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We investigate some real time behaviour of a (discrete time) single server system with FCFS
task scheduling. The main results deal with the probability distribution of a random variable
SRD(T), which describes the time the system operates without violating a fixed task service
time deadline T. The tree approach used for the derivation of our results is suitable for
revisiting problems already solved by queueing theory, too . Relying on a simple general
probability model, asymptotic formulas concerning all moments of SRD(T) are determined ;
for example, the expectation of SRD(T) is proved to grow exponentially in T, i .e.,
E[SRD(T)] -C • k' for some x > 1 . © 1992 Academic Press, Inc.

1. INTRODUCTION

In this paper, we study some aspects concerning the real time behaviour of a
discrete time single server system with FCFS task scheduling . Instead of using
queueing theory, we apply a special tree approach which is well known from the
analysis of data structures, see [KN3 ; FL1] for a survey . A very complete
discussion of queueing theory may be found in [KL1 ] .

The outline of the paper is as follows : After introducing the underlying abstract
model and raising some questions of interest, we mention a few real applications .
Section 2 contains the description of the probability model forming the basis of our
investigations, Section 3 provides the tree approach suitable for the computations in
Section 4. Section 5 is devoted to an application, namely a TDMA server with
Poisson arrivals. Section 6 concludes the paper with exhibiting some open problems
concerning the subject .

We consider a system containing a task scheduler, a task list of finite capacity,
and a single server . Tasks arriving at the system are taken by the scheduler and
placed into the task list according to the scheduling strategy. The sever always
executes the task at the head of the list ; thus scheduling is done by rearranging the
task list. A dummy task will be generated by the scheduler, if the list becomes
empty. If the server executes a dummy task the system is called idle, otherwise busy .

Rearranging the task list is assumed to occur at discrete points on the time axis
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only, without any overhead . The (constant) time interval between two such points
is called a cycle . Due to this assumption, we are able to model tasks formed by
indivisible (atomic) actions with duration of one cycle . The task execution time of
a task is the number of cycles necessary for processing the task to completion if it
were to occupy the server exclusively . A "regular" task may have an arbitrary task
execution time ; a dummy task as mentioned above is supposed to consist of a single
no-operation action (one cycle) . The service time of a task is the time (measured in
cycles) from the end of the cycle in which the corresponding task arrives at the
system to the end of the last cycle of that task.

Obviously, the time axis is covered by busy periods, which we assume include the
initial idle cycle, too . This definition implies the correspondence between an idle
cycle and a busy period with duration of one cycle . A sequence of busy periods
without violation of any task's service time deadline followed by a busy period
containing at least one deadline violation is called a run, the sequence without the
last (violating) busy period is referred to by successful run .

In order to investigate real time performance, the following random variables are
of interest :

(1) The busy period duration BPD. This is the time interval (measured in
cycles) from the beginning of an idle cycle, in which a task arrival occurs, to the
end of the last busy cycle induced, i.e ., the length of a whole busy period . We
should mention that this duration provides no answer about missing deadlines,
since it takes into account the sum of all service times of tasks arriving within the
period only, but it should give some insight in system load distributions . BPD is
determined by the arrival process only, hence is independent of the scheduling
strategy and has been analyzed by classical queueing theory, too, cf. [KL1] . Our
analysis is done in another paper, cf. [BSI]; it demonstrates the power of the
approach in obtaining the required results quite easily.

(2) The time to exceed TTE(T) and the successful run duration SRD(T). The
former is the time interval (measured in cycles) from the beginning of the initial idle
cycle to the beginning of the first cycle, causing a fixed task service time deadline
of T cycles to exceed, i .e ., the time the system operates until the first violation of
a task's deadline. SRD(T) is the time interval from the beginning of the initial idle
cycle to the beginning of the (idle) cycle initiating the busy period containing the
first violation of a task's deadline T. Obviously, we have SRD(T) < TTE(T) . In this
paper, we restrict ourselves to the investigation of SRD(T) .

Different scheduling strategies may be compared via the distribution of these
quantities, even if the arrival process is modeled in a very simple manner (as we
did). For example, we may compare the averages of SRD(T), or the probabilities
of finding the system in operation, say, two weeks after power on, without violating
a deadline, of course .

Note, that our deadline constraint implies a bounded length of the task list since
we suppose FIFO scheduling. In the worst case, a finite capacity task list which is
able to hold T- 1 tasks is sufficient .
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According to Section 2, we assume an arrival process, which provides an arbitrary
distributed number of task arrivals within a cycle, independent from the arrivals in
the preceding cycles and independent from the arbitrary distributed task execution
times, too .

