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ABSTRACT

Compound decision theory is invoked to develop a
model for classifying image data using spatial context.
Methods for characterizing contextual information in
an image are proposed and tested. Experimental results
based on both simulated and real multispectral remote
sensing data demonstrate the effectiveness of the con-
textual classifier. A number of practical problems
associated with this approach are discussed and pos-

sible solutions are explored.
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1, INTRODUCTION

Multispectral image data collected by remote sens-
ing devices aboard aircraft and spacecraft are rela-
tively complex data entities. Both the spatial attri-
butes and spectral attributes of these data are known

to be information bearinq(l’

, but to reduce the magni-
tude of the computations involved, most analysis efforts
have focused on one or the other. Only within the last
few years have serious efforts been made to utilize

them jointly. For example, one approach uses the spectral
homogeneity of "objects,” such as agricultural fields,

to segment the scene and then uses sample classification
to assiqn each object as a whole, rather than its in-
dividual pixels (picture elements), to an appropriate
ground cover class(z’. Another approach involves ex-
traction of features based on gray-tone spatial-dependency
matrices from which texture-like characteristics are

developed(B).




In this paper we describe a more general way to ex-
ploit the spatial/spectral context of a pixel to achieve
accurate classification. Just as in written English
one can expect to find certain letters occurring regu-
larly in particular arrangements with other letters
(qu, ee, est, tion), so certain classes of ground cover
are likely to occur in the "context" of others. The
former phenomenon has been used to improve character
recognition accuracy in text reading machines. We shall
demonstrate that the latter can be used to improve ac-
curacy in classifying remote sensing data. Intuitively
this should not be surprising since one can easily
think of ground cover classes more likely to occur in
some contexts than in others. One does not expect to
find wheat growing in the midst of a housing subdivision,
for example. A close-grown lush vegetative cover in

such a location is more likely the turf of a law..

2. THE MODEL

Consistent with the general characteristics of imag-
ing systems for remote sensing, we assume a two-dimen-

sional array of N = N xN2 pixels of fixed but unknown

1
classification, as shown in Figure 1.
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Figure 1. A two-dimensional array of N = N

X N2 pixels.
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Figure 2. Examples of p-context arrays.



Associated with the pixel having image coordinates
(i,j) is its true state or true classification
eijeﬂ = (m;,mz,...,wm}, and a random measurement vector
(observation) xijeRn having class-conditional density
p(xijieij). We note that {p(xlwi), i=1,2,...,m}
is the set of class-conditional probability density
functions associating the multispectral measurement
vector X with the classes.

Let X denote a vector whose components are the ordered

pixel measurement vectors:

. . T
.x_-_- [xij|1=l'2,'-o'Nl; J = l’2'lor'N2] .

Similarly, let 6 be the vector of states:

. . T
9 =[8ij‘l=1,2'--n,Nl; 3=l'2,n--'N2] L4

The individual measurement vectors are assumed to be class-
conditionally independent; that is, their joint density
can be written as:

P(b'l'_{) = .n.p(xijlo ). (1)

i3 1)

Evidence that this is a reasonable assumption may be found
in reference(4).

Let the action (classification) taken with respect to
pixel (i,)) be denoted by aijcn. The loss suffered by

taking action aij when the true class is eij is denoted by

L(0,.,a..) for some fixed non-negative function L(.,.). Then

1] 1]
the average loss suffered over the N classifications in




the array is

1
L = ﬁ‘;L(eij'aij’ .

1f we make the action aij a function of the observations,

then for a given array ¢ the expected average loss (or

risk) is
: ]
R-e_= E[Ni L(eij'aij(.)f” (2)
’

where the expectation is with respect to the distribs:
tion of the vector of observations.

Our objective may be stated as follows: We want to
dutermine the dependence of the decision function aij(-)

on X in such a way that for any given array @, the risk,

equation (2), will be minimum. One way to approach the

problem of making R, small is to view § as a realization

8
of a random process in two dimensions and to derive a de-~
cision rule which is Bayes versus this "prior distribhu-

tion" for 8 (probably under some simplifying assumptions

concerning the nature of this process). This is the

(5) (6)

approach of Welch and Salter and Yu , who make

assumptions on the random process sufficient to guarantee
that the Bayes decision concerning pixel (i,]) depends
on X only through xij and the rour nearest neighbors of
the pixel.

