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I . INTRODUCTION*

In practical applications of pattern recognition, such as remote sensing, one

of the difficult problems is obtaining the labels for training patterns.

Labeling training patterns is costly, and very often the labels are imperfect.

In the recent literature, several authors investigated the problem of pattern

recognition with imperfectly labeled patterns. Duda and Singleton [1] showed

that, for orthogonal pattern vectors, the average weight vector of a threshold

logical unit converges to a solution weight vector for the correctly labeled

pattern set. Whitney and Dwyer [2] obtained error bounds in a two-class

situation on the performance of a nearest neighbor rule with an imperfect

teacher. Kashyap and Blaydon [3] proposed an iterative training procedure

for a two-class case. Gimlin and Ferrell [4] studied the correction of

labels using a nearest neighbor procedure. Shanmugam and Breipohl [5]

proposed an error-correcting procedure for disjoint densities using Parzen

estimators. Chittineni [6,7,8] investigated the applicability of probabi-

listic distance measures for feature selection with imperfectly labeled

patterns.

This paper considers the problem of learning with imperfectly labeled patterns.

In section 2, the author develops a model for the imperfectly labeled patterns.

Section 3 presents an analysis of the Bayes classifier error with and without

imperfections in the labels. In section 4, we obtain bounds on the perform-

ance of nearest neighbor classifiers for a multiclass case. The training of

a classifier with and without imperfections is discussed in section 5, and

schemes for the correction of imperfections in the labels are developed in

section 6. Section 7 presents expressions for success probability as a

function of time for the one-dimensional classifier, and section 8 treats

feature selection criteria with imperfect labels.

*This document was prepared originally in January 1979 for submission to the
Institute of Electrical and Electronics Engineers (IEEE) Journal. Thus,
its format conforms to the IEEE requirements and is not consistent with
standard Lockheed Electronics Company, Inc., document specifications.
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2. A MODEL FOR LABELING IMPERFECTIONS

Let w and m be the perfect and imperfect labels, respectively, each of which

takes values of 1, 2, ---, M; where M is the number of classes. Let p(w = i)

and p(Xlw = i) be the a priori probabilities and class conditional densities

of the patterns in classes w = i.

Assuming that the imperfections in the labels are described by the

probabilities

Rji = P(m = i1w = J)	 i i.J = 1,2,---.M	 (2-1)

where i and J indicate class, we have the constraint
M

R ji = 1	 (2-2)

Assume further that

P(Xlw^j,wj) = P( X l wj)	 (2-3)

In order to find the relationship between p(Xlw = i) and p(Xjw = i), consider

M

P(X^w = i) =	 1	 E P(X,w = i,w = j)
P(w = i) j=1

1	 M
p (XIw = i,w = J)P(^ = i1w = J) P (w ' J)

P(w = i) J=1

1	 M

= P(w = 9) E R
ji P(w = J)P(XI w = J) (2-4)

Cross-multiplying and dividing equation (2-4) by p(X) establishes the rela-

tionship between a posteriori probabilities

M

P(WA = i IX) = E R .. P(w = j^X)
j=1 Ji

2

z

(2-5)



Similarly, the a priori probabilities are related as

M

P(w = i) = E R3i p (w = ,i)	 (2-6)
J=1

Inverting equation (2-4) yields the following result for a two-class case.

P(w = 1)P(Xlw = 1) = 011022 1 
012021 [0

22P(Ŵ = 1)P(Xlw = 1)

R21 p (w = 2 )P(Xl w = 2)]

(2-7)

P(w = 2 )P( X l w = 2 ) ='
 011022 

1 
012021 [a

ll m = 2)P(XlW = 2)

- R 12P(w = 1)P( X I w = 1))	 J

Similarly, for the a priori and a posteriori probabilities,

P(w	
i) _ 011 022 , 012021 [a

ii w = i) - R^ i P(W = J)]	
iii	

J,2

(2-e)

P( w = iIX) = 
0 11 812 1 012021 D

jjP(w = ilX)

- R^ i P(w = JIX)]

	

	 i,i = 1,2	 (2-9)

i#J

For a symmetric case, when

	

011 = 022 = 0 and 012 = 021	 1 - R	
(2-10)

i	 then

011022 - 012021 = ( 20 - 1)	 (2-11)

From equations (2-7), (2-10), and (2-11),

[P (w = 1)P( X l w = 1) - P (w = 2 )P(Xl w = 2))	
R	

[P(^ = 1 )P(Xlw = 1)

P (W = 2 )P( X l w^ = 2)]	 (2-12)

}	
3

r.

r



P(w = 1 )P(XI w = 1)

P(w = 1)P(XIw = 1)

P(w = 2)P(XI w
 = 2)^

P(w = 2 )P(XI w = 2)

(w = 1)P(XIw = 1)

The densities for symmetric and nonsymmetric labeling errors are illustrated 	 J

in figures 2-1 and 2-2.	
II

S = Sll = 022

Figure 2-1.— Illustration of densities for symmetric labeling errors.

