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Reasoning to obtain the "truth" about reality, from external data, is an important, 
controversial, and complicated issue in man's effort to understand nature. (Yet, today, we try 
to make machines do this.) There have been old useful principles, new exciting models, and 
intricate theories scattered in vastly different areas including philosophy of science, statistics, 
computer science, and psychology. We focus on inductive reasoning in correspondence with 
ideas of R. J. Solomonoff. While his proposals result in perfect procedures, they involve the 
noncomputable notion of Kolmogorov complexity. In this paper we develop the thesis that 
Solomonoff's method is fundamental in the sense that many other induction principles can be 
viewed as particular ways to obtain computable approximations to it. We demonstrate this 
explicitly in the cases of Gold's paradigm for inductive inference, Rissanen's minimum descrip­
tion length (MDL) principle, Fisher's maximum likelihood principle, and Jaynes' maximum 
entropy principle. We present several new theorems and derivations to this effect. We also 
delimit what can be learned and what cannot be learned in terms of Kolmogorov complexity, 
and we describe an experiment in machine learning of handwritten characters. We also give 
an application of Kolmogorov complexity in Valiant style learning, where we want to learn 
a concept probably approximately correct in feasible time and examples. ~c 1992 Academic 

Press, lnc. 

The eye of the understanding is like the eye of the sense; for as you may see great 
objects through small crannies or levels, so you may see great axioms of nature 
through small and contemptible instances. 

Francis Bacon, Sylva Sylvarum 337, 1627 

•The work of the first author was supported in part by National Science Foundation Grant DCR-
8606366, Office of Naval Research Grant N00014-85-K-0445, Army Research Office Grant DAAL03-86-
K-Ol 71, and NSERC Operating Grant OGP0036747. Part of the work was performed while he was at 
the Department of Computer Science, York University, North York, Ontario, Canada. A preliminary 
form of this paper appeared in Proc. 4th IEEE Structure in Complexity Theory Conference, 1989. 
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l. A HISTORICAL VIEW OF INDUCTIVE REASONING 

The Oxford English Dictionary gives as the meaning of induction: the process of 
iliferring a general law or principle from the observations of particular instances. This 
defines precisely what we would like to call inductive inference. On the other hand, 
we regard inductive reasoning as a more general concept than inductive inference, 
namely as a process of re-assigning a probability (or credibility) to a law or 
proposition from the observation of particular instances. In other words, in the way 
we use the notions, inductive inference draws conclusions that consist in accepting 
or rejecting a proposition, while inductive reasoning only changes the degree of our 
belief in a proposition. The former is a special case of the latter. In this paper we 
discuss inductive reasoning in correspondence with R. J. Solomonoff's ideas as 
expressed in e.g., [ 44]. However, Solomonoff's procedure is not effective, since it 
involves the noncomputable Kolmogorov complexity of objects. We shall show, 
however, that there is considerable structure in many different approaches proposed 
for induction, since they can be variously derived as computable approximations to 
Solomonoff's method. 

The history of inductive inference, which is as old as empirical science itself, dates 
back at least to the Greek philosopher of science Epicurus (342?-270? BC). To 
reason by induction is nothing but to learn from experience. As the sun rises day 
by day, our belief in that the sun will rise romorrow increases, and we eventually 
infer the truth that the sun will rise every morning. As human history evolves, man 
tries to understand and explain the events that happen around him: this takes the 
form of different induction methods to formulate scientific theories from positive 
and negative, fortunate and unfortunate, lucky and unlucky, happy and miserable 
experiences. Two metaphysical principles stand out and prevail today: the principle 
of Epicurus' multiple explanations (or indifference) and Occam's principle of 
simplest explanation (Occam's razor). 

The Principle of Multiple Explanations. If more than one theory is consistent 
with the data, keep them all. 

The source of the following material is [3]. Epicurus, in his "Letter to 
Pythocles," explains that: There are cases, especially of events in the heavens such 
as the risings and settings of heavenly bodies and eclipses, where it is sufficient for 
our happiness that several explanations be discovered. In these cases, the events 
"have multiple causes of coming into being and a multiple predication of what 
exists, in agreement with the perceptions." Epicurus maintains that, if several 
explanations are in agreement with the (heavenly) phenomena, then we must keep 
all of them for two reasons. First, the degree of precision achieved by multiple 
explanations is sufficient for human happiness. Second, it would be unscientific to 
prefer one explanation to another when both are equally in agreement with the 
phenomena. This, he claims, would be to "abandon physical inquiry and resort to 
myth." His follower Lucretius (95-55 BC) illustrates the inevitability of the use of 
the multiple explanation principle by the following example: 
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There are also some things for which it is not enought to state a single ..:.1usc. hut several. 

of which one. however, is the case. Just as if you were to see the lifeless wrpse nf a man lying 

far away. it would he fitting to state all the causes of death in order that the singk ..:ausc of 

this death may be stated. For you would not be able to establish condusivch that he died bv 

the sword or of cold or of illness or perhaps by poison. but we know that there is something 

of this kind that happened to him. 
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Based on the same intuition, in the calculus of probabilities it has been 

customary to postulate the "principle of indifference" or the "principle of insufficient 

reason." When there is no other evidence, because of the absolute lack of 

knowledge concerning the conditions under which a die falls, we have no reason to 

assume that a certain face has higher probability of turning up. Hence we assume 

that each side of the die has probability t· The principle of indifference considers 

events to be equally probable if we have not the slightest knowledge of the condi­

tions under which each of them is going to occur. For the case of a die, this actually 

coincides with the so-called "maximum entropy principle," which we will discuss 

later and which states that we should choose probabilities P; for face i to be the 

outcome of a trial, i = 1, 2, ... , 6, such that - I~= 1 p; In p, is maximized under the 

only constraint I~= 1 P; =I. We obtain precisely P; =~for i = 1, 2, ... , 6. 

The second and more sophisticated principle is the celebrated Occam's razor 

principle commonly attributed to William of Ockham (1290?- 1349?). This enters 

the scene about 1500 years after Epicurus. In sharp contrast to the principle of 

multiple explanations, it states: 

OCCAM'S RAZOR PRINCIPLE. Entities should not he multiplied heyond necessity. 

This is generally interpreted as: Among the several theories that are all consistent 

with the observed phenomena, one should pick the simplest theory. (According to 

Bertrand Russell, the actual phrase used by Ockham was: "It is vain to do with 

more what can be done with fewer.") Surely Occam's razor principle is easily under­

stood from a "utilitarian" point of view: if both theories explain the same set of 

facts, why not use the simpler theory?! However, things become more intricate 

when we want to know whether a simpler theory is really better than the more 

complicated one. This also raises another question which has been a bone of 

contention in philosophy ever since the razor's inception. For what is the proper 

measure of simplicity? Is x 100 + 1 more complicated than ax 17 + hx2 +ex+ d? E.g., 

the distinguished contemporary philosopher K. Popper pronounced that the razor 

is without sense to use on such grounds. However, it is interesting to notice that 

the principle can be given objective contents and has recently been very successfully 

applied in many different forms in computational learning theory. 
To explain this, let us consider an over-simplified example of inferring a finite 

automaton with one-letter input using Occam's razor principle: 

Accepted inputs: 0, OOO, 00000, 000000000; 

Rejected inputs: c, 00, 000000; 
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FIG. !. A trivial automaton. 

For these data, there exist many consistent finite automata. Figure 1 shows the 
trivial automaton and Fig. 2 shows the smallest automaton, where S denotes 
starting state and darker states are accepting states. 

Intuitively, the automaton in Fig. 1 just encodes data plainly; we therefore do not 
expect that machine to anticipate future data. On the other hand, the second 
machine makes a plausible inference that the language accepted consists of strings 
of an odd number of O's. The latter appeals to our intuition as a reasonable 
inference. However, a too simplistic application of Occam's razor principle may 
also lead to nonsense as the following story illustrates. 

Once upon a time, there was a little girl named Emma. Emma had never eaten a banana, 
nor had she been on a train. One day she went for a journey from New York to Pittsburgh 
by train. To relieve Emma's anxiety, her mother gave her a large bag of bananas. At Emma's 
first bite of a banana. the train plunged into a tunnel. At the second bite, the train broke into 
daylight again. At the third bit, Lo' into a tunnel; the fourth bith, La! into daylight again. 
And so on all the way to Pittsburgh and to the bottom of her bag of bananas. Our bright 
little Emma (applying Occam's razor principle'?) told her grandpa: "Every odd bite of a banana 
makes you blind; every even· bite puts things right again." (After N. R. Hanson, "Perception 
and Discovery," Freeman, Cooper, & Co, 1969, p. 359.) 

Let us consider how the idea of "simplicity" affects a scientist's thinking. We refer 
to a beautiful study of simplicity by Kemeny [26]. Initially, there were no new facts 
that failed to be explained by the Special Theory of Relativity. The incentive to 
invent the General Theory of Relativity, by Albert Einstein, was his conviction that 
the Special Theory was not the simplest theory that can explain all the observed 
facts. Reducing the number of independent variables obviously simplifies a theory. 
By the requirement of general covariance Einstein succeeded in replacing the 
previous independent "gravitational mass" and "inertial mass" by a single concept. 

In spite of the apparent univeral acceptance of Occam's razor, consciously or 
unconsciously, the concept of simplicity remains highly controversial. Generally 
speaking, it has remained a crude non-precise idea. Things are subtler than they 
appear. Is the following formulation precise? 

OCCAM'S RAZOR RULE. Select a hypothesis which is as well in agreement with the 
observed value as possible; if there is any choice left, choose the simplest possible 
hypothesis. 

FIG. 2. The smallest automaton. 
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EXAMPLE. Consider the problem of fitting n points by a polynomial. The above 
rule tells us to choose the polynomial of lowest degree passing through all the n 
points. But due to measurement precision and possible noise, whatever degree 
polynomial the points originated from, we will end up a polynomial of degree n~-- I 
which fits the data precisely. But this polynomial most likely does not help us to 
predict future points. 

EXAMPLE. Consider another example given by Kemeny: Let there be an 
unknown number of white balls and black balls in a sealed urn. Through an opening 
you randomly pick one ball at a time, note its color and replace it, and shake the 
urn thoroughly. After n draws you must decide what fraction of the balls in the urn is 
white. The possible hypotheses state that some rational fraction r of balls in the urn 
is white, where 0 ~ r :S; 1. By the above rule, if in n draws, m white balls are selected. 
then we should formulate the hypothesis r = m/n. Let there be 1/3 white and 2/3 
black balls. However, the probability of getting the true hypothesis r = 1/3 is zero 
if n is not divisible by 3, and it tends to zero, even for the sequence of values of n 
divisible by 3. Even when the process converges, n may have to be too large for 
practical use. On the other hand, we know that to obtain a hypothesis 
1/3 - £ ~ r ~ 1/3 + £, for any <:, has probability tending to I exponentially fast by 
the so-called Chernoff formula. (For Chernoff's formula see below or, e.g., [I].) 

KEMENY's RULE. Select the simplest hypothesis compatible with the observed 

values. 

Here "compatible" is defined as follows. The hypothesis H, is compatihle with 
data D if, assuming the truth of H 1, there was at most one percent chance of getting 
a deviation as great as m(H1, D) for some measure function m. This is related to 
Valiant's learning theory to be discussed later. 

But how does one define simplicity? Is ± simpler than fci? Is 1 simpler than ~? 
Saying that an urn contains t part white balls comes down to the same thing as 
saying that it contains a ~ part black balls. Kemeny warned: "do not use more 
precision in your theories than is necessary." But what is necessary and what is not? 
All these issues are very subjective. Does a simple theory generate a hypothesis 
which is good for predicting future outcomes? How do we achieve fast con­
vergence? How does one trade between "simplicity" and "truth" ("compatibility")? 
Kemeny actually asked for "a criterion combining an optimum of simplicity and 
compatibility" (crediting Nelson Goodman for this suggestion). 