To make things clearer, we give a few applications of the above . For example,
consider a single processor with a single interrupt line, which executes all machine
instructions within a fixed time, a cycle (a few 100 ns, for example). Traditionally,
interrupt arrivals will become recognized at the end of an instruction, causing the
CPU to process a (reentrant) service routine. An idle cycle corresponds to the
execution of an instruction that is not part of an interrupt service routine . Since a
cycle is very small, we occasionally may drop the case of more than one interrupt
occurrence during a cycle .

A straightforward application is the ordinary FCFS task scheduling problem for
a single processor, though it causes some problems is how to justify an equidistant
subdivision in atomic actions at a higher level than machine instructions . However,
modelling task arrivals by a Poisson process seems to be a possible approach .

Another application of the general model may be found in a server for a TDMA
channel (time division multiple access) . If we consider a single communication
channel shared by multiple (say, n) stations, a common approach for synchronizing
transmission activities is TDMA . Each station owns a unique subslot of duration
t/n, where it may transmit exclusively (if there are data to transmit, otherwise the
subslot is wasted), altogether forming a transmission slot of duration t . Due to the
cyclic occurrence of the transmission slot, each station may transmit every t time
units. A reasonable order of magnitude for t is 10 . . . 100 ms .

To apply our model, we take transmission slots as cycles and assume a constant
service time of one cycle, i .e ., service corresponds to the transmission of a packet ;
an idle cycle corresponds to a wasted (sub)slot . The packet arriving process may be
modeled by a Poisson process, for example .

2 . PROBABILITY MODEL

This section introduces the probability model used for subsequent investigations .
We assume arbitrary but independent probability distributions of both the number
of task arrivals within a cycle and the task execution times .

The probability generating function (PGF) of the number of task arrivals during
a cycle is denoted by

A(Z) _ Y akZ
k->0

k

and should meet the constraint a, = A(0) > 0 ; i .e ., the probability of no arrivals
during a slot should be greater than zero . This assures the existence of idle cycles .
The definition assumes the independence of arrivals within two arbitrary different
cycles .
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The PGF of the task execution time (measured in cycles) is denoted by

L(z)= Y, 1,z'
k~_ 0

with the additional assumption L(0) = 0 ; i .e ., the task execution time should be
greater than or equal to one cycle. Again, this definition assumes task execution
times both independent from each other and from the arrival process. Note that we
assume an a priori knowledge of the task execution time at the time the task
arrives. Since we are studying FCFS scheduling, we may deal with the overall
service time, i .e ., the number of cycles induced by arrivals within a cycle, instead of
using the number of arrivals and corresponding service times separately . Obviously,
we obtain

P(Z) = ~, PkZk -A(L(Z)) •
k>0

In order to justify our computations, we will need some constraints concerning
zeros of P(z) -z, i .e ., fixed points of P(z) .

Considering an arbitrary PGF P(x) w.r.t. real arguments x, we obviously state
the trivial fixed point x = 1 . If the Taylor expansion at x = 1 exists, valid for x
sufficiently large, we have

P(x)-x=(x-1)(P'(1)-1)-R2(x) .

Providing the additional assumptions 0 < P'(1) < 1 and P"(x) 0, we obtain for
some e sufficiently small P(x) - x < 0 for x e (1, 1 + e), since RAX) = O((x - 1) 2 ) .
When x becomes large, RAX) increases faster than (x - 1)(P'(1) - l) decreases,
causing a zero of P(x) - x denoted by x .

Note, that Y(K) > 1, which forces K to be a simple zero of P(x) -x. This is easily
proved by applying the first mean value theorem of differential calculus, which
states the existence of a v with ~ < v S K and

P,(V)=P(K)-PG)>K-C=1

for a ~ E (1, 1 + e) . Since P'(x) is monotonic, we obtain P'(K) > P'(v) > 1 . The
simple zero is easily justified by mentioning the Taylor expansion of P(x) - x at K .

Considering complex arguments, we show that the trivial zero at z = 1 is a simple
one and that no other zeros exist within the open disk with radius K around 0; a
radius of convergence Rp > K for P(z) is assumed here. We use the theorem of
Rouché, which states as follows (cf. [COI]) :

THEOREM (Rouché) . Suppose f(z) and g(z) are meromorphic functions in a
neighborhood of the closed disk with radius R around a with no zeros or poles on the



FCFS SCHEDULING

	

497

circle y= ~z : Iz-aI =R1 . If Zf, Zg (Pf , Pg ) are the number of zeros (poles) of f(z)
and g(z) inside y, counted according to their multiplicities, and if

on y, then

1f(z) + g(z) 1 < If(z)1 + 1 g(z) 1

Zf-Pf=Zg-Pg .