P (w = 2)P(XIw 2)--\

P(w = 2)P(XI/2)0#0

0001

S11 > 022

Figure 2-2.- Illustration of densities for nonsymmetric labeling errors. 	 j
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3. PERFORMANCE OF BAYES CLASSIFIER WITH AND WITHOUT MISLABELING

In this section, we analyze the performance of the Bayes classifier with and

without imperfections in the labels.

3,1 TWO-CLASS BAYES CLASSIFIER PERFORMANCE WITH SYMMETRIC MISLABELING

For a symmetric model, we develop a unique relationship between the probabil-

ity of errors of the two-class Bayes classifier with and without mislabeling

errors. The Bayes decision rule is

Decide X E w = 1 if P(w = 1)p(Xlw = l) > P(w = 2)p(Xlw = 2) )
J1 	 (3-l)

Decide X E w = 2 otherwise

The Bayes probability of error (Pe ) is

	

Pe =f min[P(w = 1)p(Xlw = 1),P(w = 2)p(Xlw = 2)]dX 	 (3-2)

For any two positive real numbers A and B,

min(A,B) = 2(A + B) - ZI A - BI	 (3-3)

Using equations (3-2) and (3-3) yields

Pe = 2	 2If IP(w = 
1 )P( X ^ w = 1) - P(w = 2 ) p ( X lw = 2)1dX	 (3-4)

Following the argument presented by equations (3-1) through (3-4), the prob-

ability of error of a two-class Bayes classifier with imperfect labels (Pe)

can be written as

Pe = 
Z - 2 f I

P (w = 1 )p ( X I^ = 1) -P (m = 2 ) p ( X lm = 2)IdX	 (3-5)

From equations (2-12), (3-4), and (3-5), we obtain the following.



	

Pe = 2 - 2120 - 11
	 P(w = 1)p(Xlw = 1) - P(w = 2)p(Xlw	 2)IdX

= 2 - 2120 - 11(1 - 2Pe)

u
	

= 2(1 - 12R - 11) + 120 - 11Pe	
(3-6)

From equation (3-6), writing Pe in terms of Pe,

	

e	 125 - 11 a	 21	 120 - 11

Equation (3-7) is graphically displayed for various values of R in figure 3-1.

1.0

P	
0.5

Pe

0.5	 1.0

Pe

Figure 3-1.— Dayes risk for a symmetric model with and without labeling errors.

Figure 3-1 shows the increase in P e because of labeling errors. When Pe = 0.59

the decision is random; hence, P e is independent of 0.

6	 _.
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3.2 MULTICLASS BAYES ERROR UNDER A GENERAL MISLABELING MODEL

The Bayes risk (r) in classifying a pattern X, can be written as

r(X) = 1 - max[p(w = ijX)]	 (3-8)
i

"r(X) = 1 - max[p(m = iIX)]	 (3-9)
i

Then the probability of error can be written as

	

Pe = EP(X)[r(X)]	 (3-10)

^e	EP(X)[r(X)]	 (3-11)

where E is the expectation operator. If the imperfections are not symmetric,

then the Bayes errors depend on the particular probability density functions

of the patterns. However, we obtain bounds in the following manner.

3.2.1 LOWER BOUND

Let

K = max[p(w = ijX)]	 (3-12)
i

M

	

S RSM = 
max(Es.l	 (3-13)
i j=1 J^

where RSM = row sum maximum.

From equations (3-8), (3-9), (3-12), and (3-13), we obtain

	

M	 jI
	 = 1 - maxf ER ji p (w = 

jjX)JI	 J=1

M	 11
1 - 

KImia x(i=l
Eo•

Ji
/

=1 -MRSM

= (1	
R RSM) + RRSMr(X)	 (3-14)

E
r



Taking the expectations on both sides of equation (3-14) with respect to p(X)

obtains the desired inequality

Pe ? (1 - S RSM ) + RRSWe	
(3-15)

3.2.2 UPPER BOUND

Let

p(w = kjX) = max [p (w = jIX)7	 (3-16)

bi = min(Rji )	 (3-17)

j
a = min max(Uki - 

b i )	 (3-18)
k	 i

where k is a scalar indicating class.