1.1. Combining Epicurus, Ockham, and Bayes 

The study of inductive reasoning predates artificial intelligence or computer 
science by more than 2000 years. There is a tremendous amount of literature in many 
different fields under diverging terminologies. Our goal is to extract a common core 



348 LI AND VITANYI 

of simple ideas underlying all these approaches, in the spirit of Occam's Razor 
principle. We will start with Bayesian inference theory. 

To apply Bayesian type reasoning one has to assign a priori probabilities (prior 
probability) to each possible hypothesis. Since the posthumous publication in 1763 
of Th. Bayes'(? 1761) famous memoir "An Essay towards Solving a Problem in the 
Doctrine of Chances" by his friend Richard Price [ 4 ], there has been continuous 
bitter debate on the controversial prior probability in the Bayesian formula. 

The invention of Kolmogorov complexity, by its first inventor R. Solomonoff, 
was as an auxiliary notion to resolve this particular problem. Namely, using 
Kolmogorov complexity he found a single "universal" prior distribution, which can 
be substituted for any particular actually valid distribution (as long as it is com­
putable) in Bayes' formula, and obtain approximately as good results as if the 
actually valid distribution had been used. It sounds like magic, but Solomonoff's 
approach does give a more or less satisfactory solution to this unlikely objective. 

The elegant idea of a universal prior is a combination of Occam's razor and 
modern computability theory. However, the universal prior is uncomputable, since 
it involves Kolmogorov complexity. In this paper we develop the thesis that many 
theories, models, and principles for inductive reasoning that were formulated, both 
before an after Solomonoff's inception, can be rigorously derived as particular 
computable approximations to it. 

We first describe the basics of Bayesian theory and how to apply Kolmogorov 
complexity to obtain the universal prior probability distribution. We then derive 
the Gold paradigm and its principles. We derive a form of Rissanen's minimum 
description length (MDL) principle. From the MDL principle Rissanen derives 
Fisher's maximum likelihood principle and Jaynes' maximum entropy principle. 
This paper contains a review of all these theories and principles. It has been our 
experience that some experts say the connections as claimed are obvious, while 
some other experts deny those connections exist. Thus, since the proof of the 
pudding is in the eating, we explicitly establish derivations together with the 
appropriate related theorems. We also describe an experiment we have performed 
in machine learning of recognition of handwritten characters using the MDL 
principle. Combination of Gold-style inference with ideas from computational 
complexity theory leads to Valiant's model of deductive learning. We give an 
application of the universal prior distribution to obtain a theory of learning simple 
concepts under simple distributions. A more extensive treatment of this material 
will be given in our forthcoming textbook [37]. 

2. THE UNIVERSAL PRIOR DISTRIBUTION 

2.1. Bayesian Inference 

In the following discussion of probability we assume the usual so-called 
Kolmogorov axioms, see, e.g., [ 12]. For our purpose we need the following. We 
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have a hypothesis space, H={H1,H2 , ••• }, which consists of a countable set of 
hypotheses, which are mutually exclusive, H; 11 H; = 0 (in the sense that at most 
one of them is right) and exhaustive (in the sense that at least one of them is right). 
With each hypothesis H; we associate a probability P(H,) such that L,;P(H,) = 1. 
The student is supplied with some data D, providing information about which 
hypothesis is correct. From the definition of conditional probability, i.e., P(A I B) = 
P(A 11 B)/P(B), it is easy to derive Bayes' .formula (rewrite P(A 11 B) in the two 
possible different ways, equate the two expressions, and set A= H; and B = D): 

P(H.ID) = P(DI H;)P(H;) 
I P(D) ' ( 1 ) 

where 

P(D) = L P(D I H;)P(H;). 

We interpret the different variables in the formula as follows. 1 The H,'s represent 
the possible alternative hypotheses concerning the phenomenon we wish to dis­
cover. The term D represents the empirically or otherwise known data concerning 
this phenomenon. The term P(D), the probability of data D, can be considered as 
a normalizing factor so that L; P(H; ID)= 1. The term P(H;) is called the prior 
probability or initial probability of hypothesis H;, i.e., the probability that H; is true 
before we have seen any evidence. The term P(H; ID) is called the final, a posteriori, 
or inferred probability, which reflects the probability of H; modified from the prior 
probability P(H;) after seeing the data D. The term P(D I H;), the conditional 
probability of seeing D when H; is true, is assumed to be computable from D and 
H;. In many learning situations, data can only be consistent with a hypothesis H; 
in the sense of being forced by it such that P(D I H;) = 1. If the data is inconsistent 
with hypothesis H; then P(D I H;) = 0. In such a situation, the data either is deter­
mined by a hypothesis, or disqualifies it. (We assume there is no noise that distorts 
the data.) For example, the hypothesis is datum x e L or x ~ L. 

The most interesting term is the prior probability P( H;). In the context of 
machine learning, P(H;) is often considered as the learner's initial degree of belief 
in hypothesis H;. In essence Bayes' rule is a mapping from a priori probability 
P(H;) to a posteriori probability P(H;ID), where the mapping is determined by 
data D. In general, the problem is not so much that in the limit the inferred 

1 Properly speaking, formula ( 1) is not due to Bayes, but it is due to P. S. Laplace ( 1749-1827) who 
stated the formula and attached Bayes' name to it [30]. Actually, Bayes in his original paper [4] 
assumed the uniform distribution for the a priori probability; hence he has essentially derived 
P(H11 D) = P(DI H,)/L,1 P(D I H,). Although this formula can be derived from (I) by simply assuming 
that all P(H1) are the same, Bayes did not state his result in the general form as in (I), nor did he derive 
his result through a formula similar to (I). Despite the fact that Bayes' rule is just a rewriting of the 
definition of conditional probability and nothing more, it is its interpretation and applications that are 
most profound and caused much bitter controversy during the past two centuries. 
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probability would not "'condense" on the "'true" hypothesis, but that the inferred 
probability gives as much information as possible about the possible hypotheses 
from only a limited number of data, cf. example below. In fact, the continuous 
bitter debate between the Bayesian and non-Bayesian opinions centered on the 
prior probability. The controversy is caused by the fact that Bayesian theory does 
not say how to initially derive the prior probabilities for the hypotheses. Rather, 
Bayes' rule only says how they are to be updated. However, in each actual case the 
prior probabilities may be unknown, uncomputable, or conceivably do not exist. 
(What is the prior probability of use of words in written English? There are many 
different sources of different social backgrounds living in different ages.) This 
problem is solved if we can find a single probability distribution to use as the prior 
distribution in each different case, with approximately the same result as if we had 
used the real distribution. Surprisingly, this turns out to be possible up to some 
mild restrictions. 

EXAMPLE. We use an example of von Mises [39]. Let an urn contain many dice 
each with different attributes. A die with attribute p has probability p showing "6" 
in a random throw. For convenience, assume the attribute set A is finite, and the 
difference between each pair of attributes is greater than 2£. Randomly draw a die 
from the urn, our task is to determine its attribute. We do this by experimenting. 
Throw the die n times independently. If "6" shows up m times, we choose the 
attribute that is nearest tO m/n. Let HP be the event of drawing a die with attribute 
p from an urn. Let D q be the experimental data such that m successes ( 6's) were 
observed out of n throws and lq - m/nl <F., for q EA. So 

where P(Dq) = Lp P(D q I HP)P(Hr ). According to Chernoff's formula (see [ l] ), for 
x < 1, we have 

P(m - np > anp I HP)< e-•2nP1 2, 

P(np - m > xnp I HP)< e ' 2nPi 3• 

Hence, if p is the true attribute of the die we have drawn then, choosing a= s/2p 
(so lp-m/nl?:t: implies \m-np\>anp), P(DqlHP) goes to 0 exponentially fast 
when the number of experiments increases, for q=f.p, and P(DPI HP) goes to 1 at the 
same rate. Hence P( HP ID P) goes to l. Thus we derive the correct attribute of the 
die with high probability (using a polynomial number of throws). The interesting 
point is that if the number of trials is small, then the inferred probability P(H" ID,) 
may heavily depend on the prior probability P(Hp). However, if n is large, then 
irrespective of the prior distribution, the inferred probability condenses more and 
more around m/n. 
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EXAMPLE. We explain a simplified version of SolomonofT's theorv of inductive 

inference. The simplification is in that we, for the moment, consider ~nly a discrete 

sample space like { 0, 1} *, the set of all finite binary sequences, rather than : O, 1 l ', 
the set of all one-way infinite binary sequences. 

We view theory formation in science as the process of obtaining a compact 

description of the past observations together with predictions of future ones. The 

investigator observes increasingly larger initial segments of a finite binary sequence 

as the outcome of a finite sequence of experiments on some aspect X of nature. To 

describe the underlying regularity of this sequence, the investigator tries to 

formulate a theory that governs X, on the basis of the outcome of past experiments. 

Candidate theories (hypotheses) are identified with computer programs that 

compute binary sequences starting with the observed initial segment. 

First assume the existence of a prior probability distribution, described by prob­

ability function P, over a discrete sample space Q = { 0, l} *. Define a function 11 

over Q by µ(x)=L: {P(xy): yEQ}. Thus, p(x) is the probability of a sequence 

starting with x. Given a previously observed data string S, the inference problem is 

to predict the next symbol in the output sequence, i.e., extrapolating the sequence S. 
In terms of the variables in formula (1 ), H; is the hypothesis that the sequence 

under consideration starts with initial segment Sa. The data D consists in the asser­

tion that the sequence in fact starts with initial segment S. Thus, for P(H;) and 

P(D) in formula ( 1) we substitute p(Sa) and 11(S), respectively, and obtain, a= 0 

or a= 1, 

11(Sa IS)= p(S I Sa )p(Sa). 
p(S) 

Obviously, p(SI Sa)= l for any a; hence 

µ(Sa) 
p(Sa!S)= p(S). (2) 

In terms of inductive inference or machine learning, the final probability p(Sa IS) 

is the probability of the next symbol being a, given the initial sequence S. Obviously 

we now only need the prior probability to evaluate µ(Sa IS). 

The goal of inductive inference in general is to be able to either (i) predict 

(extrapolate) the next element of S, or (ii) to infer an underlying effective process 

(in the most general case, a Turing machine, according to the Church Turing 

thesis) that generated S, and hence to be able to predict the next symbol. 

In order to solve the problem for unknown prior probability, Solomonoff 

proposed what he called a universal prior distribution. We now carefully define the 

universal prior distribution and prove several fundamental theorems due to 

Solomonoff and L. A. Levin, and afterwards continue this example. The definitions 

and theorems are so fundamental that our approach totally rests upon them. These 
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results are in some form hidden in [21, 44, 45, 48]. For various reasons they are 
difficult to access and almost unknown except to a few people doing research in this 
area. It seems useful to recapitulate them. First we need the basic definitions of 
Kolmogorov complexity. 

2.2. Kolmogorov Complexity 

Inductive reasoning was the midwife that stood at the cradle of Kolmogorov 
complexity. Today, Kolmogorov complexity has been applied in many areas of 
computer science and mathematics (see [36] for a general survey), and few realize 
that Kolmogorov complexity was at first invented for the purpose of inductive 
inference. In this essay, we go back to this origin. 

We are interested in defining the complexity of a concrete individual finite string 
of zeros and ones. Unless otherwise specified, all strings will be binary and of finite 
length. All logarithms in this paper are base 2, unless it is explicitly noted they are 
not. If x is a string, then l(x) denotes the length (number of zeros and ones) of x. 
We identify throughout the xth finite binary string with the natural number x, 
according to the correspondence, 

(e, 0), (0, 1), (I, 2), (00, 3), (01, 4), (10, 5), .... 

