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Abstract

Though Berman and others have provided powerful techniques to collapse
nondeterministic degrees at and above nondeterministic linear space, and Im­
merman and Szelepcsenyi have provided techniques that collapse even sublinear
nondeterministic space classes, it has remained an open problem whether any
collapses could be proven for sublinear nondeterministic space degrees. This pa­
per provides the first such collapses. For nondeterministic space classes C above
NL, we show that all S:';L-complete sets for C collapse to a single s[;f de­
gree (Le., all S:,;L-complete sets for Care S[i.L-equivalent), and that all S:';NL_
complete sets for Care NL-isomorphic (and thus P-isomorphic). Our techniques
sharply improve previous results for PSPACE.

1 Introduction

Are all NP-complete sets polynomial-time isomorphic-and thus essentially the same

set under different naming schemes? Berman and Hartmanis conjectured that all NP­

complete sets are indeed P-isomorphic [BH77]. Though relativized [KMR89,Kur83,GJ86,

HH], indirect [KLD86J, and circumstantial [JY85] evidence against the Berman-Hartmanis

conjecture has been gathered, it remains an open question whether all NP-complete sets

are P-isomorphic.

"Research supported in part by the National Science Foundation under gra.nt CCR-8996198 a.nd a.
Presidential Young Investigator Award.

tResearch supported by a Deutsche Forschungsgemeinschaft Postdoktora.ndenstipendium. Current ad­
dress: Department of Computer Science and Engineering, FR-35, University of Washington, Seattle, WA
98195.
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Indeed, the decade-long research effort devoted to the Berman-Hartmanis Conjecture

has yielded scant progress on the isomorphism question; no nontrivial class has yet been

proven to have a collapsing complete ~~-degree. And although researchers have obtalned

many relativized results on isomorphism [HS89,KMR89,Kur83,GJ86,HH], very few non­

relativized results exist bearing on isomorphism. Most notably, we have:

1. [KMR87] There is a set A that is ~r_.ru'h_'.bl.-complete for PSPACE such that

any set that is logspace many-one equivalent to A is logspace isomorphic to A.

2. [A1l88] All ~~L-complete set for PSPACE are P-isomorphic.

Though isomorphism results have proven surprisingly elusive, clear progress has been

made on the closely related question of collapsing degrees. In working towards isomorphism,

the general scheme outlined a decade ago by Berman and Hartmanis [BH77,Har78b] is to

prove length-increasing (for logspace reductions, length-squaring) one-one equivalence for

a given class, and then to combine this with invertibility results to achieve isomorphism;

thus, collapsing degrees-in particular, achieving one-one length-increasing equivalence-is

a first step towards isomorphism (see [GH89] and [KMR90] for more detailed discussions of

the motivations of, and obstacles to, this program).

Though the inversion portion of the Berman-Hartmanis program has proven somewhat

difficult to fulfill, many exciting equivalence results have been obtained during the last

decade. In particular, all ~~-complete sets for deterministic exponential time collapse to

a single ~ih-degree [Ber77,Wat85,GH89] (that is, they are all one-one, length-increasing,

polynomial-time equivalent), all ~~-complete sets for nondeterministic exponential time

collapse to a single ~j'-degree [GH89], and all ~~-complete sets for PSPACE collapse to a

single ~j',.-degree (basically [Rus86]).

These results all apply to quite large complexity classes, (such as PSPACE and NEXP);

however, equivalence and isomorphism results for large complexity classes cannot in general

be translated downwards to smaller complexity classes.' In this paper, we obtain-for

the first time-isomorphism and equivalence results that hold for small complexity classes.

These results will be sufficiently powerful to provide new isomorphism and equivalence

results for large classes, such as PSPACE.

1 Note the exception presented as Theorem 2 of [GH89]. Also of great interest is recent work of Buhrman,

Homer, and Torenvliet [BHT90]i for the quite important question of distinguishing reducibilities, they achieve

results for small space classes.
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The central obstacle to obtaining isomorphism results for classes of small complexity is

that the crucial diagonalization technique used to obtain the previous equivalences requires

that the complexity class used be able to simulated polynomial work on a linear-sized (exis­

tential) guess. In general, classes below NSPACE[n] seem unable to simulate linear-bounded

existential quantification. Nonetheless, we show that small complexity classes, in the very

special setting needed for the equivalence-creating diagonalization, can create the effect of

such a simulation via the power inductive counting vests in "strong" computation. Thus,

we obtain broad equivalence results for small complexity classes.