Consider

M
max[p ( b̂i = i1X)3 = maxR ki p (w = k I X ) + LRj i p (w = j1X)

i	 i	 j=1
ift

> max[(Rki - b i ) p (w = kjX) + bi]
i

a[1 - r(X)]	 (3-19)

However,

r(X) = 1 - max[p(w = i1X)] 5 (1 - a) + ar(X)	 (3-20)
i

Taking the expectations on both sides of equation (3-20) with respect to p(X),

we obtain

Pe 5 (1 - a) + aP e	(3-21)

3.3 ILLUSTRATION OF BOUNDS

To illustrate the upper and lower bounds, let M = 3. Consider a matrix of

mislabeling probabilities aji as shown in figure 3-2. The various quantities

€	 $
i

II



required to compute the bounds are also shown.

M

i ^---!•	 SJi	
max Oki - bi)

j	 .9	 0.05	 0.05	 1	 0.85

Rji =
	 I	 .05	 0.9	 0.05	 1	 0.85

[0 .05	 0.05	 0.9	 1	 0,85

b 
-

= min(Rji )	 0.05	 0.05	 0.05

J
RRSM = 1, a = 0.85

Figure 3-2.— Example illustrating upper and lower bounds,

Let Pe = 0.2 and using the above probabilistic mislabeling model, the bounds

on the true probability of error P e without imperfections in the labels are

given by

0.059 < Pe < 0.2 (3-22)

4.	 PERFORMANCE OF MULTICATEGORY NEAREST NEIGHBOR CLASSIFIER
UNDER A GENERAL MODEL OF MISLABELING

In the case of imperfectly labeled patterns, given the pattern X, the condi-

tional nearest neighbor risk can be written as

M	 M

rN (X) = P(W = l IX) E p (^ = jIX) + ... + P(W = M I X )	 P(w ° jIX)E
J#1	 J#M

M

=	 1	 -	 P(W = iIX)P(w = iIX)
i=1

M	 M

= 1 -	 E	 E a.iip(w = iIX)P(w = jIX) (4-1)

i=1	 j=1

s°	
9

j

E



In the following subsections, we obtain bounds on the nearest neighbor e

in terms of Bayes classifier error.

4.1 LOWER BOUND

Substituting equation (3-12) into (4-1) obtains the following result.

M M

rN (X) ? 1 - K F, ER• i P(w = jIX)
i=1 j =1

	

M	 M

= 1 - K£.P(w = j1X)FlSji

	

j=l	 i= 1

=1-K

= r(X) (4-2)

Taking expectations with respect to p(X), on both sides of equation (4-2),

results in

PeN ? Pe	 (4-3)

where PeN is the nearest neighbor error.

4.2 UPPER BOUND

Let

p(w = kjX) = max[p(w = ijX)j 	 (4-4)
i

	

a = min(R i .)	 (4-5)
i

	O m = min(Rjk )	 (4-6)
JA

Consider the following.



M M	 M

E Ea . - P(w = iIX)P( w = jIX) = ER ii P2 ( w = iIX)
1=1 j=1 J,	 i-1

M	 M

+ E P(w = iIX) ERji P(w = jIX)
i=l	 j=1

Vi

M

= R kkp2 (w = kIX) + r,R ii p ( w = iIX)
i=1
i#k

M

+ p(w = kIX) ER jkP( w = .? IX)
j=1
Vk

+ L P(w = iI X)LRji p (w = jIX)	 (4-7)

i = 1	 j=1
i#k	 Vi

However,

2

E P 2 (w = iIX) ? M - 1	 P(w = iIX)
i = 1	 i=1
iik

	 [I M

#k

M	 1 [1 - P( w = kIX)12	
(4-8)

Now consider

M

P(w = kIX) ER jkp ( w = jI X ) ? R n1P(w = kIX)[1 - P(w = kIX)1	 (4-9)

j#k

Substituting equations (4-8) and (4-9) into (4-7) results in

M M

	

E ERji p (w = i I X )P( w = j I X ) ? R[1 - r( X)72 + g--7rR 	 2(X)
i=1 j=1

	

+ Rmr(X)El - r(X)7	 (4-10)

