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LINEAR FEATURE SELECTION WITH APPLICATIONS

ABSTRACT. This paper selectively surveys contributions in linear feature

selection which have been developed for the analysis of multipass LANDSAT

data in conjunction with the Large Area Crop Inventory Experiment. Most

of the results surveyed have been obtained since early 19?3 and have

applications outside of satellite remote sensing. A few of the theoretical

results and associated computational techniques have appeared either in

journal articles or in proceedings of technical symposia. However, most

of these contributions appear only in scattered contract reports and are

not generally known b the scientific communi ty.^	 9	 Y	 Y	 Y•

Pattern recognition 	 Linear Feature Selection	 LANDSAT data

Crop classification	 Sufficient statistics

INTRODUCTION

The Large Area Crop Inventory Experiment (LACIE) is concerned with

the use of satellite-acquired (LANDSAT) multispectral scanner (MSS) data

to conduct an 'Inventory of some crop of economic interest such as wheat

over a large geographical area. Such an inventory requires the development

of accurate and efficient algorithms for data classification. -The use of

multitemporal measurements (several registered passes during the growing

season) increases the dimension of the original measurement space (pattern

space) thereby increasing the computational load in c'us, 	 ic;ation 'r•ocedurf_ .

In this connection, the cost of using statistical pattern classification.

algorithms depends, to a large extent, upon reducing the dimensionality

of the problem by use of feature selection/combination techniques. These
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techniques are employed to find a subspace of reduced dimension (feature

space) in which to perform classification while attempting to maintain

the level of classification accuracy obtainable in the orignal measure-

ment space. The most meaningful performance criterion that can be applied

to a classification algorithm is the frequency with which it misclassi;ies

observations; that is, the probability of misclassification. Consequently,

one should attempt to select/combine features in such a way that the

probability of misclassification in feature space is minimized.

In the sequel we discuss several ways feature selection techniques

have been used in the LACIE. In all cases the techniques require some a

priori information and assumptions (e.g. number of classes, form of con-

ditional class density functions) about the structure 	 the data. In

most cases the classification procedure (e.g. Bayes optimal) has been

chosen In advance. Dimensionality reduction is then performed so as to

(1) choose an optimal feature space in which to perform classification,

and (2) determine a transformation to apply to measurement vectors prior

to classification. In all that follows the transformations used for

dimensionality reduction are linear; that is, the variables in feature

space are always linear combinations of the original measurements.

As mentioned above, the mgst meaningful performance criterion for

a classification procedure is the probability of misclassification

(denoted in the sequel by G ). However, if the dimension of feature

space (and therefore measurement space) is greater than one, then G

is difficult to compute without additional class structure assumptions

(r.g. equal covariance matrices). As a result, several numerically tractable

k
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criteria have been developed in conjunction with the LACIE which provide

some information concerning the behavior of G . These criteria are

discussed in the next section. In a subsequent section we present a

compendium of recent results on linear feature selection techniques, most

of which are available only in scattered NASA contract reports. In the

final section we discuss the use of these techniques in the LACIE, out-

line some of the investigations underway in the use of linear feature

selection techniques, and discuss some related open questions.

MATHEMATICAL PRELIMINARIES

Let 11 191Ji 2 ,...,Hm be distinct classes (e.g. crops of interest)

with known a Priori probabilities al,a2,...$an , respectively. Let

x = (x'i,x2,...,xn)T E R 	 denote a feature vector of measurements (e.g.

LANDSAT multispectral scanner data from either a single pass or several

m
registered passes) taken from an arbitrary element of U F  . Suppose

i=1

that the measurement vectors for class 
H  

are characterized by the

n-dimensional multivariate normal density function

Pik) _ (2n)-n/2 
l£1 F1/2 

expI- ^(x-ui )TEi l (x-ui ),	 1 < i < m .