We will adopt an approach to controlling Ro through

—

aij(-) that is more closely related tc¢ the large body

-
of statistical literature traceable to Robbins('), an-d




known as compound decision theory. See, for example,

the works and references of VanRyzin(e's)

(10’, and Vardeman(ll'lz’. Rather than looking

» Cover and
Shenhar
for a distribution for 8§ whose associated Bayes rule is
both simple and has small R, for most 6, we use the fol-
lowing argument. Pirst, sp;cify some arrangement of

p pixel locations including a pixel to be classified.
Call this arrangement the p-context array, sevearal

choices of which are shown in Figure 2.

Let 6PcqP ang Epe(Rp)p stand respectively for p-vectors
of classes and n-dimensional measurements; each component
of g? is a variable which can take on values in I; each
component of §P is a random n-dimensional vector which
can take on values in the observation space. Correspon-
dence of the components of g? and 5? to the positions in
the p-context array is fixed but arbitrary except that
the pixel to be classified in the array will always
correspond to the pth components. The notation gij
and Eij will refer to the particular instance of gp and
§p associated with pixel (4,3).
Now consider finding an optimal decision rule of the
form

aij(g) - d(&ij) (3)
for a fixed function d(-) mapping p-vectors of observa-
tions to actions. The risk associated with any rule of

this form is, from equation (2),




Z L{g;. .d(x

Xy

-

.
1
-1 ;g; E[L(eij.d(ﬁij))

J

= 2: G(oP)E[L(8_,d(xP)) ] (1)

where G(gp), the context distribution, is the relative

frequency with which QP occurs in the array gy and eb ia

the pth component of gp. Notice that R6 depends on 0

only through G(gp). Writing equation (4) in more detail
and invoking the class-conditional independence assumption,

equation (1), we have

R, z G(‘)p)/L(e ,d(xP)) Trp(x o, yexP
6" 6PeqP i=1 1

= 2: G(GP)L(O .d(xp))'n'p(x IB )dxP (5)
P_ P
6% e
where the product is over the components xi of gp. For
any array f, a decision rule d(gp) minimizing K can be

obtained by minimizing the integrand in cquatioun {5; {o»

3

each gp; thus for a specific 5ij (an instance of xi, u

optimal action is:

d(gij) = the action (classification) o wi i i min: p:ves

p
Zep , o).
opopC Ty a’;ﬂlp‘xl‘ i)
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This can be written in a slightly different form which

makes more apparent the specific contribution due to

context (the term in brackets below):

d(ﬁij) = the action a which minimizes

p-1
2: G(8P) T p(x,[e,)| L(8',a)p(x_[8'). (7)
Pgp,  i=l 1 P
e e,
=g
eP

8'ef

In practice, a "0-1 loss function" is usually assumed, i.e.,

0, if 0 = a
L(8,a) =

1, if 0 ¥ a
Then (7) simplifies and the decision rule becomes:

d(iij) = the action a which maximizes

p, ot ]
G(8™) T p(x;[€,) | P(X |a) (8)
gpsﬂp, i=1 J
Op=a

Thus (8) defines a set of discriminant fuactions for the
classification precblem.
The optimal choice of d(:) cannot actually be deter-

mined because it depends on G(gp) vhich is unknown.
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We can, however, expect that, at least for large
N =N XN, a decision rule in which G(8P) is re-
pléced by an estimate &(Qp) based on the Eij will have
risk %B approximating that of the optimal rule. (We
call ggis the "bootstrap effect.") That this is the
case when p = 1 @pproximating an optimal pointwise
clasgifier with estimated a priori probabilities)
and suitable forms of estimation are used 1is a con-
sequence of the work of VanRyzin(g).