Intuitively, we want to call a string simple if it can be described in a few words, like 
"the string of a million ones"; a string is considered complex if it cannot be so easily 
described, like a "random" string which does not follow any rule and hence we do 
not know how to describe it apart from giving it literally. A description of a string 
may depend on two things, the decoding method (the machine which interprets the 
description) and outside information available (input to the machine). We are 
interested in descriptions which are effective and restrict the decoders to Turing 
machines. Without loss of generality, our Turing machines use binary input strings 
which we call programs. More formally, fixing a Turing machine T, we would like 
to say that p is a description of x, if, on input p, T outputs x. It is also convenient 
to allow T to have some extra information y to help to generate x. We write 
T(p, y) = x to mean that Turing machine T with input p and y terminates with 
output x. 

DEFINITION 1. The descriptional complexity C r of x, relative to Turing machine 
T and binary string y, is defined by 

Cr(xl y) = min{l(p): pe {O, 1 }*, T(p, y) = x }, 

or oo if no such p exists. 

The complexity measure defined above is useful and makes sense only if the 
complexity of a string does not depend on the choice of T. Therefore the following 
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simple theorem is vital. This invariance theorem is given by Solomonoff [ 44 ], 
Kolmogorov [27], and Chaitin [7]. 

THEOREM I. There exists a universal Turing machine U, such that . .fbr any other 
Turing machine T, there is a constant c r such that for all strings x, y, Cc (x I y ~ ~ 
C7 (xl y) + Cy. 

Proof. Fix some standard enumeration of Turing machines T 1, T2 • •••• Let Ube 
the universal Turing machine such that when starting on input O"lp, pE :o. I}*, U 
simulates the nth Turing machine T,, on input p. For convenience in the proof. we 
choose U such that if T,, halts, then U first erases everything apart from the halting 
contents of T,,'s tape, and also halts. By construction, for each p E { O, l : *, T,, 
started on p eventually halts iff U started on 0"1p eventually halts. Choosing 
c r = n + 1 for T = T 11 finishes the proof. I 

Clearly, the universal Turing machine U that satisfies the invariance theorem is 
optimal in the sense that Cu minorizes each C 7 up to a fixed additive constant 
(depending on U and T). Moreover, for each pair of universal Turing machines U 
and U'. satisfying the invariance theorem, the complexities coincide up to an 
additive constant (depending only on U and U' ), for all strings x, y: 

Therefore, we set the canonical conditional Kolmogorm• complexity C(x I y) of x 

under condition of y equal to Cu(xl y), for some fixed optimal U. We call Uthe 
reference Turing machine. Hence the Kolmogorov complexity of a string does not 
depend on the choice of encoding method and is well defined. Define the uncondi­
tional Kolmogorov complexity of x as C(x) = C(x It), where 1: denotes the empty 
string (/(c:) = 0). 

DEFINITION 2. In the sequel we need to use the pre.fix complexity variant. or 
self-delimiting complexity, rather than C(x) from Definition 1. A prefix machine is 
a Turing machine with three tapes: a one-way input tape, a one-way output tape, 
and a two-way work tape. Initially, the input tape contains an indefinitely long 
sequence of bits. If the machine halts, then the initial segment on the input tape it 
has read up until that time is considered the input or program, and the contents of 
the output tape is the output. Clearly, the set of programs of each such machine is 
a prefix-code. (Recall that if p and q are two code words of a pre.fix code, then p 
is not a proper prefix of q.) We can give an effective enumeration of all prefix 
machines in the standard way. Then the pre/ix descriptional complexity of 
x E { 0, 1 } *, with respect to prefix machine T, and binary string y, is defined as 

K7 (xly)=min{/(p): pE {O, I}*, T(p, y)=xJ, 

or x.1 if such p do not exist. One can prove an invariance theorem for prefix com­
plexity and define the conditional and unconditional pr£'.fix Kolmogorol' complexity, 
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by fixing some reference optimal prefix machine, in exactly the same way as before, 
so we do not repeat the construction. 

Remark. The prefix Kolmogorov complexity of string x, is the length of the 
shortest prefix program that outputs x. ln this exposition, we will use K(x) to 
denote the prefix Kolmogorov complexity of x. C(x) and K(x) differ by at most a 
2 log K(x) additive term. In some applications this does not make any difference. 
But in some other applications, for example, inductive inference, this is vital. In 
particular, we need the property that the series :Z:::, 2 A:(xl converges, cf. below. 

DEFINITION 3. A binary string x is incompressible if K(x);:?; f(x ). 

Remark. Since Martin-LOf [38] has shown that incompressible strings pass all 
effective statistical tests for randomness, we will also call incompressible strings 
random strings. A simple counting argument shows that most strings are random. 
The theory of computability shows that the function K(x) is noncomputable, but 
can be approximated to any degree of accuracy by a computable function. However, 
at no point in this approximation process can we known the error. Cf. also the 
surveys [ 34, 48]. 

2.3. Semicomputable Functions and Measures 

We consider recursive functions with values consisting of pairs of natural 
numbers. If (p, q) is such a value then we interpret this value as the rational 
number p/q, and say that the recursive function is rational valued. 

DEFINITION. A real function f is semicomputah!e from he/ow iff there exists a 
recursive function g(x, k) with rational values (or, equivalently, a computable real 
function g(x, k) ), nondecreasing in k, with f (x) = limk .• , x(x, k ). A function f is 
semicomputable from above, if -! is semicomputable from below. 

(An equivalent definition:f is a function that is semicomputable from below if the 
set { (x, r): r ~f(x ), r is rational} is recursively enumerable.) 

A real function f is computable iff there is a recursive function g(x, k) with 
rational values, and j/(x)-g(x, k)) < 1/k. 

Obviously, all recursive functions are· computable, and all computable functions 
are semicomputable. However, not all semicomputable functions are computable. 
Nontrivial examples of functions that are semicomputable from above but not 
computable are C(x), C(xl y), K(x), and K(xl y). 

The following analysis is a simplified version over the discrete space N (or the set 
of finite binary strings) of Zvonkin and Levin [ 48]. We follow to some extent [21]. 
Functions 11: N--+ [O, l] that satisfy the usual properties of probability distribu­
tions, except that 

x 
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we shall call measures. (If inequality holds we call them, more properly, 
'semimeasures'.) We say that a measure p (multiplicatively) dominates a measure p' 
if there exists a constant c such that, for all x in N, we have ;1'(x):::;cp(x). It is 
known from the calculus that no measure Jl dominates all measures: for each 
measure p there is a measure 11' such that limx , ,,_ p'(x)/µ(x) = w. However, if we 
restrict ourselves to the class of semicomputable measures, then it turns out that 
this class contains an "'absorbing" element, a measure that dominates all measures 
in the class. We call the measure that dominates all other measures in a given class 
a universal measure for that class. This important observation that such a measure 
exists was first made by Levin [ 48]. 

THEOREM 2. The class ()/"measures that are semicomputahle from he/ow contains 
a universal measure. 

Proof First we consider the standard enumeration of all partial recursive func­
tions </! 1 , </J 1 , .... Each <P = </!; in this list is a function on the positive integers. Let < · ) 
denote a standard effective invertible pairing function over N to associate a unique 
natural number <x, k) with each pair (x, k) of natural numbers. This way we can 
intepret </! as a two-argument function </!( <x, k) ). We change each </! into a partial 
recursive function tj; with the same range as t/! but with, for each x, the value of 
lf!( <x, k)) only defined if tj;( <x, 1 ) ), tj;( <x, 2) ), ... , tj;( <x, k - 1)) are defined. 
(Assign values to arguments in enumeration order.) We use each lf! to define a semi­
computable real function s by rational valued approximations sk(x), k =I, 2, ... , 
from below: 

s(x) = sup{sk(x): sk(x) = p/q, l/J( <x, k)) = <P, q), k = 1, 2, ... }. 

The resulting s-enumeration contains all semicomputable functions. Next we use 
each semicomputable function s to compute a measure µ from below. Initially, set 
11(x) = 0 for all x. Define s~rnx = max 1 "';,., k i{ s;}. Ifs( 1 ) is undefined then 11 will not 
change any more and it is trivially a measure. Otherwise, for k =I, 2, ... , if 
s~axl I)+ s~ax (2) + · · · + s~ax(k):::; I then set Jl(i) := s~ax (i) for i = 1, 2, ... , k, else the 
computation of p is finished. 

There are three mutually exclusive ways the computation ofµ can go, exhausting 
all possibilities. First, s is already a measure and µ := s. Second, for some x and k 
with x:::; k the value sk(x) is undefined. Then the values of Jl do not change any 
more from 11(i)=s~ia/(i) for i= 1, 2, ... , k-1, and p(i)=O for i~k, even though 
the computation of µ goes on forever. Third, there is a first k such that 
s~ax (1) + s~ax (2) + · · · + s~ax(k) > 1; that is, the new approximation of µ violates 
the condition of measure. Then the approximation ofµ is finished as in the second 
case. But in this case the algorithm terminates, and µ is even computable. 

Thus, the above procedure yields an effective enumeration 11 1, µ 2 , ... of all 
semicomputable measures. Define the function Po as 

II 
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It follows that µ0 is a measure, since 

2>o(X) = L 2-n L µ,.(x) ~L 2- 11 = l. 
x n x n 

The function µ 0 is also semicomputable from below, since µ 11(x) is semicomputable 
from below inn and x. (Use the universal partial recursive function ef>o and the con­
struction above.) Finally, µ0 dominates eachµ,,, since µo(x) > 2 -"µ,.(x). Therefore, 
µ0 is a universal semicomputable measure. I 

Obviously, there are countably infinitely many universal semicomputable 
measures. We now fix a reference universal semicomputable measure µ0(x), and 
denote it by m(x). It will turn out that function m(x) adequately captures 
Solomonoff's envisioned universal a priori probability. 

If a semicomputable measure is also a probability distribution then it is 
computable. Namely, if we compute an approximation µk of the function µ from 
below for which :L;,. µk(x) > 1-e, then we have lµ(x)- µk(x)I < e for all x. 

Any positive function w(x) such that Lx w(x) ~ 1 must converge to zero. Hence 
m(x) converges to zero as well. However, it converges to zero slower than any 
positive computable function that converges to zero. That is, m(x) is not com­
putable, and therefore it is not a proper probability distribution: Lx m(x) < 1. 
There is no analogous result to Theorem 2 for computable measures: amongst all 
computable measures there is no universal one. This fact is one of the reasons for 
introducing the notion of semicomputable measures. 

2.4. The Solomonoff-Levin Distribution 

The original incentive to develop a theory of algorithmic information content of 
individual objects was Ray Solomonoff's invention of a universal a priori probability 
that can be used instead of the actual (but unknown) a priori probability in 
applying Bayes' rule. His original suggestion was to set the a priori probability P(x) 
of a finite binary string x to L: 2 -l(Pl, the sum taken over all programs p with 
U(p) = x, where U is the reference Turing machine of Theorem 1 for the 
C-complexity. However, using plain Turing machines this is improper, since not 
only does Lx P(x) diverge, but for some x even P(x) itself diverges. To counteract 
this defect, Solomonoff in 1960 and 1964 used normalizing terms. Levin [ 48] 
succeeded in 1970 to find another mathematical expression of the a priori probability, 
of which we present the simpler version over the discrete domain N. This was 
elaborated by Levin in 1973 and 1974 [31, 32], and Levin and Gacs in 1974 [20] 
and independently by Chaitin in 1975 [8]. 

DEFINITION. The Solomonoff-Levin distribution (actually a measure) on the 
positive integers is defined by Pu(x)=L:2·-l(pl, where the sum is taken over all 
programs p for which the reference prefix-machine U of Theorem 1 outputs x. This 
is a measure because of the following. 
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Kraft's inequality. If 11 , 12 , ••• is a sequence of positive integers such that 
Ln 2 -i.~ 1 then there is a prefix code c: N--+ { 0, 1 } * (i.e., if n ¥= m are positive 
integers, then c(n) is not a prefix of c(m)), with /(c(n)) = /11 • Conversely, if 
c:N--+ {O, 1}* is a prefix code, then the sequence /1,/2 ,. .. with 111 =/(c(n)), 
n = 1, 2, ... , satisfies the inequality above. See, e.g., [ 14]. 