We assume that the nxl mean vector 
ui 

and the n Xn covariance matrix

r  for each class 
Ri 

are known (with Ei positive definite),

IL
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I < i < m . The symbol JAI is used to denote the determinant of the

matrix A . The n-dimensional probability of misclassification, denoted

m
by G , of objects from U ni

i=1

by

is given (see Anderson (1) and Andrews (2))

G = 1 - j n max aipi(x)dx
R 1<i<m

a 1_ I a j	 Pi(x)dx

	

i=i	
i	

Ri

where the sets R i , 1 < i < m , called the Bayes' decision re„ gions,

are defined by

R i	x e R  : ai p i (x)	 max a• p •(x)	 1 < i < m .
1<j<m

The resulting classification procedure, called the Bayes' optimalimal cl ssifi r,

is defined as !ollows (see Anderson(1)):

Assign an element to Ii i if its vector x of measurements

belongs to R i , 1 < i < m .

The Bhattacharyya coeffi6 ent for classes 4 and j (1 < i, j < m)

is given (see Kailath (3) ) by

p(i,j) _ (ai aj ) 1j2 f R n {P i (x)pj (x)}
1/2

dx .

It has been shown that

M-1	 m

G - I	 {a n.}
112

 f	 {p•(x)pj(x)}1^2dx = ^^
i=1 j=i+l	

i	 Rn	 i
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The quantity p is usually called the Bhattacharyya distance (or the

average Bhattacharyya distance).

There have been various attempts to utilize certain functions of

p(i,j) and p to generate Bhattacharyya related separability measures.

We refer the reader to the general bibliography and Kanal (4) for further

variations on this theme.

The divergence (see Kullback (5) ) .^raween M asses i and j

(l < i, j < m) is given by

D ( i ,J) _ ^ tr[E i -Ej )(E^ 1 -Ei l )] + T tr[ Eil+E^1)(ui-uj)(ui -uj)T]

and the average interclass divergence is given by

M-1 m
D = I	 j D(ij)

i=1 j=1

jfi

or, equivalently, as shown in Decell and Quirein (6) , by

D= 2
	

m
tr 	m Ei

1
 Si	

_ m 2-1

i=1

where

m

S i = J l1 ( Ej +dij dT j ) and = d ij = ui - yj .

i#j

As in the case of p(i,j) and p , various functions of D(i,j) and

D have been proposed as class separability measures.

Kanal (4) provides an excellent exposition of such measures (e.g.

Shannon entropy, Vajda's average conditional quadratic entropy, Devijver's

Bayesian distance, Minkowsky measures of nonuniformity, Bhattacharyya
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bound, Chernoff bound, Koimogorov variational distance, Devijver's.

Lissack and Fu's generalisation of the latter, Ito's approximating

functions, and the Jeffreys-Matusita distance). This work contains 304

references and is perhaps the only comprehensive exposition of the

subject through early 1974. A more recent nonparametric separability

measure due to Bryant and Guseman (7) will be outlined at the end of this
section.

Devijver (8) develops a bound on G called the Bayesian distance.
He gives an excellent development of the concept and its relationship

to the aforemen,61oned separability measures. His results are quite
general with regard to the class densities p i (x) and class a r^ iori

Probabilities a i , 1 < i < m . The Bayesian distance is defined

to be

m	 alpi(x)2
H= ^E

i=1	 p(x)2

m
where p(x) = i E1 ai p i (x) .

The measure H satisfies the inequality:

H<G<m+%— - < ►
s

Following the philosophy discussed in the introduction, the intractable

nature of the expression for G (while in many instances unnecessary, we

are restricting our attention to a finite family of normally distributed

pattern classes) was one, if not the single, reason for developing more

tractable pattern class separability measures. These measures could then
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be used in lieu of G to determine mappings from pattern space to

feature space in which the classification of patterns is equivalent to

(G is preserved) or "nearly equivalent to" classification of patterns in

pattern space. Two fundamental questions that arise are: First, what

(if any) relation do the class separability measures bear to G ;

second, can one develop tractable alg;rithms based on the separability

measures to determine the dimension reducing mappings?