The notion of attempting to approximate the risk
of the best rule of the form equation (3) for p>1,
given its first general treatment in Gilliland and

(13)

Hannan , has not been as thoroughly studied as the

p = 1 version. But related work for p>1l in sequence

(14) suggests the

(12)

versions of compound decision theory

validity of the generalization. Further, Vardeman
points nut that if one is willing to separate the N

locations into several groups Gl' G2, ooy Gl within
each of which the ﬁij are independent, the results for
p = 1 by VanRyzin guarantee that, for p>1, replacing
the G(gp) by estimates of the frequendes of gp group-
by-group produces a decision procedure having the risk
of the optimal rule as an approximate upper bound on

its risk. An illustration of this separation idea is

shown in Figure 3.
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Figure 3. A 2-context array with separable pixel groups.



In the interest of a practical aolutien to the

problen ef incorpo:ating context into the classifica- R
tion procedure, estimates of G(gp) were derived
experimantally by simply counting the occurrences of
each eP obtained in a preliminary classification of
- the scene without the use of context. Although the
use of this rather crude method of estimating G(gp}
has not been studied in the statistical literature,
we will demonstrate in Section 3 its effectiveness
for our application.

Before proceeding to a discuesion of our experi- é
mental results, we make two further observations con- 3
cerning this approach. First, seeking a cfiterion for
the "context richness" of a scene, we have been able

to reach only the following result. Suppose the fre-

quencies G(8P) are such that G(QP) can be written in

factored form, i.e.,

P = ' "
G(8%) = G,(8").G,(8")

where §' and 9" are, respectively, p - £ and £ vectors
of classes. Then (6) can be written in the form
p-£

Z L(® ,aﬂT p(X,10;)6,(8" . Z Ep(xilei)cl(g').

el
p-£+1 -

mﬁ‘;‘s"i"‘m“’w”MWMW’MWMW"‘"W‘M’Wﬁ T
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But now the terms included in the second summation are
independent of the conditions at the pixel to be clas-
sified and are therefore constant relative to the de-
cision to be made. Thus, the decision depends only
on 4 components of the p-context array and is inde-~
pendent of the other p-!% locations. If it were pos-
sible to determine such factorability of the G(QP),
one could simplify the context classification computa-
tions by reducing the size of .the context array.
Second, comparing (7) with the results of Welch

(5) and reinterpreting the G(gp) as the

and Salter
marginal of an a priori distribution for 6, one may
view (7) as a generalization of the Welch and Salter
context classification rule. The advantages of the
present formulation are that one need make no possibly
unrealistic assumptions about the distribution for 6

and has complete freedom to choose both p and the form

of the p-context array. There are situations (e.g.,

locating clouds and their associated shadows in a scene)

in which context arrays other than those involving
neighboring pixels would be useful, a possibility

unique to this approach.
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3. EXPERIMENTAL RESULTS

Experiments were performed to explore the effective-
ness of contextual classification as applied to the
analysis of multispectral remote sensing data. First,
simulated data were used to determine the degree to
which contextual classification might improve the ana-
lysis results (as compared to no-context classification),
given that the class-conditional densities and the con-
text distribution for the scene were known. The simu-
lated data were used again to investigate candidate
methods for estimating the context distribution since,
as noted in Section 2, it usually cannot be assumed
that the context distribution is known a priori.
Finally, contextual classification was applied to real
data to determine the extent to which the conclusions
drawn from the simulated-data experiments could be

extended to the more realistic case.

Simulated Data Experiments

A no~context classification of multispectral remote
sensing data was selected which had been judged to be
very accurate (produced by careful analysis and refine-
ment of multitemporal data). Such a classification could
be expected to embody the contextual content of an actual

ground scene. Using the classification map and the
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associated statistics of the classes (developed in per-
forming the no-context classification), data vectors
were produced by a Gaussian random number generator and
composed into a new daté set. Thus the new data set
had the following characteristics:
(1) Each pixel in the simulated data set represented
the same class as in the "template" classification.
The template could be considered the "ground truth*"
for the simulated data set.
(2) All classes in the data set were known and represented.
(3) All classes had multivariate Gaussian distributions
with scatistics typical of those found in real data.
(4) All pixels were class-conditionally independent of
adjacent pixels.
(5) There were no mixture pixels.