Hence, by the Kraft inequality, for the prefix code formed by the programs p of 
U we have Lp 2 lip)~ 1. Therefore, the combined probability Lx Pu(x), summed 
over all x's, sums up to Jess than one, no matter how we choose reference U, 
because for some initial input segment U scans it but no more, and keeps on 
computing forever. 

Another way to conceive of Pu(x) is as follows: We think of the input to the 
reference prefix machine U as being provided by indefinite long sequences of fair 
coin flips. Thus, the probability of generating a program p for U is P(p) = 2 -tlpl, 

where P is the standard "coin-flip" uniform measure. (Namely, presented with any 
infinitely long sequence starting with p, the machine U, being a prefix machine, will 
read exactly p and no further.) Due to the halting problem, for some q the reference 
U does not halt. Therefore, the halting probability, usually also denoted by Q, 
satisfies 

Now we are ready to state the remarkable and powerful fact that Levin's 
universal semicomputable measure m(x), the Solomonoff-Levin universal a priori 
probability Pu (x ), and the simpler expression 2 -Klx>, all coincide up to an inde­
pendent fixed multiplicative constant. It is a consequence of universally accepted 
views in mathematical logic (Church's thesis), that the widest possible effective 
notion of shortness, which we equate with simplicity, of description of an object x 
is quantified by K(x). 

The Solomonoff-Levin distribution can be interpreted as a recursively invariant 
notion that is the formal representation of "Occam's Razor": the statement that one 
object is simpler than the other is equivalent to saying that the former object has 
higher probability than the latter. 

THEOREM 3. There is a constant c such that for each x, up to additive constant 
c, we have -logm(x)= -logPu(x)=K(x). 

Proof Since 2 Kixl represents the contribution to Pu (x) by a shortest program 
for x, 2 -K(x) ~Pu (x) for all x. Since Pu (x) is semicomputable from below by 
enumerating all programs for x, we have by the universality of m(x) that there is 
a fixed constant c such that for all x we have Pu(x)~cm(x). 

It remains to show that m(x)= 0(2-Kixl). This is equivalent to showing that for 
some constant c we have -logm(x)~K(x)+c. It suffices to exhibit a prefix code 
such that for some other fixed constant c', for each x there is a code word p such 
that l(p) ~ - log m(x) + c', together with a prefix machine T such that T(p) = x. 
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Then, Ky(x)~l(p) and hence by the Invariance Theorem I also K(x)~l(p) up to 
a fixed additive constant. First, we recall a construction for the Shannon-Fano 
code. 

CLAIM. ff' µ is a 1neasure on the integers, ,L, µ(x) ~ 1, then there is a binary 
prefix code r: N--> { 0, l} * such that the code words r( 1 ), r(2 ), ... are in lexicographi­
cal order, such that l(r(x)) ~ -log Jt(x) + 2. This is the Shannon-Fano code. 

Pror~l Let [O, I) be the half open unit real interval. The half open interval 
[O.x, O.x + 2··11' 1) corresponding to the set (cylinder) of reals I',= { O.y : y = xz} 
(x finite and y and z infinite binary strings) is called a binary interval. We cut off 
disjoint, consecutive, adjacent (not necessarily binary) intervals I 11 of length µ(n) 
from the left end of [O, 1 ), n = I, 2, .... Let i,, be the length of the longest binary 
interval contained in I,,. Set r(n) equal to the binary word corresponding to the first 
such interval. It is easy to see that I,, is covered by at most four binary intervals of 
length i,,, from which the claim follows. I 

Since m(x) is semicomputable from below, there is a partial recursive function 
</J(t,x) such that q](t,x)~m(x) for all t, and lim 1 • 1 q)(t,x)=m(x). Let 
t/J(t, x) = 2 k, with k is a positive integer, be the greatest partial recursive lower 
bound of this form on q](t, x). We can assume that t/l enumerates its range without 
repetition. Then, 

L if;(t, x) = L L ij;(t, x) ~ L 2m(x)::::; 2. 
X,/ X 

(The series .L, l/J(t, x) can only converge to precisely 2m(x) m case there is a 
positive integer k such that m(x) = 2 k.) 

Similar to before, we chop off consecutive, adjacent, disjoint half open intervals 
I 1,, of length t/J(t, x)/2, in order of computation of l/J(t, x), starting from the left side 
of [O, 1 ). This is possible by the last displayed equation. It is easy to see that we 
can construct a prefix machine T as follows. If I'P is the largest binary interval of 
11," then T(p)=x. Otherwise, T(p) is undefined (e.g., Tdoes not halt). 

By construction of t/J, for each x here is a lf;(t, x) > m(x)/2. By the construction 
in the claim, each interval I,,x has length t/J(t, x )/2. Each I-interval contains a binary 
interval I'P of length at least one quarter of that of I. Therefore, there is a p with 
T(p)=x such that 2 11 " 1 ~m(x)/16. This implies K,.(x)::::; -logm(x)+4. The 
proof of the theorem is finished. I 

Theorem 3 demonstrates a particularly important instance of the two concep­
tually different, but equivalent, definitions of the semicomputable measures. We 
analyse this equivalence in some detail. Let P 1 , P 2 , ... be the effective enumeration 
of all semicomputable probability distributions constructed in Theorem 2. Let 
T 1, T2 , ... be the standard enumeration of prefix machines. For each prefix machine 
T, define 

Q ( ) "' 2 .. /(p) T X = L...., 
T(p)=x 
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In other words, QT(x) is the probability that T computes output x if its input p is 
generated by successive tosses of a fair coin. In other words, the inputs p are 
uniformly distributed with the probability of p occurring equal 2 - llpl. It is easy to 
see that each Q 7 satisfies 

I Q.,(x) ~i. 

Equality holds iff T halts for all inputs (proper programs). Let Q 1, Q 2 , •.• (where we 
do not require equality to hold) be the probability distributions associated with 
T1, T2 . .... 

CLAIM. There are recursive functions <J, re such that Q 11 = B(P ,,.1111 ) and 
P11 = B(Qrrrnil· for n = 1, 2, .... 

Proof Omitted. I 
Remark. The coding theorem tells us that there is a constant c > 0: 

- logPu(x)-K(x)::::;;c. We recall from the definition of the Solomonoff­
Levin distribution that 

-- logPu(x)= -log2:urri~x2 llpJ and K(x)=min{l(p): U(p)=x}. 

A priori an outcome x may have high probability because it has many long descrip­
tions. But these relations show that in that case it must have a short description 
too. In other words, the a priori probability of x is governed by the shortest 
program for x. 

Remark. Let P be any probability distribution (not necessarily computable). 
The ?-expected value of m(x )/ P(x) is 

m(x) 
IP(x)-< 1. 
, P(x) 

We find by Chebychev's first Inequality 2 that 

I { P(x): m(x)::::;; kP(x)} ~I - l/k. (3) 

Since m(x) dominates all semicomputable measures multiplicatively, for all x we 
have 

P(x) ~ cpm(x), (4) 

1 Recall that Chebychev's first inequality says the following: Let P be any probability distribution, f 
any nonnegative function with expected value £p(/) = 2:, P(x) f(x) < oo. For .l.;;;, 0 we have 
I: {P(x): /(x) > ). ) < ,{ 1 Ep(f). Here we use it with kEp(f) substituted for Jc. 
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for a fixed positive constant c P independent of x (but depending on the index of P 
in the effective enumeration µ 1 , µ 2 , ... of semicomputable measures). 

Inequalities (3) and (4) have the following consequences3 : 

(i) If x is a random sample from a simple computable distribution P(x), then 
m(x) is a good estimate of P(x ). 

(ii) If we know or believe that x is random with respect to P, and we know 
P(x), then we can use P(x) as an estimate of m(x). 

2.4.1. Solomonoff's Inference Procedure and Its Mathematical Justification 

We continue Solomonoff's approach to inductive inference, as in [ 48]. In 
general, one cannot prove that an inference procedure in statistics is good. This 
accounts for the many different approaches which are advocated in statistics. In 
contrast, about Solomonoff's procedure we can rigourously prove that it is good. 
First, we put the previously developed theory in a continuous setting. Let the 
sample space S = { 0, 1 } * u { 0, 1 } ·:>e, the set of all finite and one-way infinite binary 
sequences. Let a cylinder rx = { xy : y ES}, the set of all elements from s that start 
with x. A function µ from cylinders to the real interval [O, 1] is called a semi­
measure if 

(a) µ(S)~l;and 

(b) µ(I'J~µ(I'xo)+µ(I'xil· 

A semimeasure is called a measure if equality holds in (a) and (b ). A semimeasure 
µis (semi)computable if f(x)=µ(I'x) is (semi)computable. Note that f needs to 
satisfy (a) and (b ). It is more convenient and customary in this area to simply write 
p(x) instead of µ(I'J. The problem was that the proper a priori probabilities µ in 
formula (2) are not known. We modify the Turing machines in the standard 
enumeration so that they correspond to the semicomputable measures. 

A monotonic machine M is a three tape machine similar to the prefix machine we 
defined before. Now for all finite (binary) inputs p and q, if p is a prefix of q, then 
M(q) = M(p)r for some r in S. (For convenience we define the M(p) as the 
contents of the output tape at the time when M reads the next symbol after p. If 
M does not halt then M(p) can be finite or one-way infinite.) Let Ube the universal 
monotonic machine, in the same way as we have already met universal Turing 
machines and universal prefix machines. 

Let x be a largest prefix free SU bset of { p: U( p) E rx}. 

3 We briefly remark, without further explanation, that in both cases the degree of approximation 
depends on the index of P, and the randomness of x with respect to P, as measured by the randomness 
deficiency '50(xlP)=log(m(x)/P(x)). If t5 0(xlP)=O(I) then x is random, otherwise x is not random. 
For example, for the uniform distribution c5 0(x IP)= n - K(x In)+ 0( I), where n = /(x). Such a (universal 
Martin-Lof) test is needed, since otherwise we cannot distinguish, for instance, between randomness and 
nonrandomness of samples from the uniform distribution. (Clearly, the word Constantinople is not a 
random 14-letter word. The probability of seeing it somewhere written is decidedly greater than 12s- 14, 
say, for a randomly selected fourteen letter ASCII word.) 
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The universal semicomputable semimeasure is defined as 

M(x) = L: 2 --llP>; 

XEX 

i.e., M(x) is the a priori probability that the output of the reference monotonic 
machine U starts with x. Just as in the discrete case, one can show that for 
each semicomputable semimeasure µ, there exists a constant c, such that for all 
xe {O, 1 }*, we have 

cM(x);;;: µ(x). 

An alternative approach to defining a priori probability was taken by Cover [9] 
who defined 

Mc(x)=l: {m(xy) :yE {O, l }*}. 

This function has related properties to M. 

Solomonof}s predictor. Instead of using formula (2), we estimate the condi­
tional probability P(xy Ix) that the next segment after x is y by the expression 

M(xy) 
M(x). 

(5) 

Now let µ in formula (2) be an arbitrary computable measure. This case includes 
all computable sequences, as well as many Bernouilli sequences. 

Justification. Solomonoff [ 45] showed that convergence of the error made by 
the estimator is very fast, in the following sense. If µ is the actual prior probability 
(measure) over the sample space S, then we obviously cannot do better in predicting 
a "O" or "1" after an initial segment x than using the inferred probability 

µ(xa) 
µ(x), a= 0, l. 

To estimate how much worse it is to use M instead ofµ, we consider the difference 
in inferred probabilities. Let Sil denotes the µ-expectation of the squared difference 
between the µ-inferred probability and the M-inferred probability, of "O" occurring 
as the (n + l )th symbol: 

(
M(xO) µ(x0)) 2 

S,, = L µ(x) M(x) - µ(x) · 
/(x)=ll 

Then Ln S 11 ~ K(µ) log,,2/2. Here, K(µ) is the Kolmogorov complexity of the index 
i, where T; is a Turing machine computing µ. Therefore, Sil converges to zero faster 
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than l/n. In other words, it has been rigorously proved that for the above estimator 
the expected error at the nth prediction converges to zero faster than l/n! 