(

Y



From equations (4-1) and (4-10), we obtain

rN(X) < 1 - s[1 - r(X)I' - M r2 (X) - Smr(X)[1 - r(X)1
i	

_ (1 - R) + (2R - adr(X) - ( M M I B - 0.)r 2
(X)	(4-11)

But we have

Ep m r2 (X)7 = Var[r(X)] + Pe

> Pe	 (4-12)

	

M M1 S - Rm ? 0	 (4-13)

Trking the expectations on both sides of equation (4-11) with respect to p(X)

and using equations (4-12) and (4-13) results in

	

PeN 5 (1 - R) + ( 2R - a M)Pe - (M	
M 

IR - Rm)Pe	
(4-14)

When R = 1 and sm = 0, we have the perfectly labeled situation, in which case

equation (4-14) becomes

	

PeN 5 2 P - M M1 Pe	 (4-15)

It is seen that equation (4-15) is identical to the nearest neighbor bound

obtained by Cover and Hart [9].

5. DESIGN OF PATTERN CLASSIFIERS WITH IMPERFECTLY LABELED PATTERNS

In this section, we consider the problem of designing a classifier with imper-

fectly labeled training patterns. Once the amount of imperfections is known,

this knowledge can be incorporated into the classifier training and results

in improved performance.

i



5.1 INCREMENT ERROR CORRECTION CLASSIFIER (NONPARAMETRIC TRAINING

Consider the case of two pattern classes. Assume a given set of training

patterns X l (1), X 1 (2), •••, X l (N l ) and X_ 1 (1), X_ 1 (2), ..., X_ 1 (N_ 1 ) from

classes 1 and -1, with imperfect labels w 1 (1), •••, w(̂Nl ); w_ l (1), •••,

w_ 1 (N_ 1 ). Let the perfect labels of these patterns be wl (1), •••, wl(Nl);

w(1), •••, w_ 1 (N_ 1 ). The imperfect and perfect labels take values of

1 and -1. The objective is to find a decision function d(X), such that

d(X) > 0 when X E wl	

(5-1)

d(X) < 0 when X E w_1

5.1.1 ALTERNATIVE REPRESENTATION OF IMPERFECTIONS

The imperfect labels can be modeled from perfect labels as follows.

w = wn	 (5-2)

where n = labeling noise and takes values of 1 and -1. Since w takes 1 and

-1, whenever w differs from n we have an imperfect label. Recalling our pre-

vious model of imperfections, we have

Rij = P(w = j 1w = i)	 ; i, j = t1	 (5-3)

Let

n = E(n)	 (5-4)

and

Pi = P(w = i)	 i = ±1	 (5-5)

Since n takes values of 1 or -1, the average value of n, n, can be written as

follows.

e`
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Ic'

i
n = E(n)

= Ph = 1) -P(n = - 1)

= Ph = l,w = 1) +Ph	 l,w = -1) -P(n=-1,w=1)

- Ph = -1 ,w = -1)

= P l Ph = 11W = 1) + PP(n = I 1 = -1) - P l Ph = -11w = 1)

l - PP(n = -11w = -1)

= P I P(w = 11w = 1) + P -l P(W 	 -11w = -1)	 - P 1 P((o = -1 1W = 1)

- P_ 1 P(m = 11W = -1)

= P 10 11	 + P-1 0 -1,-1	 - P 1 0 1,-1	 - P- 10-1,1

_	 ( 28 11	-	 1)P l	+	 (25
-1,-1	 -	I)P-1 (5-6)

Under a symmetric model, the above becomes

p = 20 - 1 (5-7)

5.1.2 AN ERROR CORRECTION ALGORITHM WITH IMPERFECT LABELS

To obtain a linear approximation to d(X),

d(X) = XT (5-8)

where W is the weight vector. Let d 0 (X) be the unknown decision function and

d*(X) be the optimal decision function.	 Suppose we set up a criterion

C (W) = E[a(W,X)] (5-9)

where

a(W,X) = WT X1 Sgn ( WTX)	 - S9n[d0 ( X )]^ (5-10)

Let W* be the value of W which minimizes C(W), then

C(W)	 > C (W*) (5-11)

14
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The corresponding optimal approximation d*(X) to do(X) is given by

d*(X) = XTW*	 (5-12)

At the Rth step of training, the weight vector W(R) is updated using the

steepest descent method.

