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Abstract--Though linear algorithms for finding the convex hull of a simply-connected polygon have been 
reported, not all are short and correct. A compact version based on Sklansky's original idea ~:~ and Bykat's 
counter-example qs~ is given. Its complexity and correctness are also shown. 

Convex hull Linear algorithm Computational geometry 

I. I N T R O D U C T I O N  

There have been many reports on a linear algorithm 
for finding the convex hull of a simple polygon. Certain 
versions were prone to counter-examples. In parti- 
cular, a recent version by Ghosh and Shyamasundar  Itl 
turned out to be incorrect/2"31 Ideally, an algorithm 
should be not only correct but also easy to implement. 
McCal lum and Avis, ~41 for example, reported a version 
using two stacks. Lee ~ used one stack but the 
algorithm itself was two pages long. Recently, Graham 
and Yao ~6~ reported a compact  algori thm that is said 
to be similar in spirit to Lee's version. Both Refs (5) and 
(6) included two types of pocket test. In this paper, we 
present a version employing only one pocket test. 

Perhaps, the simplest version is still the one presen- 
ted by Sklansky ~r~ in 1972. After a counter-example by 
Bykat, ~s~ sufficiency condit ion was established by 
Toussaint and Avis 19) in 1982 and by Orlowsky "°1 in 
1983. Almost concurrently, Sklansky gave a modified 
version ~t~ but it was later shown to be incorrect by 
Toussaint and El Gindy. ~12~ Our  search for a simple, 
concise and correct linear convex hull algorithm traces 
the following path. For  simplicity, we adopt the ideas 
from the original version by Sklansky. ¢7~ For  concise- 
ness, we follow the form of C H - P O L  by Toussaint and 
Avis. c9~ For  correctness, we use the notion of a pocket 
(or lobe) as in Graham and Yao ~6) (or Lee ~s~) with 
Bykat's counter-example ~s~ in mind. 

2. P R E L I M I N A R I E S  

Let P be a simple polygon with n vertices. Each 
vertex V~, i = 0, 1.2 . . . . .  (n - 1), is represented by its X 
and Y coordinates, (X~, Y~). Let V o be the vertex with 

* This work was supported in part by AFOSR under 
contract F4920-82-C-0089 and in part by IBM Data Systems 
Division. 

1 To whom correspondence should be addressed. 

the minimum Y coordinate. If two or more vertices are 
tied then we choose among them the vertex with the 
minimum X coordinate as V o. Starting from V o and 
traversing the boundary B(P) of P in the clockwise 

order, we label the j th  vertex from V 0 as V i, where i is) 
modulo n. These vertices in sequence are maintained as 
a circular doubly linked list. Throughout  this paper we 
assume the following: 

(1) The boundary B(P) of a simple polygon P is 
traversed in the clockwise order from V o. 
(2) No three consecutive vertices are colinear. 

Definition 2.1. L(Pi, Pj) denotes a directed line 
segment joining two points P~ and Pj in the direction 
from P~ to Pj. 

Definition 2.2. An ed,qe E(V~, Vi+ 1) of P is a directed 
line segment L(V,, V~ +~)joining two adjacent vertices 
V~ and V~+ t on B(P). A chain C(V~, V j) is a sequence of 

edges E(V i, Vi+ 0, E(Vi÷ l, Vi+ 2) . . . . .  E(Vj_ 1, Vj)on 
B(P) in the clockwise order. 

Definition 2.3. A vertex V~ of P is extreme if V i cannot 
be expressed as a convex combinat ion of other vertices 
in P, i.e. V~ is extreme if and only if 

V i ~  ~ ~2V,r ~ ~ =  1, and ~ > _ 0 .  
i 4 1  /~ l  

Definition 2.4. The convex hull CH(P) of P is the 
smallest convex polygon containing P. 

Definition 2.4 necessarily implies that every vertex 
of CH(P) is an extreme vertex of P. Hence, one way to 
find CH(P) is to discard all non-extreme vertices. To 
characterize a non-extreme vertex, we employ the 
notion of a pocket. 

Definition 2.5. A pocket PKT(V,, Vj) is one or more 
regions bounded by L(V~, V j) and C(V~, Vfl such that 
all points in C(V~, Vj) are on or to the right of L(V~, V2). 

We state an interesting property of a pocket due to 
Graham and YaoJ 6~ 

Lemma 2.1. Let V, be in a PKT(V~, V2t. If V, is 
neither Vi nor V j, then v, is not an extreme vertex of P. 

453 
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Z~ 

Z1 

Z o - V o  

Fig. 1. Vertices of a po lygon  P and  ZPR( V o, Vq). 