Also by Gacs [ 19]: H the length of y is fixed and the length of x grows to 
infinity, then 

M(xy)/M(x) 
------>I, 
11(xy )/ µ(x) 

with µ-probability one. In other words, the conditional a priori probability is 
almost always asymptotically equal to the conditional probability. 

With respect to the discrete sample space approach taken before, one can show 
that 

-log M(x) = -log Mc(x) + O(log K(x)) = K(x) + O(log K(x) ). (6) 

2.4.2. Conclusions 

On the positive side we have achieved the following: Bayes' rule using the univer­
sal prior distribution gives an objective interpretation to Occam's razor principle. 
Namely, if several programs could generate SO then the shortest one is used (for the 
prior probability); and, further, if SO has a shorter program than SI then SO is 
preferred (i.e., predict 0 with higher probability than predicting 1 after seeing S). 
Bayes' rule via the universal prior distribution also satisfies Epicurus' multiple 
explanations dictum, since we do not select a single hypothesis after considering the 
evidence, but maintain all hypotheses consistent with the evidence and just trans­
form the probability distribution on the hypotheses according to the evidence. 
Finally, there is mathematical proof that Solomonoff's inference procedure using 
the universal prior probability performs almost as good as the one using the actual 
(computable) prior probability. 

On the negative side, we know that Solomonoff's inference is not practicable in 
its pure form. The universal prior distributions m(x) for discrete sample spaces, and 
M(x) for continuous sample spaces, are not computable, essentially because the 
Kolmogorov complexity is not computable. However, we can compute approxima­
tions to K(x), m(x), and M(x). It turns out that using Solomonoff's inference 
principles with such computable approximations yields many other known 
inference models or principles. In the next few sections, we derive or establish 
connections with various well-known machine learning models and inductive 
inference paradigms or principles. Thus we provide an alternative view of these 
models and principles from the lofty perspective of Kolmogorov complexity. 

3. GOLD'S INDUCTIVE INFERENCE PARADIGM 

There are many different ways of formulating concrete inductive inference 
problems in the real world. We will try to simplify matters as much as possible 
short of losing significance: 
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( i) The class <d. rules we consider can be various classes of languages or func­
tions, where we restrict ourselves to classes of recursive sets, context-free languages, 
regular sets and sets of finite automata, and sets of Boolean formulae. We treat a 
language L as a function f; using its characteristic function, i.e., f(x) = XL(x) = 1 if 
x EL, and 0 otherwise. 

(ii) The hypothesis space or rule space denoted by R specifies syntactically 
how each rule in (i) should be represented. We fix a standard enumeration of the 
representations for a class of rules, R = { R 1 , R 2 , ... }, and assume that each rule f 
has at least one description in the corresponding hypothesis space. For example, the 
hypothesis space can be standard encodings of context-free grammars, or standard 
encodings of finite automata. In any case, it is assumed that the hypothesis space 
is effectively enumerable (so it cannot be the set of all halting Turing machine 
codes). For convenience, this enumeration of hypotheses R 1, R2 , .•. consists of codes 
for algorithms to compute recursive functions f 1,f2 , ... (languages are represented 
by their characteristic functions). 

(iii) The presentation of examples is vital to the inference process. We choose 
the simplest, and yet most general, form of data presentation. For a function f to 
be inferred, there is a fixed infinite sequence of examples (s 1, f (si) ), (s 2 , f (s2 ) ), .... 

When f= XL• we have x 1.(s) = 1 ifs EL (s is a positive example of L) and x J~) = 0 
otherwise (s is a negative example of L ). 

A rule (or function) f is said to be consistent with the initial segment of examples 

S= (s 1 , a 1 ), ••• , (s 11 , a11 ), (7) 

if f(s,) =a,, i = I, ... , n. We require that all strings will eventually appear as first 
component in a pair in S. The last assumption is strong, but is essential to the Gold 
paradigm. 

How to infer a rule. By (ii), there is an effective enumeration / 1 , f~, ... of partial 
recursive functions corresponding to the enumeration of hypotheses. The a priori 
probability off~ is m(fk) = m(k). (Actually, m(f~) = cm(k), for some constant c 
depending on the effective enumeration involved, but not depending on k. To 
assume that c = l makes no difference in the following discussion.) We are given an 
infinite sequence of examples representing the rule or function f to be learned. 
According to Bayes' rule ( 1 ), for k = I, 2, .. ., the inferred probability offk after the 
sequence of examples (7) is given by 

. P(f(s,) =a,, i = 1, .. ., n lfk = f)m(k) 
P(fk=flf(s 1)=a1,t=1, .. .,n)= "{ (')·/'.( ·)=. ·=l } · 

L. m J .. 1 s, a,, t , .. ., n 
(8) 

Cf. also [9, 10]. In the numerator of the right-hand term, the first factor is zero or 
one depending on whether j~ is consistent with S, and the second factor is the a 
priori probability of fk. The denominator is a normalizing term giving the com­
bined a priori probability of all rules consistent with S. With increasing n, the 
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denominator term is monotonically nonincreasing. Since all examples eventually 
appear in S, the denominator converges to a limit, say d ~ 1. For each k, the 
inferred probability of./~ is monotonically nondecreasing with increasing n, until fk 
is inconsistent with a new example, in which case it falls to zero and stays there 
henceforth. In the limit, only the ./~'s that are consistent with the sequence of 
presented examples have positive inferred probability m(k )/d. By Theorem 3, since 
m(k) = <9( 2 - Kik 1 ), the highest inferred pobability is carried by the rule j~ with least 
Kolmogorov complexity among the remaining ones. Similar statements hold after 
each initial segment of n examples, n = 1, 2, .... 

Reasoning inductively, we transform the a priori probability according to 
formula (8 ), inferring a new posterior probability by the evidence of each initial 
segment of examples. At each step, we can select the rule with the highest inferred 
probability, and in the limit we have selected the proper rule. At each step we 
predict the rule with the highest inferred probability. Reformulating, if we want to 
infer a language L using this procedure, then: 

(a) The Bayesian a posteriori probability for the correct answer converges to 
c2 - 11 P1/d, where p is the shortest program which the reference machine U uses to 
simulate M0 , where M0 is the smallest description TM that accepts L. This correct 
answer will have the highest probability in the limit. That is, the inferred probability 
distribution over the underlying machines converges to a highest probability for M0 

in the limit. In other words, after n steps for some n, all the machines smaller than 
M 0 violate some data pair in S, and M 0 is the choice forever after step n. 

(b) It is interesting to notice that the a posteriori probability increases 
monotonically until it converges to c2-·1<P1/d for p the program with which U 
simulates M 0 • Smaller machines are chosen first and then cancelled because they 
violate some data. 

Predicting extrapolation. If we want to infer f(s), rather than f; given the 
sequence of examples S, then using formulas (2) and ( 5 ), the inferred probability 
that /(s) =a is 

P(I.( )=I/(.)= .. __ 1 )-_L{m(j):fj(s;)=a;,i=l, ... ,n,fj(s)=a} . s a s, a,, 1 , •.. , n { . . . L m(J) :ji(s;} =a;, 1 = 1, ... , n} 
(9) 

The Gold paradigm of inductive inference in the sense as originally studied by 
Gold in [17, 18], can be viewed simply as a computable approximation to Eq. (8). 
The fundamental idea of the Gold paradigm is the idea called identification in the 
limit and a universal method of implementing the identification in the limit is called 
"identification by enumeration." This forms a computable analogue of Solomonoff's 
approach. We now investigate the correspondence between these two basic ideas in 
some detail. 

Identification in the limit views inductive inference as an infinite process. For­
mally, let M be an inductive inference method in order to derive some unknown 
rule R. If M receives a larger and larger set of examples (bigger and bigger initial 
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segment S), a larger and larger sequence of 1H's conjectures is generated, say, 
f 1 , f~, / 3 , .•.. If there is some integer m such that I,, is a correct description of R and 
for all n > m, 

then M ident(/!ed R (in the form of./;,,) in the limit. Two facts deserve mentioning: 
M cannot determine whether it has converged and therefore stop with a corre~t 
hypothesis. M may be viewed as learning more and more information about the 
unknown rule R and monotonical!y increasing its approximation to R until the 
correct identification. Gold gave the best explanation to his definition: 

I wish to construct a precise model for the intuitive notion ··able to speak a language" in 
order to be able to investigate theoretically how it can be achieved artificially. Since we cannot 
write down the rules of English which we require one to know before we say he can "speak 
English," an artificial intelligence which is designed to speak English will have to learn its 

rules from implicit information. That is, its information will consist of examples of the use nf 
English and/or of an informant who can state whether a given usage satisfies certam rules uf 
English, but cannot state these rules explicitly . 

... A person does not know when he is speaking a language correctly; there is always the 
possibility that he will find that his grammar contains an error. But we can guarantee that a 
child will eventt•aly learn a natural language, even if it will not know when ii is correct. 

Jdent(fication by enumeration is a method to implement identification in the limit. 
It refers to the following guessing rule: Enumerate the class of rules in rule space. 
At step t, guess the unknown rule to be the first rule of the enumeration which 
agrees with data received so far. Formally speaking, in our setting, if we have 
received an initial segment S, then, given s, predict as the next example (s, f(s)) for 
f is the first rule that is consistent with S. Now if this can be done <'./ft'ctively, iden­
tification in the limit will be achieved. We say an induction method identifies a rule 
correctly ink steps if it will never produce a wrong hypothesis starting from step k. 4 

Let G and G' be two guessing methods. G will be said to be uni/imnzr j(ister than 
G' if the following two conditions hold: (I) Given any R from the rule space, G will 
identify R correctly at least as soon as G', expressed in the number of examples 
needed, for all sequences of examples: and ( 2) for some R, some sequence of 
examples, G will identify R sooner than G'. Say a guessing method G is oprimal if 
for any other guessing method G' there is a constant c such that: if R appears to 
be the ith rule in the enumeration of G', then it appears no later than the cith rule 
in the enumeration of G. It is easy to prove that the identification-by-enumeration 
method will identify a hypothesis in the limit if this hypothesis can be identified in 
the limit at all. Further if G0 is an identification-by-enumeration guessing rule, then 
there is no guessing rule uniformly faster than G0 . But the Solomonoff procedures 
is optimal. Indeed, 

4 Although here we treat only the case when the procedure converges to one single rule. this definition 

allows that the procedure vacillate between the correct rules. Such definition is needed when. say. 

function f is not computable. Such research has been initiated by J. Case [5]. 
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THEOREM 4. (a) !dentiflcation-hy-enumeration is a computable approximation to 
inductfre i11ference ( Solomono.ff's i11ference) associated with Formula (8 ). (b) Neither 
1nethod is unifimnly faster than the other. (c) Solomom~IJ procedure is optimal. 

Proof: (a) An effective enumeration for the identification-by-enumeration 
method, can be viewed as a computable approximation to Solomonoff's procedure 
according to formula (8) as follows. Let the effective enumeration of the rule space 
be: R 1 , R2 , R3 • • •• Convert this to an effective prefix-free description of each rule R; 
in the rule space. For instance, if x = x 1 , ••• , x,, is a binary string, then 
.\' =x 1 Ox20. ·.Ox,, 1 is a prefix code for x. Similarly, x' = l(x)x is a prefix code. Note 
that l(x') = l(x) + 2 log /(x). We encode each rule R; (a binary string) as pi', where 
p is a (prefix) program that enumerates the rule space. The resulting code for the 
R;'s is an effective prefix code. Denoting the length of the description of R; by I R;J, 
we have 

(i) if i<j, then JR;J ~ JRiJ; and 

(ii) :L2 IR,I ~ l (by Kraft's inequality). 

