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ABSTRACT

Pvramid-like hierarchical structures have been shown 10 be suitable for many
compuier vision tasks. In this paper a pvramidal approach for recognition of neu-
rons from an eleciron micrograph is described. Kev [eatures for object recognition
are defined. Transforms for extracting features are performed hierarchically in a
simulated pvramid. cascading local parallel operations. The algorithms described in
this paper are expected 1o be fairly expandable 10 general purpose pvramidal vision

svstents,

kev feature  object recognition arallel processing yramid  transform
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1. Introduction.

The recognition of objects using a recognition cone, by extracting and combining features at
levels with different resolutions was proposed by Uhr [1][{2]. The layered hierarchical structure of
this ‘recognition cone’ approach resembles the human vision system. It can be realized by parallel

processors, hence it is well suited for fast and efficient VLSI multicomputers.

The pyramid structure introduced by Tanimoto and Pavlidis [3] has the same conceprt of multi-
resolution and hierarchical representation of image data. A prototvpe pvramid has n levels, each level

k (O=4A<n) has 2+ * 2+ nodes (simple processors). Each node at level k is hard-wired to its 13



neighbors, i.e. 1 parent, 8 siblings and 4 children. See [5] for more descriptions of pyramids.

It bas been shown [4][5][6] that, using local windows and parallel computation, pyramid-like
structures are very efficient for low level image processing, e.g. averaging, histograming, edge detec-
tion, median filtering, image segmentation, etc. Some earlier systems [2][4] also used pyramid-like

structures in their object recognition process.
In this paper we demonstrate a pyramidal approach for the recognition of nerve cells.

The raw data come from an electron micrograph which depicts a cross section of neurons from
the visual system of the larval corn borer (lepidoptera). Neurologists have great interest in under-
standing how the neurons project from eve to brain, and how thev functionallv and structurally com-
municate with each other. Techniques for Computer-Aided Reconstruction by Tracing Of serial Sec-
tions (CARTOS) were reviewed by [7][8]. The task is to realize 3D reconstructions by using a series
of cross sections (2D images), then to obtain 3D displays on graphics terminals. One way to procure
traces of cell boundaries is to record a finite number of coordinates of boundary points. This can be
done manually using some sort of coordinate input device, e.g. tablet. But it is time consuming and
tedious. Our intention is to achieve automatic recognition of the boundaries, i.e. to derive the neces-

sary shape and coordinate information to enable recognition and computerized 3D reconsiruction.

In order to recognize objects, we must extract features first. In many biomedical images, com-
plete recovery of broken edges is not always possible. Generally the pieces of evidence one obtains
first are local features. One has to accumulate partial evidence to approach the recognition goal. A
good description of "Local-Feature-Focus™ method is given by [9], where one local feature in an
image is found, referred to as focus feawre, and is thereafier used 1o predict a few nearby features to

look for.

There is evidence for "Focus of Attention” in human vision [10]{11]. Human perceivers usu-
ally do not stare at the entire area with the same intensitn. Rather, after a rough scan they focus on

the “interesting’ portion of a scene. This act is one of the factors which makes the human vision




system so effective. In the event that the observed object is partially occluded, humans focus on the
visible features which are important in the recognition of the object. Once enough evidence is accu-

mulated, humans will confidently complete the recognition process.

We will name those features, which appear frequently and are important to the object recogni-
tion, as ey feaiures. The existence of key features often strongly implies the existence of the object
in question. As examples, window (or door) is a key feature for a house, glass pane is a key feature
for a window. Oftentimes we can ascertain a hierarchv of key features. For instance, in shape
analysis key features will usually be corners, long lines, long curves, or locations with dramatic cur-
vature changes.

This paper describes methods for the recognition of neurons using kev features in pyramids. It
will be shown that the local parallel processing abilitv of pyramidal processors can be exploited to

accomplish many desired computations.

2. The Recognition of Neurons in an Electron Micrograph.

Fig. 2.1 is an electron micrograph which is a cross section of neurons in a neuropil region of

the insect brain (supraesophageal ganglion).

Our pyramid is a software simulation on the VAX 11-750. The structure is highly reconfigur-
able. The pvramid used in this example has 10 levels (0 - 9). Each node at level 5 énd above has its
own 2k bit memory, whereas nodes at the larger lower levels have less local memory space. There
are mainly two reasons to design lower level nodes with less local memory space: (1) it is necessary
to limit the size of our simulation package, (2) there are more combinations of features at higher lev-
els, therefore more need for memory space. The following table shows the configuration of this

simulated pvramid machine.



