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LINEAR FEATURE SELECTION WITH APPLICATIONS

ABSTRACT. This paper selectively surveys contributions in linear feature
selection which have been developed for the analysis of multipass LANDSAT
data in conjunction with the Large Area Crop Inventory Experiment. Most
of the results surveyed have been obtained since early 1973 and have
applications outside of satellite remote sensing. A few of the theoretical
results and associated computational techniques have appeared either in
Jjournal articles or in proceedings of technical symposia. However, most
of these contributions appear only in scattered contract reports and are

not generally known by the scientific community.

Pattern recognition Linear Feature Selection LANDSAT data

Crop classification Sufficient statistics

INTRODUCTION

The Large Area Crop Inventory Experiment (LACIE) is concerned with
the use of satellite-acquired (LANDSAT) multispectral scanner (MSS) data
to conduct an ‘nventory of some crop of economic interest such as wheat
over a large geographical area. Such an inventory requires the development
of accurate and efficient aIQQIithms for data classification. -The use of
multitemporal measurements (several registered passes during the growing
season) increases the dimension of the original measurement space (pattern
space) thereby increasing the computational load in ('¢s. "ication rrocedures.
In this connection, the cost of using statistical pattern classificatior
algorithms depends, to a large extent, upon reducing the dimensionality

of the problem by use of feature selection/combination techniqucs. These
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techniques are employed to find a subspace of reduced dimension (feature
space) in which to perform classification while attempting to maintain
. the level of classification accuracy obtainable in the orignal measure-
ment space. The most meaningful performance criterion that can be applied
to a classification algorithm is the frequency with which it misclassi’ies
observations; that is, the probability of misclassification. Consequently,
one should attempt to select/combine features in such a way that the
probability of misclassification in feature space is minimized.

In the sequel we discuss several ways feature selection techniques
have been used in the LACIE. In all cases the techniques require some a
priori information and assumptions (e.g. number of classes, form of con-
ditional class density functions) about the structure :* the data. In
most cases the classification procedure (e.g. Bayes optimal) has been
chosen “in advance. Dimensionality reduction is then performed so as to
(1) choose an optimal feature space in which to perform classification,
and (2) determine a transformation to apply to measurement vectors prior
to classification. In all that follows the transformations used for
dimensionality reduction are linear; that is, the variables in feature
space are always linear combinations of the original measurements.

As mentioned above, the mgst'meaningful performance criterion for
a classification procedure is the probability of misclassification
(denoted in the sequel by G ). However, if the dimension of feature
space (and therefore measurement space) is greater than one, then G
is difficult to compute without additional class structure assumptions

(r.g. equal covariance matrices). As a result, several numerically tractable



criteria have been developed in conjunction with the LACIE which provide
some information concerning the behavior of G . These criteria are
discussed in the next section. In a subsequent section we present a
compendium of recent results on linear feature selection techniques, most
of which are available only in scattered NASA contract reports. In the
final section we discuss the use of these techniques in the LACIE, out-
Tine some of the investigations underway in the use of linear feature

selection techniques, and discuss some related open questions.

MATHEMATICAL PRELIMINARIES

Let nl,nz....,nm be distinct classes (e.g. crops of interest)

with known a priori probabilities ul,az.....qn , respectively. Let

X = (x;.xz,...,x )T e R" denote a feature vector of measurements (e.q.

n

LANDSAT multispectral scanner data from either a single pass or several

m
registered passes) taken from an arbitrary element of U Hi . Suppose
i=]

that the measurement vectors for class ni are characterized by the

n-dimensional multivariate normal density function

2 .
pi () = (@ ™2 1z, 1T exp [ reu) T ) ] 1 < e
We assume that the nx] mean vector My and the nxn covariance matrix