In connection with these questions we will only consider linear onto

mappings B of the measurement space R n to R  for k < n . This is

equivalent to requiring that B be a kxn rank k matrix. This class

of mappings certainly includes those of the "feature subset selection"

type since the selection of any k-feature subset (i.e. any k components

of x c Rn ) can be accomplished by selecting the appropriate kxn matrix

B consisting of only 0's and 1's. The class of kxn rank k matrices

are more general in the sense that linear combinations of the features

are permissible.

In all that follows we will assume that B is a kxn rank k

matrix and that X(w) - x is a normally distributed random variable. It

is well known that if X - NN ,E) then Y - BX - N(Bu.BEB T ) .

The transformed measurements y - Bx for class H i are normally

distributed with density function

P i (Y+B) - (20-k/21BEiBT1-112 
exp r_ 

I ( y-Blii )
T (BY BT)-I (Y-B ►ii }11	

]

and the resulting probability of misclassification is given by
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G(e) = 1 - J k max a i Pi(Y,B) dy
R 1<i<m

m
= 1 - ill a i fR 

(8) p

i (y,B) dy

i

where the transformed Bayes' decision regions are given by

R i m _ {y c R  : ai p i (y ,B)	 max aj Pj (Y,B)	 1 < i < m .

1	 <J <m	 -

The B-Bhattacharyya coefficient for classes i and j is given by

aB (i,j) = (a i aj
) 112

 !Rk {P i (Y,B)Pj (Y,B)} 112dy .

It has been shown by Decell and Quirein (6) that for each B

m-1	 m
G < G (B) p ( i , j) = p(B)

i=1 j=i+l B

The quantity p(B) is called the B-Bhattacharyya distance or the

B-average Bhattacharyya distance.

In additicn, it has been show by Decell and Quirein (6) that G = G(B)

if and only if p = p(B) .

The B-divergence between classes i and j (1 < i, j < m) is:

s

DB(i,j)	 Z tr 3[BE i BT - BEjBT][(BEjBT)-1-( B ).,BT)-1]

+ 
I
tr [(BEiBT)-I-(BEj8T)-1](Bui-Buj)(Bui-Buj)T

and the B-interclass divergence is

M-1 m

D(B) _ I E DBOX
i=1 j=1

jp
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or, equivalent'y (see Decell and Quirein(6))

m

D(B) _ . tr 

l i11 
(B^1BT)-1(BSiBt) 	

m m-1	 k

where

m
S i =	 (E +6 6T ) and 6
	

= ;i - u^

J=i
i#J

While there is no explicit relationship between G and D (or G(B) and

D(B)) it was shown by Decell and Quirein`° that D = D(B) if and only

if G = G(B) .

In the present setting and with the obvious general meaning of the

definition we define the B-Bayesian distance to be

H(B) -

	 E uip i (y,6)2 1

Va l	 p(y,6-

where

M
p (y , B ) _ I a i pi(y+B)

i=1

It has been shown in Guseman, Peters and Swasdee (9) that G(B) = G

if and only if H(B)	 H . In' this connection, the authors of this paper

plan to extend the variational results of the next section to include

Bayesian distance.

In the next section we will outline related n^-v-, results concr—iing,

among others, questions raised earlier and explain the connection between

linear feature combination and the classical concept of statistical

sufficiency.
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RECENT RESULTS IN LINEAR LLATUR^ SELECTION

In what follows we will be concerned with finding an extreme value

of some function o (of the reduction matrix B ). For example, we may

wish to choose m(B) = G(B) and find 9 such that O(B) = min G(B) or,
B

perhaps, choose ^(B) - D(B) and find B such that m(B) - max D(B).

B

In seeking an extremun of m , it is natural to consider the

differentiability of 4" with respect to the elements of B . In the

sequel we make use of the Gateaux differential of 'D at B with increment

C , denoted by dm(B;C) , and defined (if the limit exists) by

ds(B;C) = lim	
B+sC -T B

S+O	
S

where L is a kxn matrix. If, for a given kxn matrix B of rank

k , the above limit exists for each kxn matrix C , then 0 is said to

be Gateaux differentiable at B . Similarly we define (when the limit

exists)

fi(y,B+sC)-pi(y,B)
dp

i
(y,B;C) - lim	 ,

s
s +0 

where C is a kxn matrix. For an excellent discussion of Gateaux

differentials see Luenberger(10)

Theoretical result-, related to minimizing G(B) for two multivariate

normal classes with equal a priori_ probabilities and a one-dimensional

feature spate were initially presented by- Guseman and Walker(11),(12).