Our basic result is that, for any nice nondeterministic space class C above nondetermin­

istic logspace, all $:';L-complete sets for C collapse to a single $h, degree.?

Extending the techniques used to obtain this, we establish that all $:';NL-complete sets

for C collapse to a single $}t'L-degree. Building on this result we are able show that all

$),;NL-complete sets for Care P-isomorphic and indeed NL-isomorphic.

Our results not only apply to small complexity classes, but in fact also substantially im­

prove previously known results about the structure of PSPACE's complete sets. In particu­

lar, we improve Allender's result that all 1-L complete sets for PSPACE are P-isomorphic;

we show that all 1-NL complete sets for PSPACE are NL-isomorphic. All our 11. equiva­

lence proofs in fact also yield one-one quadratically length-increasing equivalence, and thus

satisfy the first requirement of the Berrnan-Hartrnanis scheme for achieving isomorphism.

2 Notation

Our notation follows standard conventions [KMR90]. All sets are assumed to be over

some fixed alphabet with at least two characters. EXP denotes U k>O DTIME[2"']. NEXP

denotes U k>O NTIME[2"']. We use the symbol $tao~.'ti.. to represent reductions. The

subscript represents the properties ofthe reduction, and the superscript denotes the machine

type of the reduction. Our subscripts include m representing many-one reductions, 1 repre­

senting one-one reductions, 11. representing one-one length-increasing reductions, and 1qh

representing one-one quadratically length-increasing (i.e., (\lx)I.lf(x)1 ~ Ix1 2]) reductions.

'2It is important to note that the clasIJe, we dilJCUII indeed do have :5:~L-complete lIet, (and ::;},;NL -complete

sets), as, if thi, were not the case, our result, would be without ~eaning. Indeed, even the canonical universal

set (see, e-g., [Har18a]) is complete via one-way reductions, 8.8 reductions to the universal set simply (1)

prepend a machine, (2) copy the input to the output while counting its size! end (3) print padding based

on the input's size. Further discussion of the stunning relationships between one-way completeness and

completeness can be found in [HIM78,HM81].
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Our superscripts include p representing polynomial time, L representing logarithmic space,

N L representing nondeterministic logspace, 1-L representing one-way logarithmic space,

and 1-NL representing one-way nondeterministic logspace. 1-L reductions were defined

and studied by Hartmanis, Immerman, and Mahaney.

Definition 2.1 [HIM78] A 1-L reduction is a function computed by Turing machines?

with (1) a work tape with two-way access to flog n1 tape cells that are laid off in advance,

(2) a one-way input tape, and (3) a one-way output tape.

1-L reductions have been studied in other papers than [HIM78], notably including a

paper by Hartmanis and Mahaney that defines the complexity classes 1-L and 1-NL, rep­

resenting deterministic and nondeterministic one-way logspace [HM81,A1l88]. As a natural

extension, we now define 1-NL reductions, which are simply the class of single-valued total

functions computable by one-way nondeterministic logspace Turing machines.

Definition 2.2 (l-NL functions and reductions)

1. [HM81] A 1-NL Turing machine is a nondeterministic Turing machine with a one­

way input tape (with end markers) and, for an input of length n, a two-way read-write

work tape oflength flog n1 (with end markers).

2. (Adapting the notion of nondeterministic reduction of Book [Boo90, Section 6] to

the class 1-NL) A l-NL function is any function computed by some 1-NL Turing

machine augmented by a one-way output tape. Such a function, which in general

may be partial and multivalued, maps from an input x to the set of values written

on the output tape by accepting computation paths. A function is said to be a l-NL

reduction if it is a single-valued total 1-NL function.'

3. A single-valued, total function h is said to be l-NL invertible if its inverse (which in

general will be a multi-valued partial function) is a 1-NL function. Note that if h is

one-one, then its inverse will be single-valued.