Assign a priori probability P(R;) = 2 IR,I to rule R;, i= I, 2, .... (This is possible 
because of (ii).) Using formula (8) with P(R;) instead of m(i) yields a computable 
approximation to Solomonoff's inductive inference procedure. Formula (8) chooses 
the shortest encoded consistent rule which coincides with the first consistent rule in 
the effective enumeration. This shows that identification by enumeration can be 
formulated as a computable approximation to Solomonoff's procedure. 

We now show that neither method is uniformly faster than the other. Let 
G 1, G2 , ••• be an effective enumeration of the hypotheses space by a Gold procedure, 
and let H,, H 2 , .•. be the (noneffective) enumeration of the hypotheses space by 
decreasing a priori probability according to Solomonoff. In other words, 
K(H 1 ) ~ K(H2 ) ~ - • •• In both cases we deal with identification-by-enumeration, so 
it is known that there is no guessing rule uniformly faster than either of them. 

To prove ( c), let an arbitrary procedure G using identification-by-enumeration 
effectively enumerates rules in our rule space as R 1 , R 2 , •••• Then obviously 
K(R;) ~ K(i) + cu, where cc; depends on G. Hence m(R;) is at least (1/c) · i for 
some c. Hence the number of rules that have probability greater than this is at 
most c ·i. I 

Remark. What about non-uniform speed comparison? In case the particular 
rule f to be inferred is sufficiently simple (has low Kolmogorov complexity) then 
Solomonoff's procedure can be much faster than Gold's enumeration. Let f be the 
function we want to infer, and let/=./~,, with m minimal, in Gold's enumeration 
order. Let also f = J;,, for n with K(n) minimal. To infer the correct f; in Gold's 
approach we must eliminate all fk with k < m. But in Solomonoff's approach, we 
only need to eliminate all fk with K(k) < K(n ). Now necessarily there are many /s 
that are "simple" in the sense that K(n) ~ l(m ), for which, e.g., Solomonoff's proce­
dure works much (sometimes noncornputably) faster than Gold's method. 
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The following theorem sets limits on the number of examples needed to infer a 
particular function/ 

THEOREM 5. Let f1, ./~, ... be an ejfectil1e enumeration of' the rule space. Suppose 

we want to infer f = f, with i minimal, from a set of' n examples S as in ( 7 ). Let c 
be an appropriate large enough constant. 

(a) ff' K(ils1, ... ,s,,)>K(f(.1·1) .. f(s11)ls1···s,,)--c, then it is impossible by 

any general effective deterministic procedure to infer f correctly. 

(b) If we can infer f correctly by computable approximation to Solomono/Ts 

method ( 8) using only S, and c extra bits of' inf(mnation, then K(i IS)~ c. 

( c) If' K( i I S) ::s; c then we can compute f from S and c hits extra information. 

Proof (a) Otherwise we would be able to compute i, given .1· 1 , ••• , s,, from a 
program of length significantly shorter than K(i Is 1 , ... , s,, ): contradiction. Items ( b) 
and (c) are obvious. I 

There is an enormous amount of research in the area under the title of Gold 
paradigm. We refer the readers to the articles [2, 6] and the book [40]. We present 
three examples of reasoning by means of Gold's paradigm in order to give a flavor 
of this research direction. 

EXAMPLE [Gold, 1967]. We can learn a function in the set of primitive recur­
sive functions. 

Proof Effectively enumerate the set of all primitive recursive functions by 
l/11> l/J 2 , •••• On any initial input segment (x 1 , yi) ··· (x 11 , y,,), our inference machine 
just prints the least i such that l/J i is consistent with the input, i.e., l/J 1(xd = Yk for 
k= I, ... , n. I 

EXAMPLE [Gold, 1967]. We cannot learn in general a function in the set of all 
total recursive functions. 

Proof By diagonalization. Suppose M can identify all recursive functions. But 
then one can define a recursive function f so that the guesses of M will be wrong 
on f infinitely often. We construct f by simply simulating M. Let f(O) = 0. Suppose 
the value of f(O), f( 1 ), ... , f(n - I) have been constructed. On input n, simulate M 

on initial input (0,f(0)),(1,f(l)), ... ,(n-l,f(n-1)). Then define/(n) equal I 
plus the guess of M (modulo 2). So M never converges to .f I 

EXAMPLE. One of the first studied problems was extrapolating a sequence. A 
machine M extrapolates a sequence f( 1 ),/(2), ... as follows. It makes an initial 
guess f'(O). Then it inputs the real f(O). At step i, based on previous inputs 
f( l ),/(2 ), ... ,f(i - 1 ), it guesses f'(i). If there is an i0 such that for all i > io, 
f'(i) = f(i), then we say M extrapolates f Bringing everything in our setting, the 
initial segment before step i is a sequence of pairs (1,f(l))(2,f(2)) .. ·(i--l,/(i-·l)), 
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and M extrapolates with the pair (i,f'(i)). It is not surprising that the class of 
functions computable by a Turing machine running in time t(n), for any 
computable function t, can be extrapolated (by identification by enumeration). 

4. RISSANEN'S MINIMUM DESCRIPTION LENGTH PRINCIPLE 

Solomonoff's ideas about inductive reasoning have explicitly served as guiding 
principle in Rissanen's development of minimum description length (MDL) 
principle. Let us derive Rissanen's MDL principle from Solomonoff's induction 
principle. For simplicity, we deal with only non-adaptive models. A non-adaptive 
model is a model P(D I 0) where the parameter vector e = fJ(D) is estimated from n 
observed data points denoted by D. 

Scientists formulate their theories in two steps: firstly a scientist must, based on 
scientific observations of given data, formulate alternative hypotheses, and secondly 
he selects one definite hypothesis. This is the subject of inference in statistics. 
Statisticians have developed many different principles to do this, like Occam's razor 
principle, the maximum likelihood principle, various ways of using Bayesian for­
mula with different prior distributions. No single principle turned out to be satisfac­
tory in all situations. Philosophically speaking, Solomonoff's approach presents an 
ideal way of solving induction problems using Bayes' rule with the universal prior 
distribution. However, due to the non-computability of the universal prior function, 
such a theory cannot be directly used in practice. Some approximation is needed in 
real world applications. Further, from theory to inductive inference and statistical 
practice, there is still a big distance; for example, concrete formulae are needed. 

Gold's principle was a particularly simple approximation to Solomonoff's induc­
tion-the sophisticated notion of probability distribution is replaced by linear 
enumeration. Now we will closely follow Solomonoff's ideas, but substitute a 
"good" computable approximation to m(x). This results in Rissanen's minimum 
description length principle (MDL principle). He not only gives the principle, more 
importantly he also gives the detailed formulas on how to use this principle. This 
makes it possible to use the MDL principle in real problems. The principle can be 
intuitively stated as follows: 

MINIMUM DESCRIPTION LENGTH PRINCIPLE. The best theory to explain a set of 
data is the one which minimizes the sum of 

(I ) the length, in bits, of the description of the theory; 

(2) the length, in bits, of data when encoded with the help of the theory. 

We now develop this MDL principle from Bayes' rule, formula (I), uing the 
universal distribution m(x). Recall Bayes' formula: 

P(HI D) = P(D IH)P(H) 
P(D) . 
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Here H is a hypothesis, (e.g. a probability distribution), which we assume to be 
computable or anyway semicomputable, and D the observed data. We must choose 
the hypothesis H such that P(H ID) is maximized. First we take the negative 
logarithm on both sides of the formula: 

-log P(HI D) = -log P(D I H)-log P(H) +log P(D). 

Since P(D) can be considered as a normalizing factor, we ignore it in the following 
discussion. Since we are only concerned with maximizing the term P( HID) 0~ 
equivalently, minimizing the term -log P(HI D), this is equivalent to minimizing 

- log P(D I H) - log P(H). 

Now to obtain the minimum description length principle, we only need to explain 
the above two terms in the sum properly. According to Solomonoff, when p is 
semicomputable, then we approximate P by m. The prior probability P( H) is set to 
m( H) = 2-K(Hl .t 0 (1), where K( H) is the prefix Kolmogorov complexity of H. That 
is, - log P(H) is precisely the length of a minimum preji): code, or program, of the 
hypothesis H. 

Similar argument applies to term -log P(D I H). Assuming P is semicomputable, 
using the conditional version of ( 3) and ( 4 ), we know that the universal semi­
measure m(x) has the following properties: 

(a) There is a constant c, such that m( DI H) ~ cP(D I H). 

(b) The ?-probability that m(D I H):::;; kP(D I H) is at least I - l/k. 

By a conditional version of Theorem3, m(DIH)=2 K(DfH 1± 0 ' 11. Hence again 
2 · KW I 111 is a reasonable approximation of P(D I H), and minimizing -log P(D I H) 
can be considered as minimizing K(D I H), i.e., finding an H such that the descrip­
tion length, or the Kolmogorov complexity, of D given H is minimized. The term 
- log P(D I H) can also be thought as the ideal code length for describing data D, 
given hypothesis H. Such prefix code length can be achieved by the Shannon· .. fano 
code. The term - log P(D I H), also known as the self-information, in information 
theory, and the negative log likelihood in statistics, can now be regarded as the 
number of bits it takes to redescribe or encode D with an ideal code relative to H. 

In the original Solomonoff approach, Hin general is a Turing machine. In prac­
tice we must avoid such an overly general approach in order to keep things com­
putable. In different applications, the hypothesis H can mean many different things. 
For example, if we infer decision trees, His a decision tree; In case of learning finite 
automata, H can be a finite automaton; in case we are interested in learning 
Boolean formulae, then H may be a Boolean formula; if we are fitting a polynomial 
to a set of points, then H may be a polynomial of some degree. In general statistical 
applications one assumes that H is some model H( 0) with a set of parameters 
0= {11i. .. ., Od, where the number k may vary and influence the (descriptional) 
complexity of H( 0 ). In such case, from 

-log P(D I 0)- log P(f}), 
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using Taylor expansion at the point of optimal (J (for best maximum likelihood 
estimator), and taking only dominant terms, Rissanen has derived a formula for the 
minimum description length as 

min {-log P(DI 8) + ~k log n }, 
O,k 

where k is the number of parameters in 0 = ! tJ 1 , •.• ,Ok}, and n is number of observa­
tions (or data points) contained in D. At the optimal k and 0, the term ~k log n is 
called the optimum model cost. 

Since K(H) is not computable and hard to approximate, Rissanen suggested the 
following approach. First convert (or encode) H to a positive integer in 
N = { 1, 2, ... }. Then we try to assign a prior distribution to each integer in N. Jeffreys 
[25] suggested assigning probability 1/n to integer n. But this results in improper 
distribution, since the series L: l/n diverges. We modify Jeffreys distribution. It is 
possible, by iterating the idea of encoding n (viewed as the corresponding nth 
binary string) as n' = l(n )n, to obtain a prefix code such that L(11) denotes the 
length of the code for 11, with 

l*(n) =log 11 +log log 11+ · · ·, 

all positive terms, and 

L(11) = l*(n) +log c, 

where c = 2.865064 · · · . Viz., it can be proved [ 43] that 

.~ 

I 2 ,.1"1 =c. 
" I 

Then the existence of a prefix code as claimed follows from Kraft's inequality. 
Assign prior probability P(n) = 2 Ltni to each integer n. We obtain the following 

desired properties: (a) L:,~= 1 2~ 1• 1 " 1 = 1 and (b) integers 11 are coded by a prefix 
code. Hence, descriptions of two integers, n 1 and n2 , can be just concatenated to 
produce the code for the pair (n 1 , n 2 ), and so on. The decoding process is trivial. 

Using the MDL principle, Wax and Rissanen (according to Wax) and Quinlan 
and Rivest [42] have developed procedures to infer decision trees. Other work by 
Wax [47] and by Gao and Li [15] applied MDL principle to recognition 
problems. 