The associated computational procedure was presented by Gusenian and Walker(13)



The following results for the general case of m n-dimensional normal

classes with arbitrary a priori  probabilities and a one-dimensional feature

space appear in Guseman, Peters, and Walker(14)

LEMMA. Let B be a nonzero lxn vector. Then (omitting subscripts)

6p (y , B ;C) - -p(y.B) CEB^ - C 	
(Y-8 11) - c ,BT	 (y-B,,)t

BEB	 BEB	 (BFB )

for each lxn vector C .

THEOREM. Let B be a nonzero lxn vector for which n i f i (y,B) ^ ajfj(y,5)

for i ¢ j . Then G is Gateaux differentiable at B , and

6G(B;C) _ -	 a. f	 6p.(y,B;C)dy
R i (B)	 '

THEOREM. Let B be a nonzero l xn vector at which G assumes a

minimum. Then G is Gateaux differentiable at B .

By substituting the expression for dp;(y,B;C) given by the LEMMA

into the expression from the first T!' 	 and using intejration by :arts, we

obtain the following result.

a

THEOREM. Let B be a nonzero lxn vector for which a i f i !y,B) t ajfj(y,B)

for i >< j . 'hen G is Gateaux differentiable at B , and

m	
Cci6T

6G(B;C; _	 gifi ( y , B ) --- T (y-Bi,.)
 + Chi•	 i=1	 B^:i6

Ri(B)
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where the notation	 denotes the sum of the values of the function

Ri(B)

at the right endpoints of the intervals comprising R i (B) minus the

sum of its values at the left endpoints.

If B is a nonzero lxn vector which minimizes G(B) , then B

must satisfy the vector equation

SG(B;C I )	 0

DG(B)=	 _
aB

6G(B;Cn)	 0

where Cj , 1 < j < n , is a lxn vector with a one in the j th slot

and zeros elsewhere. Usinq the above formula for 5B—
	

resulting

from the previous THEOREM, we obtain a numerically tractable expression

for the variation in the probability of misclassification G with

respect to B . The use of this expression in a computational procedure

for obtaining a nonzero l xn B which minimizes G was developed by

Guseman and Marion(15)

If B is a nonzero lxn vector which minimizes G , then the

entries p ij (B) in the error matrix P(B) for the optimal classification

procedure determined by the regions R i (B) can be readily computed from

the expression

P• •(Br = j	 p•(y,B)dy , i, j = 1,2,...,m .i^
Ri(B)

Ik
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The linear feature selection procedure foi minimizing G(B) has

been extended to the case where the density function for each class is a

convex combination of multivariate normals. TH s extension allows for the

design of a one-dimensional "class A--not class A" classification procedure

which could be used (for example) to classify wheat(s) vs. non -wheat(s).

The associated computational procedure for this extension was developed

by Guseman and Marion(16).

Decell and Quirein (6) develop explicit expressions for 6D(B;C) and

dp(B;C) in terms of B and the known mans and covariance matrices ui and

E i 	1 < i < m . These expressions immediately provide ?(DaB)) 	 and

ai9-Ml for use in a Davidon-Fletcher-Powell (17) iteration scheme for
DB

determination of an er .. ;emum value of D(B) and p ( B) , respectively.

The explicit expressions are:

D B	 . -ZS {BE BT ) -1 [(BS BT )(BE BT ) -1 BF. BS ]
aB	 m i=1	 i	 i	 i	 i- i

and

3( p( B))B	
s 

m-1	 m	 a(PB(iIJ))
^

3B	
ill 

= I+1	 a6

where

a(p6(i.J))	 1	 T1	 -
aa	

= -	 [B(z i +E^ )B ]-	 (Ba
ij

h
ij

B' )lW..i+I.j,	 ' 1 L(E : ,1)

- BS ij d lj T ^ + [B(Ei+Ej)BT]-1B(Ei +Ej)

I [(BFiBT)- 1B";:i+(BLiBT) - 1BEi]
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It is also shown in Decell and Quirein (6) that, in general, an absolute

extremum of G(B) , p(B) and D(B) always exists. For any one of the

given functions G(B) , p(B) or D(B) the absolute extremum is attained

at B = (I k 1Z)U for some unitary matrix U , thus parameterizing the

aforementioned extreme problems on the compact group of uni t ary matrices.