Fig. 2.1 Electron Micrograph of Neurons

Level Size Local Memorv (bit)
0 1x1 2048
1 2x2 2048
2 4x4 2048
3 8x8 2048
4 16 x 16 2048
5 32x 32 2048
6 64 x 64 1024
7 128 x 128 256
8 256 x 256 64
9 512 x 512 16

At different steps in the recognition process, pvramidal operations with different window sizes (2x2,
3x3, 4x4) are used. In other words, we are using both overlapped and non-overlapped pvramids as

needed [5].
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The digitized image of Fig. 2.1 has a resolution of 256x256. Two portions (64x64) of it are
used as our test data (Imagel and Image2 as indicated by '1’ and '2’ respectively in Fig. 2.1). The

recognition consists of following steps:
(1) Getting Micro-edges.

The pyramidal median filtering technique is first applied to preserve edges while reducing
noise. The input image (64x64) is stored at level 6, each node on level 5 takes the median intensity

value of its 3x3 child set as its intensity value. The result is a filtered image with reduced resolution.

After filtering, the well-known Prewitt edge operator is applied to the filtered image array

which is now at level 5. There are eight edge masks encoded by 0,1,...,7. Fig. 2.2.

On each node of the array, convolutions are computed using these eight masks. The maximum
magnitude of the eight convolution results is retained as the weight of the micro-edge, and the
corresponding encoded direction is kept as the direction of the micro-edge. The result of this step is

a micro-edge map of the filtered image.
(2) Getting Short Curves.

The concept of transforms in [2] is used for feature extraction in the recognition of neurons.

Transforms are procedures which compute values or search for features in a set of cells in one level,

2
3 1
-1 0 1 0 1 1
4 0 10 1 10 1
5 7 -1 0 1 -1 -1 0
6
(a) Edge coding (b) Masks for Edge0 and Edgel

Fig. 2.2 Edge Coding and Edge Masks



and output the values or implied features (or objects) into the same or the next level.

It turns out that the extraction of features can be directed by the micro-edge map. In case there
is a long vertical edge in the input image, it is apparent that there should be many micro-edges
(direction O or 4) lining up vertically at the location where the long edge lies. Thus at one level
above the micro-edge map, micro-edges (direction O or 4) can be combined into short-edges. At

another level above, short-edges are combined into longer edges, and so on.

In our electron micrograph images, curves are dealt with instead of straight edges. Fig. 2.3
shows a tvpical micro-edge map of a cell. With a pvramid structure it is desirable to locate short
curves at a lower level, then combine them into longer curves and eventually take in whole cell boun-
daries at higher levels. Cells in our images are all nearly round or elliptical, hence mainly convex

curves are under consideration.
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Fig. 2.3 Micro-edge map of a cell

In order to recognize objects efficiently in pvramids, every effort should be made to use only
local transforms that examine small windows surrounding each node. If some feature is too global to

detect efficiently at a lower level, it should be assessed at a higher level.

To cope with the small windows, we further studied the micro-maps. It was found that the edge

map of any ellipse-shaped object can be divided into eight segments (Fig. 2.4(a)). The places where




micro-edges change directions, e.g. 0 -1, 1 - 2, etc, are very important. For nearly round or ellipt-
ical objects, there are always eight such places. This phenomenon is invariant to size, orientation and
geometry (elongate nature) of the cell, moreover it can always be observed in a very small window,
e.g. 3x3.

Based on this phenomenon, a transform was built for short curves. At level 4, each node
examines its 3x3 child set. It will claim that it finds SHORTCURVEQ if there are "micro-edge0’ at
upper left and 'micro-edgel’ at lower right of its window with considerable weights. In the same

way, it finds SHORTCURVEL,..., SHORTCURVET7. Fig. 2.4(b) is the coding for short curves.

The coordinates of the two end points of the ’short curve’ are recorded. In case of Fig. 2.5(a)
and (b), the location of the most upper left 0-point and the location of the most lower right 1-point

are taken.

The weight of the short curve is calculated by W = S W, * S W, where W, is the weight of
micro-edge i, and W, is the weight of micro-edge j. The sum is taken within the window. If the
curve is salient, the local edge map could look similar to Fig. 2.5(a) and the resulting weight is rela-
tively high. If the curve is slightly broken as in Fig. 2.5(b), it still has a good chance of being
detected, usually with lower weight. The noisy spots rarely survive as curves; even if they are com-

bined into ’short curve’s, they carry very small weights.
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(a) Segments of Micro-edge Map (b) Coding of Short Curves

Fig. 2.4 Edge Segments and Curve Coding
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Fig. 2.5 Two Micro-edge Maps of SHORTCURVEQ

(3) Recognizing Cells.