We need a weaker, more classical condition only, namely I f(z) + g(z) I < I f(z) 1 .
Let f(z) + g(z) = P(z) and f(z) = z ; hence g(z) = P(z) - z . According to our
investigations concerning real arguments above, we obtain for any z with ~zJ _
r < x,

Ifiz) +g(z)I = IP(z)I <P(Izi)=P(r)<r= Izl = If(z)I,

which establishes the conditions of the theorem. Note, that this inequality ensures
that no zeros of g(z) =P(z)-z on JzJ =r exist ; the analyticity of both f(z) and g(z)
excludes poles on Jz J =r. Thus, g(z) has exactly as many zeros as f(z), i .e ., exactly
one simple zero within the disk of radius r < K around 0. On IzI = K, we obtain a
second zero of P(z) - z at z = K and no others . Relying on these results, we are able
to state the required conditions as follows :

Let P(z) denote the PGF of the number of cycles induced by arrivals within a
cycle, which should meet the following constraints :

(l) The average number of cycles induced by arrivals within a cycle should
be smaller than one, i .e ., 0 < P'(1) < 1 . Since we investigate real time applications,
the case of average high load (P'(1) 1) seems to be of no concern. Note, that this
assumption implies p o = P(0) > 0, since 1 > P'(1) > P(1) - p o = 1 - p o .

(2) P"(z)

	

0, i .e ., we explicitly exclude the trivial case P(z) = p o + (1 - p o )z .

(3) The radius of convergence R, of P(z) should be sufficiently large, such
that some K < R < R p may be determined with the property that P(z) - z has only
its real, simple zeros z = 1 and z = K within the closed disk with radius R around
0. In order to justify some remainder terms in Section 4, we should in fact choose
R < max(RP , K2 ) . Note that this condition forces all moments of P(z) to be finite
since Rp > K > l .

We should mention that the number of probability distributions meeting our
constraints is considerably limited due to the required independency . An example
for a suitable model is based on an interarrival distribution with the so-called
memoryless property, i .e., an exponential or geometric distribution, leading to
Poisson- or Bernoulli-type arrivals within a cycle, respectively .
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3 . TREE APPROACH

We start our treatment by introducing an arrival sequence Ia n }, n > 0, where
a„ >, 0 counts the number of cycles caused by task arrivals during the n th busy cycle
following the initial (idle!) cycle. We will establish a one-to-one mapping between
arrival sequences and the family of planted planar trees, which provides a nice
correspondence between deadline constraints and limited widths of the tree. Due to
this fact, we may relate the original problem of investigating the random variable
SRD(T) to a counting problem regarding a special (sub)family _qT of trees . Let us
start with an example ; consider the arrival sequence

(3, 2, 0, 0, 0, 1, 2, 0, 0 )

and the corresponding tree shown in Fig . l . Each vertex corresponds to a cycle n ;
the number of successors of a vertex equals a„, the number of (busy) cycles caused
by arrivals during the cycle ; the root corresponds to the initial idle cycle 0 . The
execution sequence is related to the preorder traversal policy (left to right) of the
tree. The "aligned" representation of the tree above will help us in establishing
the deadline property mentioned before .

For convenience, each vertex is labeled by an expanded string representation of
the actual task list at the beginning of the corresponding cycle, i .e ., by all cycles
currently forming the task list . The kth cycle of the nth task is denoted by nk . New
cycles are attached at the end of the string, the cycle actually executed is removed
at the front of it. Note, however, that construction and reconstruction of tree and
arrival sequence, respectively, does not depend on this labeling.

Looking carefully at our example, one obtains that the number of cycles forming
the task list for all vertical aligned vertices is equal ; and this is in fact true for all
such trees due to the construction principle . This number represents the time inter-
val (measured in cycles) until completion of the last cycle in the list ; hence limiting

o
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FIGURE 1
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the service times of the tasks by a deadline T is reflected by limiting the width of
the tree to T vertices!

To obtain the connection with our probability model, we simply have to attach
weights to all vertices, equal to the probability of having their specific number of
successors. The ordinary generating function (OGF) of this special family 4T of
trees is the PGF of the length of a busy period conditioned by the fact that the busy
period contains no deadline violation .

