CIRCUIT problem. Thus the problem of
computing a bit of f reduces to the problem of computing a bit of MAX
UNIV CIRCUIT.

The final step is to reduce this last problem to DOUBLE KNAPSACK.
Again, looking at the reduction, we see that the problem of computing
a bit of MAX UNIV CIRCUIT reduces to the problem of computing a bit
of MAX DOUBLE KNAPSACK. Thus L reduces to DOUBLE KNAPSACK and

hence DOUBLE KNAPSACK is A} complete. O



Chapter 6

Discussion

We conclude with a discussion of possible directions for future work. The
main point of this thesis is that NP-complete problems possess a deeper
level of structure than was previously known. It is natural to ask if there
is even a deeper level of structure in these problems. We have considered
problems at the level of computing the value of the optimal solution; surely,
the level of their feasible solutions possesses an equally rich structure. It
is just possible that a good understanding of the structure of the feasible
solutions in NP-complete problems might yield some insight into how well
they can or cannot be approximated.

In fact, I got into this area by looking at approximation algorithms and
trying to understand why some problems could be approximated better

than others. I started by digging into the reductions among these problems

46
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to see if they were any help. This quickly led to the realization that neither
the ratio of the costs of approximate solutions nor their additive difference
was the key measure that was being preserved between problems. I was
trying to separate an inner core of structure from the more arbitrary cost
function assigned to the feasible solutions. I regard this thesis as a partial
answer to that goal. This eventually led to the idea that it was the number
of NP queries embedded in the optimal answer that was being preserved
across reductions. And so when it turned out that not all problems were
the same in this new measure — it was fantastic!

Another idea is to explore the connection between the classes NP, DP,
AP 4P and OptP. We showed that under very general conditions, an OptP-
completeness result yielded completeness results for NP, DP and Ag and
that this approach could be used for many natural problems. Are there
other results that tie these classes together? For example, can problems
be put in a framework where one version is OptP-complete if and only if
another version is #P-complete?

It would also be quite interesting to find natural complete problems for
subclasses of FPSAT other than FPSAT[RO(1)] and FPSAT[O(logn)]. With
the peculiar exception of BIN PACKING, almost all other natural problems
seem to fall in one of these two categories. Exhibiting a natural complete

problem for a different subclass would firmly establish the importance of
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FPSAT 45 a complexity measure. Gasarch [Ga86] poses a very good question
along these lines. He notes that the complexity of actually finding the
largest clique in a graph (not just giving its size) is not at all clear. The
problem is in FPSAT[RrO(1)] and is hard for FPSAT[O(logn)], but its precise
complexity within these bounds is not known.

A more technical problem is to determine the precise complexity of BIN
PACKING. We know that BIN PACKING is in FPSAT[O(loglogn)] and that it
is hard for FPSAT[1], but no better bounds are known. Another technical
problem is to extend the separation results in chapter 4 above logn. Is
it true that P # NP implies that FPSAT[f(n)] is properly contained in
FPSAT[g(n)] whenever f(n) < g(n)? It is not even known if FPSAT[log? n] =
FPSAT[n] implies P = NP. Alternatively, since the separation theorems
relativize, are there oracles where these classes are equal but P % NP?

Lastly, another idea is to find other associative operators besides the
MAX, PLUS, AND and OR functions that define interesting classes of prob-
lems when applied to the branches of an NP machine. Considering the
EXCLUSIVE OR operator, for example, PARITY SAT, the set of boolean for-
mulas with an even number of satisfying assignments, is a natural complete
problem. Valiant and Vazirani [VV85] show that PARITY SAT is hard for
both NP and coNP under randomized reductions, and they ask where in

the polynomial-time hierarchy it lies.



Bibliography

[AHUT74] Aho, A., J. Hopcroft and J. Ullman, The Design and Anal-
ysis of Computer Algorithms, Addison-Wesley, Reading, Mas-

sachusetts, 1974.