W(R + 1) = W(R) - v(R) a aWW I	 (5-13)

W = W(R)

Since the gradient is not known, the above is approximated to

W ( R + 1) = W M - v(R) g (W ,X)l	 (5-.14)
X = X(R),W = W(R)

where X(R) is the training pattern at the Rth step and

g (W, X ) = t Sgn ( WTX ) - S9n[do(X)7lX	 (5-15)

Since the perfect label Sgn[do(X)] is unknown, we replace g(W,X) with

f[W,X,w(X)] so that f is observable for any X and has the same expected

value as g, where

f[W,X,w(X)] = n LnS9n(WTX) - 
^
(X)7X	 (5-16)

E {f[W,X ,m(X)7IW} = Et(n [ -ffsgn ( WTX) - Ŵ ( X)IX + {S gn[dO(X)7 - S9n[dg(X)7IX)iw]

= E1^Sgn(WTX) - 

Sgn[do	

f

(X)71XIW)

+ 1EE Sgn[do(X)] - n-Sgn[dg(X)]W/

= E ({Sgn(WTX) - Sgn[d0(X)7kW)

= E[g(W,X)IW]	 (5-17)

Hence, the error correction algorithm for updating the weight vector W(R) at

the Rth step of training can be written as

W(R + ]) = W(R) - v(R) 1 {n Sgn [XTW(R)7 - ^(X)IX	 (5-18)
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where X is the training pattern at the Rth step of training and n is given

by equation (5-6). For the convergence of this algorithm, the conditions

on v(R) can be shown to be [3]:

v(R) > 0,	 v(R)	 v2(R) <	 (5-19)
R=1	 R=1

5.2 BAYES CLASSIFIER (PARAMETRIC TRAINING)
i	 -

Once the a priori probabilities and class conditional densities of the

I

	

	 imperfectly labeled patterns and the mislabeling probabilities S ij 's are

estimated, equations (2-7) and (2-8) can be used to obtain the a priori

i`

	

	 probabilities and class conditional densities of the perfectly labeled

patterns. Then, the following algorithm can be used to classify the patterns.

Decide X E w = i if P(w = i)p(Xlw = i) > maRx[P(w = R)p(Xlw =.R)] (5-20)

R=1,2,•••,M
Vi

5.3 THE CASE WHEN B
ij

'S ARE UNKNOWN

In the case when R ib 's are unknown, the scheme shown in figure 5-1 can be

used to design the classifier.
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THE DIFFERENT PARAMETERS
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	 DESIGN THE
CLASSIFIER
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i
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Figure 5-1.— Flow diagram for learning with imperfectly labeled
patterns when S id 's are unknown.
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6. CORRECTION OF IMPERFECT LABELS OF TRAINING PATTERNS

This section deals with methods of correcting imperfect labels of training

patterns. Whenever a method is confident enough to show that the label is

imperfect, we correct the label of the training pattern.

6.1 LABEL CORRECTION USING k-NEAREST NEIGHBOR DECISION RULE

The nearest neighbor decision rule can be used to correct imperfect labels in

training patterns [4]. Suppose that n - 1 training patterns are processed

with imperfect labels. When a pattern X  with imperfect label w(X n ) is

presented to the algorithm, a guess of the true label of X n must be made by

combining the information in w(Xn ) and the information in the previously

processed n - 1 training patterns. The new label of X n , w(Xn ), is determined

in the following manner.

Assume that two positive integers k and k' are given, where k is an odd

integer and k' is an integer such that k' > (k + 1)/2. Using a distance

metric d, the k-nearest neighbors to X  among the training patterns X1,

X2 9 ..., Xn-1 are located. If at least k' of the nearest 'neighbors to Xn

have the same value for their class labels, w(Xn ) is set to that value.

Otherwise, w(Xn ) is set to the value of w(X n ), the label provided by the

teacher. The process is repeated to obtain the label of pattern Xn+1'

The integer k' specifies the degree of confidence required in labeling the

k-nearest neighbors of X  before the label of the teacher of X  is changed.

At least k of the training patterns must be obtained before the beginning of

the label correction process. Also, at least k - k' + 1 of the teacher's

labels are accepted for each class before the label correction process is

begun, in order to avoid the algorithm's labeling of all patterns into one

class.

At the termination of the label correction process, unlabeled patterns can

be classified using the k-nearest neighbor decision algorithm.

18
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6.2 LABEL CORRECTION USING BAYES DECISION RULE

In this section, an algorithm is developed to correct the imperfections in

the labels of the training patterns. Assuming two pattern classes and that

the densities are Gaussian; i.e.,

p(Xlw = i) — N(Mi ,Ei ) ; i = 1,2	 (6-1)

where Mi is the mean and E  is the covariance matrix of the patterns in the

classes wi , i = 1,2. The Bayes decision rule uses the following criterion.