3Number of work tepee is Dot an issue as, for space classes, many tapes can easily be reduced to one

tape, with no change in the work-tape alphabet size.
4Note that Dot every path of such a machine need accept (and thus output its value). However, every

path that does accept must output the 60me value, and for every input, Borne pa.th must output a value.
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Definition 2.3 (NL-functions and reductions)

1. (Adapting the notion of nondeterministic reduction of Book [Boo90, Section 6] to

the class NL) An NL function is any function computed by some NL Turing machine

augmented by a one-way output tape. Such a function, which in general may be partial

and multivalued, maps from an input z to the set of values written on the output tape

by accepting computation paths. A function is said to be an NL reduction if it is a

single-valued total NL function.

2. A single-valued, total function h is said to be NL invertible if its inverse (which in

general will be a multi-valued partial function) is an NL function. Note that if h is

one-one, then its inverse will be single-valued.

3. We say that sets A and B are NL-isomorphic if there is a one-one, onto,

NL-computable, NL-invertible reduction from A to B.

Definition 2.4 [SeI78,Lon82]

1. Consider a nondeterministic Turing machine with the property that, for every input,

each computation path ends in one of three distinguished states: "accept," "reject,"

and "no-comment" (different paths may end in different states).

We will say that such a machine, N, is a strong nondeterministic Turing machine if,

for each input z , it holds that either:

(a) at least one path of N(z) ends in the "accept" state and no paths of N(z) end

in the "reject" state, or

(b) at least one path of N (e) ends in the "reject" state and no paths of N (x) end in

the "accept" state.

2. A strong nondeterministic machine N is said to accept an input z if N(x) has at least

one accepting computation path; it is said to reject input x otherwise.

To avoid confusion in constructions that involve both strong nondeterministic machines

and standard nondeterministic machines, we will often refer to computation paths of strong

machines as "strong-accepting" and "strong-rejecting," and to paths of standard machines

as "standard-accepting" and "standard-rejecting."
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From the result of Immerman and Szelepcsenyi [Imm88,Sze88], it follows immediately

that any language L E NSPACE[log2 n] can be accepted by a strong nondeterministlc

machine with the same space bound.

In analogy to the class US ([BG82]) we will consider the class US-SPACE[log2 n]: A

language L is in this class if there is some O(log2 n) space nondeterministic Turing machine

N such that, for all inputs x, it holds that x E L if and only if N accepts x on exactly one

path." Since the Immerman-Szelepcsenyi result indeed collapses the entire boolean hierarchy

(and more) over NSPACE classes, and since (for nice functions f) US-SPACE[f(n)J is in

the boolean hierarchy over NSPACE[!(n)],6 it follows immediately that US-SPACE[f(n)]

= NSPACE[!(n)] for those functions ! for which the [Imm88,Sze88] result applies. In

particular, we have the following.

Proposition 2.5 US-SPACE~og2n] = NSPACE[log2 n].

We say that sets A and Bare P-isomorphic if there is a one-one, onto, polynomial­

time invertible, polynomial-time computable reduction from A to B [BH77J. For a given

reduction r, an $.-degree is an equivalence class with respect to $. reductions.

3 Results

Typical of known equivalence results for complete degrees" is the following, whose origi­

nal proof has been simplified by Watanabe [Wat85], and simplified still further by Ganesan

and Homer [GH89].

Theorem 3.1 [Ber77] All $~-complete sets for EXP are $l,,-equivalent.

Similar results hold for nondetermlnlstlc exponential time and PSPACE.

Theorem 3.2

"Note that on some inputs, the machine might well have more than one accepting path, and on those

inputs it is considered to reject. This can be contrasted with the very different USPACE[f(n)] classes

(see [BHS90]), the analogs of Valiant's class UP [Val76], in which machines are forbidden to ever have more

than one accepting path.
6This ma.y be thought of as the space version of Blass a.nd Gurevich's [BG82] inclusion US ~ DP, though

there is a. slight su btlety in the proof.
TExceUent surveys of this work and of the general question of isomorphism ha.ve been written by Kurtz]

Mahaney, and Royer [KMR90] and Young [You90]. We refer the reader to these works for general background.
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1. [GH89] All ~l;,-complete sets for NEXP are ~~-equivalent via reductions that shrink

their input at most logarithmically.

2. [A1l88] All ::;~L-complete sets for PSPACE are P-isomorphic.