Since we are using features of shape in recognizing cells close to an ellipse, a longer curve,
such as a ’quarter-ellipse’, is a key feature to utilize. Our transform detects such long curves much
as it detects short curves. Everv node at level 3 examines its 3x3 window at level 4. If, for example,
SHORTCURVEQ is at upper left and SHORTCURVEL at lower right of the window and their

weights exceed certain threshold, they get combined to LONGCURVEQ (SW) at level 3.

In pvramids we are able to detect and store features hierarchically. What we have actually built
is a multi-level description of the image in terms of features with locations and implicit geometrical

relations.

In the present terminology there could be two sets of long curves: SW, SE, NE, NW; or W, S,
E. N. Either one of these two sets can be combined into a whole cell. We show the results using the
first set. The transform, that combines long curves to cells, first finds the pairs of matched
LONGCURVEs SW-NE and SE-NW, and then tries to combine two such corresponding pairs to a
whole cell at level 2. Fig. 2.6 (a) and Fig. 2.7 (a) show the initial results for Imagel and Image2.
The data shown are coordinates of the endpoints of long curves, e.g. the data in SW1 and SW2

columns are the coordinates for two endpoints of LONGCURVEQ (SW).

As one can see, not all the combinations are complete. For example, in Fig. 2.6 (a) only four
cells get complete combination of SW-NE and SE-NW. The remaining three matched pairs of SW-
NE did not get their corresponding SE-NW. There could be many reasons for missing pairs, e.g.

some of the LONGCURVEs never got combined from short curves. The reason for this is that we




started to combine features with very small windows (3x3) and relatively high thresholds 1o avoid
mistakes. To improve the initial results, the program looks for missing curves at the surrounding
locations of the extracted key features (LONGCURVESs). In this second pass of search, bigger
widows and lower weights are used. Fig. 2.6 (b) and Fig. 2.7 (b) show the results after this second
search. In Fig. 2.6 (b) all seven cells in Imagel are completely combined. (Cells marked with * are

those found in the second search.)

As shown in Fig. 2.7 (b) for Image2, sometimes the program still cannot atiain the ’perfect’
combination of four long curves for all cells (e.g. due to the inflexibility of the weights, limitation of
the features used, severely broken edges or artifacts on the micrograph). But with the remaining
matched pairs of LONGCURVESs (say SW-NE), the program will still predict these additional cells,

though with lower confidence weight.

Following the described steps of prediction is a top-down verification process which gives the
final description of cell boundaries. Up to now only a very small number of shape features have been
used. Additional shapes and other important features (color, texture ...) will be incorporated in our

later experiments.
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Fig. 2.6 Cell Recognition Results for Imagel
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Fig. 2.7 Cell Recognition Results for Image2
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Our experiments have shown that the transforms for extracting key features are good building
blocks for the purpose of the pyvramid vision. Such transforms can be accomplished by using only
small windows and highly paraliel computations in pyramids. In the present nerve cell example, the
recognition is not affected by the size, orientation and elongate nature of the cells. This recognition is
reasonablv tolerant to noise and distorted edges. Moreover, starting with the steps shown in this
paper, we can actually get micro-edge maps, and short edges or short curves, for any images at lower
levels of the pyramid. The important step is, of course, the kev feature extraction. For more compli-
cated objects we also need more sophisticated way to represent knowledge and to control the search
in recognition. There is reason to think that the described method can be generalized to detect other
features and objects. Similar transforms have already given good result in one liver tissue cell image

(which is used by Preston in [12]) and two simple house images.

3. Discussion.

3.1. How to assess complex features efficiently, using pvramids.

All of this program’s operations, as just described, are executed in the local window surround-
ing each and every one of the cells at that operation’s level. In a hardware pvramid multi-computer
thev would all be executed at the same time, in parallel. The sequence of transformations moving up
through the pyramid, from larger to smaller arravs, makes possible the execution of successively
more global operations. Thus a very complex operation over a very large region can be decomposed

into a tree-like sequence of local window operations.

