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1. INTRODUCTION

In the practical applications of pattern recognition such as in the classifi-
cation of remotely sensed multispectral scanner (MSS) imagery data, it 1is
usually difficult to obtain labels for the training patterns. The labels for
the training patterns are provided by an analyst-interpreter (AI), who
examines the imagery film ard uses ancillary information (such as historical
information, cropping practices, and crop calendar models for agricultural
imagery). Very often these labels are imperfect, and acquiring labels for the
training patterns is costly.

In the literature, several researchers investigated the problem of pattern

recognition with imperfectly Tabeled patterns. Kashyap (ref. 1) proposed an

iterative training procedure for a two-class case. Shanmugam and

Breiphol (ref. 2) developed an error-correcting procedure for disjoint densi-

ties using Parzen density estimators (refs. 3-6). Chittineni (refs. 7-9)

investigated the problem of learning with imperfectly labeled patterns and

studied the applicability of probabilistic distance measures for feature

selection with imperfectly labeled patterns. Most of these proposed :chemes )
require the knowledge of probabilities of label imperfections, which usually

are not available.

Several scientists considered the problem of estimation of recognition system
performance (refs. 10-15). Highleyman (ref. 12) investigated the problem of
estimating the probability of error of a given classifier both for known and
unknown a priori probabilities. Fukunaga and Kessell (ref. 13) examined the
problem of estimating the probability of error using unlabeled samples.

Chow (ref. 14) established a relationship between error and reject rates,
which is useful in estimating the probability of error using unlabeled
samples. Chittineni (ref. 15) investigated the problem of estimating recogni-
tion system performance and probabilities of label imperfections as maximum

1ikelihood estimates from the classifier decisions of Tabeled and uniabeled
patterns.

v
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It is the purpose of this paper to present schemes for estimating the
probabilities of Tabel imperfections and correcting the labels of mislabelnd
patterns with the specified prohability that the label correction scheme aives
a bad Tabel to a pattern. It is assumed that a set of imperfectly labeled
patterns and a set of unlabeled patterns are given. The proposed schemes use
Parzen density estimators and both imperfectly Tabeled and unlabeled pattern

seta.

ihe paver is organized in the following manner. Section 2 presents a modei
for label imperfections and develops relationships between the densities, with
and without imperfections in the labels. Section 3 develops a scheme for
estimating the probability of label imperfections using Parzen density esti-
mators and presents experimental results i% the processing of remotely sensed
M5S imagery data. Section 4-1 presents a thresholding scheme for the correc-
tion of pattern mislabels; in section 4-2, a relationship between the probabi-
lity that the label correction scheme gives a bad label to a pattern and the
probability that it accepts the original Tabel of a pattern is developed for a
symmetric mislabeling case. In section 4-3, an example is presented for nov-
mal distributions having equal a priori probabilities and equal covariance
matrices to illustrate the behavior of the mislabel correction scheme.
Conclusions are presented in section 5. In appendix A, a relationship is
developed between the Bayes probability of errors with and without imperfec-
tions in the labels for symmetric probabilities of label imperfections. For a
two-class case, bounds are presented on the probability of error without
imperfections in the labels in terms of label imperfection probabilities and
propability of error with imperfections in the labels. These bounds are shown
to become identities when the imperfections in the labels become symmetric.

In appendix B, a thresholding scheme is proposed for the correction of
misTabels when 8 < b.

Lh____u,, e



2. A MODEL FOR LABEL IMPERFECTIONS

Let w and w' be the perfect and imperfect labels, respectively, each of which
takes the values 1,2,+¢+,M, where M is the number of classes. Let P(w = i)

: and p(X|w = i) be the a priori probabilities and the class conditional densi-
ties, respectively, of the patterns in classes w = i. The imperfections in
the labels are described by the probabilities

j) 5 i’j = 1,2"'°)M (1)

"

"

8y5 = Plo' = ilu

where 1 and j indicate class. We have the constraint
i ) 2
12;,163-1.-1 (2)

It is assumed that
p(Xlw = j) = p(Xjw' = 1,0 = j) (3)

That is, the density of a pattern, given its true label, does not depend on
its imperfect label. To obtain a relationship between p(X|w = 1) and
p(X|w' = i), consider

M
p(XJu' = 1) ='p‘(w-l1—=‘§TJ§1 p(X,0' = 1,0 = j)

=W‘lTi')"Jzz-; p(XJw' = i, = J)P(u' = ilw = J)P(w = j)
1 i . .
ey 2 fiif(e T el = ) (4)

Cross-multiplying and dividing equation (4) by p(X) establishes the relation-
ship between a posteriori probabilities:

M
plo’ = 1[X) = 25 B5;p(w = §|X) (5)
j=1

Similarly, the a priori probabilities are related as follows.