Our goal is to prove equivalence and isomorphism results for small complexity classes.

The above results are based on constructing a "magic set" that diagonalizes against reduc­

tions to itself. Unfortunately, these key diagonalizations require that the classes have the

power to perform relatively powerful (l.e., linear-sized) nondeterministic guessing. For the

small classes we'll discuss, such guessing is beyond the classes' apparent power. Nonetheless,

our techniques will allow us to overcome this obstacle, and obtain a valid diagonalization.

Our techniques extend the diagonallzation framework developed by [Har78b,Wat85,

GH89]. In particular, we convert the existential quantifier of that framework to a seemingly

more demanding "exists exactly one" quantifier. We then show-using the Selman-Long

notion of strong computation-that the "exists exactly one" quantifier can, within the di­

agonalization setting, be evaluated correctly. Furthermore, after evaluating the quantifier,

we show that-exactly because we're using an "exactly one" quantifier-the n bits of the

existentially quantified string, though lost to us as We lacked the space to store them, can

be regenerated.

We now prove our main results. We'll use NSPACE[log2 n] for concreteness, how­

ever, as discussed later, our results apply broadly to nondeterministic space classes above

NSPACE[logn], also to certain large deterministic time classes.

Theorem 3.3 All ~~L-complete sets for NSPACE[log2 n] are equivalent under ::;;i,L-re­

ductions (and, indeed, are equivalent under ~;;~-reductions).

Proof of Theorem 3.3
First, we fix an enumeration (Mi)iEN of l-L transducers that compute functions (Ji)iEN

such that the corresponding universal function U( i, x) =h(x) is computable in deterministic

space O(log2 n).

For any pair of l-L-complete sets A and B in NSPACE~og2 n] we define a set C in

NSPACE[log2 n] that will will allow us to construct a ~t;~-reduction 9 from A to B. This

set C is defined by the following algorithm:

On input z = (i, x) do:

1. if Ih(z)1 ~ Izl2
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2. then z E C <==? f;(z) if- B

3. else if there is exactly one y <lex X such that f;(z) = J;({i,y))

4. then z E C <==? Y if- A

5. else z E C <==? z E A.

It follows directly that any reduction fj from C to B must, on the set Cj = {z I(3x E

~·)[z = {j, x)]}, be quadratically length-increasing and one-one. Why? Suppose h is not

quadratically length-increasing on C], In this case h can not be a reduction, because

of line 2 of the algorithm. Suppose h is not one-one on C], Then there is a string z

(for example, the lexicographically second smallest string that maps to some string that

fj maps more than one string to) such that there exists exactly one y <lex X such that

h((j,x)) = fj({j,y)). But since in this case, by construction, yEA <==? (j,y) E C

and yEA <==? (j, x) if- C hold, the function fj cannot be a reduction from C to B. It

follows by line 5 that if h is a reduction from C to B then h(x) =dej (j, x) is a reduction

from A to C, and that g(x) =dej fj(h(x)) = fj({j,x)) is the required 1-1, quadratically

length-increasing, 1-L-computable reduction from A to B.

It remains to prove that the set C is in NSPACE~og2 n]. Once this is done it follows

from the completeness of B that a reduction h from C to B exists, and thus by the above

reasoning the desired reduction 9 exists.

To this point, the construction has generally been like the previous constructions within

Hartmanis's diagonalization framework by [GH89,Har78b,Wat85], except that the "exactly

one" condition on line 3 of the algorithm is different and will be crucial. In previous

constructions, it has been immediate that M is in the appropriate class (usually, a very large

class). In our case, we must evaluate the Iinear-sized existential quantifier on line 3; however,

we have only the power of NSPACE[log2 n] with which to do the evaluation. Furthermore,

our alteration of the standard framework's "exists" quantification to our algorithm's "exists

exactly one" would seem to give us an even more complex task. We now show-using the

power given to strong computation by inductive counting, and exploiting the fact that our

reductions are one-way-that there indeed is a "strong" NSPACE[log2 n] machine that can

evaluate the "exists exactly one" condition.

We describe a (standard) nondeterministic machine N that accepts the set C. As

discussed in Section 2, we will refer to the paths of the underlying strong machines as
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"strong accepting" and "strong-rejecting" paths; the paths of the standard machines will

be called "standard-accepting" and "standard-rejecting" paths.