Decide X E w= 1 if d(X) > 0

and	 Decide X E w= 2 if d(X) < 0	
(6-2)

where

d(X) = log P(w = 1)p(XIw = 1)

P(w = 2)P(X(w = 2)

The following scheme for correcting imperfections in the labels is proposed.

Change the label of X to w = 1 if d(X) > tl

Change the label of X to w = 2 if d(X) < -t 2	(6-4)

Do not change the label of X if -t2 <- d(X) <- tl

where tl and t2 are the thresholds.

(6-3)

6.2.1 DISTRIBUTION OF d(X)

Assume that [d(X)IX E w = i], i 	 1,2, is a Gaussian random variable with

mean mi and variance a i , i = 1,2; i.e., p[d(X)IX E w = i] = N(m i ,ai). Then,

f	 19
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the expressions for m i and ai can be shown to be [10]:

M = trCI - E E" 1 )	 (M	 M	
-2 Ml M ) + An IE2^1	 1 2	 1	 2	 2	 1	 2

-2 â
.nPw=1

P(w = 2)

M2
= trCE^ 1 E2 - I) + ( M1 - M2 )TE^ 1 (M1 - M2 ) 

+ An ^E1^

I E21

2RnPw=1
[P(w = 2)

a^ = 2{tr P - Z21 E1121

+ 2(M l - M2 ) TE2 1 E 1 E21 (M 1 - M2)}

A = 2Itr(E^lE2 - I)2

+ 2(M l - M2)TElNE2E1 (M1 - M2)]

(6-5)

6.2.2 SELECTION OF THRESHOLDS t
i 

AND 1:2

We propose to select the thresholds t
i 
and t2 for correcting the imperfect

labels by specifying the probability a that mislabeling will occur in the

correction process.

a = P(bad label)

= P(w = 1)P(bad labelIX E w = 1) + P(w = 2)P(bad labelIX E w = 2)

= P(w = 1)P{d(X) < - t2 1X E w = 1) + P(w = 2)P[d(X)] > t l jX E w = 21

(6-6)
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1

{'

Following the argument and assumptions similar to those of section 2, it can

he shown that

P(w = 1)P[d(X)I w = 1] ` 011 022 , 012021 1
022P(w = 1 )PLd(X)I2 - 11

- 021 P(w = 2)P[d(X)I w = 2)]}	 (6-7)

P (w = 2)PLd(X)Iw = 21 = 011 022 1 
012021 1 011P(W = 2)PLd( X )I w = 21

(W = 1)P[d(X)Iw = 1)012 P	 }	 (6-8)

Then,

t2

	

P(w = 1 )P[d( X ) < -t2 IX E w = 17 = P(w = 1)f 
	

PLd (X)I w = 1]d[d(X)7

1	
{0 

P(W = 1)J -t2 PLd (X )Iw = 1]d[d(X)7
011 022 - 012 021 l 22

- 021 P(w = 2)J 

-t2 
PLd(X)Iw = 27d[d(X)71

2_m1

a
0 p(w = 1 )	 1	 N(0,1)dE

011822 - 512021	
22

f-t

^

-t2-m2

a2

- 
021 P(w = 2)	 N(0,1)dC	 (6-9)

where N(0,1)ti is a Gaussian density function with zero mean and unit variance.

After an argument similar to equation (6-9), from equation (6-8) we c>tain

the following.
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j	 P(w = 2)P(bad label IX E w2) = P(w = 2)
J
 p[d(X)IX E w2]d[d(X)]

1

i

f^1122	

'tl+m2

l	
°2

R R	 R12 R21 Sllp(w - 2)
	 N(0,1)dg' 

-t +m

al

- R12P(w = 1)

	

	 N(0,1)dE	 (6-10)
_m

For a specified a, using equations (6-9) and (6-10) in (6-6), t l and t2 can

be determined by one-dimensional numerical integration, and imperfect labels

can be corrected using the algorithm in equation (6-4).

7. ONE-DIMENSIONAL CLASSIFIER WITH IMPERFECTLY LABELED PATTERNS

Consider the training of a one-dimensional version of the increment error

correction classifier considered in section 5.1. Let w and w be the perfect

and imperfect labels of training patterns that take values 1 or -1. Assuming

a symmetric model for the imperfections, i.e.,

P(w = lIw = 1) = R = P(w = -lbw = -1)
(7-1)

then	 P(w = -l^w = 1) = 1 - R = P(w = l^w = -1)

As in section 5.1, the imperfections in the labels can be considered in

terms of a quantity n, which takes values l or ?.