Ly for each class Hi are known (with ti positive definite),



1<i<m. The symbol |A| 1is used to denote the determinant of the

matrix A . The n-dimensional probability of misclassification, denoted

(1)

and Andrews

m
by G , of objects from U n, is given (see Anderson (2))

i=1
by

G=1- max a.p,(x)dx
!R" 1<i<m i

? [ pylx)d
=] - o p:\{x)ax ,
=1 Ry

where the sets R, , 1 < i <m, called the Bayes' decision regions,

are defined by

R, = {xcR":a.p.(x)= max a.p.(x)} s,V <icem,

The resulting classification procedure, called the Bayes' optimal classifier,

is defined as 7ollows (see Anderson(1)):

Assign an element to I, if its vector x of measurements

belongs to Ri » 1 <icenm,

The Bhattacharyya coeffidient for classes 1 and j (1< i, j<m)

is given (see Kailath(3)) by

p(1,4) = (agay)'/? fon (py (x)py(x)}*ax

It has been shown that

m-1 m
1/2 /2, .
G < - {agag} {p.(x)p:(x)} "%dx = p
- 121 j=§+l t [R" L



The quantity p 1s usually called the Bhattacharyya distance (or the

average Bhattacharyya distance).

There have been various attempts to utilize certain functions of
p(1,j) and p to generate Bhattacharyya related separability measures.
We refer the reader to the general bibliography and Kanal(d) for further
i variations on this theme.

The divergence (see Kullback(s)),gg;gggg_glg;ggg i and j
' (1 <i, j <m) is given by

D(1,3) = g trlry-2) (3 -5y 1 + g erlei e ) g o) 1

and the average interclass divergence is given by

1

0= ]

1

m
J 0(i,3)
1 j=1
i#

or, equivalently, as shown in Decell and Quirein(6). by

=1 _ m(m-1)
D=7t }z’:i 5 2
where
s.=2(zc Ty and 6. = -, .
i g=l i3 ij . ij j J
ity

As in the case of p(i,j) and p , various functions of D(i,j) and
D have been proposed as class separability measures.

Kana](ﬁ) provides an excellent exposition of such measures (e.qg.
Shannon entropy, Vajda's averaqe conditional quadratic entropy, Devijver's

Bayesian distance, Minkowsky measures of nonuniformity, Bhattacharyya



bound, Chernoff bound, Koimogorov variational distance, Devijver's,
Lissack and Fu's generalization of the latter, Ito's approximating
functions, and the Jeffreys-Matusita distance). This work contains 304
references and is perhaps the only comprehensive exposition of the
subject through early 1974. A more recent nonparametric separability
measure due to Bryant and Guseman(7) will be outlined at the end of this
section.

Devijver(a) develops a bound on G calied the Bayesian distance.

He gives an excellent development of the concept and its relationship
to the aforemeniioned separability measures. His results are quite
general with regard to the class densities pi(x) and class a priori
probabilities a; , 1 < i < m. The Bayesian distance is defined
to be

" . afm (x)? !

p(x)

i=]
m
where p(x) = 121 aps (x) .
The measure H satisfies the inequality:

1, m1 /mH-1
7

Following the philosophy discussed in the introduction, the intractable
nature of the expression for G (while in many instances unnecessary, we
are restricting our attention to a finite family of normally distributed
pattern classes) was one, if not the single, reason for developing more

tractable pattern class separabiiity measures. These measures could then



be used in lieu of G to determine mappings from pattern space to
feature space in which the classification of patterns is equivalent to
(G 1s preserved) or "nearly equivalent to" classification of patterns in
pattern space. Two fundamental questions that arise are: First, what
(if any) relation do the class separability measures bear to G ;
second, can one develop tractable alg: rithms based on the separability
measures to determine the dimensfon reducing mappings?

In connection with these questions we will only consider linear onto

k for k <n . This is

mappings B of the measurement space R" to R
equivalent to requiring that B8 be a kxn rank k matrix. This class
of mappings certainly includes those of the "feature subset selection”

type since the selection of any k-feature subset (i.e. any k components

of xe¢ R") can be accomplished by selecting the appropriate kxn matrix
] coniisting of only 0's and 1's. The class of kxn rank k matrices
are more general in the sense that linear combinations of the features
are permissible.