EXAMPLE. We sketch an initial experiment we [ 15] have performed in on-line 
handwritten character learning using the MDL principle. Inputing Chinese charac­
ters into computers is a difficult task. There are at least 5000 characters in daily use, 
all of different shapes. Many methods have been invented for key board input. 
Some have been successful in the limited sense that they can be used by trained 
typists only. Handwriting input is an alternative choice. Many such systems have 
been built with various recognition rates. 
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We [ 15] have implemented such a system that learns handwritten characters 
from examples under the guidance of the MDL principle. We now sketch a simple 
experiment we have performed. An input character is drawn on a digitizer board 
with 200/in. resolution in both horizontal and vertical directions. The system learns 
a character from examples. The basic algorithm involves low level preprocessing, 
scaling, forming a prototype of a character (for learning), elastic matching (for 
recognizing), and so on. At the stage of forming a prototype of a character, we have 
to decide on the feature extraction intervals. Then we code a character into a 
prototype so that future inputs are classified according to their (elastic Hamming) 
distance to the prototypes. 

Handwritten characters are usually quite arbitrary and prone to lots of noise. If 
the feature extraction interval is very small, then the algorihtm will be very sensitive 
to errors and slight changes in the recognition phase, causing low recognition rate. 
If the feature extraction interval is very large, then it becomes less likely that we 
extract the essential features of a character and hence we get a low recognition rate 
again. We must compromise. The compromise is on the basis of minimum descrip­
tion length of prototypes. 

We proceed as follows to establish an optimal feature selection interval. A set of 
186 characters drawings by one subject, exactly three examples for each of the 62 
alphanumerical characters, were recorded. The character drawings were stored in a 
standardized integer coordinate system ranged from 0 to 30 in both x and y direc­
tions. These character drawings were then input to the system to establish a 
knowledge base, which formed the collection of prototypes with normalized real 
coordinates, based on some selected feature extraction interval. After the construc­
tion of the knowledge base was finished, the system was tested by having it classify 
the same set of character drawings. If a character is misclassified, it is encoded using 
extra bits (i.e., the term P(D I H)). The error code length is the sum of the total num­
ber of points for all the incorrectly classified character drawings. The model code 
length is the total number of points in all the prototypes in the machine's 
knowledge base multiplied by two. The factor of two comes from the fact that the 
prototype coordinates are stored as real numbers. This takes twice as much 
memory (in C) as the character drawing coordinates which are in integer form. The 
prototype coordinates are real instead of integer numbers, to facilitate the elastic 
matching process to give small resolution for comparisons of classification. 

Thus, both the model code length and the error code length are directly related 
to the feature extraction interval. The smaller this interval, the more complex the 
prototypes, but the smaller the error code length. The effect is reversed if the feature 
extraction interval goes toward larger values. Since the total code length is the sum 
of the two code lengths, there should be a value of the feature extraction interval 
that gives a minimum for the total code length. This feature extraction interval is 
considered to be the "best" one in the spirit of the MDL principle. The corre­
sponding model, or knowledge base, is considered to be optimal in the sense that 
it contains enough of the essence of the raw data but eliminates most redundancy 
of the noise component from the raw data. This optimal feature extraction interval 
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can be found empirically by carrying out the above described build-and-test 
procedure repeatedly. That is, build the knowledge base, and then test it based 
on the same set of characters for which it was built. Repeat this for a number of 
different extraction intervals. 

In fact, this actual optimization process is implemented on the system and is 
available whenever the user wants to call it. For our particular set of characters, the 
results of this optimization are given in Fig. 3, which depicts three quantities: the 
model code length, the error code length, and the total code length versus feature 
extraction interval. For larger feature extraction intervals, the model code length is 
small but most of the character drawings are misclassified, given a very large total 
code length. On the other hand, when the feature extraction interval is at the small 
end of the scale, all the training characters get correctly classified, and the error 
code length is zero. However, the model code length reaches its largest value, resulting 
in a larger total code length again. The minimum code length occurred at extraction 
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interval of eight, which gives 98.2% correct classification. Figure 4 illustrates the 
fraction of correctly classified character drawings for the training data. 

Whether the resulting "optimal" model really performs better than the models in 
the same class, the knowledge bases established using different feature extraction 
intervals, is subject to testing it on new character drawings. For this purpose, the 
set of 62 handwritten characters were drawn again by the same person who 
provided the initial data to build the knowledge base. Thus the new data can be 
considered to be from the same source as the previous data set. The new data were 
classified by the system using the knowledge base built from the former data set of 
186 character drawings, based on different feature extraction intervals. The testing 
result is plotted in Fig. 5 in terms of the fraction of correct classification 
(CORRECT RA TIO) versus feature extraction interval. It is interesting to see that 
100% correct classification occurred at feature extraction intervals five, six, and 
seven. These values of feature extraction intervals are close to the optimized value 
eight. At the low end of the feature extraction interval scale the correct classification 
drops, indicating disturbance caused by too much redundancy in the model. The 
recommended working feature extraction interval is thus either seven or eight for 
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this particular type of character drawings. For more information on this research, 
see [15] (preprint available from the first author). 

5. FISHER'S MAXIMUM LIKELIHOOD PRINCIPLE 

Rissanen [ 43] has argued that Fisher's maximum likelihood principle [ 13, 16] is 
a special case of the MDL principle. By our treatment of MDL it is therefore a 
more restricted computable approximation to Solomonoff's induction. The maxi­
mum likelihood principle says that given data D, one should use the hypothesis H 
that maximizes P(D I H) or, equivalently, minimizes -log P(D I H), the first term in 
of the MDL principle. We will use H and () interchangeably because () is used by 
statisticians. What makes ML principle sound in statistics is the implicit assump­
tion that each hypothesis H consists of a probability distribution () = ( () 1, .. ., () k) 
with the same number k of parameters, each parameter 8; with fixed precision. In 
other words, in the probability distribution P(D I H = 0), the number k of 
paramt:ters of (), and the precision of each of them, is the same for each H. Hence, 
one assumes that the descriptions of all hypotheses (models 0) are of equal length; 
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that is, the complexity of the models is considered to be fixed. This is, obviously, 
a subjective assumption. In contrast, the MDL principle minimizes the sum of 
-log P(D I H) and -log P(H). Intuitively, if one increases the description length of 
the hypothesis H, it may fit the data better and therefore decrease the description 
of data given H. In the extreme case, if one encodes all the data information into 
the model H precisely, P(H) is minimized and -Jog P(H) is maximized. In that 
case, no code is needed to describe the data; that is, P(D I H) is maximized (equals 1) 
and - log P( DI H) is minimized (equals 0 ). 

On the other hand, if one decreases the description length of H, then this may 
be penalized by the increasing description length of the data, given H. In the 
extreme case say, H is a trivial hypothesis that contains nothing, then one needs 0 
bits to describe H. But then, one gains no insight of data and has to "plainly" 
describe the data without help from any hypothesis. 

Hence one may consider the MDL principle as a more general principle than the 
ML principle in the sense that it considers the trade-off between the complexity of 
the model Hand the power of the model to describe the data D, whereas the ML 
principle does not take the hypothesis complexity into account. 

Yet the rationale behind the ML principle was to be objective by avoiding the 
"subjective" assumption of the prior probability. The ML principle is equivalent 
with selecting the probabilistic model P(D I e) which permits the shortest ideal code 
length for the observed sequence, provided that the model used in the encoding, i.e., 
the parameter fJ is given, too. Thus, the ML principle is just a special case of the 
MDL principle under the assumption that hypotheses are equally likely and the 
number of parameters in fJ are fixed and small (so they do not make P(D I e) = 1 ). 
The shortcoming of the ML principle is that it cannot handle the situation where 
we do not know the number (and precision) of the parameters. For example, in the 
fitting polynomial example, the ML principle does not work well when the degree 
of the polynomial is not fixed. On the other hand the MDL principle works 
naturally for this example. 

6. JAYNES' MAXIMUM ENTROPY PRINCIPLE 

Rissanen [ 43] and M. Feder [ 11] have shown that Jaynes' maximum entropy 
(ME) principle [22-24] can also be considered as a special case of the MDL prin­
ciple. This is interesting since it is known in statistics that there are a number of 
important applications where the ML principle fails but where the maximum 
entropy formalism has been successful, and vice versa. In order to apply Bayes' 
theorem, we need to decide what the prior probability p;=P(H;) is subject to 
condition 

and certain other constraints provided by empirical data or considerations of sym-
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mctry, probabilistic laws, and so on. Usually these constraints are not sufficient to 
determine the p,'s uniquely. Jaynes proposed to use the estimated values P; which 
satisfy said constraints and maximize the entropy function 

H= -I p,1n JI;, 

subject to the constraints. This is called the maximum entropy (ME) principle. 
We now demonstrate the rationale behind the ME principle, its use, and its con­

nection with the MDL principle following discussions in [ 11, 23, 43]. Consider a 
random experiment with k possible outcomes in each trial, thus k" possible out­
comes inn trails. Let n; be the number of times the ith value appears in an outcome 
D of n trials. Let frequency f; = n;/n, i = I, 2, ... , k. The entropy of outcome D is 

k 

HU1, ... Jd = - L I In/;. ( 10) 
i= l 

Let there be m < k linearly independent constraints of the form 
k 

I G;;.f; =di, I ~j~m, ( 11 ) 
i= I 

and 
k 

~ f".= 1 L .. 1 ' 
( 12) 

i= I 

where the set D = { d1, ••• , d"'} is related to the observed data, measuring as it were 
m "physical quantities" subject to the matrix A= { a1i }. 

EXAMPLE. Consider a loaded die, k = 6. If we do not have any information 
about the die, then using Epicurus' multiple explanation principle, we may 
assume that p1 = k for i = 1, ... , 6. This actually coincides with the ME principle, 
since H(p 1, ••• ,p,:J=:L~= 1 p 1 lnp 1 subject to (12) achieves maximum value 
In 6 = 1.7917595 for p, = i for all i. Now suppose some experiments on the die have 
been performed, and it is observed that the die is biased and the average throw 
gives 4.5. That is, 

6 

I ip,= 4.5. 
1~1 

In terms of Eq.(11), we have m=I, D={4.5}, and a 11 =i, i=l, 2, 3, 4, 5, 6. 
Maximizing the expression in Eq. ( 10), subject to constraints (11) and ( 12) gives 
estimates, 

i =I, ... , 6, 

where A= -0.37105. Hence (fJ 1, ..• , p6 ) = (0.0543, 0.0788, 0.1142, 0.1654, 0.2398, 
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0.3475). T~e i:naximized entropy H(f>1, ... , f>6) equals 1.61358. How dependable is 
the ME pnnc1ple? Jaynes has proven an "entropy concentration theorem" which, 
for example, implies that in an experiment of N = 1000 trails, 99.99% of all out­
comes satisfying the constraints of Eq. ( 11) and ( 12) have entropy 

1.602:::;; H (:1 ••.. , 
1
: 6 ) ~ 1.614. 

Now we turn to the MDL principle to deal with the same problem. The following 
argument can be derived from probabilistic assumptions. But Kolmogorov [28, 29] 
advocated a purely combinatorial approach, such as we give below, which does not 
need any such assumptions. Let e =(Pi, ... , pd be the actual prior distribution of 
a random variable. We perform a sequence of n independent trials. Kolmogorov 
observed that the real substance of formula (10) is that we need approximately 
nH(8) bits to record the sequence of n outcomes. Namely, it suffices to state that 
each outcome appeared n I• ••• , nk times, respectively, and afterwards give the index 
of which one of the 

possible sequences D of n outcomes actually took place. For this no more than 

k log n +log C(n 1, ••• , nk) + O(log log n) 

bits are needed. The first term corresponds to - log P( e ), the second term 
corresponds to -log P(D I 8), and the third term represents the cost of encoding 
separators between the individual items. Using Stirling's approximation for the 
factorial function, we find that for large n this is approximately 

( k n; n;) (n 1 nk) n - L -log- =nH -, ... ,-. 
i= 1 n n n n 

Since k and n are fixed, the least upper bound on the minimum description length 
for an arbitrary sequence of n outcomes under certain given constraints Dis found 
by maximizing the term log C(n 1 , ••• , nk) subject to said constraints. This is 
equivalent to maximizing the entropy function ( 10) under constraints D. (Such 
constraints may be derived, for example, from the laws of large numbers: in case of 
independent experiments with a probability distribution 0, we have n;/n - P;. and 
we have a certain rate of convergence with certain probability.) 