A =' wn	 (7-2)

In section 5.1, n = E(n) is related to R as

n = 2R - 1	 (7-3)

The decision rule for one-dimensional patterns is

Decide x  E w = 1, if x  > k 

Decide x  E w = -1, if xn < kn	
(7-4)
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where kn is the threshold at the nth training step. If w(x n ) is the label

Of xn , the pattern at the nth training step, the usual training procedure

is to adjust kn according to the following relation.

kn+l = kn - [w(xn ) - Sgn ( xn - kn )]Akn 	(7-5)

where An is the increment of adjustment. Since the label w(xn ) is not

known, we modify equation (7-5) according to (7-6).

kn+1 = kn ' vn LW(xn ) - ns9n(xn - kn )]Akn 	(7-6)
n

Similar to the results shown in section 5.1, the conditions for convergence

of equation (7-6) can be shown to be

M

vn >0, F, vn = 
-, E vn<m

n=1	 n=1
(7-7)

This section contains the learning dynamics of this procedure; i.e., expres-

sions for the learning curves. Let f 1 (x) and f_ 1 (x) be the constituent

densities of patterns in classes w = 1 and w = -I, respectively. Similarly,

let fl (x) and f_ 1 (x) be the constituent densities of the patterns in classes

W = 1 and w = -1, respectively. Let

P l =E fl (x)dx and P_ 1 = f f_1(x)dx

(7-8)

P 1 = f fl (x)dx and P_ 1 f f_1(x)dx
m

Then, the following probabilities can be easily obtained.
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Pr[8 = 1,Sgn(x - k) = 1] =f
k
 ^ fl(x)dx

= P 1 - J k fI(x)dx

= P 1 - F1(k)

Pr [W = 1,Sgn(x - k) _ -1] = fk fl(x)dx

F1 (k)

Pr[w = -1,Sgn(x - k) = 11 = fk f-1(x)dx

P_1 - F_l(k)

k
Pr [w = -1,Sgn(x - k)	 -1] = r f_1(x)dx

m

= F_l(k)

(7-9)

Let P. (k) be the probability of occurrence of k at time instant n. Then the

training algorithm., equation (7-6), may be described by the following

difference equation.

- n)
	Pn+1(k) = Pn ('

	 v
k + n(1

 n	
pkn)Pr[w = 1,Sgn(x - k) = 11

+ P

	

nr
k + 

v
n	 0k
(1 + n)

	n^n	
Pr[m = 1,Sgn(x - k) _ -11

	

n[	 v (1 + n)k - n	 Ok n]	+ p	 Prow = -1,Sgn(x - k) = 11
n

	

n (	 v (1 - n)	 l
	+ P k - n	 ^k nJ Pr[w = -1,Sgn(x - k) _ -11 	 (7-10)

n



The substitution of equation (7-9) into (7-10) obtains

v(1 -n) 	v(1 
n 
-2)

FT
Pn+1(k) - Pn [k + "	 Aka f P l - Fl [k + "	 Akn] 

I

+ pn[k + vn(1 n + n) Aka4k + v"(1 TI n) Ak n]

v^ 	vn)

	

+ Pn[k - "
(1+	 Aka P_ 1 - F_ l [k - "(1+ Ak

	

n	 n`

+Pk - "	 Ak JF k - n _	 Ak

	

F	 n	 n] (7-11)

Now a differential equation describing the learning process can be obtained.

Using a continuous approximation and rearranging equation (7-11), after

subtracting both sides of it, P(nAt,k), we obtain

P(i + 1 At,k) - P(nAt,k)
rAt	

P k + \^" (in- n) Akn ,nAt - P(k,nAt)
At	 1 - R

20 - 1 vnAkn

21-a
` 25 - 1 vnAkn

I	
v (1 - n)	 1- r	 v (1 + n)

P j P k+ "	 Ak,,,nAt I	 P k- "	 Ak""At

C. 0 -

x 2v Ak + I
p
[k + v Ak (1 + n) 	

]^ [	
v Ak (1 + rj)^

2(i "_ 1	 " " n	 ,nAt F1 k + " "n

[	

v Ak
 nn( - n)	 l„ f	 v Ak nl - Q	 2v Ak

P k + -" "	 ,nAt Fl k + " "	 J )t " 2v^—TA c._
n n

+ I P[k v(1	 v(1-^	 l- n n - n) 
Ak n ,nclt^F_^[k - " n	 AknJ

- P[k	
vn(ln+ 

n) Akn,nAtJ F-l[k - 
\)n('—+ -) 

AknJ x 2vnAkn

(7.12)
t	 25
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7

Letting At -r 0 and Ak -+ 0, we get the following from equation (7-12).