Data simulated in this manner are somewhat of an ideali~
zation of real remote sensing data, but the spatial or-
ganization of the simulated data is consistent with a
real world scene and the overall characteristics of the
data are consistent with the contextual classifier model.
In essence, then, the experimental results based on the
simulated data demonstrate the effectiveness of the con-
text classifier, given that the underlving assumptions
are satisfied. Further experiments with real data are

required to generalize the conclusions.
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Three data sets were selected representing a variety
of ground cover types and textures. Data set 1 was agri-
cultural (Williston, North Dakota), with ground resolu-
tion and spectral bands approximating those of the pro-
jected Landsat~D Thematic Mapper. Data set 2a was
Landsat-l data from an urban area (Grand Rapids, hichi-
gan). Data set 2b was from the same Landsat frame as
2a, but from a locale having significantly different
spatial organization. Each data set was square, 50
pixels on a side.

Figure 4 shows the classification results obtained.

The "no-context" classification accuracy is plotted co-
incident with the vertical axis of each graph. Data
set 1 was classified using successively 0, 2, 4, 6 and
8 neighboring pixels; data sets 2a and 2b were classified
using 0, 2, 4 and 8 neighboring pixels. The accuracy im-
provement resulting from the use of contextual information ﬁ
was found to be gquite significant.

To accomplish the context classification using this

approach, it is necessary to have available the class-

e

conditional density functions for the classes to be

ha il gl

recognized, p(xlmi), and the context distribution (the

frequency distribution associated with the p-vectors,

[ad LS
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Figure 4. Contextual classification of simulated data.
(a) Data set 1. (b) Data set 2a. (c) Data set 2b.
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G(QP)). In remote sensing applications, the class-
conditional density functions are typically learned
from training samples. For the experiments described
above, the Gaussian class statistics on which the data
simulations were based were used for the classification

(these were originally the training statistics used

to produce the "template" classification). An impor-

tant question is how in practice tc determine the con-
§ text distribution. 1In the foregoing experiment, this
| distribution was simply tabulated from the "template"
classification (actually, from an area somewhat larger

E than classified in this test). But in a real data situ-
ation, such a template is not available, else there would
be no need to perform any further classification.

One can envision a number of ways in which the con-

text distribution might be estimated for a given remote

sensing application. For example, it could be extracted
from a classification of data obtained previously from
the same area. This would require that the area not

have changed much in its class make-up since the earlier
data were collected and that the earlier classification
was reasonably accurate. Alternatively, the distribution
might be obtained from a classification of any similarly
constituted area. Still another possibility would be to
estimate the context distribution for the data to be

| classified from a "conventional" classification of the

same data determined to have "reasonably good" accuracy.
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Conceivably, one might then refine the contextual classi-
fication by making another estimate of the context distri-
bution based on the resulting more aécurate classification,
and even iterate in this way until no further improvements
in accuracy were obtained. All of these methods produce
an estimate of the context distribution, and a crucial
question on which hinges the utility of this contextual
classification method is how sensitive the contextual
algorithm is likely to be to the "goodness" of the estimate.

The iterative technique starting with a no-context
classifiction seemed to be the most practical approach,
since no classifications are needed from earlier data
or from other areas of similar context. All that is
needed is a good initial point-by-point classification
of the area in question.

To test the potential of this "bootstrap" technique,
it was first tried on the simulated data set 2a. Also,
the classifications using the reference template were
rerun using an estimate of the context distribution from
just the 50-pixel-square area classified, rather than
from the larger area (276 x 320) used to obtain the
estimate for the results presented in Figure 4. This
was done to provide a better comparison to what could be
accomplished using the bootstrap technique.

Using this approach, seven iterations (classifications
followed by re-estimation of the context distribution)
produced an improvement of 36 percent in overall ccuracy

compared to the point classification using equal a priori

e ——t—— 4__—#




probabilities (from 52 percent to over 86 perxcent). No
significant change was observed in average-by-class
accuracy (constant at 68 percent).* This compares

with an increase of over 44 percent in overall accuracy
(28 percent in average-by-class accuracy) obtained using
the context distribution estimated from the template
classification. These results are summarized in

Figure 5.

As seen in Figure 5, a number of values of p were
used in the iteration process. At each iteration, the
best classification found by varying p, as judged by
trading off overall accuracy against average-by-class
accuracy, was used as the template for re-estimiting the

context distribution for the next iteration.