Let NA and NB be strong machines that accept A and B, respectively, in space O(log' n).

Fix an input z = (i, x). N starts by checking the condition 1/.(z)1 :$ Izl' in line 1 of the

algorithm. It is easily seen that this can be done on the available space. If 1/.(z)1 :$ Izl', then

N simulates NB on the input 1,((i, x)), which is computed bitwise as the simulation of NB

demands input, and any path of NB that denotes strong-rejection causes N to immediately

standard-accept; no-comment and strong-accept paths cause N to standard-reject on its

corresponding simulation paths. Since the length of I.((i,x)) is bounded by l(i,x)I' the

required space is in O(log' n).

To prove that the rest of the algorithm-namely, the case in which I/i(z)1 > Izl'-can

also be accomplished in NSPACE~og' n] let:

Cu = {(i,x) I there is exactly one y <lex X such that f;((i,x)) = I.((i,y))}.

We first show the following lemma:

Lemma 3.4 Cu E US-SPACE[log' n].

Proof of Lemma 3.4 Informally, for an input (i, x), we guess a string y <lex z , interleave

the computations of M; on the inputs (i, x) and (i, y), and compare the outputs bitwise.

We give a formal proof below; note that the rate at which we guess y is determined by the

input needs of f;.

Without loss of generality, we globally assume that our one-way reductions never halt

until they have read all their input string (up to and including the endmarker).

We describe a nondeterministic machine N' accepting Cu. N' starts by simulating M.

on input (i,x)-i.e., it computes f;((i,x))-without holding the output on the work tape.

If N' has not yet ensured that y <lex X then, each time a bit of z is to be read by M; (say

the jth bit), N' guesses nondeterministically whether y first differs from z on this bit. We

have two cases:

Case 1 N' guesses that y and z agree on the current bit. In this case, if the current

bit of z is the endmarker, then this particular computation path has failed to ensure that

y <lex z , so this path standard-rejects. On the other hand, if the current bit of x is a 0 or

a I, the simulation of the computation of li( (i, x)) is continued until the machine attempts

to read the next bit, at which time N' again chooses between Case 1 and Case 2.

Case 2 N' guesses that y and x differ, lor the first time, on the current bit. There are

two sub cases, one to allow N' to guess that the strings differ because y ends, and one to
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allow N' to guess that y and z first differ because y has a 0 as this bit but z has a 1 as this

bit (recall, we must ensure that y <t-» z.). Note that if the bit of x read is the endmarker,

neither case is possible and the current path standard-rejects. If the bit of x read is a 0,

only Case 2a is possible. If the bit of x read is a 1, both Cases 2a and 2b are possible, and,

nondeterministically, both occur.

Case 2a N' guesses that y and z differ in that y contains no more bits. In this case

y is a strict prefix of z , and the simulations of fi((i,x)) and fi((i,y)) can be finished by

comparing the output strings bitwise. If a bit occurs on which fi((i,x)) and fi((i,y)) differ

N' standard-rejects the input. It standard-accepts the input if fi( (i, x)) and fi( (i, y)) are

equal up to the last bit.

Case 2b N' guesses that y and x differ in that the current bit of y is a 0 and the current

bit oj z is a 1. The simulation of fi((i,x)) and fi((i,y)) is continued by comparing the

outputs bitwise. Each time a new input bit for y is required it is checked whether the

length of y exceeds the length of z . If so the simulation standard-rejects. If not it is guessed

nondeterministically whether the new input bit is 0, or 1, or whether the end of y is reached.

Again, N' standard-rejects the input if a bit is found on which fi((i,x)) and fi((i,y)) differ.

N' standard-accepts the input if fie(i, x)) and fi( (i, y)) are equal up to the last bit.

It is clear that N' has as many accepting paths as there exist strings y <u» z for which

fi((i,x)) = fi((i,y)) holds, and thus Cu E US-SPACE[log2 n].