In Brown and O'Malley 
(18) 

it is shown that the nature of the eigenvalues

of U in no way provides any information about the extreme values Pf

D((I k IZ)U). In Decell and Smiley 
(19) 

these results were refined in the

sense that any extremal transformation can be expressed in the form B =

(I k jZ)Hp ...H I where p < min(k,n-k) and H i is a Householder trans-

formation i = 1,...,p . The latter result suggests constructing a

sequence of transformations (I k IZ)H I , (I k {Z)H2H l ••• such that the

values-of the class separability criterion (e.g. G(B) , a(B) , D(B))

evaluated at this sequence is a bounded, monotone sequence of real

numbers. The construction of the i th element of the sequence of trans-

formations requires the solution of an n-dimensional optimization problem.

Recall that T(H) , the Householder transformations (see Householder (20),(421)

H = I - 2xxT , x e R 	 with 11xi, = 1	 is a compact connected subset

of the unitary matrices for which HT = H = H
-1	

We outline.some of
a

these results beginning with the definition (for a case, say, when we

wish to maximize ^ ):

IkIZ)Hl = HI.U.h. ) t(Ik JZ)H

THEOREM. For each positive integer i , let the element 11 i of T(H)

be chosen such that
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H^E^Hn 
m
(I k IZ}HH

i-1
 ... Hl

then,

(1) 0 (I k IZ)H i ... H l ^ "(IkIZ)Hi+1Hi ... Hl

(2)	 0 (I k IZ)H i ...	 H 1 H -` 0(IkIZ)Hi+1Hi ...	 H l	'	
for every	 H e T(H).

(3)	 0 (I k IZ)HH i ...	 H 1	 -̀ 0 (I k IZ)H i+l	Hi ...	 H l	'	
for every	 H c T(H)	 .

(4) 0 (I k IZ)H i ... H i _ (p_ l) HH
i	

H1	 ^(I k IZ)H i+l Hi ... Hl

-(p+1)

for every H c T(H) and p = 0,...,1-2 .

THEOREM. The sequence {O (I k IZ)H i
 ... Hi}i=l is bounded above and

lim 
t (I k `Z)H i ... H1 = 

l.u.b.{t
(I k JZ)H i ... Hl}

These theorems give rise to a sequential monotone procedure for possibly

obtaining a 4P-extremal rank k linear combination matrix. At each stage

in this procedure, the extremal problem is a function of only n variables.

We conjecture, under certain conditions, that the process should terminate
s

in at most min(k,n-k} steps. The conjecture is clearly in line with the

min{k,n-k} representation of the actual O-extremal solution. Certainly

the conjecture further depends on perhaps some p,, 	 logi(,il behavio r of

and Tally 
(22) 

constructs such a pathological failure point. Talley (23)

shows that the procedure actually converges to a T-extremum provided



-16-

is T(H)-sloped. We will outline some of these results. Let W denote

the set of unitary matrices and T(H) the Householder transformations.

DEFINITION. 0 will be called T(H)-sloped provided U e W 	 and

4*) < 0max imply there exists some H c T(H) (dependent on U ) such

that (D(U) < O(HU) < 0max = l^ b. O(U) .

DEFINITION. A sequence 
{Ui}D
	 in W will be called 4-convergent

provided {O(Ui)}i=1 converges.

DEFINITION. A sequence {Ui}i_1 in * will be called a 0-Householder

sequence provided H c IV and i an integer imply

(1) 40 i ) < 4,(Ui+l)

(z) O(HU i ) < O(U i+l )	 .