In a1l that follows we will assume that B 1is a kxn rank k
matrix and that X(w) = x is a normally distributed random variable. It
is well known that 1f X ~ N(u,E) then Y = BX ~ N(Bu,BZB') .

The transformed measurements y = Bx for class n1 are hormally

distributed with density function
p;(y.8) = (2m)7*/?1or,8T1"V% exp [ X Y-Blli)T(BXiBT)'](y-Bui)]

and the resulting probability of misclassification is given by



G(B) =1 - max a, p;(y,B) dy
&t Tciem 1

m
=] - ’B d '
1§] ay IR‘-(B) Pi(y ) dy

where the transformed Bayes' decision regions are given by

Ri(B) =(yc RK - ay pi(y.B) = max oy pj(y,B) s lcicem.,
1<j<m

The B-Bhattacharyya coefficient for classes i and j is given by

g (1.3) = (ajay)/? IRk{pi<y.B)pj(y.a)}"2dy :

It has been shown by Decell and Qufrein(s) that for each B

( ! P p(B)
G < G(B) < i,3) = p(B) .
‘- ) - iZ] j.§ ] B(l j) (

The quantity p(B) 1is called the B-Bhattacharyya distance or the

B-average Bhattacharyya distance.

In additicn, it has been show~ by Decell and Quirein(s) that G = G(B)
if and only if p = p(B) .

The B-divergence between classes i and j (1 < f, j <m) is:

D(1,4) = 3 tr ;[BZiBT - EzjaT][(azjeT)'1-(BxiBT)"]€
by tr 3[(BzisT)"-(azjaT)“](Bui-euj)(Bui-suj)Ti

and the B-interclass divergence is

m-1 m
D(B) = ] _Z] Dg(i.3)

i=1 j=
n



L L

or, equivalent'y (see Decell and Quirein(s))

m
D(B) = § tr ,Z] (axieT)"(as‘.BT)’- mim-1)
i=

/

where
v T
Si7 L) Egtigtig) and &y 0y
i#

While there is no explicit relationship between G and D (or G(B) and
D(B)) it was shown by Decell and Quirein‘o) that D = D(B) if and only
if G = G(B) .

In the present setting and with the obvious general meaning of the

definition we define the B-Bayesian distance to be

2 2
(y.B)
H(B) = 'f g | 0 .
=1 p(y,B)

where
m
ply.B) = _Z] o; p;(y.8)
is

It has been shown in Guseman, Peters and Swasdee(g) that G(B) = G
if and only if H(B) - H . In’this connection, the authors of‘this paper
plan to extend the variational results of the next section to include
Bayesian distance.

In the next section we will outline related n.uw results conce: ning,
amonqg others, questions raised earlier and explain the conncction betwecn
linear feature combination and the classical concept of statisti-al

sufficiency.
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RECENT RESULTS IN LINEAR FEATURL SELECTION

In what follows we will be concerred with finding an extreme value
of some function ¢ (of the reduction matrix B ). For example, we may

wish to choose &(B) = G(B) and find B such that ¢(§) = min G(B) or,
B

perhaps, choose ¢(B) = D(B) and find B such that ¢(8) = max D(B).
B8

In seeking an extremun of ¢ , it is natural to consider the
differentiability of ¢ with respect to the elements of B . In the

sequel we make use of the Gateaux differential of ¢ at B with increment

C , denoted by &¢(BiC) , and defined (if the limit exists) by

50(8;C) = 1im #B*sC)-2(B)
540

where £ is a kxn matrix. If, for a given kxn matrix B of rank
k , the above limit exists for each kxn matrix C , then ¢ 1is said to

be Gateaux differentiable at B . Similarly we define (when the limit

exfists)

P (y,B+sC)-p,(y,B)
6p; (y,8:C) = Vim — 5 ,
s+0

where C is a kxn matrix. For an excellent discussion of Gateaux

differentials see Luenberger(lo).