End of Proof of Lemma 3.4 I
By Proposition 2.5 and Lemma 3.4 we know that there exists a strong machine Nu that

accepts Cu. The nondeterministic machine N, which we are constructing to accept C, now

continues as follows: N simulates Nu on input (i,x). If Nu strongly-rejects (i,x), then NA

is run on input z and N standard-accepts (i,x) if and only if NA strongly accepts z (line

5 of the algorithm). On the other hand, if Nu strongly-accepts (i, x), i.e., the condition of

line 3 of the algorithm is true, then we wish N to standard-accept (i, x) if and only if NA

strongly rejects y-thus realizing line 4 of the algorithm. Note, however, that we don't have

y directly available, as on log2 n space there is not enough room to retain y. Nonetheless,

we can regenerate y and thus compute NA(y), as described in the following.

We will simulate NA(y), providing it with inputs on demand. Note that, in the case we

are in, there is exactly one Y <u« x such that fi((i,x)) = fi((i,y)). As we are simulating

NA(Y), suppose it tries to read a bit of its "input" y, say the jth bit of y. We immediately

begin a simulation of the strong machine for Cu; that is, we simulate Nu((i,x)). Along
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each path, we note what the jth hit is of the particular y guessed on that path.s Now, on

the unique path of Nu«i,x)) that computes the correct y-Le., the unique y <'er x such

that !;((i, x)) = !.( (i, y))-we use the jth hit of y as the desired hit of y in our simulation

of NA(y), and continue the simulation (repeatedly simulating Nu( (i, x)) each time we need

a new hit of y).

Finally, note that the "exactly one" condition of our algorithm was used centrally. If

we had tried the ahove regeneration scheme in a case where there were two strings, y' and

y", each <Ier z , such that f;(i,x)) = f;(i,y')) = !.«i,x)) = !i«i,y")), then the ahove

procedure would hopelessly jumble the bits (even to the point of giving different answers

for the same bit at different times along a single path).

End of Proof of Theorem 3.3

I
The analogous result holds for nondeterministic reductions and small space classes:

Theorem 3.5 All :5!,;NL-complete sets for NSPACE[log2n] are equivalent under :5Ji!",L­

reductions (and, indeed, under :5i~1:'L-reductions).

Proof

The proof builds on the same ideas as the proof of the deterministic case but requires

additional consideration. Since we cannot assume that there exists an enumeration of

single-valued I-NL-transducers that has a universal function with the properties of the

proof of Theorem 3.3, we have to deal with general-and thus partial and multivalued­

I-NL-transducers.

Let (Ni)iEN be an enumeration of I-NL-transducers that compute functions (I.)iEN such

that the corresponding universal function U(i,x) = !.(x) is computable in nondeterministic

space O(log2 n).

Again, for any pair of I-NL-complete sets A and B in NSPACE[log2 n], we define a set

C in NSPACE[log2 n] that is :5i~1:'L-reducible to B and yields a :5~~1:'L-reduction 9 from A

to B. C is defined by the following algorithm:

On input z = (i,x) do:

8Though we did not discuss earlier exactly how the conversion from US-SPACE machines to NSPACE

machines to strong NSPACE machines worked, it is in fact true that we may ensure that our strong simulation

indeed retains the ability to note a particular bit of the guessed If; one could ensure this formally by also

considering a language oftheform { (i, Xd, b) 1(1) there is exactly one y <,« x such that !,«i, x)} = !,«i, y)},

and (Z) the jth bit of this unique y is bj, which can be seen to be in NSPACEpog' nJ.
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1. if either (1) there is no accepting computation path of N;(z) (i.e., N, on input z does

not output a string) or (2) there exist two accepting computation paths YI and Y2

such that N; on input z outputs WI on path YI and W2 on path Y2 and WI # W2, then

z ¢ C

2. else if Ifi(z)1 :$ Izl2

(where !i( z) denotes the uniquely determined value that occurs on one or more ac­

cepting computation paths of N; on input z)

3. then z E C ¢=l- f;(z) "- B

4. else if there is exactly one Y <lex X such that f;( z) = fi ((i, y))

5. then z E C ¢=l- Y¢ A

6. else z E C ¢=l- x E A.