* Classification performance can be tabulated in two

ways. Overall accuracy is simply the overall number of

correct classifications divided by the total number

attempted. Average-by-class accuracy is obtained by

first computing the accuracy for each class and taking
the arithmetic average of the class accuracies. The
latter is significant when the classification results
exhibit a tendency to discriminate in favor of or against

a subset of the classes.
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Figure 5. Results of contextual classification
using iteratively estimated context distribution
(simulated data set 2a).
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The best classification on the first iteration was ob-
tained for p = 3 (two nearest neighbors), which was
also the case for tha second iteration. On the third
iteration, the p = 5 (four nearest neighbors) choice
was deemed best. Finally, by the seventh iteration,
the p = 9 (eight nearest neighbors) choice was con-
sidered best. 1In this case, the overall accuracy was
slightly less than for the p = 5 choice (88.2 percent
versus 88.6 percent), but the average-by-class accuracy
was better by a larger margin (68.1 percent versus
67.4 percent).

This implementation of the bootstrap technique in-
volves a larger number of classifications, usually three
or more per iteration. A simpler approach would be to
do just one classification per iteration and increase
the number of nearest neighbors used for each j.eration.
As shown in Figure 6, for data set 2u *'ie final result

using this method was virtually the same as for the more

involved procedure.

It was wondered just how much of the accuracy improve-
ment was due to a bet:cr estimate of the point-by-point
prior probabilities. After five iterations doing
O-nearest-neighbor classification, the improvement in

overall accuracy saturated at £0.3 percent, but the
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Figure 6. Contextual classification results based on

simplified iterative technigque (simulated data set 2a).
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average performance by class had degraded to 46.9 percent.
This compares closely to the 0O-nearest-neighbor classi-
fication done using the context distribution determined
from the reference template, which had an overall accuracy
of 80.8 percent and an average performance by class of
48.3 percent. It appears from this result that the con-
text serves to improve the overall performance compared

to that of the 0-nearest-neighbor result while resisting

degradation in average-by-class accuracy.

Real Data Experiments

Having observed excellent performance of the contextual
classifier on simulated data, the next step was to see
how well it would perform on real data. A 50-pixel-square
cegment of Landsat data was chosen which included approxi-
mately equal amounts of urban and agricultural arca
located to the southeast of Bloomington, Indiana.
Statistics for the spectral classes were estimated using
the 1l00-pixel~sguare area centered cn the 50-pixel-square
segment. A very careful classificat.on using 14 spectral

classes was performed to delineate agricultural, urban

S ETTT TN N T

ond forested areas. As there were too few forested
pixels to delineate forest test areas reliably, the
classification was tested only for accurucy in classify-
ing the agricultural and urban classes. Out of the 2500

pixels in the segment, a total of 867 pixels were manually

" . AU

£
RS- < ipea it WA

e il sty - e st



interpreted as agricultural and 450 pixels as urban.
The identificution was made by interpretation of color
infrared photoaraphy taken by aircraft on the same day
as the Landsat pass.

The results from using the full bootstrap technique
on this data set were not nearly as favorable as the
results obtained from the simulated data. See Figure 7.

The no-context classification using uniform prior
probabilities had an overall accuracy of 83.1 percent
and an average-by-class accuracy of 82.7 percent. The
best classification obtained using this result as a
template to estimate the context distribution was a
p = 2 (one-nearest-neighbor) classification based on
the neighbor to the "north" (85.2 percent overall,
84.7 percent average-by-class). Interestingly, the
one-nearest-neighbor result based on the neighbor to
the "west" produced a slightly poorer classification
(84.2 percent overall, 83.8 percent average by class).
No apparent features in the scene would account for the
difference (i.e., we seen by eye), raisinag a new issue
yet to be pursued.

The second iteration was performed using the one-

nearest-neighbor (north) classification from the first

e e e i L e v Lt s R
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Figure 7. Contextual classification of BRloominaton

data using the unmodified procedure for estimating

the context distribution.
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iteration for estimating the context distribution.