[BGS75] Baker, T., J. Gill and R. Solovay, “Relativizations of the P =7

NP Question,” SIAM J. of Computing 4, pp. 431-442, 1975.

[Beg6] Beigel, R., “Query-Limited Reducibilities,” Ph.D. Thesis, Dept.

of Computer Science, Stanford University, 1986.

[BH77]  Berman, L. and J. Hartmanis, “On Isomorphisms and Density
of NP and Other Complete Sets,” SIAM J. of Computing 6,

pp. 305-327, 1977.

[CKS81] Chandra, A., D. Kozen and L. Stockmeyer, “Alternation,”

JACM 28, pp. 114-133, 1981.

49



Bibliography 50

[Ch76]

[CoT1]

[GI76]

(GI79]

[GIST6]

[Ga86]

Christophides, C., “Worst-Case Analysis of a New Heuristic
for the Travelling Salesman Problem,” Tech. Report, Graduate
School of Industrial Administration, Carnegie-Mellon Univer-

sity, 1976.

Cook, S., “The Complexity of Theorem-Proving Procedures,”
Proc. 8vd Ann. ACM Symp. on Theory of Computing, pp. 151—

158, 1971.

Garey, M. and D. Johnson, “The Complexity of Near-Optimal

Graph Coloring,” JACM 23, pp. 43-49, 1976.

Garey, M. and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and

Company, San Francisco, 1979.

Garey, M., D. Johnson, and L. Stockmeyer, “Some Simplified
NP Complete Graph Problems,” Theoretical Computer Science

8, pp. 237-267, 1976.

Gasarch, W., “The Complexity of Optimization Functions,”
Tech. Report 1652, Dept. of Computer Science, University of

Maryland, 1986.



Bibliography 51

[Hu82]

[Jo85]

[Kas6]

[KK82]

[KaT2]

[Pa84]

Huynh, T.-D., “Deciding the Inequivalence of Context-
Free Grammars with One-Letter Terminal Alphabet is Eg-
Complete,” Proc. 29rd Ann. IEEE Symp. of Foundations of

Computer Science, pp. 21-31, 1982.

Johnson, D., “The NP-completeness Column: An Ongoing

Guide,” J. of Algorithms, June 1985.

Kadin, J., “Deterministic Polynomial Time with O(log n)
Queries,” Tech. Report 86-771, Dept. of Computer Science, Cor-

nell University, 1986.

Karmarkar, N. and R. Karp, “An Efficient Approximation
Scheme for the One-Dimensional Bin-Packing Problem,” Proc.
2%rd Ann. IEEE Symp. on Foundations of Computer Science,

pp. 312-320, 1982.

Karp, R., “Reducibility Among Combinatorial Problems,” in
Complezity of Computer Computations, R. Miller and J.

Thatcher, eds., Plenum Press, New York, pp. 85-103, 1972.

Papadimitriou, C., “On the Complexity of Unique Solutions,”

JACM 31, pp. 392-400, 1984.



Bibliography 52

[PY84]

[Sk85)]

[St77]

[VaT79]

[VV85]

Papadimitriou, C. and M. Yannakakis, “The Complexity of
Facets (and Some Facets of Complexity),” JCSS 28, pp. 244—

259, 1984.

Skiena, S., “Complexity of Optimization Problems on Solitaire
Game Turing Machines,” M.S. Thesis, Dept. of Computer Sci-

ence, Univ. of Illinois at Urbana-Champaigne, 1985.

Stockmeyer, L., “The Polynomial-Time Hierarchy,” Theoretical

Computer Science 3, pp. 1-22, 1977.

Valiant, L., “The Complexity of Computing the Permanent,”

Theoretical Computer Science 8, pp. 189-201, 1979.

Valiant, L. and V. Vazirani, “NP is as Easy as Detecting Unique
Solutions,” Proc. 17th Ann. ACM Symp. of Theory of Comput-

ing, 1985.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif

