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Abstract

This paper presents some results of tests of specific "recognition
cone" systems for probabilistic parallel-serial recognition and descrip-
tion of two-dimensional scenes of objects. Simula and Fortran encoded
systems were given particular sets of transforms, and examined for their
ability to handle scenes that contain 1) letters, 2) "place-settings"
of several pieces of silverware and china, and 3) a "real-world" out-
door scene, in color. The same parallel-serial flow through structured
layers of variable-resolution probabilistic transforms serves to detect
edges, find features, characterize, recognize and describe, without any
sharp dividing lines between different types of processes. Thus, a wide
variety of diverse sources of information contextually interact, in a

relatively simple and general way.
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Introduction

This paper presents and examines tests in which a "recognition cone"
system was asked to recognize objects and describe scenes of several
different sorts. A number of variant systems have been coded in Snobol
and in EASEy, to explore the large number of possible configurations.

But these are too slow and expensive to allow for testing. So the pres-
ent tests were made using much faster systems coded in Simula and in
Fortran.

"Recognition cones" are being developed by Uhr, 1972, 1974, and
similar "cone" or "pyramid" systems are being developed by Hansen and
Riseman, 1975, Douglass, 1977; Tanimoto, 1976; Klinger, 1974; and Levine,
1976. They are all systems that apply a parallel set of operations (here
called "transforms") to the raw transduced scene that is input to the
program's input array (called the “retina"). Then a second layer of
parallel transforms is applied to the output of this first layer, and
then a third layer is applied, and so on.

Figure 1 about here

Recognition Cones Described

Each layer of transforms outputs its set of implications (in effect,
what these transforms have found and conjecture) into a buffer array that
is smaller than is the array into which the transforms looked. So the
system converges, forming a cone or pyramid, from its base, the retinal

input array, to a final output array, its apex, that contains only a single

cell.



Figure 1. Recognition Cone Structure. Layers of transforms (dotted

lines) look at and imply things into buffer stores, transforming
from retina to apex.
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Figure 2. Letters (a check indicates the program correct] ized -
the letter). prog y recognized
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Figure 4. Shows the original scene (unfortunately much degraded and
in grey-scale; see Ohlander's thesis for a good reproduction). But
note that the scene has been cropped, so that none of the grass re-
mains, and only the left 2/3ds of the house is used.
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Each transform resides at a particular location in its transform
layer, which is sandwiched between that transform layer's input buffer
layer (into which its transforms Took) and its output buffer layer (into
which its transforms - if they succeed in f{nding what they are Tooking
for - merge their implieds). So the location of the transform determines
the location of the cell in its layer's output buffer array into which
it will merge its implieds (that is, it will fire into the cell lying
directly "behind" when looking at the cone's retina, as though Tooking
"straight into its eye" along a straight line that ends in the cone's
apex and goes through the retinal cell being looked at). The transform's
location also determines the (relative) location of the parts of its
layer's input buffer array that it looks at. A transform can be coded
to look at any number of parts, at any relative locations, and to imply
any number of things, of any sort (qualities, features, internal names,
external names, of parts, sub-wholes, wholes, groups, or aspects). But
the whole parallel-serial structure of many interlaced transforms is
designed so that each particular transform can Took relatively locally,
and can serve as a stepping-stone in the recognition of more and more
global and more highly structured things.

A transform can imply several additional important kinds of things,
which serve a crucial purpose in giving flexibility and power to the
system.

First, it can imply additional transforms to apply, and particular

things, and classes of things, to look for (which in their turn imply



additional transforms to apply - the transforms that would, if success-
ful, imply them). This means that the system now combines a "bottom-up"
"environment-driven" flow of processes with a "top-down" "internal
attention mechanism-driven" flow of processes, where each is constantly
calling upon the other. This also serves to focus, and to shift atten-
tion, as indicated. In the present runs this feature is heavily used

in the deeper layers of the cone, as the particular higher-level wholes
come into prominence (that is, are emerging as the more highly implied
things).

Second, transforms can imply that a "trigger" be fired. The trigger
is simply another transform that, when its combined weight has finally
exceeded its threshold, fires, leading to the system's making a choice,
in the cell where the trigger fires, among the things implied (the trigger
can, optionally, specify a particular class of things to be chosen among).
In this way the system can choose things in sub-regions of the scene
(for the cell in which this choice is made is the apex of a sub-cone whose
base is a sub-region of the retinal input scene).

This appears to be an important mechanism for handling scenes of
several different objects, without an exhaustive tracing of the boundaries
of each object. But the adjustment of the weights of the variety of
transforms firing into the trigger, which should reflect the variety of
cues that suggest that the system's picture of that region has crystallized
to the point where a decision should be made (before the continuing reduc-

tion in resolution coarsens things too much), is an extremely subtle



matter that needs a good bit of empirical testing. So this mechanism
has not been used in the present runs.

The system is designed so that any number of transforms can re-
side at each particular cell location of a transform array. Any de-
sired function over the set of parts the transform looks at can be used
(though we tend to use simple partial matches, since these seem most con-
sonant with what probably goes on in 1iving visual systems). And any
desired evaluation function for determining whether the transform has
succeeded and therefore will fire its implieds can be used (though we
tend to use a simple combining of the success of each part, which must
exceed a specified threshold for success, again to mirror living firings
of neurons into and across synapses).

The "recognition cone" system, then, serves as an overall structure,
one that attempts to embody the overall structure of living visual sys-
tems (with their synapsing neurons, organized in converging layers in the
retina, lateral geniculate and visual cortices). For a particular compu-
ter run, one must specify the number of layers in the system and the size
(and therefore the converging cone structure) of each layer, and also the

specific individual transforms used.

The Potential Efficiency and Power of Such Systems,
Given the Suitable Hardware Embodiment

Such a system is not at all suitable for today's serial computers.
Its highly parallel applications of layers of transforms need long serial

loops through each layer array, to simulate the parallel processes. But



this kind of cone/pyramid system suggests an architecture for parallel-
serial computers that today for the first time seems feasible and econ-
omical, given today's very cheap large sca]g integrated circuitry on
tiny chips. We already see the precursors of such computers in Duffis
CLIP-4 (1976) parallel array, and in Kruse's (1976) similar parallel
computer.

Given true parallel processes in hardware, such a parallel-serial
system will become extremely fast.

It is designed to give the great efficiencies in time inherent in
parallel processing when they are appropriate (as they certainly are in
perceptual systems whose input is a very large parallel array), along
with the efficiencies in space from a serial structure that allows for
a natural relatively local successive combining of parts into more and
more global sub-wholes, as needed. Thus, as Cordella, Duff and Levialdi,
1976, have shown, parallel processes can give enormous increases in speed.
In contrast, as Minsky and Papert, 1969, have shown, a single process can
lead to overwhelming inefficiencies in space with extremely global patterns.

But parallel-serial processes can very effectively arrive at trade-
offs that give quite attractive efficiencies in both space and time.

Thus, for example, with an input retina of 106 units, a purely serial

recognizer will need 106k (k is a relatively small constant) moments of

6

time, and 10° storage cells (for the retina) plus some negligible addi-

tional space for its program (say 105). A purely parallel processor will

(in the extreme when it is asked to handle an entirely global pattern)

0

need only 10° moments of time (literally, 1 single moment), but
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6
106(2]0 +1) pieces of information stored. But parallel-serial

systems will need only kL moments of time (where L is the number of
Layers) and, roughly, 25(106) storage cells (where S is the average
number of storage cells needed to store the average number of trans-
forms plus implieds at each cell in each layer). They also offer great
promise of being powerful and efficient. For the total set of trans-
forms can build up arbitrarily complex and arbitrarily global procedures.
And they can be loosely coupled, with different sets of transforms
serving different purposes, in assessing different types of things, and
different aspects of the same class of things or even the same individual

object.

Loose and Flexible Organizations of Transforms

This means that instances of patterns do nof have to be carefully
analyzed and described, or, even worse and even more common, restricted
to a particular small set of objects, each varying in only very restricted,
almost always linear and perfectly known ways.

For example, we human beings can recognize an object 1ike a chair or
a face from a) a colored scene that contains nothing but gradients and
smoothly varying shades of color and intensity; b) a grey scale reduction
of that scene (as one turns the color down on a color TV set), c) a line
drawing of the scene (as when one superimposes a photo and its negative,

and prints a new positive that contains only the contours, or when an
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artist or cartoonist makes a line drawing). But then we can throw
noise, fog, or other kinds of fuzzings at such a scene. Even more
drastic, we can ask a mad eraser to cut random swathes through the
scene, making any lines or areas gapped, dotfed, or missing. And a
human being will have no trouble; in fact often we will not even
notice such distortions, since all of our perceptual experience has
been with just such distorted scenes, and worse.

This argues strongly for a system that does not rely on any par-
ticular operations for the "right answer" but rather uses a collection,
some of which will be useful in some situation, but some others in other
situations. The set of independent, each relatively weak and fallible,
transforms serves that purpose. On the other hand, since transforms
look at the outputs of other transforms, larger and larger structures,
reflecting more and more global and contextually interrelated things,
can be built. And they are built efficiently, since parts that are in
common to several higher-level transforms can be handled by a single
lower-level transform that serves as a building block to them all. And,
in general, such a system decomposes all its needed complex functions in-

to a hierarchical network of successively simpler building blocks.

Recognition of Simple Letters and Symbols

A Fortran recognition cone system was tested for its ability to
recognize letters and symbols over a variety of severe distortions (ro-

tations, gaps, fragmentings, stretchings, etc.; see Figure 2 for approx-
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imate copies of the letters used). Letters were input into a 20 by

Figure 2 about here
20 retinal array, and transformed as follows (see Table la): Layer 1
got local edges. Layer 2 got features (short line segments and curves).
Layer 3 compounded several features together into a characterizer.
Transforms from Layer 3 implied the possible output names, with weights
chosen to be appropriate. This set of transforms was developed by
looking at one example of each letter A through F (the top row in Figure
2). It took roughly 7 hours to formulate the 40 transforms, 7 hours to
describe them in Fortran code for the program, and less than 2 seconds
of 1110 CPU time to recognize one letter.

The same system was also used for one example of each of the five
symbols star, triangle, circle, square, and plus. The same edge and
feature-detectors in Layers 1 and 2 were used, except that these new
symbols were added as implied (each with the estimated appropriate weight),
when appropriate. And the appropriate compound characterizers were put
into Layer 3. |

A11 the original (known) examples of letters, and the symbols,
were recognized. Some mistakes were made on the variant letters. But
they include a number of quite unusual and difficult distortions, and
there was little effort to adjust weights, or to develop a really good
set of transforms. The purpose of these tests was primarily to demon-

strate that the system is designed to work over unknown, highly non-
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linear and strangely distorted instances of the same pattern set -
something that is crucial for real-world vision but has not received

much attention in recent "scene analysis" systems.

Scenes of Eating Utensils, Forming "Place-Settings"

A Simula version was tested for its ability to recognize simple
objects in a scene of several objects, and also the larger whole into
which they formed. Scenes of line-drawings of forks, knives, spoons,
and plates were input to a 20 by 48 retina, and transformed as follows
(see Table 1b): Layer 1 got local edges. Layer 2 got features (Tine
segments and curves). Layer 3 got compounds of features, to imply the
individual objects. Layer 4 got compounds that implied place-setting,
and different kinds of place-settings. 4

Transforms were coded so that a variety of variant objects would
be recognized, including broken, gapped and noisy objects. But little
" effort was made to handle unknown non-linear distortions (though some
unknown number of them will be handled, since the threshold operators
accept variants). For these tests were designed to examine how the sys-
tem can handle simple scenes that contained several simple objects that
interact with one another to form a larger whole. It took about 2 hours
to formulate and describe in code the roughly 30 transforms used, and
about 8 seconds of Univac 1110 CPU time to recognize and describe one
place-setting.

Figure 3 gives some rough drawings of place settings that were success-

Figure 3 about here
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fully recognized (that is, all the correct objects, and also the whole were

more highly implied than any possible alternatives). The bottom example
shows a knife partially under the left fork - everything was recognized
correctly. It would be easy to add additional transforms to handle more
objects (e.g. cups, ladles), and to distinguish among different types

of objects (e.g. salad vs. dessert fork), and to distinguish among differ-

ent types of place-settings (e.g. French, breakfast).

Description of an Qutdoor Scene in Color

The Simula program was used, in conjunction with Fortran routines,
to handle the first two layers, to recognize and describe a detailed
outdoor scene, containing a large house (with windows, walls, roof, etc.)
fronted by trees and bushes, with grass below and sky above. The picture
used was from the set first used by Ohlander, 1975, and originally digi-
tized at USC. This picture is of interest because it has been widely
used by others, e.g. Hanson and Riseman, 1§76, and Schacter, Davis and -

Rosenfeld, 1976.

The original color picture was digitized into a 600 by 800 array,
each cell containing 3 8-bit numbers, one for each of the primary colors.
This is more data than the Simula program can conveniently handle, so
the first two layers were processed by Fortran routines, and the rest
by the Simula program (see Table 1c).

The following transforms were used:

Layer 1: Averaging is effected by looking at each 4 by 3 local array of
cells, and outputting the sum of the intensities for each of the 3 pri-

mary colors into the cell in the output buffer layer corresponding to



Table 1.

15

Specifications of the Cones Used for the Test Runs

A) For simpie letters and symbols:

Size of Array

Type of Transform Applied

20
10
5

B) For place-settings:

20
20
10

5

C) For outdoor scene:
Fortran 800

200

Simula 120

60

30

30
30
15
8
4

by
by
by

by
by
by
by

20
10
5

48
48
24
12

600
200
120
60
30

30
30
15
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Local edge detectors
Feature detectors
Compound characterizers

Local edge detectors
Feature detectors
Compound characterizers
Compound characterizers

Average

Hue, saturation, intensity
Gradients

Short edges, texture

Long edges, compounds,
textures of short edges

Higher-level compounds
Higher-level compounds
Average
Average
Average

Shrinkage

1/2
1/2
1/5

1/2
1/2
1/5, 1/12

1/4, 1/3
cropped
1/2
1/2

1/2
1/2
1/2
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the center of the 4 by 3, thus converging from an 800 by 600 to a
200 by 200 array.

This was done chiefly to reduce the very large amount of data
in the 800 by 600 tv image. Averaging is probably usually a reasonable
thing to do on most scenes. But if the scene might contain any tiny
details of importance, then the system cannot take the chance of
averaging such information out of existence. Rather, it should start
with something 1ike local differencing, to get gradients and edges.
Layer 2: The primary colors are combined, giving a) hue (the single
combined color), b) saturation of that color, and c) intensity of that
color. This combining is effected by a transform with 3 parts to its
Conditions, where all 3 parts look at the same cell, giving a 200 by
200 output array.

The first two layers of transforms are effected by a Fortran pro-
gram. The 200 by 200 image is now cropped to 120 by 120 and the Simula
program takes over. (The Simula program is now being modified so that
it will handle arrays larger than 120 by 120, so that the Fortran pro-
gram will no longer be needed.)

Layer 3: Local gradients are computed, using a transformation that looks
at the 4 parts in a 2 by 2 array, and sums the absolute values of the dif-
ference between the Northwest and Southeast pair of cells, plus the dif-
ference between the Northeast and Southwest pair of cells. .

Layer 4: Short local edges are searqhed for in a 4 by 4 array, using 4
edge detectors (one for each of the slopes 45°, 90°, 135°, 180°). A. tex-
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ture detector fires if more than 6 simple gradient points above a
threshold of 16 (from layer 3) are faund in a 4 by 4 local array.
Layer 5: Long edges, angles, curves and textures are compounded
together, using transforms that typically fire if about 3 out of
5 parts are found.

Two additional textures are got, by counting the number of edges

in a 4 by 4 window, and by getting the principal orientation of edges
in a 4 by 4 window.
Layer 6: A number of different compounding transforms iook for con-
figurations of edges (e.g. vertical edge, slope) and region elements
(e.g. wall, sky) and already-implied objects (e.g. roof, window, house).
Three examples follow:

a) Blue above a Tong horizontal edge above the previously implied

object roof implies sky (above) .and house (helow):

\
P Blue Sky
. © =
4

N
X Roof se
& 00 Hou

b) A low saturation region, an angle of long edges, and brick color
and brick texture on the other side of the edges implies house, with

window in the low saturation region and wall in the brick region:

angle

Tow brick color _ wall

saturation window

brick texture . house
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c¢) Blue above two long sloped edges giving an upward pointing

angle with green below implies trees below:

blue

<«— angle
= tree

green

Layer 7: Still more higher-level compounds that are combinations of
previously-implied names are looked for.

Layer 8: Each implied name is averaged ové} awé b} 2 array.

Layer 9: Each implied name is averéged over a 2 by 2 array.

Layer 10: Each implied name is averaged over a 2 by 2 array.
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in color,

1 scene (actually a good photo, i

igina

Figure 4 shows the or

Figures 5 through 10 show various stages

but poorly reproduced here).

in the program's processes.

dicated, by the asterisks; many other things have been implied by

through the cone (only the results of local gradient detectors are
this time).

n

Figure 5 shows the results of the first three transformations layers
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Tree,

Window, G = Grass, H = House, S = Sky, T =

Wall).

cell by Layer 6 (F

Figure 6 shows the single most highly implied thing output to each
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Figure 7 shows only those cells

6, since ties are shown here but not

in which House (H) was most highly implied

(this differs slightly from Figure

there).
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Figure 8 shows the most highly implied things in Layer 7, the next layer. -
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Figures 10a, 10b, and 10c show the outputs from Layers 8, 9 and 10.
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It took (very roughly) about 120 hours to formulate the 70 trans-
forms used for this run, plus 40 hours to code them in Simula. Pro-
cessing one scene takes less than 2 minutes of 1110 CPU time (roughly
30 seconds for the Fortran routines and 60 séconds for the Simula pro-

gram).

Using Ad Hoc Information (e.g. Color) to
Improve Performance, When Useful

A number of additional runs were made, on the house picture and
also the Ohlander pictures of a car and an interior, using only color
and a local color edge detector. These gave rather good results (as
judged subjectively, as is always the case) in bringing out the out-
line, with results comparable to Figure 5, and to the results shown by
Schacter, Davis and Rosenfeld, 1976. But such resuits depend entirely
on the (typical expected) color of a thing - grass is green, sky is blue,
houses are red,.... The larger test did not use the color edge detector,
and gave colors only lTow weights. For houses are known to be grey and
even sky blue, skies can be rosy-fingered and grass purple.

So we can expect that the addition of color edge detectors, to
imply the standard things with a low weight (so that they will be over-
riden by other transforms except in unusual situations) should substan-
tially improve performance. And this is but one small example of how
diverse sources of information can be captured in such a set of different
characterizing transforms, to work in concert toward the decisions of the

whole.
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The Need for Learning by Discovery

It is tedious to describe, code and adjust the weights and thresh-
olds of these transforms. Much preferable (and in the long run inevit-
able) is to have the system learn - generate and discover - a good and
sufficient set of transforms. So we hope that the addition of
learning routines, as in Uhr, 1978, can replace such human pre-specifi-
cation. And learning is absolutely necessary for other reasons. We
cannot assume that environments will never change; on the contrary, in
the real world new things, and new variations on old things, are constantly
being created, by nature and by human beings. And interestingly difficult
things (and that means most real-world things) are too complex for us

humans to be able to analyze and describe them completely.



25

On Testing and Generality

It is very hard to evaluate the results of a program for percep-
tion. When a leafy tree partly obscures a house should the program
output "tree" or "house" or both? If it uses red-brick-color as a
feature that makes it do well on a brick house, what should we say
when it fails on a very similar green clapboard house - that it is an
"expert" on red-brick, or too "ad hoc" for the "real" world? These
are just a few of the problems that plague all of today's systems for
scene description. Clearly, much larger test runs are needed, on an
ever-wider variety of different kinds of scenes, with variants on each
individual type of object, different interactions among objects, and
more different kinds of objects.

Far more extensive tests are needed than those reported here (or,
indeed, reported for any other scene description system of which we are
aware). At the very least, one must test such a system on scenes that
were not known to the people who designed the system (including any par-
ticular transforms or other embedded knowledge), as a guarantee that ad
hoc information was not programmed in just to handle these scenes as
special cases. One should also test the system on several examples of

the same type of scene, and also on several different types of scenes.

One should try to develop some measures of the complexity of scenes, in
terms of the number and difficulty of the things they can contain, the

complexity of variations among different members of the same object class,
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and the complexity of interactions among different objects. And different
systems must be compared with one another (and with human perceptual sys-
tems), which means that standard tests should be developed, and used in

a standard way by different researchers.

So the test results reported in this paper are meant to be just first
demonstrations. The worth of this system (along with any other system for
pattern recognition and scene description) can be determined only by a
wide range of tests that explore its range, generality, and power.

But the recognition cone system has been designed not at all for
a particular scene, or type of scene. Rather, the general structure
makes the encoding of a particular set of transforms as simple as possible.
The probabilistic structure of transforms, and the parallel-serial struc-
ture of the layered cone, are designed to make perception as general,
powerful and efficient as possible. And the whole structure is designed
to make the learning - the generation and discovery - of a good set of
transforms as easy as possible, to ultimately remove the tedious burden

of analyzing and pre-programming.