4. MOMENTS OF SRD(T)

As mentioned in Section 1, a run denotes a sequence of busy periods not
violating any task's deadline followed by a busy period with at least one deadline
violation . Let

bk, T = prob {A nonviolating busy period of length k cycles occurs

and

BT (z) =

	

bk , T zk
k_>0

be the corresponding PGF. The PGF of the random variable SRD(T), i .e., the
length of a successful run, is given by

/
S

	

~~)--++

	

_ 1 B 1
T IZ)

k -
Sk T Zk 1 BT (z)-

This follows from the fact that the PGF of the length of an arbitrary number of
nonviolating busy periods is Y_,,,, BT (z)" and that the probability of the
occurrence of the terminating violation busy period equals I -BT (1 ) .
In order to derive BT (z), we start with the following symbolic equation

concerning our family of width-constrained trees .4T . This family appears in the
analysis of a simple register function regarding T-ary operations, too ; cf. [KPI ;
FL2] for details. In fact, there is a relation to the so-called left-sided height of a
tree .
With Pk denoting the probability of obtaining k cycles induced by arrivals within

a cycle (cf. Section 2), we have

'4T=PoO+Pi Í + . . . +P k

	

\

	

+ . . . + . P T

	

\

-4T

	

"'-4T-1-4T

	

-4T- 1-4T

for all T>, 1 . According to [FL3], this symbolic equation translates into a
recurrence relation of the ordinary generating function

T

	

T
BT (Z) _ Y_ PkZ H Bj (z),

k=0

	

j=T-k+1

(0)
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since each vertex with k successors is weighted by pkz ; the coefficient of z" in
BT (z), denoted by b" _ [z"] BT (z), is the probability of obtaining a tree with
exactly n vertices . Defining

we obtain

1
Qn(z)=B,(z) . . . B,(z)

QO(z) =,

and the corresponding bivariate generating function

Q(81 Z) = Lr Qk (Z) S k ,
k~_ 0

BT (Z) = QT-1(Z)
QT (z)

Multiplying our fundamental recurrence relation by Q T (z) yields

T
QT-I(Z) = Z Y- pkQT-k(Z)-

k=0

Multiplying both sides by ST and summing up for T>, l, we find

Q(s, Z) =
	 ZPO

zP(s) - s

We should mention that, by a simple expansion of the bivariate generating func-
tion, Q T (z) is proved to be a polynomial of degree T in l/z ; all coefficients are
explicitly expressible in terms of p k . This is easily seen by rewriting

"
Q(S,z)=zPo

I

	

SS))s "" zP(

hence

T
QT(Z)=PO Y-

-0

1

	

T-n +I

P(s)

Note, that the restriction of the range of summation is justified by the property
P(0) > 0, according to our constraints mentioned in Section 2, since s/P(s) _
wl s + w z s 2 + • • • and w, = 1/P(0) .

Fortunately, the bivariate generating function Q(s, z) enables us to use
singularity analysis techniques for obtaining results concerning Q T (z) and B T (z) ;
hence we are not forced to make use of explicit expressions . Note, however, that



BT (z) is a rational function . Quantities related to Q,(1) arise frequently in the
investigation of the maximum of a sum of independent random variables, cf . [TAI]
for details .

We will determine the mth derivative of Q T (z), denoted by QT ) (z), evaluated at
the point z = 1 . For practical applications, the deadline T of a task should be large
compared to the duration of a cycle ; hence asymptotic results for large T are satis-
factory. We easily obtain

The expansion of Q(s, z) at z = 1 is found by mentioning that

Os, Z) =	 ZPO
ZP(S) - s

P(s)
Po

	

(z - 1) s - P(s) _ Po	1	
P(S)

1-(z-1)
P(S)

	

s-P(S) 1-(Z-1) P(S)
'

s-P(S)

	

s-P(s)

hence we are able to pick up the coefficient of [(z - I)'] directly by using
geometric series . For m > l, we obtain

For m = 0, we have
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Qr'(1)=QT'(Z)I~ =m! [(z-I)m]
EST]

Q(s,Z).

m-1
[(Z- 1)m ] Q(S, Z) =

-POS (P(S))m
,(s - P(s) )

[(z - 1)o] Os, Z)=Q(s, 1) = -s	P(s) .
According to methods from singularity analysis, the coefficient of ST is mainly deter-
mined by the singularity at s = l, resulting from the denominator vanishing at this
point, cf. Section 2. An overview to asymptotic methods, especially concerning the
method of Darboux, may be found in [FLI ; BEI] . However, we will need elemen-
tary techniques only, namely a weaker version of the so-called Cauchy's estimates .
Conventionally, we write f(x) =O(g(x)) for x xo , if there exists some real

constant M > 0 independent of x which guarantees If(x) I < M I g(x) I for all x in a
suitable neighborhood of x o . We use the notation f(x) - g(x) for x -+ xo , if
lim.x-.,f(x)/g(x) =1 .