BP DE
8t 2k v(t) 8t 22S -	 P-1 8k v(t) t -2-0 --

+ a	 2v(t) at + ak -1 2v(t) at	 (7-13)
Rewriting equation (7-13) yields

ap
2t

= 
V(t) g (t) OF	 (7-14)

where

^21-R	 2	 ^
F	

2A -	 - 
P
-1 2S - 1 + 2F

l +2F-1

	

= 2 ^F 1 + F-1 + 	 (7-15)

g (t) = at	
(7-16)

The conditions on v(t) and g(t) for convergence become

J 0^ 
g (t)dt =

0 < g ( t ) < °°	 (7-17)

`	 Jow v(t)dt =	 Im v2(t)dt < m, v( t ) > 0

The conditional probability of success (S), given k, is

S(k) = P[w = 1,Sgn(x --k) = 11 + P[w = -1,Sgn(x - k)

= (°° f
l (x)dx + Ik f-1(x)dxJ

P l - rk fl (x)dx + Ik f-1(x)dx

	

P
i + F_l(k) - Fl(k)	 (7-18)

t
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From equation (2-8), we have

P 1 - 2S	 l [RP l - 0 - s)P_l]

j:
_	 1

2S - 1 (s - P_ 1 )	 (7-19)

From equation (2-12), we have

F_ l (k) - Fl (k) = 2S 
l- 

1 [F-1(k) - Fl(k)]
I

Thus, S(k) is given by

S(k) = 20 1- 1 [F_
l (k) - Fl (k) + (R - P)]	 (7-20)

The success probability (Z) at any time instant t is defined as

M

Z(t) = J 

	

p(k,t)S(k)dk	 (7-21)

and P satisfies the differential equation

	

tt = v(t) g (t) a kF	 ( 7-22)

The solution to this equation is given by [11]:

t
y(t) = f v(u) g(u)du

to

/^ V (Y) dv	 (7-23)

r	
Y= - J

k0	F(v)

p ( k + t ) = d[k - V(Y - YO)]

Then

	

Z(t) = S[V (Y - YO )]	 (7-24)

Hence, Z(t) can be plotted as a function of time to study the learning char-

acteristics of the training algorithm.

4	
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8. FEATURE SELECTION CRITERIA WITH IMPERFECTLY LABELED PATTERNS

4' f
Probabilistic distance measures are normally used in practice as a feature

1 evaluation criterion for selecting best features. Of all the probabilistic

rdistance measures, the Bhattacharyya distance is most frequently used, since

it is easy to evaluate under the Gaussian assumption and its general relation-

ship to the Bayes probability of error. In this section, we present a rela-

tionship between the Bayes probability of error and the Bhattacharyya distance

with imperfectly labeled patterns under the symmetric model discussed in

section 2.

i

Consider the case of two pattern classes. Let P e and p be the Bayes proba-

bility of error and the Bhattacharyya coefficient with imperfectly labeled

patterns. "P is defined as
is

P =f[P( X I A = 1 )P( X 1^ = 2)7 1 ^ 2dx	 (8-1)

It is well known [12] that Pe and p are related as

Z [7 -	 1 - P(w = l)P(w = 2)P , <_ P e <_ 3P(w = 1)P(W = 2 )P	 (8-2)

From section 2, the relationship between the Bayes probability of error with

Pe and without Pe imperfections is

	

P -	
Pe	

-	 1	 (1 - 120 - 1 1)	 (8-3)
Pe	

120 - 
1

1	
2120	 1

1

From equations (8-2) and (8-3), the desired relationship is obtained.

	

1	 (1 -	 1 -_4 P W  = 1)P( ^ = 2)P 	
(
1 - 120 - 1 1) < P

	

2120	 11 L	 J	
2	

120 - 11	 e

	

<	 P(m = 1)P(w = 2) 
P -	 1	 (1 - 1 20	 11)

	

-	
120 - 11	 2120 - 11

(8-4)
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Similarly, using the relations developed in section 2, other probabilistic

distance measures can be studied [6,7,8].
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