Line 1 in the algorithm checks whether the machine N; on input z is defined and single­

valued. We have to show that this condition can be checked on nondeterministic space

O(log2 n). Note that the set:

Cs, = {(i, x}1 N; on input (i, x) does not output a string on any accepting

computation path}

is in coNSPACE[log2 n] and thus in NSPACE[log2 n], and that the set:

Cs, = {(i,x)! there exist two accepting computation paths YI and Y2 such

that N; on input z outputs WI on path YI and W2 on path Y2 and WI # W2}

is in NSPACE[log2 n]. Thus there exists a strong machine No that strongly accepts or

strongly rejects Cs, UCs" and accordingly computes whether the condition in line 1 is

true or false. The rest of the proof follows from arguments generally analogous to those of

the deterministic case. I
Theorems 3.3 and 3.5 provide quadratic length-increasing equivalence. Combined with

inversion results, this would yield isomorphism, following the program outlined by Berman

and Hartrnanis over a decade ago [BH77,Har78b], and embodied in Lemma 3.6.

Lemma 3.6 [Har78b] Let p and q be, respectively, L-reductions of A to Band B to A,

A C;; ~', B c;; r·. A and B are L-isomorphic if the following conditions hold:
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(a) p and q are one-one,

(b) p-1 and q-1 are L-computable, and

(c) Ip(z)l> Izl' and Iq(z)1 > Izl'·

We generalize Hartmanis's result to the case of NL-reductions in the following lemma,

which will later be used to establish the NL-isomorphism of all :$:,;NL-complete sets for

NSPACE[log' n].

Lemma 3.7 Let p and q be, respectively, 1-NL-reductions of A to Band B to A, A <;

E', B <; r'. A and B are NL-isomorphic if the following conditions hold:

(a) p and q are one-one, and

(b) jp(z)1 > Izl' and Iq(z)1 > Izl'·

Proof: The proof follows the technique of [Har78b], crucially also relying on the power of

strong computation and inductive counting to allow failsafe inversion of non-onto functions.

Let h be any honest, one-one, 1-NL reduction. The set L = {y E E'l (\lz)[h(z) # y]}

is in coNL, and thus is in NL, and thus is accepted by a strong NL machine. So we may

construct a nondeterministic logspace machine Nh that behaves on input y as follows:

(1) If h-1(y ) is defined Nh(Y) outputs the unique string z for which h(z) = y holds.

(2) If h-1(y) is not defined Nh(Y) outputs "*."

Nh works as follows. First, it uses a strong machine for L to determine whether to output

"*." If "*" is not the correct output, Nh guesses (bit by bit) all strings z of appropriate

(with respect to the honesty ofthe reduction) lengths and runs h(z) as it guesses z , writing

the guessed bits to its output tape and comparing, bitwise, h(z) with y. We accept on the

path that guesses z such that h(z) = y; thus, this path outputs z. All other paths reject.

We'll in particular be concerned with the machines N, and N•.
Our isomorphism is defined by:

4>(z) = if z E R1 then p(z) else q-1(Z),

where R1 = {(q 0 p)k(z)1 k ~ 0 and z ¢ q(r')}. Note that:

4>-l(Z) = if z E 5, then p-1(Z) else q(z),

13



where 52 = {pO(qop)k(x)1 k ~ 0 and x ~ q(r")}. Also, we define R2 = {qo(poq)k(x)1 k ~

oand x ~ piE")}. For the reasons given in [Har78b, Theorem 2.1], it follows that 4> is

an isomorphism between A and B. The crucial point is to show that 4> is computable in

nondeterministic logspace. It is sufficient to show that there is a strong nondeterministic

machine that decides the condition z E R I (z E 52)' Once this is done we know that the

isomorphism is NL-computable (using Nq and p) and the claim follows.

Let Nq be as described earlier-a total nondeterministic logspace machine that computes

the inverse of q; i.e., on input x the output is q-I(X) if it is defined and "*" otherwise.

Similarly, let Np be a total nondeterministic logspace machine that computes the inverse of

p. To determine whether x E R I or x E R2 holds we have to find the minimal k ~ 0 such

that:

(q-I op-I)k oq-l(X) = * or

p-l o(q-I op-I)k oq-l(x) = *

holds, and which of the above holds for that k, As in [Har78b], we compute (in order)

q-l(X), p-l(q-l(x», q-l(p-l(q-I(x))), ... by simulating Nq and Np • Since the outputs

might be too large to be held on the work tape they will be recomputed whenever they

are needed as an input. Since the simulated machines are nondeterministic we have to deal

with two difficulties. First, the simulated path of the nondeterministic computation might

not end in an accepting final state; in this case, this path of the simulating machine halts

and outputs nothing. Second, though Nq and Np compute single-valued, total functions,

on an input x the computation along some path might have written symbols on the output

tape though it does not end in an accepting final state. Thus the output on such a path

does not necessarily correspond to the correct value ofthe computation (e.g., q-l(X) or "*"

in the case of N,), and we have to make sure that these incorrect outputs are ignored.