A Note on Problems of Speed, and How Parallel-Serial
Computers Will Solve Them

A few interesting comments can be made about the timings. Many
researchers in pattern recognition of individual letters would find 8
seconds of 1110 CPU time for the place-settings, and 90 seconds for the

outdoor scene excessively long. On the other hand, programs for scene
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analysis typically appear to take far longer (Ohlander's takes 9 hours
on the PDP-10). This program will slow down as more fixed transforms
are added (remember, a transform is iterated throughout its layer). But
dynamic transforms do not add to processing time (though they need stor-
age space), since they are applied only when dynamically implied. So
the hope is that not too many additional transforms will be needed but,
if they are, time can be kept within reasonable bounds by making more
transforms dynamic.

But these are problems only when such a system is run on a serial
Von Neumann computer. Once we have suitable parallel-serial systems,
with a sequence of layers of processors that directly embody the layers
of the cone, processing time is only the time taken for a single trans-
formation (and that is only a few machine cycles, since most everything
js done in parallel) times the number of layers in the cone. E.g. a
10 layer cone taking 1 msec per transform (a very slow figure) will pro-
cess 100 scenes a second. (It would pipeline continuing scenes, as input
from a TV camera, of 1000 scenes a second!). Adding new transforms will
take more space (but on today's chips this is already cheap, and on to-

morrow's it will be negligible), but absolutely no more time.

On the Use of One Vs. Many Sets of Transforms

The three tests reported in this paper were designed to examine
different aspects of the program's performance. They were made at differ-

ent times, extending over more than a year, and on two different encodings
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(one in Fortran, one in Simula) of the recognition cone system. So they
used different numbers of layers (which to some extent reflects the
differing presumed complexities of the scenes being handled) and dif-
ferent sets of transforms.

To a great extent the transforms at the lower layers, for local
edge detection and feature extraction, were quite similar (but we made
no effort to keep them exactly the same). And Layers 1 and 2 for the
place-setting runs used almost (but not entirely) the same set of trans-
forms as Layers 3 and 4 of the outdoor scene run.

In the future the hope is to use a single set of transforms, no
matter what type of scene. This will allow for exact comparisons as
to the system's success on different kinds of scenes, and will force us
to develop general rather than ad hoc sets of transforms. There will
almost certainly be some overhead cost, as thereﬂa1ways seems to be for
generality. But our conjecture is that this cost will be small (and,
when embodied in parallel hardware, the time costs will be nill), and
the total number of transforms needed will be far smaller (and easier
to code, or learn) than the total number of transforms needed if different

sets are used for each type of problem.

Summary Discussion

The particular recognition cone configuration used, with the partic-
ular transforms programmed into it, was able to handle several different

kinds of scenes, containing a) letters, b) place-settings, and c) outdoor
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color photos. The system handles scenes for which it is not specifically
preprogrammed. And it makes use of whole sets of transforms that gather
diverse kinds of information, to arrive at its decisions. Transforms

can easily be added or replaced, no particular transforms are crucial,
and widely different representations of the same object can be handled,
by one or another subset of the transforms.

The present tests show how the system does indeed develop rich and
reasonable-appearing arrays .of descriptive information, as it applies
its transforms to the scene, to recognize as well as characterize and
segment. But the final choices are not yet made, or are made in an over-
simple fashion. Once the triggering transforms for making intermediate
decisions are added to the program, we can expect interesting new improve-
ments in forming a well-tailored final description.

These tests show how information about diverse aspects of the scene,
including low-level edges, gradients, colors and textures, and higher-
level features, parts, characteristics and wholes, work in concert to
improve performance. Thus not only do the lower-level transforms serve
to compose into the higher-level characteristics, but also information
can usefully be'got from any and all levels where it is uncovered.

Recognition cones have several central features designed to make
them general, robust and efficient: their parallel-serial structure,
probabilistic transforms that compound and interact, the ability to
reconfigure the overall architecture and replace and modify the indi-

vidual transforms, the way transforms can flow in a combined out-in and
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in-out fashion, and the ability to learn. A1l this means that such systems
should work on a variety of different kinds of scenes, and should not

be limited by ad hoc programming to particular types of scenes and
representations. Only when given a sufficient set of transforms can

this kind of system be adequately judged. But its development can pro-
ceed in a relatively smooth small-increment manner, since changes need

only be made to an individual transform, or a few transforms, without
having any effect on the larger program.

Finally, this kind of parallel-serial system offers great promise
for future increases in power, simply by using parallel-serial hardware
(which has today finally become feasible, and economical). Thus we can
expect a four to six orders of magnitude increase in speed, even with
very large sets of transforms, at relatively reasonable costs. This
kind of architecture would seem to offer great promise for perceptual

systems that are powerful, general, flexible, efficient and adaptable.
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