Theoretical result; rolated to minimizing G(B) for two multivariate

“normal classes with equal a priori probabilities and a one-dimensional

feature spate were initially presented by Guseman and Nalker(]])'(lz).

(13).

The associated computational procedure was presented by Guseman and Walker
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The following results for the general case of m n-dimensional norma)
classes with arbitrary a priori probabilities and a one-dimensionel feature

space appear in Guseman, Peters, and Halker(lq).

LEMMA. Let B be a rnonzerc 1xn vector. Then (omitting subscripts)

T | ,
ép(y.8;C) = -ply,B) iz—zf . B_C;J (y-By) - ({-‘L!g (y-Bi)2

for each 1Ixn vector C .

THEQREM. Let B be a nonzero 1xn vector for which “ifi(y'B) # ajfj(y.B)

for i #j. Then G is Gateaux differentiable at B , and

5G(B;C) = . ', (li I 5pi(y98§c)dy
(8)

v o N

1

THEQREM. Let B be a nonzero 1xn vector at which G assumes a
minimum. Then G is Gateaux differentiable at B .

By substituting the expression for 6&p.(y,B;C) qiven by the LEMMA

into the expression from the first T:# , and using inteqration by narts, we
obtain the following result.

3

THEOREM. Let B be a nonzero 1xn vector for which a.f.'v,B) 2 ajfj(y.B)

for i ¢#j . Then G 1is Gateaux differentiable at B , und
. ? C!:iBT )
6G(B;C} = a;fe(y,B)| -—-5 (y-Bu ) + Cy,
N i By Al : i

R

R,(8B)
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where the notation denotes the sum of the values of the function

R; (B)

at the right endpoints of the intervals comprising Ri(B) minus the

sum of its values at the left endpoints.

If ﬁ is a nonzero 1xn vector which minimizes G(B) , then B

must satisfy the vector equation

§6(8;C,) 0
9G(8) _ I
3B
GG(B;Cn) 0
where Cj » 1 <3 <n, isa Ixn vector with a one in the jth slot
. 3G(B) .
and zeros elsewhere. Using the above formula for 5 resulting

from the previous THEOREM, we obtain a numerically tractable expression
for the variation in the probability of misclassification G with
respect to B . The use of this expression in a computational procedure
for obtaining a nonzero 1xn B which minimizes G was developed by
Guseman and Marion(]s).

If B 1is a nonzero 1Ixn vector which minimizes G , then the

entries pij(B) in the error matrix P(B) for the optimal classification
procedure determined by the regions Ri(B) can be readily computed from
the expression

By =[] . p.ly,B)dy, i, 3=1,2,....m.

0 3
13 Ri(B) J
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The linear feature selection procedure for minimizina G(B) has
been extended to the case where the density function for each class is a
convex combination of multivariate normals. Tnis extension allows for the
design of a one-dimensional "class A--not class A" classification procedurc
which could be used (for example) to classify wheat(s) vs. non-wheat(s).
The associated computational procedure for this extension was developed
by Guseman and Marion(]6).

Decell and Quirein(ﬁ) develop explicit expressions for &D(B;C) and

8p(B;C) 1in terms of B and the known means and covariance matrices by and

i » 1 <1 <m. These expressions immediately provide -——pg’~- and

Qigégll for use in a Davidon-Fletcher-Powel](]7) iteration scheme for

determination of an e;: ‘emum value of D(B) and p(B) , respectively.

The explicit expressions are:

(-5
o
[~}
t
~N
ne-13

(8z,87)7'(8s,87) (B,8") "8, -85,]
and

m-1 m  3(pp(i,j))
Qﬁﬂ@l).,z z___B_.__.

9 i1 j=in1 98 ’
2
where
a(QB(ivJ)) 1 T+-1 ) . fa-]
—F "3 [B(Li"-'z‘.j)B ] %(85”5”8 e, ‘in.J,., ] L(X.:’ .j)

T Tq-1
- Bdijéij $ + [B(zi+zj)8 ] B(zi+zj)

1 Tyv-1pn. o aly~]
- ?-[(BXiB ) Bai+(BLjB ) BZj]
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It is also shown in Decell and Quirein(s) that, in general, an absolute
extremum of G(B) , p(B) and D(B) always exists. For any one of the
given functions G(B) , p(B) or D(B) the absolute extremum is attained
at B = (Ikll)U for some unitary matrix U , thus parameterizing the
aforementioned extreme problems on the compact group of unitary matrices.

In Brown and O'Malley(]s)

it is shown that the nature of the eigenvalues
of U 1in no way provides any information about the extreme values cf

D((IklZ)U). In Decell and Smi]ey(lg) these results were refined in the

sense that any extremal transformation can be expressed in the form B =

(IklZ)Hp...H] where p < min{k,n-k} and H. 1is a Householder trans-

formation 1 =1,...,p . The latter result suggests constructing a

sequence of transformations (IkIZ)H], (Iklz)HzH] .-+ such that the

values. of the class separability criterion (e.g. G(B) , p(B) , D(B))
evaluated at this sequence is a bounded, monotone sequence of real

numbers. The construction of the ith

element of the sequence of trans-
formations requires the solution of an n-dimensional optimization problem.
Recall that T(H) , the Householder transformations (see Householder(zo)’(Z]))
H=1-2x", xeR" with [[x]] =1, is a compact connected subset

-1

of the unitary matrices for which HT = H=H We outline .some of
)

these results beginning with the definition (for a case, say, when we

wish to maximize ¢ ):

¢ = l.u.bh. ¢
(DB ey i IDH

THEQOREM. For each positive integer i , let the element H. of T(H)

be chosen such that
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1.
1 H

b=

u.b. ¢ ’
Al ¢ B4 T S

¢
(T2 H g o : :

then,

) @r 12m, oo iy S 112y o by

A

@) @p 12y ... HH S P12y oy o Forevery H e TOH).

1

A

(3) °(Ik|Z)HHi o H ¢(Ik|Z)H.+] Ho oo Hy o for every He T(H) .

i ]

(4) Q(IkIZ)Hi . Hi'(p“)HH%-Zéi1) Hy : °(Ik|Z)Hi+] Hy ..o H)

for every H e T(H) and p =0,...,1-2 .

THEOREM. The sequence {¢(I |Z)H H }?=] is bounded above and
] k ) I

1im ¢

140

SPTAV T L Ll () BT TR

These theorems give rise to a sequential monotone procedure for possibly
obtaining a ¢-extremal rank k .linear combination matrix. At each stage
in this procedure, the extremal problem is a function of only n variables.
We conjecture, under certain conditions, that the process should terminate
in at most min{k,n-k} stepsf The conjecture is ¢learly in line with the
min{k,n-k} representation of the actual ¢-extremal solution. Certainly

the conjecture further depends on perhaps some p. fogic.a! hehavier of

and Tal1y(22)

.

shows that the procedure actually converges to a ®-extremum provided ¢

constructs such a pathological failure point. Ta]]ey(23)



is T(H)-sloped. We will outline some of these results. Let G denote

the set of unitary matrices and T(H) the Householder transformations.
DEFINITION. ¢ will be called T(H)-sloped provided U e @ and
$(U) < ®rax imply there exists some H e T(H) (dependent on U ) such

that  o(U) < o(HU) < o

« 1qzéb. o(U) .
DEFINITION. A sequence {Ui}?=1 in 9¢ will be called ¢-convergent

provided {¢(Ui)}?=] converges.

DEFINITION. A sequence {Ui}?=] in 9/ will be called a ¢-Householder

sequence provided He J and 1 an integer imply

(1) o(u) < olu,;)

(2) ahuy) < oluy,y)

PROPOSITION. Each ¢-Householder sequence {Uj}?=] is ¢-convergent

and lim @(Ui) = ¢(U) = 1.u.b. °(Ui) for some U e %/ .
i i

PROPOSITION. Each ¢-Householder sequence converges to Pmax if and

only if ¢ 1is T(H)-sloped. ,

PROPOSITION. If {U;}7., is a ¢-Householder sequence and ¢ is

T(H)-sloped then exactly one of the following
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(1) (°(Ui)}i=1 is strictly monotonic (and convergent to °max) ;
(2) for some integer k , ]éﬁfp' ¢(HUk) < o(Uk) (in which case
= |
MU“ -qu.).

These techniques have been applied to the functions ¢(B) = D(B)

and ¢(B) = p(B) , respectively, by Decell and Mayekar(24)

and Decell and
. (25) . .
Marani using Cl1 Flight line data.

In each case explicit expressions for [D((Ik Z)H)] and

9
X
30U, 1DH)] where H = 1-2xx" , |]x|| = 1, have been developed for

the m pattern class (=a's) case and used sequentially, according

to the aforementioned theorems, to calculate the extreme values and the

unitary matrices (as products of elements of T(H)) at which the extreme

values occur. Some of the results are outlined in what follows.

Let zij = Zi + zj

P A MLAL (G MEATL AN TS R

Kij

TSNP (S MPATORITS BFALE WA

and
Ly = ST TLR 2 h(n ) 2) T

Let

A T T\T , T, . T
Qij (Xx Qij(lklz)-qij(lklz)xx ) -(xx .ij(}k? 'Qij(lklz)xx i

~

and let Jij R Kij » and Lij be similarly defined by substituting,

A

espectively, .., Kooy and L, . L. i i 551 - Q..
resp y J1J KTJ an L1J for Q1J in the expression for Q1J ,

i,j=1,....m . The resulting expressions are:
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m-1 m exp(F,.+G..) . A~ - oA
L Gl oMl = 5 B (020, Ky gLy

i=1 j=141 (x'x) Y
where
85 " ("i'"j)(“i'“j)T , tr(+) = trace of (-) and |*| = det(-)
Foo= = X tr{((1, 12)HE, ML |12)T) (1, | 2)Hs, H(T, 12) T
ij [} k 137 k i vk ’
and
Gio = = 5 n (I, |2)HE, KL )] + X | (1, 12)Hn M1, 12)T
ij 2 k ig vk 4 k 7
+7n (xk|2)szH(1k|2)T + £ 02 .
d 2 7 T
=5 U1 [Z)H)] = ARy i§1 {(My =N )M, =N )
where

My = xx Qq(1,12)
Ny = Qu (1, [2)xx]
Q; = C(s;8-2,8"(Bz;8") " (85,87))(B2,8T)")

B = (I ]2)(1-2xxT) .

3

Peters, Redner and Decell‘zﬁ) approach the problem of finding a

minimum of G(B) from the point of view of treating the mapping B : R" -+ Rk

(for some k < n) as a statistic and provide necessary and sufficient

conditions -that such a B be a sufficient statistic in the classical

(27) (28). (29)

sense of Halmos and Savage , Lehmann and Sheffe Bahadur .
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(30) (5).

LeCam and Kullback Although their results are much more general
than required for dealing with the dimension reduction problem for a
finite number of normal populations, the application they provide for
such families actually allows one to write down the optimal dimension reducing
kxn statistic B such that G(B) = G (whenever such a B exists).
Moreover, they also guarantee that there is no other B of smaller rank
(i.e. < k) for which G(B) =G .
We will simply state their application to the problem and refer the
reader to Peters, Decell and Redner(zs) for the more general applications

to exponential families (e.g. Wishart and normal multivariate sampling).

Let M(u,.L;) , 1 =0,1,...,m1 be a n-variate normal family with

Hg = O and Zg * I having densities
pilx) = (202151712 exp [+ lx-ug) e} (xoup)]

The requirement ug = 0 and XO = | 1imposes no loss of generality since

there exists a non singular matrix MO for which MOZOMS =] and a

change of coordinate system defined by the transformation x - Mo(x-uo)

allows one to recover the sufficient statistic in the original coordinate

system.
2

THEOREM. Let yy =0, Ly =1 and M = [u upl " g 12y -1gp-1]
|Zp.-11 . B is a linear sufficient statistic for the given finite

n-variate normal family if and only if range (BT) = range (M). Moreover,
k = rank M 1is the smallest integer for which there exists a kxn

sufficient statistic for the given family.
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Again, note that this theorem completely determines the smallest
dimension reduction possible such that G(B) = G . Moreover, as we
will show by example in what follows, there are any number of ways of
finding a B such that range (BT) = range (M) . In fact, the
theorem states that if rank M = n then there is no dimensior reducing
sufficient statistic (i.e. G(B) > G for every kxn matrix B for
which k <n ).

The following result due to Decell, Odell and Coberly(3]) provides
one means of calculating (and determining the existence of) the afore-

mentioned sufficient statistic B for which G(B) = G .

THEOREM. Let "i be an n-variate normal population with a priori

probability a > 0 , mean My and covariance Ly i=0,1,...,m]
(with -ug =0, Iy = I) and let FG =M= (AT YRR TR DA A D PR I R
|Zm_]I[ be a full rank (= k < n) decomposition of M . Then, the

n-variate Bayes procedure assigns x to ni if and only if the

k-variate Bayes procedure assigns FTx to "i . _Moreover, k is

the smallast integer for which there exists a kxn matrix T

preserving the Bayes assignment of x and Tx to n1 ;1 =0,1,...,m1 .
2

These results completely characterize the nature of data compression
for the Bayes classification procedure for normal classes in the sense that
k is the smallest allowable data compression dimension consistent with
preserving-Bayes population assignment. Moreover, the theorem provide.
an explicit expression for the compression matrix T that depends only

upon the known population means and covariances. The statistic T = FT

ORIGINAL pAGE
OF POOR QUALITIYS
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given by the THEOREM is by no means unique (e.g. for any non singular
kxk matrix A, T = AFT will do). It is also true that there may be
more efficient methods for calculating the statistic T (yet to be
determined) than the method of full rank decomposition of M .
It should be noted that the matrix M has an "excellent chance"”
of having rank equal to n . Even in the case of two populations
(m = 2), there may well be n linearly independent columns among the
2(n+1) columns of M and, therefore, no integer kxn and kxn rank
k compression matrix T preserving the Bayes assignment of x and Tx .
Peters(az) treats the problem of determining sufficient statistics
for mixtures of probability measures in a homogeneous family. We

(33)(34)

refer the reader to Teicher , and Yakowitz(35)(36) for the treat-

ment of this rather profound subject.

The linear feature selection techniques mentioned above when used in
a LACIE type application are based on the assumption that each class
conditional density function is multivariate normal and that the associated

parameters (u;, I;, 1 < 1 < m) are known or can be estimated. In some

cases eituer the normality assumptions may be violated or else the
determination of the number of classes present and their assqciated para-
meters is not possible. The,question then arises as to how one might perform
a dimensionality reduction without losing much of the "separation" present

in measurement space. For example, one might be interes‘ed in displayin

a registered multipass LANDSAT data set on a three color display device

without a priori knowledge of class structure in the data.
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Each of the previous linear feature celection techniques uses a
statistical definition of the word separation. The following procedure,
due to Bryant and Guseman(7) makes no statistical assumptions about the
data. In addition, no labelled subsets (training data) are required.

In this sense the 1inear feature selection technique outlined below is
distribution free.