1
5
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p(wl = 'i) = E B._p(w = Qj) (5»)
jo1 9

Inverting equatior 4) yields the following result for a two-class case.

Pla = 1)p(Xlw = 1) = £ [8;;P(" = Dp(Kla’ = 1) = 8P’ = DKl = )]

i,§ = 1,2 ()
P4

o0

similarly, for the a priori and a posteriori probabilities,

Plo = 1) =5 [B,Ple' = i) -~ BP' =§)] 3 1,j=1,2 (9)
A J\] !]1 1‘:# J'
plw = 1[X) ==%[8ij(w' = {[X) - .plw' = JIX)1 5 1,j=1,2 (1)
For a symmetric case, when
then A= (28 - 1) (12)

Frem equations (7), (11), and (12),
[Pl = 1)p(Xlw = 1) = Plw = 2)p(X|w = 2)] = TZ—B—E—U [P(w' = 1)p(X[e' = 1)

- Plu' = 2)p(Xlw' = 2)] (13)
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3. ESTIMATION OF LABEL IMPERFLLTION PRORABILITIES

In this section, the problem of estimating probahilities of label
imperfections Bji is considered. It 1is assumed that a set of patterns
X;(3)s J = 1,2,+++,N; is given with imperfect labels w' = i, i = 1,2,¢++,M,
and a set of unlabeled patterns Xj, J= 1,2, ,No It is also assured that
the a priori prohbabilities P(w' = i) of the imperfectly labeled classes are
available.

3.1 ESTIMATION OF BAYES PROBABILITY OF ERROR

The risk incurred by the Bayes classifier is the minimum risk that can be
achieved. The labeled and unlabeled samples can be used to estimate the Bayes
probability of error as follows: Let p(X) be the mixture density function.
That is,

p(X) = Pl = 1)p(Xjw = 1) + P(w = 2)p(XJw = 2) + «»+ + P(w = M)p(X[w = M)
(14)
where values for P(w = i) are the a priori probabilities and tnose for
p(X|w = i) are the class conditional densities. The Bayes classifier classi-
fies a pattern X into a class, the a posteriori probability of which is

largest. When X is classified according to the Bayes decision rule, the con-
ditional probability of error is

r(X) =1 - max[pw = i|X)] (15)
1

The Bayes probability of error is then given by

P = ECr(X)1 = f r(X)p(X)dx (16)
Thus, if we know r(X) as a function of X, the Bayes probability of error P,
can be estimated by the sample mean r(X;) of N test patterns as

- 1 N
pe '—"N- . Y'(X) (17)
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Wi Xy is drawn from the mixture density and the labels of X; are not
needed,  The astamate of eguation {17) is unbiased; that is,

Voo PP £10
| P, EP,) (1}
since 0 < r(X) ¢ ﬂﬁﬁﬁl 11y
] The variance of P_ is given by
e 2 2
- E[r(X)] - Pé
Var (Pe) = v
P{(1-P) P
= SRR (20)
- N MN
N Pe
The variance of PP is at least Vi less than the variance of th% error)esti-
; pPA(1 ~P
mate, based on counting misciassified labeled test patterns =L L. This

N
is because the error count estimate gives a binary quantization of the error

on the test pattern while r(X) assigns a real value. To use equation (17) in
estimating the Bayes probability of error, knowledge of the risk functior is

& required. The risk function r(X) can be obtained using density estimators for
class conditional densities.

3.2 PARZEN ESTIMATE OF r(X)

Given a sequence of independent, identically distributed, random n-dimensional
vectors Xq,Xg,ee,Xy from a distribution with probability density function
F p(X), the Parzen estimate of p(X) is given (refs. 3-6) by

‘ X - X.

! 1 j
(X)) = — 3k 21
Py%) O NRES! (”(M) (1)

With the proper choice of the weighting function h(N) and kernel K(:), py(X)
tends uniformly in probability to p(X). Choosing a normal kernel

3

X - X. -n/2,1/2 1/n
h(N)'”K( h(N)T) 2 {m) "N exp[— Y - XT.)Tz'l(X - x].):l (22)

i

3



where 1 1s the sample covariance matrix of the data. The Parzen estimate of
the conditional error for any X is given by

Pl = i)pN'p(lei)
1
rolX) = 1 = max | g Ty X S Iy T PO E W TN S
i N1 NM

(23)
3.3 ESTIMATION OF Bij IN THE MULTICLASS CASQ
Let
Ri1 P21 - BMﬂ
R12 R22 *** PM2
8 = .
RIM BoMm  *°* PmM
- T (24)
Pulx = [plw = 11X} ,plw = 2]X),eee,plw = MIX)]
Porix = [P(6' = 1IX),pla’ = 21X),eee,p(n’ = MIX)TT
& = B'1
From equations (5) and (24), we obtain
meX = 6pw'lX (25)

Now the problem of estimating probabilities of label imperfections fij is for-
mulated as foll~ws.