THEOREM (Cauchy's Estimates). Suppose that A(z)=Y,,,0a„z" has a radius of
convergence r > 0, and let R < r denote an arbitrary real, positive number . We have

a„ = O(R -").

the
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Since we need more exact asymptotic expansions for m = 0 and m = 1, we treat
them first. Expanding P(s) in powers of s - 1 yields

P(s)=1+P'(1)(s-1)+
P'(l)

(s-1)2+O((S-1)3)

	

for s- -> 1,

the remainder represents a function, say T(s), with a triple zero at s = 1 . Thus,

Following this, we are able to conclude the existence of a function
R(s) =1 + O(s - 1) which fulfills

hence we find

Note

we need the coefficient [s'] W(s), which is determined by the singularities of W(s) ;
since the dominant term 1/(s - 1) is analytic for all s # 1, we have to take into
account the singularities of Q(s, 1) for s > 1 .

According to Section 2, we have an additional simple polar singularity at K > 1
within the closed disk with radius R around 0. Expanding P(s) yields

P(S) =K+P'(K)(S-K)+O((S-K)2)

	

for s->K ;

hence

S-P(S)=(1-P'(1))(s-1) 1-	P(l,)( (S -1)+O((S-1)2)l .

	

(l)2(1 - P1)

	

/)

s-P(s) (l-P'(1))(s-1)'

Q(s, 1) _
	 -Po	R(s)

l-P'(1) s-1

-PO

	

1 + W(s) .
1-P'(1) s-1

that W(s) = O(1) for s -> 1, i .e ., has no singularity at s = 1 . According to

Is'] Q(s, 1) = Is'] 1-P1(1)*-S1 1 + Is'] W(s)

= l p, (1) + [s'] W(s),

S - P(S) _ (1 - P'(K))(S - K) + O((S - K) 2 ) .

Thus, in a neighborhood of K, Q(s, l) and hence W(s) fulfills

W(s) =	Po		 1 +O(1) .
K(I - P'(K» 1 - SIK



The coefficient of ST evaluates to

the remainder follows from Cauchy's estimates by mentioning the fact that the func-
tion represented by 0(1) has no singularities within the closed disk of radius R
around 0. Remembering that Y(K) > 1 according to Section 2, we finally obtain

Thus, we obtain
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[ST]

W(S) K(1 PP , ( K)) K T+O(R-T) ;

QT(1)=l-P(l) K(P(K) -
1)K-T+O(R-T) .

In order to investigate the case m = 1, we find by using Eq . (1) that

1

	

_

	

1

	

1

	

P"(1)

	

1
(s-P(S))2 (1-P'(l)) 2 (S-1)2+ (1-POW s-I

+0(1).

This is justified by using the geometric series 1/(l - x) =1 + x + O(x2 ) . We obtain

QT' ) ( I)= -po[ST-1 ]	1
(s-P(s))2

(l P
p, T

, (1)) 2 + (I _P, ( 1 )) 3 + 0(K-T) .

The remainder is justified in analogy to the considerations regarding the case m = 0
above. 1 < K < R denotes the (real) polar singularity of 1/(s - P(s)) . Obviously the
coefficients resulting from the fractional terms 1/(s-1) k are their Taylor coefficients
when expanding at s = 0 .

For the general case (m >, 0), the previous investigations enable us to conclude
the existence of functions Rm (s)= 1 +0(s-1) which fulfill

1

	

Rm (s)
(S-P(S))m+l (I-P'(1))m+'(S-1)m+1'

Q~(j) = -mlPo[ST-1]P(S)'	1

=O(Tm).
(S - P(S))m+ 1

Mentioning P(s) =1 + 0(s -1), we have no contributions from P(s)m -1 ; and, for
the same reason, from Rm (s), too. Note, that the remainder is not uniform in m,
i .e ., only valid for m fixed . We summarize the considerations above in the following
lemma .
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LEMMA 1 . With the notations above, the mth derivative (m arbitrary but fixed) of
Q T (z) evaluated at z = I fulfills

Q(`(l) = O(T'n) .