PROPOSITION. Each (P-Householder sequence {U 
00

i=1 
is 4- convergent

and lim (P(U i ) = (D(U) = l.u.b. ^(U i ) for some U e	 .i	 i
PROPOSITION. Each ^-Householder sequence converges to 

itmax 
if and

only if 4^ is T(H)-sloped. ,

PROPOSITION. If {Ui}i=1 is a 4-Householder sequence and 0 is

T(H)-sloped then exactly one of the following

I

IL
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(1) 00i )}i=1 is strictly monotonic (and convergent to m ix ) ;

(2) for some integer k , 1^ . C HU k ) < Q^(Uk ) (in which case

't (U 	 _ "max ^)

These techniques have been applied to the functions (P(B) = D(B)

and O(B) = p(B) , respectively, by Decell and Mayekar (24) and Decell and

Marani (25) using Cl Flight line data.

In each case explicit expressions for a—x [D((I k Z)H)] and

-aa-X[p((I k JZ)H)] where H = I-2xx T	jjxjj = 1 , have been developed for

the m pattern class ( =a's) case and used sequentially, according

to the aforementioned theorems, to calculate the extreme values and the

unitary matrices (as products of elements of T(H)) at which the extreme

values occur. Some of the results are outlined in what follows.

Let Ei j = Ei + E 

Jij = Eij
H(I k IZ) T U I k jZ)HE ij H(YZ)T F

Kij - EiH(Ik1Z)T[(IkjZ)HEiH(Ik1Z)TF

and	

Lij - Ej H(I k 1Z) T[(Fk JZ)HEj H(I k 1Z)T F

Let

Q	 s (xxTQ..(I ^Z) -Q. j (I lZ)xxT ) T-(xxT, ^It i'	 Q ^(I (Z)xxT,ij	 ^^	 k	 ^	 k	 i'	 k	 i^	 k

and let Jij , Kij , and L ij be similarly defined by substituting,

respectively, J ij , Kij , and Lij for Qij in ti,e expression for Qij

The resulting expressions are:

k
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ax CP(( Iklz)H)] a m ^	 ^	
i	 i	

(Qi^+2Jij-Kid-Lij)x
i=1=1+1	 (x x)

where

6 i - (u i -uj )(u i -u3 ) T , tr (•) - trace of (-) and I-I = det(•)

F ii _ - T tr{((IkIZ)HEijH(IkIZ)T)-1(IkIZ)H6ijH(IkIZ)T},

and

GiJ = - I In (I k IZ)HE ij H(I k IZ) T I + 4 lnI(IkIZ)HF.iH(IkIZ)T

+ T In (I k IZ)HE H(I k IZ)T + 2 ln2 .

m

ax (D((IkIZ)H)] - (^ 

i£1 
{(Mi-Ni)T-(Mi-Ni))x

where

M 
	 xxT Q i 

(I OZ)

N i	Qi(IkIZ)xxT

Q i = C(SiBT"EiBT (BE i BT ) -I (BS iBT))(BEiBT)-1]

B - (I k IZ)(I-2xxT ) .

Peters, Redner and Decell (26) approach the problem of finding a

minimum of G(B) from the point of view of treating the mapping B : R  -+ R 

(for some k < n) as a statistic and provide necessary and sufficient

conditions that such a B be a sufficient statistic in the classical

(27)	 (28)	 (29)sense of Halmos and Savage, Lehmann and Sheffe, B.ahadur,
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LeCam (30) and Kullback (5) . Although their results are much more general

than required for dealing with the dimension reduction problem for a

finite number of normal populations, the application they provide for

such families actually allows one to write down the optimal dimension reducing

k xn statistic B such that G(B) - G (whenever such a B exists).

Moreover, they also guarantee that there is no other B of smaller rank

(i.e. < k) for which G(B) - G .

We will simply state their application to the problem and refer the

reader to Peters, Decell and Redner (26) for the more general applications

to exponential families (e.g. Wishart and normal multivariate sampling).