Find: R,

ij? i,j = 1,2,+++,M such that Py is minimized, where

.U
]
z}r—'

N
{ 2: maxfp(w = i\Xz)]} (26)
2=1 i




subject to the constraints

M
;Ei Rji =1 > j = 1,2,000,M 2
1=

(27)

and 0« Bji 3 1,3 = 1,2, .M j

From the given set of imperfectly labeled patterns and unlabeled patterns,
various quantities in equation (26) are estimated as follows.

N, 1/n
-n/2 i N;
piXlet = 1) = B8l 5 ep - - % (077550 - X ()
HAN EA S \
(28)
where I is the sample covariance matrix of the patterns in the class o' = 1.

b= ilX) = Plw' = 1)p(X|w' = i
plo i[X) = Plu' = Tp{XJw’ =3) + Plw’ ggﬁ)p}X?w' g 2) l)--- + Plo’ = M)p(XTw" = M)

(29)

and plw = i]X), i = 1,2,+++,M, is obtained from equations (25), (28), and
(29). The estimates of R;; that minimize Py subject to the constraints of
equation (27) can easily be obtained using optimization techniques such as the
Davidon-Fletcher-Powell procedure (refs. 16-18).

3.4 ESTIMATION OF gq;IN THE TWO-CLASS CASE

From equation ¢iJ), in a two-class case the Bayes risk r{X) becomes

r(X) = minlplw = 1IX),plo = 2|X)]

1

= %.- %-p(m = 1|X) - plw = le)l
1
Z

- l[(a + R )plw' = 1IX) = (Ryqy + R, )plw' = 2]X)]
21 1 U - -
77 TR * By - r{zeta’ = 100+ ayy - 8y -1 (30)

For a two-class case, the problem of estimating Bij may now be formulated as

follows.
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Find: 811,622

such that Pe is minimized, where

N
=1 1 1 - i ]
# Pe =2 2B F 8, - I N ;é% |C2p( 1X;) + Bpy - Byq - 11| (31)

subject to the constraints

0 <8y <1 (32)
05322515
‘ The a posteriori probability p(w' = 1|X), can be estimated using
equations (28) and (29). The probabilities of label imperfections

Bi; (i = 1,2) that minimize the P, of equation (31), subject to the con-
straints of the inequalities in equation {32), can be easily obtained using
an optimization technique such as that of Davidon-Fletcher-Powell. Experi-
mental results in processing remotely sensed MSS data are presented in the
next section.

3.5 EXPERIMENTAL RESULTS

In this section, some results are obtained by applying the theory presented in
the previous sections for estimating the probabilities of Tabel imperfections
in processing remotely sensed Landsat MSS imagery data. The images are of a
5- by 6-nautical-mile area called a segment. The image is divided into a rec-
tangular array of pixels, 117 rows by 196 columns. The images are overlaid

with a rectangular grid. Two classes are considered: class 1 is wheat, and
class 2 is "other." The pixels at the grid intersections are labeled by an Al
using film products of the images and ancillary data such as historic informa-
tion and crop Jrowth stage models. These labels are imperfect labels. Also,
ground truth (GT) labels, which are the true labels for these pixels, are
acquired. Twelve features and 836 unlabeled patterns are used. The numbers
of imperfectly labeled patterns in each class are listed in table 3-1, and the
a priori probabilities P(w' = i) are estimated from the number of imperfectly
labeled patterns in each class. The Davidon-Fletcher-Powell optimization
methcd is used to estimate B by minimizing P, of equation (31) subject to

e
7
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TABLE 3-1.- COMPARISON OF ESTIMATED LABELING ACCURACIES WITH THE ONES COMPUTED FROM GT LABELS

No. of Al
labeled patterns

Probabilities of label imperfections P(w'=ilw=j)

l]
jv2

T o> 1

Segment Description
Wheat Other Estimated using. Computed from comparison
proposed method of AI, and GT labels
1231 Jackson County, 71 25 0.9586 | 0.0414 0.9315 | 0.0685
OkTa.
0.1330 | 0.8670 0.1304 0.8696J
1520 Bigstone County, 20 71 0.8629| 0.1371 0.7917 | 0.2083
Mont. ,
0.0363 | 0.9637 0.0150 | 0.9850
- %




the constraints of inequalities set out in equation (31). Table 3-1 summa-
rizes the estimated labeling accuracies using the method proposed in the paper
and computed labeling accuracies using AI and GT labels.

From table 3-1, it is seen that the Tabeling accuracies estimated using the
proposed method are in reasonahle agvensunt with the ones computed from the GT
1 labels. Also, it is to be noted tha , «' %ough the GT labels of remote sens-
ing data are fairly accurate, they ar. ¢ nerfect.

4




4. MISLABEL CORRECTION WITH SPECIFIED PROBABILITY OF BAD LABELING

In this section, the problem of identification and correction of mislabels of
patterns using unlabeled patterns is considered. In particular, thresholding
schemes are proposed for the identification and correction of mislabels. A
relationship is developed between the probability that such a scheme gives a
bad label to a pattern and the probability that the scheme accepts the
original label of the pattern. This relationship could be used in computing
the threshold with a specified probability of bad labeling. It is assumed
that the probabilities of label imperfections are symmetric. That is,

PR s T E bRl (33)
and b=28,. 5 i,J =1,2,00¢,M

i#j

It is also assumed that Bij is estimated using a technique such as the one in
section 3. The following thresholding scheme is proposed when g > b. The
case when 8 < b is treated in appendix B.

4.1 A THRESHOLDING SCHEME FOR MISLABEL CORRECTION WHEN R > b

For the identification and correction of mislabels of the patterns when R > b,
the following scheme is proposed.

Change the label of X to w = i whenever

max[p(w' = i|X)]1 > 1 -t (34)

i
where t is some threshold; otherwise, do not change the label of X. That is,
the label of X is changed whenever there is enough confidence in the thresh-
olding scheme to change the label. (Section 4.2 discusses the computation of
t.) Define a random variable U(X),

U(X) = maxlp(w' = i}X)] (35)

i

Let Vpc () be the region of the feature space over which, for a particular
threshold t, the original label of pattern X is accepted. That is,

.

I'd

/L;L
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Ve (8) = [XJU(X) ¢ (1 - t)] (36)

DCL

Let Ppc (t) be the probability that the thresholding scheme will not chanqe
the label of a pattern at threshold t and the probahility that a pattern lies
in the region Vg (t). Using the above label correction scheme, whenever the
label of a particular pattern X is changed, Tet PBL(t) be the probability that
a bad label will be given to a pattern. The threshold t can be determined by
specifying the Pg . A relationship between Ppey (t) and PgL(t) which can be
used to compute the threshold t using unlabeled patterns is developed 1n the
next section.

4.2 A RELATIONSHIP BETWEEN Pp (t) AND Ppep (t)

In this section, a relationship is developed between P (t) and Pppy (t) for
symmetric probabilities of label imperfections when 8 > b. Suppose that the
threshold is decreased from t to t - At. Then let the region Vpe (t) be
expanded from Vpco (t) to Vpor (t - At). At threshold t, the labels of the pat-
terns in the incremental region AVppp (t) are changed; but, at threshold
t - At, they are not changed. The patterns in the region AVpe (t) satisfy the
relation

(1 - t)p(X) < max[P(w' = i)p(X[u' = )] ¢ (1 -t + at)p(X) (37)

i

Let APpc (t) be the increment in the probability Ppep (t). It is also the
probability that a pattern Ties in the region aVppep (t). That is,

ap o (t) = p(X)dx (38)
DCL
AVDCL(t)

Let APp (t) and APp (t) be the increments of the probability of correct label-
ing and of the probability of bad labeling, respectively, when the threshold
is decreased from t to t - At. Because in the increase of region Vpc (t),
there will be a decrease in the probabilities P (t) and Pg (t). When B > b,
Apcp(t) and AP (t) can be written as

-APCL(t) = A{;CL(t) m?x[P(w = i)p(X|w = 1)]dx (39)

e
2



1 and apy (8) = S [1 - max plo = i[X)Ip(X)dx (40)
AVDCL(t) i

In the region aVpei (t), the probability APy (t) can be split into two parts:
(1) the decrease in the probability of correct labeling of a pattern APg (t)
and (2) the decrease in the probability of bad Tabeling of a pattern

] APg (t). That is, from equations (38), (39), and (40), we obtain

APDCL(t) = -APCL(t) - APBL(t) (41)

Consider

M
plo' = i[X) Z Bjip(“’ = §}X)
J=1

Bp(w = 1]X) + b %1 p(w = §|X)
3
(8 - blp(w = i[X) + b (42)

From equation (42), we oh*ain

[pw = 1]X)7 = 7 [P’ = §[X)] - 72 43
m?x plw = [X) 1G] m?x p(w i[X) T8 - b)Y (43)

Using equations (39) and (43) in equation (40) yields

J max[p(a' = 1]X)Ip(X)dx = (8 - b)aPy (t) + B AP~ (t)  (44)
. . BL DCL
AVDCL(L) i

; Therefore, from equations (37) and (44), in the incremental region aVpe (t),
we have

At APna (E)
1-8-1t) (1-t-8 DCL
s By APpey () S 4P (L) <~ -"b}"l APpoL (8) + — =By
(45)

Summing equation (45), with t steadily decreasing from t to 0, yields the
following.
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E L‘(s'_-‘ETlAPDCL(t) <L APy (t)

CE Ry AP (8 TR )

If we lTet At tend to zero, the last sum of the above equation vanishes,

rasulting in
Py (t) = ft i—————m-ll B = E)ap L (E) (47)
BL 0 (B - peLY” !

Cquation (46) shows a relationship between Pnpey (t) and P (t). Once the
densities are estimated from the imperfectly labeled patterns, Ppp (t) can be
computed from the unlabeled samples. For a specified Pp , equation (47} can
be used to compute the threshold t.

4.3 AN EXAMPLE

The mislabel correction scheme presented in section 4.1 does not change the
label of pattern X whenever max ple' = i[X) < (1 - t). For a two-class case,

3
the region of Vpc (t) also can be described as those X-values for which the
following relation is satisfied:

t Plw' = 1)p(X|w' = 1) 1-t
-t P =2 e =2) ${°% (48)
Using equation (4) for a symmetric mislabeling case, equation (48) can be
written as
t - (1-8),Pw=1pXw=1) B -t
-t SPe=2pNe=2 St- (T -8y (49)

For this example, it is assumed that the a priori probabilities are equal and
the class conditional densities are Gaussian with equal covariance matrices.
That is,

Plw = i) = 0.5 (50)
p(XIw = i) ~ N(Miaz)

i=1,2

>
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Let v(X) = Tog[hte HeX e = ]
= XTz7hmy - my) - %—(M'{):'IMI - M;x“lmz) (51)
Let s2 = (M) - M) TE7hiwy - ) (52)

where s is the Mahalanobis distance between the pattern classes.

Since v(X) is a linear combination of Gaussian random variables, it is also
normally distributed. The class conditional densities of v(X) can be written
as

pLV(X) lw = 11 ~ N(F s%,s9) )

(53)
PLV(X) lw = 2] ~ N(- & sz,sZ)J
Then the probabilities Ppc (t) and Pg(t) can be computed as foliows:
Llet
- t-(1- a)]
by = 109 [ -t
L, = 10 Bot
2 99 TR
= 1 1.2
=_5_1 B - t
- - - bl b
and

o
1

s 1 B -t
o “s‘1°9[‘£TT1'TTY]

Consider the following.
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L 2

2 2
Pogy(£) = |Plo x 1) [ PLuCH) o = OV + o = 2) f pLv(X) o - ?Jd{véxﬂi
g %1

0.5

L}
o
L ]
o

]
©
—
o

where ¢ (a) =

Similarly, fo
bad label can

(55)

[P et

X3

r a two-class case, the probability that the algorithm gives a
be written as

_ _ Plw=1p(Xlw=1) ,t - (1 -8) o)
=Pl = P [0 ¢ ptE TRty ¢ e [ 1]
1.2
-2 )
=0-SJ > de(a)ds+f ¢ (£)dg
1.2

S

fa o(E)dg + fm ®(&)de

-0 —a

i}
S
o
e

(7
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Figures 4-1 through 4-4 show the plots of Pp versus t, Pppp versus t, in
versus t, and Pg versus Ppcy, respectively, for values of g8 = 0.95, 0.91,
0.85, and 0.81 and for values of s = 1, 2, 3, and 4. Thc tip of the arrow
points to the direction of increase in the value of 8. From fiqure 4-1, it is
seen that for a specified Pg; the threshold t increases with the increase in

the probability of imperfections in the labels or with the decrease in the
value of B.
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Figure 4-1.- Plot of probability of bad label, Pp» versus threshold t.
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Figure 4-2.- Plot of probability of not changing the label, PheL s
versus threshold t.
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Figure 4-3.~ Plot of probability of giving a correct label
versus threshold t.
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5. CONCLUSIONS

In the practical applications of pattern recognition, obtaining labels for the
training patterns is expensive, and very often these labels are imperfect.
Schemes are presented in this paper for the estimation of probabilities of
label imperfections and correction of mislabels.

The risk incurrad by the Bayes classifier is the minimum risk that can be
achieved. The conditional risk r(X) can be obtained as a function of X, using
estimated densities from the labeled patterns. The probability of error can
be estimated as an average value of r(X) over the unlabeled patterns. The
resulting estimated probability of error has less variance when compared to
the variance of the error estimate based on counting the misclassified labeled
test set. Using the relationships between the probability densities with and
without imperfections in the labels, the problem of estimating the probabili-
ties of label imperfections is formulated for the two-class and multiclass
cases as that of minimizing the Bayes probability of error with prcbability
constraints. Optimization techniques, such as the Ravidon-Fletcher-Powell
procedure, can be used to estimate the probabilities of label imperfections.
Experimental results from processing remotely sensed MSS imagery data are pre-
sented. The estimated probabilities of label imperfections using the proposed
method and the probabilities of label imperfections computed using the imper-
fect (Al) and the GT labels are in good agreement.

Thresholding schemes are proposed for correcting mislabels of the patterns.
Whenever there is enough confidence in the scheme (as determined by the
threshold), the correct label of the pattern is determined. A relationship
between the probability that such a scheme will give a bad label to a pattern
and the probability that the scheme will accept the original label of the pat-
tern is developed for a symmetric mislabeling case. This relationship could
be used to compute the threshold from the relatively inexpensive unlabeled
patterns, for a specified probability of bad labeling.

43



An example is presented for Gaussian distributions with equal covariance
matrices and equal a priori probabilities. This illustrates the behavior of
the probability that the scheme gives a bad label, the probability that the
scheme gives a correct label, and the probability that the scheme accepts the
original label. A1l are functions of the threshold, of various probabilities
of label imperfections, and of different Mahalanobis distances hetween the

classes. The trade of curves between Py and Ppc are presented for this
example.

For a two-class case, bounds are presented between the Bayes probabilities of
error with and without imperfections in the labels. Furthermore, it is shown

that these bounds hecome identical when the imperfections in the labels become
symmetric.
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APPENDIX A

BAYES ERROR PROBABILITIES WITH AND WITHOUT
IMPERFECTIONS IN THE LABELS

The Bayes risk in classifying a pattern X can be written as

r(X)

1 - max[p(w = 11X)] (A-1)
i

and r'(X) = 1 - maxLp(v' = iiX)] (A-2)
i

where r(X) is the conditional error with the densities without label imperfec-

tions and r'(X) is the conditional risk with imperfections in the labels. The
probability of errors can be written as

Py = Ep(X) Cr(X)] (A-3)
: (- ' _
ang Py = Ep(X) [r'(X)] (A-4)
where E is the expectation operator. For symmetric probabilities of label

imperfections of equation (33), theorem A-1 gives the relationship between the
error probabilities P, and Pé.

Theorem A-1: If the probabilities of imperfections in the labels are symmet-
; ric, as given in equation (33) and 8 > b, then the Bayes probability of error
with and without imperfections in the labels are related as

"
Pe = (R - DbIP + (1 -p) (A-5)
Proof: From equations (5), (33), (A-1), and (A-2), we obtain

M
r'(x) =1 - max[:fz gjip(m = jiXﬁ =1 - {(g8 - b)max[p{w = iIX)] + b}
i [§=1 i

i

1 - {{Rg - Db)1 - r(X)] + b}

i

(B = b)r(X) + (1 - B) (A-6)

),4/
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Taking exceptions on both sides of equation (A-6) yields equation (A-5).

For two-class symmetric probabilities of label imperfections, the error
probabilities are related as

= (28 - l)Pe + (1 - 8) (A-T7)
If the label imperfection probabilities are not symmetric, the Bayes errors
depend on the particular probability density functions of the patterns. How-
ever, for a two-class case, the following bounds are obtained between P, and

Pé and are shown to be an identity of equation (A-7) when the imperfections
in the labels become symmetric.

A.1 LOWER BOUND ON Pe
Case (a): 311 > B22

Consider the case when By > Boos From equation (8), we obtain

[Plw = 1)p(Xjw = 1) - P(w = 2)p(X|w = 2)]
=2 [y *+ 8p)PW = p(Xla' = 1) = (By; + 85y P(w’ = 2)p(X[u' = 2)]
=a [Plw' = Dp(Xjw' = 1) = Plw' = 2)p(X|w' = 2)] - asPlu' = 2)p(X[w' = 2)
(A-8)
“Big + Boy + 1
where ay = 811 T 822 T >0
11 22 ~
( \ (A-9)
2(B,, - B
and ay = gl 5 0
Define the regions Ql and 92 as
2, = (X|P(o’ p(Xlw = 1) > Plu' = 2)p(X[w' = 2)} (A-10)
and 2, = {X|P(a' = 1)p(Xlo' = 1) < P(u’ = 2)p(X|u’ = 2)} (A-11)

A7




Let 211 and 2, be subsets of region 295 where

211 = {X[alfP(m' = 1)p(X|w' = 1) - P(w' = 2)p(X|u' = 2)]

> a2P(m' = 2)p(Xjw' = 2)}

and 27, = (X|ay[Pl’ = 1)p(X|o' =1) - Plu’ = 2)p(X|u’ = 2)]

> ozzP(w' = 2)p(x|w' = 2)}
a 1 +8,, -8B
Let %3 % & +1a . 322 - 311 <1
172 11~ 22
In terms of a3, the regions 2,; and 2,, become
2y = {XlagPle' = 1)p(Xlo' = 1) > P’ = 2)p(Xlu' = 2)}
and 0y, = (XlagPl' = Dp(xle’ = 1) < P’ = 2)p(X[u’ = 2)}

(A-12)

(A-13)

(A-14)

(A-15)
(A-16)

From equations (A-8) through (A-16), equation (A-17) is obtained.

[ 1P = 1)p(Xlw = 1) = Plw = 2)p(X|w = 2)|dx

= ay é [Plo' = 1)p(Xju' = 1) - P(u' = 2)p(X|w' = 2)[dx + o é Ple' = 2)p(X|w' = 2)dx

2 2

toy [ [Pl = Dp(X|e* = 1) - P(o' = 2)p(X|w' = 2)|dx - o) [ P(u'
Q Q
11 11
-ay [ [Ple' = 1)p(Xfe' = 1) - P(u' = 2)p(Xfu' = 2)|dx + & [ P(u'
Q 1}
12 12

=ap [ [P’ = 1)p(Xj' = 1) -P(a’ = 2)p(X|u' = 2)|dx + ayP(u* = 2)

- Zal £
12

14

"

2)p(X|w' = 2)dx

2)p(Xlw' = 2)dx

IPl' = 1)p(X]u' = 1) - P(a* = 2)p(X|u' = 2)[dx - 2a,P(o' = 2) ‘{11 p(Xlu' = 1)dx

(P-17)
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The reqions iy, and iy, are illustrated in fiqure A-1. For a two-class case,
from equations (A-1) through (A-4), the following relationshins are develnped.

P, = % - 51 1P = Dp(Xle = 1) = Plw = 2)p(Xls = 2{dx (A-18)

and

Pe ='% - %‘f Plo’ = 1)p(Xlw* = 1) - Pl = 2)p(X|u' = 2){dx (A-19)

Using equations (A-18) and (A-19) in equation (A-17) yields the following.

[#
%=L%-%al-zgpm'=2)+aﬁ%4w%ww'=2)é p(X|w' = 2)dx
11
tap [ P = Dp(Xle' = 1) = Pla’ = 2)p(X[u' = 2)|dx
Q
12

N 1 _ 1 ("Bll + 622 + 1) } (Bll - 822) Pla' = 1) N ('ell + 822 + 1)
2277 By vByp - 1) T TByy By - 1)

(A-21)
When the imperfections in the labels become symmetric, it is easily seen that

a9 = 0 and the region 29, becomes the null set. The inequality of equation
(A-21) then becomes equal and is identical to equation (A-7).

Case gb}: 311 <822

Consider the case when 811 < 622. Let

L 2P Bt
1 By +Byp -1
( ) (A-22)
2(8.,, - B
and ap = 22 . 11 r
11 * B2 -

-~
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Proceeding as before, we obtain

a a
oo SER h vay

+ alf [P’ = 1)p(X|w' = 1) = Pu' = 2)p(X|w' = 2)|dx

22
+a2P(m‘ = 1) [ p(X|w' = 1)dx
2
JL_ 1Bn -t ) (B -fy) gy PPt
“Z 2y FBp - 1) Ty By - D) B11 ¥ B - 1) e

(A-23)

The regions 921 and R,y are illustrated in figure A-2.
When the imperfections in the labels are symmetric, it is easily seen that
ap = 0, and the region Y becomes the null set. The inequality in equation

(A-23) then becomes equal and is identical to equation (A-8).

A.2 UPPERBOUND ON P,

Case gaQ: 811 > 622
Let ) = (2322 - 1)

(A-24)
and ap = 2(By1- Bpp)

Proceeding in a manner similar to case (a) of section A.1l, the probability of
errors P, an Pé are related as follows.
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Flw' = 2)p(X|w' = 2) /P(w' = Dp(X|w' = 1)

1 -84, +8
...... 11 22 - PR
. (1 81y - 322>P(N' 1)p(Xio 1)

-
S,
“a
.....
-
-------
LTS

12— 11 >
< € >
Figure A-l.- I1lustration of regions 219 and 219 for the Tower

bound on Pa when Bll > 322.