More accurate asymptotic expansions for m = 0 and m = I are

QT(I)= -

	

p0T

	

+ POP , (I) s+O(K-T )(1 - P'(I)) 2 (1_p,(1))

QTO = Po -	Po	 T + O(R r ) .
1

	

1 -P'(I) K(P'(K) - 1)
K

Now we are able to return to the PGF of SRD(T), which has been evaluated to

1 B 1
ST (Z)

k 0
Sk T Zk

_
1 - BT (Z)

cf. Eq . (0) . We investigate the moments of this distribution, i .e ., the quantities

In addition, we define the nth factorial moment by

E"(T)=E[SRD(T) "]=

	

k"Sk,T •
k>0

F"(T)=

	

[k]n8k,T=sT'(I),
k>0

where [k] . = k(k - 1) . . . (k - n + I) denotes the falling factorial . Note that n is
assumed to be fixed ; all O( )-terms are uniform in T only. Since [k]„=
V + O(k"- ' ), we obtain

F"(T) = E"(T) + O(En- '(T».

If we could provide F" - '(T) = O(F"(T)), a simple induction argument would show
that

E"(T) = F"(T) + O(Fn- '(T)) ;

	

(2)

hence it seems reasonable to investigate the factorial moments . Since

BT (z)= QT- I(z) QT 1 WI

we have

ST (z) = g(BT (~ ))
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for g(z) =(l-BT(1WO-z). An easy computation shows

( ' ) (z)1~B7,1)=gl''(BT(1))=

	

J ~g

with the abbreviation

According to the formula of Leibniz, we obtain

(QT

l

(Z

(m )

z=1

kl+

	

+km =j
kl+ +mkm =m

k;-0

(

1

	

(m)

QT (Z
= O(Tm),

z=1

(1 -BT (1))'

for all j30. Using the formula of Faá di Bruno (cf. [KN1, p. 50])

(b(a(z)))(n)I ,= r

Y b (j) (a(t))

	

Y-

	

kl n I

	

k„ (a(1)(t))kl . . . (a (n)(t )) k, ,
j=0

	

ki+k2+ . . .+k„=j k l l ( 1~)

	

kn ! (n~)
k,+2k2+

	

+nkn =n
k;-0

we are able to express S(n)(1) in terms of g(j)(BT(1)) and BT )(1) ; setting
b(z) = g(z), a(z) =BT (z), and t = 1, we find

ST )(1)=

	

1

	

Y-

	

Cj,n,kl,k2, . . .,k„(Br)(1))k' . . .(BT)(1))k"
l=0(1-BT(l)) kl + . . . +k„=l

kl+

	

+nk„=n
k;30

Cj,n,kl,k2, . ..,k„= .l !
kl! ( 1l)kl

- .

kn! (n I)k„'

a

	

1 l

	

_
BT)(Z)

n~ (Yn/ vQT (z)I (m
QT m)(Z)

In order to find the mth derivative of QT'(z), we make use of Faá di Bruno's
formula again. Temporarily setting a(z) = Q T (z) and b(z) = 1/z yields

1
_

	

d

	

(Q;`)(1))k' (1»k'.. . (Qr(Q(-)(1»k, .
, km

But, mentioning Lemma 1, we have Q T( ' )(I) = O(T') ; hence the inner sum provides
an overall contribution of O(Tk,+2k2+ . . .+mkm)=O(T') . Moreover, according to
this lemma, we have QT(1)=PO/(l - P'(1)) + O(K -T), which yields QT-'(')=O(') ;
therefore,

j=0 QT
1 (l ) J,m,kl,k2 . .

1



506

	

SCHMID AND BLIEBERGER

Substituting these asymptotic expansions in the formula above, we obtain by
similar reasoning as before

Using this in our first application of Faá di Bruno's formula, an overall contribu-
tion of the inner sum equal to O(T") is found. Because of

with abbreviations resulting from Lemma 1

B (T) ( l) = O(T') .

1-BT (1)=l- QT-10)

QT ( 1 )

a=	 Po
1 -P'(1)

K -T

c
(1 + 0((R/K)-T))

b	 Po	
=

K(P'(K)
- 1)

a

	

K(P'(K) - 1)
C=

b(K - 1) (K - 1)(1 - P '(1)) '

the major contributions come from (1- B T (1)) - ' with j = n and

(1 B
	1	(l ))n

- c n.nT(1 + 0((R/K)-T)) .- T

Note, that we should choose R < K 2 in order to justify our remainder . However, we
may discard all terms of the outer sum concerning S(")(1), except for j =n ; i .e ., we
obtain

S(n)

	

Cn,n,kl .k2, . . .,kn (B

	

k

	

(Bt . . .