Let N(ui'Ei) , i - 0,1,...,m-1 be a n-variate normal family with

uO = 0 and r  - I having densities

p i.(x) 
= (2n)-n/2l,i,-1/2 exp [_ (x-u i ) TEi I (x-u i )] .

The requirement vO - 0 and FO = I imposes no loss of generality since

there exists a non singular matrix MO for which MOEOM0 = I and a

change of coordinate system defined by the transformation x -• 
MO (x u0)

allows one to recover the sufficient statistic in the original coordinate

system.

THEOREM.	 Let 
uO	

0	 EO = I andM = (u11u21 ... II'm_lIEl- IIE2 -I1•••

JEm-1-I] . B is a linear sufficient statistic for the given finite

n-variate normal family if and only if range (0 T ) = range (M). Moreover,

k = rank 11 is the smallest integer for which there exists a kxn

sufficient statistic for the given family.

M

I
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Again, note that this theorem completely determines the smallest

dimension reduction possible such that G(B) = G . Moreover, as we

will show by example in what follows, there are any number of ways of

finding a B such that range (BT) - range (M) . In fact, the

theorem states that if rank M - n then there is no dimensior, reducing

sufficient statistic (i.e. G(B) > G for every kXn matrix B for

which k < n ).

The following result due to Decell, Odell and Coberly (31) provides

one means of calculating (and determining the existence of) the afore-

mentioned sufficient statistic B for which G(B) = G .

THEOREM. Let Il i be an n-variate normal population with a priori

probability ai > 0 , mean Vi and covariance E i ; i = 0,1,...,m- 1

(with -u0 - 0 , E0 - I) and let FG - M = [u111121 ... Ium-1IE1-IJE2-I^...

JE
M-I

II be a full rank (= k < n) decomposition of M . Then, the

n-variate Bayes procedure assigns x to IT 	 if and only if the

k-variate Bayes procedure assigns F 
T 
x to TI  . Moreover, k is

the smallest integer for which there exists a kXn matrix T

preserving the Bayes assignment of x and Tx to H i ; i = 0,l,...,m-1 .
a

These results completely characterize the nature of data compression

for the Bayes classification procedure for normal Masses in the sense that

k is the smallest allowable data compression dimension consistent with

preserving•Bayes population assignment. Moreover, the theorem provide,

an explicit expression for the compression matrix T that depends only

upon the known population means and covariances. The statistic T = FT

ORIGINAL PAGE IS

(W POOR QUALITY
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given by the THEOREM is by no means unique (e.g. for any non singular

kxk matrix A , T = AFT will do). It is also true that there may be

more efficient methods for calculating the statistic T (yet to be

determined) than the method of full rank decomposition of M .

It should be noted that the matrix M has an "excellent chance"

of having rank equal to n . Even in the case of two populations

(m - 2), there may well be n linearly independent columns among the

2(n+l) columns of M and, therefore, no integer kxn and kxn rank

k compression matrix T preserving the Bayes assignment of x and Tx .

Peters 
(32) 

treats the problem of determining sufficient statistics

for mixtures of probability measures in a homogeneous family. We

refer the reader to Teicher
(33)(34) , and Yakowitz

(31)(31)
 for the treat-

ment of this rather profound subject.

The linear feature selection techniques mentioned above when used in

a LACIE type application are based on the assumption that each class

conditional density function is multivariate normal and that the associated

parameters (P i t E i , 1 < i < m) are known or can be estimated. In some

cases eiVier the normality assumptions may be violated or else the

determination of the number of classes present and their associated para-

meters is not possible. The question then arises as to how one might perform

a dimensionality reduction without losing much of the "separation" present

in measurement space. For example, one might be irteres •.ed in displayin

a registered multipass LANOSAT data set on a three color display device

without arP iori knowledge of class structure in the data.
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Each of the previous linear feature selection techniques uses a

statistical definition of the word separation. The following procedure,

due to Bryant and Guseman (7) makes no statistical assumptions about the

data. In addition, no labelled subsets (training data) are required.

In this sense the linear feature selection technique outlined below is

distribution free.