(1-897 +8pp)
(1 +8y1 - Bpp)

Plo' = 1)piXlw' = 1)

Pla' = 1)p(Xlu' = 1)

< 221 >

<« 9

Figure A-2.~ I1lustration of regions Q21 and 2, for the lower
bound on Po when 811 < 322.
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i

o P! «
Pe=%~-2%-—+%(a-g)P(w =) +=2-Epw=1)f p(Xlw = 1)dx
1 1 1 %1 2,

- [ 1Pl = 1)p(X]w = 1) - Plw = 2)p(X|w = 2)|dx
%22
1 1 (817 - Bpp) Pe
ST B, ~ I, s Tt D Ty (A-25)

The regions 2,9 and Q,, are illustrated in figure A-3.
When the imperfections in the labels are symmetric, it is easily seen

that a, = 0, and the region Q50 becomes null. The inequality of equation
(A-25) becomes equal and is identical to equation (A-8).

Case sz: 811 <322

Let (11 = 2611 -1 )

and ap = 2By, - ‘311)‘

Proceeding in a manner similar to case (a) of section A.1, the probability of
errors Py and P, are related as

(A-26)

p =%.--201‘—-+%(?—2—)P(w = 2) + Eé-iép(w =2) | p(X|w = 2)dx
e 1 al (!1 fll Qll
-] P =1)p(X|lw = 1) - P(w = 2)p(X]w = 2) dx
Q
12
1 1 (Bpp - B17) Po
A (v rrar VM v Poa v L ) (A-27)

The regions 911 and 912 are illustratated in figure A-=4.

When the imperfections in the labels become symmetric, it is easily seen

that a, = 0, and the region 21, becomes null. The inequality of equation
(A-27) becomes equal and is identical to equation (A-8).
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Figure A-3.- I1lustration of regicns 921 and 922 for the upper
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APPENDIX B

A THRESHOLDING SCHEME FOR THE CORRECTION
OF MISLABELS WHEN B < b

When 8 < b, the following scheme is proposed for identifying mislabeled
patterns with symmetric probabilities of label imperfections, as given in
equation (33).

Change the l1abel of X to w = i whenever

min[p(w' = 11X)1 <1 -t (B-1)
i

where t is some threshcld; otherwise, do not change the label of X. For this
scheme, a relationship between Pg(t) and Ppc (t) is obtained in the following
and is shown to be equivalent to equation (47).

Let U(X) = minfp{w' = ilX)] (B-2)
i

and Vpe ft) = IXIU(X) > 1 - t] (B-3)

Suppose that the threshold t is decreased from t to t - At. Let aVpg (t) be
the decremental regicn of Vpe(t) - Vpo(t - At). For patterns in the region
MpeL(t), we have

(1 - t)p{X) < minlP(w' = i)p(Xlw' = i)] < (i - t + at)p(X) (B-4)

i

Let APDCL(t), APCl(t), and APBL(t) be the increments in the probabilities
PpcL(t)s Pc(t), and Pgy(t), respectively, because of the decrease in the
threshold from t to t - At. Then, we have

-AP . () = f p(X)dx (B-5)
DCL
Mpe (t)

AP, (t) = .f max[P(w = )p(Xlw = i)ldx (B-6)

CL :

AVpg () i
and APp (T) = j’ {1 - max[plw = 1[X)1}p(X)dx (B-7)

aVpe (t) i
B

=4



From equations (B-5) through (B-7), we get

When R < b, from equation (42), we obtain
= 1 = 1 i L | _b -
m?x[p(m iiX)] TE":—FT'm}n[p(w i1X)] 6 = /T (B-9)
Using equations (B-5) and (B-9) in equation (B-7) yields

(b - 8)aPp (t) = & aPp. (€) + J‘ min[P{w' = i)p(Xle' = 1)ldx

AVDCL(t) i
(B-10)

From equations (B-4) and (B-10), in the decremental region AVDCL(t), ve have

(t -1+ R) (t -1+8), N At APDCL(t)
=7 MPpoLit) < aPg(t) < "'ﬂi‘"‘“T“ Ppep(t) -+ =

(B-11)
Summing equation (B-11), with t steadily decreasing from t to zero, and
letting At tend to zero results in
t
E -1+ g)
It is seen that equation (B-12) is identical to equation (47).
/ NASA-JSC
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