	

(")(1 ))k„

	

O(TnK (n-1)TT (1)=

	

~

	

'T (1))

	

T

	

+

	

)
kI+ . . .+kn ° +r (1 - BT(l)) n
ki+ . . . +nk„-n

k;->0

(B', (1»"
=

	

+0(T' K(„ -I)T)Cnnn,0, .0 ( 1- BT( 1n

=n1~ BT(l)
/n+O(T`K1`1)T),1-BT (1)
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since the conditions concerning the inner sum hold for k, = n only. Substituting the
expansion above, we find

S(;)(1)=nl c"K"T(BT(1))"(l+0((R/K)-T)),

the old remainder disappears within the new one . The last task is the evaluation of

BT(1)=QT-10) QT-1( 1 )QT( 1 )
QT ( 1 )

	

QT ( 1 )
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According to Lemma 1, we have Q T (1)= po/(1 -P'(1))+0(K-T) ; thus it is easy to
find QTI(1)=(l-P'(1))/po+0(K-T) . With QT (1) from the same lemma, we
obtain

BT (1)
1-P'(1)+0(TK-T) .

We summarize these results concerning the Taylor expansion of BT (z) at z = 1 in
the following lemma .

LEMMA 2. With the notations above, the first few coefficients in the Taylor
expansion of BT (z) at z = 1 are

with

BT (1)= 1-
(K- 1)(1 -P'(l)) K -T +0(R -T)K(P'(K) - 1)

BT (1)-1-P'(1)+0(TK-T)
.

This completes our computations concerning the factorial moments
We have

F"(T)=n! p(T)"(1 +0((R/K)-T))

K(P'(K) - 1 )
µ(T)=KT

(K-1)(1-P'(l))2 •

of SRD(T) .

Since F"-'(T)=0(F"(T)), the condition for Eq . (2) is justified and we obtain

E"(T)=F"(T)+0(F"-I(T)) .

The remainder above disappears within the remainder term established for F"(T),
as can be shown by straightforward estimations using R < K2 ; hence our final result
follows :
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THEOREM l . With the notations above, the nth moment (n arbitrary but fixed) of
SRD(T) fulfills

with

E"(T)=n! µ(T)"( 1 +O((R/K)-T))

>c(P'(K)-1)
µ(T)-KT

(K-1)(l - P'(1)) 2 '

5. POISSON ARRIVALS

This section deals with the application of the preceding general formulas to the
Poisson case, which fits our TDMA example of the first section . Relying on these
results, we may compare different scheduling techniques w.r.t. their behaviour
concerning missing a deadline . Suppose

P(z) = e~'

the PGF of a Poisson distribution with rate 0 < < 1 . Note, that P'(1) = ti, i .e ., the
rate equals the average number of cycles induced by arrivals within a cycle, and
that we are mainly interested in small values of ~, cf . Section 2.

In order to determine the most critical quantity K, we have to compute the
(unique) real solution K > I of

P(s)-s=0 .

Straightforward manipulations show that solutions of the above are obtained by
investigating the solutions of

ze - z = µ,

where z=~s and p=~e` < 1 instead. This is done according to [DB1, pp . 25-28] ;

by using the substitution

z = -log µ + log(-logµ) + w,

we obtain an equation in w,

1+	 w
+log(-logµ)=0
+

logµ

	

log µ

Introducing the abbreviations

v=(-w)

a = 1/log µ

r = log( -log µ)/logµ,
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e v - l-uV+i=0 .

As shown in [13ßl, p . 27], if Jul, ITI sufficiently small, there exists a unique solution
in a domain lul < b for some b>0, which can be written as an absolutely
convergent power series

V=
Y- Y-

Ckmók,,m+1
k30 m30

with some constants ck ,„ . Since µ = O().) for A 0, both a and i become arbitrarily
small for A sufficiently small. Obviously, we have the asymptotic expansion

V=0
log( -log µ)1

-logy )'

hence we obtain

Mentioning

and

log(-log µ) = log(-log A) + O(Al-log A),

where we used log(1 + x) = O(x) for small x, we find

_ -log A+log(-log ti) +O(log(-log A)/-log A) .