Basically the problem can be stated as follows:

Given distinct (prototype) vectors x l , x2, ... .xp in R  , and

k, 1 < k < n , determine a linear transformation A : R  - R  which

minimizes

F(A) _	 (jjxi-xjjj-jjAxi-Axjjj)2
1<i<J<p

where the norms 11x i - YJ and JjAxi -Axj jj are the Euclidean norms

in R 	 and R 	 respectively. Let m = p(p-1)/2 and let

{z i	1 < i < m} denote the m distinct differences of the prototypes

xi	If A = (a ii ) kxn . z i = (zil,...,zin)T aJ = (ail, ... ,a jn ) T , then

the gradient of F at A is given by

aF A : AS - AT(A)
8

a

where

m	 'Ki(j[NAL PAGE IS

S is the nxn matrix S	
iEl zigzir	

of POOR QUALPPY

and

T(A) is the nxn matrix T(A) _	
m IlZill	

z. z.
i=1T	

iq it

i,
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Standard optimization techniques can be used to obtain A which

minimizes F .

For a given data set (e.g. a LANDSAT sample segment) there are several

ways to choose the prototype vectors x i , 1 < i < m . For example,

one might choose cluster centers from the output of a clustering

al gori thm.

CONCLUDING REMARKS

There are, of course, ad hoc feature selection procedures based

upon specific problem knowledge and empirical studies. An example of

such a procedure is the transformation of Kauth and Thomas 
(37) 

used in

the analysis of LANDSAT data. This transformation is based upon an

empirical data study and is described by an orthogonal coordinate change

U:R4 -► R4 . Application of the transform U to LANDSAT measurements

simply produces a reduced feature space of dimension 2 (Brightness-

Greenness). This is essentially accomplished at each LANDSAT measure-

ment X = (x i , x2 , x 39 x4 ) T by the mapping:

1 0 0 
0)
	

ull	 ul4	
xl	

bX^	 1
0 1 0 0

gu41	
u44	 x4	 1

The Kauth-Thomas transform has proven to be of value in LACIE

applications (e.g. physical interpretation, dimension reduction, scatter

plots, etc.). As one would expect, the Kauth-Thomas transform is not a
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sufficient statistic nor will it, in general, preserve LA'iDSAT Bayes

class assignment in feature ^Spac--.

Feature selection te.:,niyues are currently hoing studied as a tonl

for "optimum pass" selection problems in LACIF. The basic oojective is

to develop a technique for a priori selection (b,ised on some seoarabi1ity

criterion) of subsets of LANDSAT acquisitions for analysis to sepirate

wheat from nonwheat when given an adequate sam p le of labelled wheat and

nonwheat LACIE segment pixel data. There are prelimin ,ir y result:, in this

direction due to Guseman and Marion 
(3P) 

usini one dimensi;;nal feature

selection which minimizes G(B).

In still another LACIF application, studies are being performed on

parametric and nonparametric feature selection techniques that allow

analyst/interpreters to better separate spring wheat fron other small

grains'in a reduced feature space (e.g. Brightness-Greenness). 	 In

this connection, labelled wheat and other small grain LACIF segment

pixel data and ancillary data are being used to (-A im3te thft distribution

functions for spring wheat and other spring small drains. Feature

selection methods are being used to find a_ priori statistically op'.imu,n

features and associated discriminant functions. 	 These will be cc;%pared

to the brightness and greenness features currently used b.- '1AS11;JSC.

Methods for estimating class proportions, based on the linear feature

selection procedure for minimizino G(B) , have bt-r de/Hoped by Gusur,.,n

and Walton
(39),(40)	 In both papers, the propor -oli estir rt^nn techniyuc

rely on the fact that one can readily compute the error matrices assocr.-teed

with the optimal classifier produced by the linear featurt selection

procedure.

ORIGINAL PAGE IS
OF POOR QUALITY
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Other results of general related interest a p pear in f;jbu and Kalra(41i,

Kadot3 and Shepp (42) , Marill and Green (43) , Swain and kini (44) , Tou and

Heydorn (45) , Watanabe (46) , We e^^ >> , and Wheeler, Misra and Holmes
^4b)

i
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