7. VALIANT STYLE DEDUCTIVE LEARNING 

Can we make Gold-style learning feasible? According to commonly accepted 
views in the theory of computation, this means that the learning algorithm should 
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run in polynomial time~and hence also use but a polynomial number of examples. 
The latter condition necessarily implies that not all examples in an infinite domain 
can turn up. Hence we need to assume a mechanism for making a selection of 
examples. A deterministic selection fixes the sequence of examples drawn in 
advance; hence we would like to assume that examples are drawn from some 
distribution. The idea in Gold's approach that an inference algorithm should work 
for all sequences of examples then translates to the idea that the learning algorithm 
should work for all distributions. However, this turns out to be possible only "with 
high probability". 

The second unavoidable modification of the common approach in statistical 
inference, or recursion theoretical learning, imposed by the feasability constraint, is 
as follows. In traditional inference we want to learn a concept precisely in the limit. 
The feasibility restriction to a polynomial algorithm precludes the precise learning 
of nontrivial concepts, and therefore we have to relax precision to within a certain 
error. This corresponds with natural learning, where it is important that learning is 
fast, and it suffices to learn approximately. 

We have now arrived at Valiant's proposal: a learning theory, where one wants 
to learn a concept with high propability, in polynomial time, and a polynomial 
number of examples, within a certain error, under all distributions on the examples. 
The additional computational requirements are orthogonal to the usual concerns in 
inference and result in a distinctly novel theory. However, there are at least two 
problems with it: 

( 1) Under all distributions, many concept classes, including some seemingly 
simple ones, are not known to be polynomially learnable or known not to be 
polynomially learnable if NP-:/= RP, although some concept classes are polynomially 
learnable under some fixed distribution. 

(2). In real life situations, it is sometimes impossible to sample according to 
underlying distributions. 

Item ( 1) is counterintuitive for a proposed theory of machine learning; in fact it 
shows that Valiant's initially proposed requirements for learning are too strong. In 
practice, we usually do not have to make such a general assumption. Due to this 
reason several authors have proposed to study Valiant learning under fixed 
distributions. Then some previously (polynomially) unlearnable classes become 
learnable. For instance, the class of µ-DNF-formulae is polynomially learnable 
under the uniform distribution. However, the assumption of any special distribution 
is obviously too restrictive and not practically interesting. 

7.1. A New Approach 

In [33] we proposed to study Valiant-style learning under all simple distribu­
tions, which properly include all computable and semi-computable distributions. 
This allows us to systematically develop a theory of learning for simple concepts 
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which intuitively should be polynomially learnab!e. To stress this point: maybe it is 
too much to ask to be able to learn all finite automata fast (humans cannot either). 
but surely we ought to be able to learn a sufflcii!ntly simple finite automaton fast 
(as humans can). Previous approaches looked at syntactically described classes l)f 

concepts. We introduce the idea of the restriction of a syntactically described class 
of concepts to the concepts that are simple in the sense of having low Kolgomorov 
complexity. This will cover most intuitive notions of simplicity. Our other restric­
tion, from distribution-free learning to simple distribution-free learning is also not 
much of a restriction. Already the computable distributions include all distributions 
we have a name for, like the uniform distribution, normal distribution, geometric 
distribution, Poisson distribution--so the even wider class of simple distributions 
ought to cover everything practically interesting. 

It is an integral part of the proposed approach to also deal with the problem of 
inability of sampling according to underlying distributions. In real life the samples 
are sometimes (or often) provided by some mechanical or artificial means or good­
willed teachers, rather than proveded according to its underlying distribution. 
Naturally the simpler examples are provided first Consider a situation where a 
robot wants to learn but there is nobody around to provide it with examples 
according to the real distribution. Because it does not know the real distribution. 
the robot just has to generate its own examples according to its own (computable) 
distribution and do experiments to classify these examples, for example, in the case 
of learning a finite state black box (with resetting mechanism and observable 
accepting/rejecting behavior ). So the sampling distribution and the real distribution 
may be quite different. 

7 .2. Definitions 

DEFINITIONS. ( 1 ) Let X be a set. A concept is a subset of X. A concept class is 
a set Cs 2 x of concepts. An l!xample of' a concept c EC is a pair (x, h ), where h = 1 
if x E c and h = 0 otherwise. A sample is a set of examples. 

( 2) Let c EC be the target concept and P be a distribution on X. Given 
accuracy parameter c:, and confidl!nce parametl!r b, a learning algorithm A draws a 
sample S of size mA(t:, b) according to P, and produces a hypothesis h=h.(S)E C. 

(3) We say C is learnable if for some A in above, for every P and every c EC, 

Pr(P(h Ac)> c) :( b, 

where Li denotes the symmetric difference. In this case we say that C is (r., c) )­

learnable, or pac-learnable (probably approximately correct). 

( 4) C is polynomially learnable if A runs in polynomial time (and asks for 
polynomial number of examples) in 1/b, l/c:, and the length of the concept to be 

learned. 
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DEFINITION. A distribution P(x) is simple if it is (multiplicatively) dominated by 
a semi-computable distribution Q(x). That is, there is a constant c such that for 
all X, 

cQ(x) ;3: P(x). 

The first question is how large the class of simple distributions is. It certainly 
includes all semi-computable distributions and hence all distributions in our 
statistics books. It can be shown that there is a non-semicomputable distribution 
which is simple, and that there is a distribution which is not simple. 

7.3. Discrete Sample Space 

First we deal with discrete sample spaces. We show that if a concept is polyno­
mially learnable under a single "universal" distribution then it is polynomially 
learnable in Valiant's sense under all "simple" distributions if we sample according 
to the "universal" distribution. We also provide new non-trivial learning algorithms 
for several (old and new) classes of problems under our assumption. These classes 
were not known to be polynomially learnable under Valiant's more general 
assumption, some were even NP-complete. For example, the class of DNFs such 
that each monomial has Kolmogorov complexity O(log n ), the class of k-reversible 
DFA of Kolmogorov complexity O(log n), and the class of k-term DNF are 
polynomially learnable under our assumptions. All these results hold for the 
appropriate polynomial time computable variants-perhaps bringing the approach 
in the practicable domain. 

DEFINITION. The learning algorithm samples according to m(x), if in the learning 
phase the algorithm draws random samples from m(x). (We can formalize this in 
different ways.) We obtain the following completeness result. 

THEOREM 6. A concept class C is polynomially learnable under the universal 
distribution m, if! it is polynomially learnable for each simple distribution P, provided 
the sample is drawn according tom. 

Proof P(x) is dominated by some semi-computable distribution Q(x). Q(x) is 
in turn dominated by m(x). Hence, there is a constant c > 0 such that for all x, 

cm(x);3:P(x). 

Assume C is learnable (in time t) under distribution m(x). Then one can run the 
learning algorithms with error parameter e/c in polynomial time. Let err be the set 
of strings that are misclassified by the learned concept. So with probability at least 
l-c5 

I, m(x)~e/c. 
x eerr 
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Hence 

L P(x) ~ c L m(x) ~e. 
xeerr xeerr 

Hence if the underlying distribution is P(x) rather than m(x), we are still guaran­
teed to "pac-learn" C (in time t), if sampling according to m(x). This still requires 
that the learning algorithm has the required constant c as additional input. The 
argument can be improved so that this extra input can be dispensed with [33]. I 

Since m assigns higher probabilities to simpler strings, one could suspect that 
after polynomially many examples, all simple strings are sampled and the strings 
that are left unsampled have only very low (inverse polynomial) probability. 
However, the next theorem shows that this is not the case. 

THEOREM 7. Let S he a set of n" samples drawn according to m. Then 

L m(x) = .Q (o 1 )2)· 
xr/;S 0g n 

Now let us consider polynomially computable distributions. Again, all textbook 
distributions we know are polynomially computable. Call a distribution polynomial 
simple if it is dominated by a polynomially computable distribution. In all of the 
discussion below all Kolmogorov complexity (including the related notion m) can 
be replaced by its polynomial bounded version. 

7.3.1. Learning under m(x) 

In [35] we have an example of a class of simple concepts, log n-DNF, which is 
polynomially learnable under the universal distribution, and hence in our sense 
under all simple distributions, and which is not known to be polynomially learnable 
in the general Valiant model. Here we present a class that was shown to be not 
polynomially learnable in Valiant's sense, unless P =NP, but which is polynomially 
learnable under m(x). See also [33]. 

DNF stands for "disjunctive normal form." A DNF is any sum 
m 1 + m2 + · · · + m, of monomials, where each monomial m; is the product of some 
literals chosen from a universe x 1 , ••• , x 11 or their negations i't, ... , i,,. A k-term DNF 
is a DNF consisting of at most k monomials. A monomial in a DNF is monotone 
if no variable in it is negated. In [ 41] it was shown that learning a monotone 
k-term DNF by k-term (or 2k-term) DNF is NP-complete. (In contrast, k-DNF is 
a DNF, where each monomial consists of at most k literals. Recall, that k-DNF is 
learnable in Valiant's sense [46].) 

THEOREM 8. Monotone k-term DNF is polynomially learnahle by monotone 
k-term DNF while sampling under m. 
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Proof (Sketch). Assume we are learning a monotone k-term DNF 
f(x 1 , ... , x,,) =m 1 + · · · + m., where the m;'s are the k monotone monomials (terms) 
off 

LEARNING ALGORITHM 

O. Draw a sample of nk' examples, k' > k + l. Set DNF g := 0. (g is the DNF we 
will eventually output as approximation off) 

I. Pick a positive example a=(a 1 , ... ,a,,). Form a monotone term m such that m 
includes x; if a;= l. 

2. j(Jr each positive example a= (a 1 , ... , a11 ) do: if a;= 0 and deleting x; from m 
violates no negative examples, delete x; from m. 

3. Remove from the sample all positive examples which are implied by m. Set 
g +-- g + m. If there are still positive examples left, then go to step 1, else halt and 
return g. 

We show that the algorithm is correct. Let us write m; s m for two monotone 
monomials if all the variables that appear in m; also appear in m. At step I, the 
monomial m obviously implies no negative examples, since for some monomial m; 
off we must have m; r;; m. Step 2 of the algorithm keeps deleting variables from m. 
If at any time for no monomial m; Ef holds m; r;; m, then there exists a negative 
example that contains at most k O's such that it satisfies m but no m; off This 
negative example is of Kolmogorov complexity at most k log n; hence by the 
Chernoff formulae (Section 2.1) with high probability it is contained in the sample. 
Hence at step 2, with hight probability, there will be an m; such that m; r;; m. Hence 
we eventually find a correct m; (precisely) with high probability. Then at step 3, we 
remove the positive examples implied by this m; and continue on to find another 
term off The algorithm will eventually output g = f with high probability by 
standard calculations. I 

Remark. Notice that this is not an approximation algorithm like the one 
in [35] to learn log n-DNF. This algorithm outputs the precise monotone formula 
with high probability. 

7.4. Continuous Sample Space 

Second, we deal with continuous sample spaces. For example, the uniform dis­
tribution now is defined as L(I'J = 2 1" 1, where I'x denotes the set of all one-way 
infinite binary strings starting with x. This is the Lebesgue measure on interval 
[O, I], While for discrete sample spaces all concept classes are Valiant learnable 
(although not all are polynmially learnable }, this is not the case for continuous 
sample spaces. We can define the notion of "simple" semimeasure and that of 
universal semicomputable semimeasure, over a continuous sample space and show 
that all concept classes are learnable over each simple semimeasure D iff they are 
leamable under the universal semi-measure. In contrast with the discrete case w.r.t 
polynomial learning, here we do not need to require that the learning algorithm 
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samples according to the universal measure but it can sample according to D m the 
learning phase. For details, see [35]. 
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