Note, that the remainder causes the term A to vanish . Remembering the fact that
K = s = z/ti, we obtain

z= - log,u+log(-log p)+O
Clog(-log u)1

-log µµ

-log µ = - log A + A

-log ~ log(-logi) + O
Clog(-log

K-

	

+	 ~)
~

	

~(-log ~') ,

and this is in fact the required solution since K > 1 for sufficiently small. However,
numerical computations show that the approximation of K (the first two terms in
the asymptotic expansion) is satisfactory for very small < 0 .1 only .
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E[SRD(T)] [cycles]

1040

10 36
10 32
10 28
1024

10 20
10 16
10 12
10 8
104
100

0
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TABLE I

Finally, we will give some numerical results concerning our TDMA model . We
assume a transmission slot, i .e., a cycle duration of 10 ms, deadlines ranging from
10 to 100 cycles (0 .l s to 1 s), and input arrival rates from 0 .l to 0 .9 arivals/cycle
(10 to 90 arrivals/s) . Table I shows the values of x w .r.t . different input rates .
Figure 2 shows the expectation of SRD(T) versus the deadline T, which is equal to
the standard deviation, too . The y-axis is log-scaled (10 2 cycles per division), the
x-axis is linear . Note, that a second corresponds to 10 2 cycles; one year is
approximately 3 x 10 9 cycles .

-~_~-~	
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_ ffi__~~R_-
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FIGLRI 2

T [cycles]

1\ K

0 .1 37.15
0 .2 14.30
0 .3 7.88
0 .4 5.05
0 .5 3.51
0.6 2.58
0.7 1 .97
0.8 1 .54
0.9 1 .23
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6. CONCLUSIONS

Due to our intention to study the system with regard to its real time behaviour,
the various results obtained by classical queueing theory are not useful for our
purposes. For example, performance engineering results traditionally make use
of convenient equilibrium assumptions, which are justified by stable operating
conditions. Instead, we have examined the system with respect to its ability to meet
the deadlines of a// tasks arriving at the system from the time it is turned on to the
year 9999. We have found impressive results concerning the expectation of SRD(T)
(unfortunately, weakened by a large standard deviation) and even the general
results show very nice deadline meeting properties . Though they are mainly caused
by our somewhat stationary probability model, they are still useful because of their
non-equilibrium nature . For example, if arrival probability distributions concerning
stress situations are available, we could determine some limits regarding the
tolerable duration of such stress periods.

The comparison of our results concerning the Poisson case (cf. Section 6) with
the results from the analysis of preemptive LCFS scheduling (last come first served,
cf. [BSI]) shows that FCFS provides a significantly better behaviour w .r.t. missing
deadlines, especially for low and medium rates .

The very detailed computations contained in the preceding sections are primarily
addressed to the mathematically inclined reader, who (hopefully) will find them
relatively straightforward . Note, however, that a simulation approach concerning
SRDI T) for reasonable values of T seems to be impossible, even on a CRAY com-
puter, cf. our numerical results. Thus, we have solved a problem by means of
analytic modelling, which is not tractable by simulation, providing a counter-
example to the widespread view of simulation being a panacea .

Needless to say, this approach is only a modest start to analytic modelling of
systems for real time applications ; there are a lot of more or less important
problems left to the reader : It seems necessary to define and investigate other quan-
tities describing real time behaviour better than our SRD(T) does, for all possible
scheduling techniques, of course . Further, releasing the fixed deadline assumption,
adding system overhead for scheduling and dispatching, dropping the limitation to
a single server and covering the occurrence of deterministic and cyclically created
tasks are of special interest . Minor modifications of our model to meet special
applications are often straightforward .

Obviously, a crucial point is how to model the task arrival process to meet
practical requirements . This problem, which is central to all attempts of analytic
modelling a real application, is not solved sufficiently . In order to preserve the
tractability of the computations, one is traditionally forced to use the well-thumbed
exponential or geometric distributions, or parameter variant normal distributions
as in diffusion approximation . Unfortunately, these approaches are justified for
some traditional applications only (large timesharing systems, for example), but it
seems to be unlikely they are successful in real time applications .

Hence, the development of an approach which allows the extension of our
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stationary probability model to a more suitable dynamic one seems to be of central
importance for analytic modelling of hard real time systems . In order to obtain an
adequate model, it is important to investigate applications with regard to the
stimuli they are concerned with, i .e ., there is a need of know-how in monitoring a
technical process; both how to do it and what quantities are to be monitored to
obtain the desired characteristics .

On the other hand, refined techniques for tracting the theoretical part are
necessary in order to make use of an adequate model . Really, a lot of theoretical
and practical work remains to be done!
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