We first compute q-I(x) and test whether it is "*." If it is not, our next task it to

test whether p-I 0 q-l(X) = *. Let us describe how this is done. We start by simulating

Np • When it asks for its first bit of input, we store the configuration of Np and begin a

simulation of N,(x), noting the first bit. As soon as N q reaches an accepting final state

(along the path being nondeterministically followed), the simulation of Np continues, using

as the desired input bit the bit that was the first bit computed along that path. When

Np tries to read future bits of its input, q-I(X), we compute them in the same fashion.

Eventually, we determine (strongly) whether p-I oq-I(X) = * or not. If not, we move on to

computing whether q-I 0 p-l oq-I(X) = *, and so on, by dynamically maintaining as stack of

14



configurations of these machines. At such stages, we repeat the above procedure, with the

appropriate number of levels of machines with inputs generated by the output of a machine

with inputs generated by... and so on. This scheme is essentially that of Hartmanis; the

crucial distinction is that, when the path we are on sees the bit of input that it is looking

for, it cannot use it immediately; rather, it must drive the simulation through to completion

in order to ensure that the bit output is on an accepting computation path. As in [Har78b,

Proof of Theorem 2.1] this simulation can be carried out in O(log n) space; in particular,

since the reductions are quadratically length-increasing, the space used to maintain the

stack is less than log n + log.,;n + log .y,;+ .." and thus is O(log n). I
Thus, we have:

Theorem 3.8 All S;,;NL-complete sets for NSPACE[log2 n] are NL-isomorphic (and thus

P-isomorphic).

Proof of Theorem 3.8 It follows from Theorem 3.5 that all sets that are S),.-NL-complete

for NSPACE[log2 nJ are equivalent under I-NL reductions that are one-one, and quadrati-

cally length-increasing. Thus they are NL-isomorphic by Lemma 3.7. I
The theorems of this paper, though stated for NSPACE[10g2 n], apply far more gener­

ally. Informally put, they apply to any standard nice (space-constructible non-decreasing

space-bounds, closed under quadratic stretching) nondeterministic space class above non­

deterministic logspace. In particular, the theorems apply to NPSPACE. Additionally, they

apply to many deterministic space classes at or above E = UbO DSPACE[2cn ) ; for exam­

ple, Theorem 3.3 applies to EXP, and if one replaces Iqli with Iii, then it applies even to

E. (Indeed, since the one-way nature of our reductions is used only (I) for inversion, and

(2) to handle the requirements of sublinear space, for large classes our Iii results hold for

:::;!;. as well as S;,;L (see Corollary 3.9, part I).)

Since NPSPACE = PSPACE [Sav70j, let us compare the implications of the preced­

ing theorems with Allender's result. Allender [All88] proved that all I-L complete sets for

PSPACE are P-isomorphic. We have succeeded in weakening the strength of the isomor­

phism needed from P-isomorphism to NL-isomorphism, while simultaneously broadening

the class of isomorphic sets from all I-L complete sets to all I-NL complete sets. Also,

maintaining I-L reductions, even logspace reductions suffice to achieve Iii equivalence. The

corollary below makes these claims explicit. Though the following new results are about

the large class PSPACE, it should be emphasized that the results of this paper-unlike

any previous work on collapsing degrees-apply even to sublinear nondeterministic space
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classes.

Corollary 3.9

1. All ~~L-complete (~~-complete) sets for PSPACE are ~i;,L-equivalent (~~-equiva­

lent ).

2. All ~:';NL-complete set for PSPACE are NL-isomorphic (and thus P-isomorphic).

4 Conclusions

By exploiting the power vested in strong computation by inductive counting, this paper

has provided the first known collapses of sublinear space degrees. Moreover, applied to

larger space classes such as PSPACE, this paper's techniques sharply strengthen previous

results.
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