Here the two-nearest-neighbor ’(neighbors to the "north"
and "west") classification was the best with an4overa11
accuracy of 85.2 percent and average-by-class accuracy
of 84.7 percent). The best classification for the third
iteration was again the one-nearest-neighbor (north) case
with 85,3 percent overall accuracy and 84.8 percent
average-by-class accuracy. The fourth iteration pro-
duced no improvement. The context classifier thus onlv
yielded just over two percent improvement in both over-
all accuracy and average-by~-class accuracy.

In order to assess the sensitivity of these results
to the accuracy of the template used to estimate the
context distribution, a manual “cleanup" of the original
template was performed. as follows: Change thc classi-
fication of all incorrectly classified points in the
test areas in the original point-ty-vnoint uniform priors
classification to the closest spectral class in the

correct information class as observed by means of a

cross-plot of Landsat bands 2 and 3. Where either of

two spectral classes might have been the correct class,

a coin was tossed to decide the assignment. The context

distribution was then estimated from the ¢cntire modified

classification incl iding both test and non-test areas.
The first iteration using this modified classification

as template produccd excellent results (Figure 8). The




P = 9 (eight-nearest-neighbor) classification produced
an improvement of over 10 percent to 93.8 peréen; in

overall accuracy and over llrpercenf to 93.6 percent in

average-by-class accuracy (compared to theicbﬁventiongl

point classifier with uniform prior probabilities). A

second iteration was performed using a context distri-

g A

bution estimated from a similarly modified eight-nearest-

neighbors classification from the first iteration. WNo

further improvement in accuracy was observed, suggest-

b i i i

ing that this iterative process "saturates" very quickly.

Both the "full bootstrap" technique and the manual

"cleanup” method were also applied to an agricultural
Landsat data set from Kansas. The results were consis-
tent with the results just described for the Bloomington
data [16]. The full bootstrap method netted only a two

percent improvement in overall accuracy for an eight-

nearest-neighbors classification. The manual cleanup
of the template classification led to a nine percent
improvement (again for eight-nearest-neighbors).

The excellent results produced by using the context
distribution estimated from the manually modified point

classification suggest the folldwing approach for clas-

sification using context:
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Figure 8. Performance usinag manual template
correction for estimating the context distri-
bution (Bloomington data).
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4. SUMMARY AND CONCLUSIONS

The proposed model for a classifier which utilizes
contextual information is a géheraiizationLSf'thé fa-
miliar maximum likelihood classifier. Experimental re-
sults based on simulated multivariable data have demon-
strated that use of contextual information will signi-
ficantly improve classification accuracy when the data
satisfy the assumptions underlying the classifier model.
Results for real data have shown that the obtainable
accuracy improvement is dependent, as might be expected,
on the accuracy with which the context distribution is
known. Although satisfactory results have been achieved,
it is clear that further work on ways to improve the
context estimation will pay dividends.

The computational demands presented by the contex-
tual classifier are not inconsequential. Fundamentally,
the time and space complexity of the method are propor-
tioned to mp, where m is the number of classes and the
context array (including the pixel to be classified)
has p cells. Clever implementation schemes are helpful
in reducing both the computation time and memory re-
guired, but a more practical way to address the problem
may be through the use of multiprocessor systems [15].
Measures of "context richness" of a scene would also
allow for selective us of the contextual classifier

only when significant benefits are likely to be obtained.
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where G(gP), the context distribution, is the relative

frequency with which g? occurs in the array g and GP is

the pth component of g?. Notice that Ré depends on §
only through c(g?). Hriting equation (4) in more detail
ané invoking the class-conditional independence assumption,

equation (1), we have

P
- P P P
Ry Z G(8 )fmep,dt;g ”,_77,19"‘1’91""5

2 oPeqP
-f Z G(eP)L(o ,a(xpnﬁ'p(x {e,)axP (5)
gPeaP - P T TS

vhere the product is over the components X, of *P.  For
any array 9, a decision rule d(gp) minimizing Ry can be
obtained by minimizing the integrand in equatis; {5) for
each XP; thus for a specific X;; (an instance of xPy, an

J
optimal action is:

d(;ij) = the action (classification) a which minimizes

V p
Z eP 8,).
ePc.szPG(' )Llep,a}ilrlp(xil {)
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