Basically the problem can be stated as follows:

in R" , and
k

Given distinct (prototype) vectors x,, XpseseaXp

k, 1 <k <n, determine a 1inear transformation A : R" » R which

minimizes
FA) = T Ul 1-Haxg-ax D2
1<i<jsp
where the norms lei-lel and ||Axi-ij|| are the Euclidean norms
in R"‘ and Rk , respectively. Let m = p(p-1)/2 and let

{z; : 1 <1 <m} denote the m distinct differences of the prototypes

T .J, T
Xg - If A= (a“)kxn 'y 2y = (zi]?...,zin) a (°11"“’°jn) , then
the gradient of F at A 1is given by
EA) - ps - AT(A)
2
where
m RIGINAL PAGE IS
S is the nxn matrix S=|{ | Z4qZir OF POOR QUALITY!
i=)
and

m ”21”
T(A) is the nxn matrix T(A) = izl YTI;;TT- Ziq Zir
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Standard optimization techniques can be used to obtain R which
minimizes F .
For a giver data set (e.g. a LANDSAT sample segment) there are several

ways to choose the prototype vectors X{ s 1 <1<m. For example,

one might choose cluster centers from the output of a clustering

algorithm.

CONCLUDING REMARKS

There are, of course, ad hoc feature selection procedures based
upon specific problem knowledge and empirical studies. An example of
such a procedure is the transformation of Kauth and Thomas(37) used in
the analysis of LANDSAT data. This transformation is based upon an

empirical data study and is described by an orthogonal coordinate change

U:R4 + R4 . Application of the transform U to LANDSAT measurements
simply produces a reduced feature space of dimension 2 (Brightness-
Greenness). This is essentially accomplished at each LANDSAT measure-

ment X = (x‘. Xps X3 x4)T by the mapping:

1 000

0 R IR V' X b
0100 : .

X +

Ugy = - Yag X4

The Kauth-Thomas transform has proven to be of value in LACIE
zpplications (e.g. physical interpretation, dimension reduction, scatter

plots, etc.). As one would expect, the Kauth-Thomas transform is not a
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sufficient statistic nor will it, in general, preserve LANDSAT Bayes
class assignment in feature space.

Feature selection te<.niques are currently beinqg studied as a tool
for "optimum pass" selection problems in LACIE. The basic objective is
to develop a technique for a pricri selection (based on some separability
criterion) of subsets of LANDSAT acquisitions for analysis to separate
wheat from nonwheat when given an adequate sample of labelled wheat and
nonwheat LACIE segment pixel data. There are preliminary results in this
direction due to Guseman and Harion(3ﬂ) using one dimensicnal feature
selection which minimizes G(B).

In still another LACIE application, studies are being performed on
parametric and nonparametric feature selection techniques that allow
analyst/interpreters to better separate spring wheat from other small
grains” in a reduced feature space (e.g. Brightness-Greenness). In
this connection, labelled wheat and other small qrain LACIE seqment
pixel data and ancillary data are being used tc estimate the distribution
functions for spring wheat and other spring small grains. Feature
selection methods are being used to find a priori statistically op*timum
features and associated discriminant functions. These will be ccupared
to the brightness and greennegs features currentiy used by NASA/JSC.

Methods for estimating class proportions, based on the linear feature
selection procedure for minimizing G(B) , have be r developed by Gusenun

and Walton(39)'(4o).

In both papers, the propurt.on estimation techniques
rely on the fact that one can readily compute the error matrices associ.ted
with the optimal classifier produced by the linear featurc selection
procedure.

ORIGINAL PAGE IS
OF POOR QUALITY



Other results of general related interest aopear in Babu and Ka]ra(a]’

Kadota and Shepp(42), Marill and Green(43), Swain and Kinq‘da). Tou and

(45) (46) (47) (48)

Heydorn , Watanabe , Wee , and Wheeler, Misra and Holmes :
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