3.2. How to identify objects over magnification.

One essential characteristic of anv object recognizer is that it be able to identify the same set of
objects even though thev are of different size. This requirement is not a trivial task for many com-
puter vision systems, especiallv for those that expect to match a rigid template or an exact model.

The reason is that two facts are usually not known in advance to a general purpose vision svsteni: (1)
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the size of objects (the object size itself and the distance from viewpoint to scene); (2) the resolution

of the input digital image data. As an example take a simple rectangular object (e.g. door). Accord-

ing to the previous description, our system would use corners as key features to recognize a rectan-

gle. But in a given image, the rectangle could have a different size due to the actual object size or

the resolution of the image. Pyramids with lavers of different resolutions offer a hierarchical struc-

ture for extracting features. It appears that there are three different approaches in solving this prob-

lem:

(H

(3

Start to detect micro-edges at the original image level. Find 4 right angles at lower levels. If
they are too far apart to see in a local window, build bigger right angles (with longer legs) at
the next higher level. and so on, until thev gather together and can be combined into a rectan-
gle within a local window. This method always takes log(abjsize) steps. The problem is that the

input images could be noisy and hence not so perfect for building up ’big’ features.

Use pyramidal median filtering to get multi-resolution images. Try the same recognition
processes on images of different resolution simultaneously. With this approach, usually fewer
transforms are performed at fewer levels in each process. The idea is to work on the right reso-
lution images with only small window operation. The kevs to success of this method are, (a)
the edges should be well preserved even in low resolution images: (b) the key features should
be relativelv size invariant (e.g. the right angle, or the curves that we choose do not disappear

easilv in low resolution images.)

Start with the original image: extract right angles as key features at lower levels as in (1). If
they are too far apart, pass them to the corresponding parent nodes (when passing features up,
simply use non-overlapped pyramid structure, each child has its unique parent to communicate
with.) until they are visible within a small window. This approach has the advantage of always
fully using the information at the original higher resolution. The problem is how t0 make a

decision as to the number of levels required to pass without knowing the object size in advance.
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It seems that the combination of approach (2) and limited passing are plausible, especially for

elongated objects. The control strategy part remains to be studied.

3.3. How to choose appropriate window sizes.

The pvramid, or so called multi-resolution, approach enables the effective use of only very
small windows, e.g. 3x3, 4x4, in recognizing objects. Its advantage is: if the object is too large to
'see’ at this level, it will be 'visible’ at some higher level of the pyramid, because at the higher level

the features will be pulled closer.

Once we have decided the convergence of our pyramid to be 2, any window of a size bigger
than 2x2 will give us a certain degree of overlapping. In the process of using the pyramid to recog-
nize objects, the desired degree of overlapping turns out to be an important factor in determining the
sizes of the windows to use. In 2x2 non-overlapped pyramid, each node p at level k (O=4 <n) has
2x2 children at level k+ 1, and each of those children has 2x2 children at level k+ 2. Therefore node
p can 'see’ 4x4 children at level k+2, In general, p can 'see’ (27~ k)2 nodes at level n (n=k). In

overlapped pyramids the child set grows much larger. For each node at level k, while using different

windows, the child set areas at level k+1, k+2, ..., n are shown below:
k+1 k+2  k+3 ... n
2x2 2- 42 8- (21 k)2
3x3 3: 72 15- (2#2n—h — )2
4x4 42 102 22 (3#2n—h — 2
5x5 52 132 20- (4%2n—h - 3)2
MxM M= ((/Vl-—l)'*'?."”‘---(M--Z))2

Thus for example, in a 5x5 overlapped pvramid, at three levels below the child set size is
almost 4 times larger than the child set size in a non-overlapped pyramid. In order to be able w0

recognize objects at the level proportional to the logarithm of the object size above the input image,
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we need to use overlapped pyramids. But now we can see that big windows also bring too much over-
lapping. In the present scheme of recognition, low level features are combined all the way up to high
level features. Too much overlapping means that the same features will be found redundantly in
many nodes at the neighborhood of the expected location. Elimination of redundant information is
not always an eag)f job, not to mention the complexity that large windows bring while combining
features. Therefore our program starts with only 3x3 windows in the neuron example. Following the

clue of found key features the program then expands some of its windows to 4x4.

4. Conclusion.

Key features in visual fields play important roles in both human and computer vision systems.
It is feasible to develop keyv feature detectors within local windows in pvramids, and to use these
features to accomplish the recognition goal. The computations are highly parallel. It is expected that

the aigorithms described here can be expanded 1o general purpose pyramidal vision systems.
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