3, PROPERTY OF ZIPPER 

A pocket PKT(V~, V~) is said to be maximal with 
respect to C(V o, Vq) if C(V~, V j) is not contained in 
another pocket PK T(Vk, V,.), where 0 < i < j < q, and 
0 < k < m < q. Le tan  ordered list(Zo, Z i ,Z2  ..... Zj) 
be the sequence of all vertices in C(V o, Vq) such that 
PKT(Zi, Zi+l),  0 < i < j,  is maximal with respect to 
C(V o, Vq). The sequence of line segments (L(Zo, Z0 ,  
L(ZI, Z2) . . . . .  L(Z~_I, Zj)) is said to be a zipper 
ZPR(Vo, Vq) as illustrated in Fig. 1. 

In this section, we show that ZPR(V o, V~) is concave 
and non-self-intersecting. Our first lemma forms the 
basis for showing this property. In its proof and in all 
subsequent discussions, we use the following 
notations. 

Vq+ 1 = the most recently visited vertex in P. 

Vq = the previous (counter-clockwise) vertex of 

Vq+t in P. 

Zj  = the vertex that is most recently added into 
ZPR(V o, Vq). 

Z j_ 1 = the previous vertex of Zj  in ZPR(V o, Vq). 

V, = the previous vertex of Zj  in P. 

Lemma 3.1. Let ZPR(V o, Vq) = (L(Z o, Zl), L(Z 1, 
Z2) . . . . .  L(Zj_ 1, Z~)) and 0 < q < n. Any vertex V k in 
the chain C(Z,, Vq) must be to the right of L(Zi, Z i .  t), 0 
< i < r < j, if V k # Zi.m- 

Proof. The proof will be by the induction on the 
subscript i of a zipper vertex Z~ in ZPR(V o, V~). Let 
Z_  1 be a point on the horizontal line containing Zo 
such that Z_  1 lies to the right of Z o. Let L~ be the line 
containing L(Z~_ ~, Z~), i = 0, 1,2 . . . . .  j. L~ partitions the 
plane into two half planes. Let LHP~ be the half plane 
to the left of L(Z~_ 1, Zi) and RHPi be the other. 

i = 0. Since V o is extreme, V o coincides with Z o. By 
the way in which Vo is chosen, the Y coordinate of V o 
is not  greater than the Y coordinate of any other vertex 
in P. Therefore, C(V o, Vq) cannot  pass through LHPo. 
Now, RHPo is partit ioned by L~ into two regions, 
RHPo n LHP 1 and RHP o c~ RHP r We need to show 
that C(ZI, Vq) cannot  be in RHPo c~ LHPI. Suppose 
that some vertices in C(ZI, Vq) are in RHPo c~ LHPr  
Let W be the vertex in C(ZI, Vq) such that C(Zo, W) is 
to the right of L(Z o, W). Clearly, PKT(Z  o, W) contains 
C(Zo, Z1), which contradicts the maximality of 
PK T(Zo, Z i). Suppose that the lemma is true for i = m 
- l < j - 2 .  

i = m. We need to show that C(Z~. 1, Vq) cannot  be 
in 

R = c~ LHPm+ i 

as shown in Fig. 2. 
Suppose that some vertices in C(Zm ÷ 1, Vq) are in R. 

Let W be the vertex in C(Zm ÷ 1, Vq) such that C(Zm, W) 
is to the right of L(Zm, W). PK T(Z m, W) contains C(Zm, 
Zm+ 1), which contradicts the maximality of PKT(Zm, 
Z,,.,). [] 

As illustrated in Fig. 3, the property described in 
Lemma 3.1 does not necessarily hold true unless Vo is 
an extreme vertex of P. We next state the iemmas 
characterizing a ZPR(Vo, Vq), the proofs of which are 
direct consequences of Lemma 3.1. 

p.o 
Lm 

Zo-Vo Z-t 

o=o 
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Fig. 3. Lemma 3.1 does not hold true if V o is not  extreme. 

Lemma 3.2. Let ZPR(V o, Vq) = (L(Z o, Z1), L(Z 1, 
Z2) . . . . .  L(Zj_ 1, Z j)). The internal angle ANGL E  (Z i, 
Zi+l ,  Z~+2) between two consecutive line segments 
L(Zi, Z i ,  1) and L(Zi+ t, Zi+2), 0 < i < j - 2, is strictly 
between 0 and 180 degrees. 

Lemma 3.3. A ZPR(V o, Vq) is not self-intersecting. 
Finally, we show that a zipper vertex Zk cannot  be in 

a pocket PK T(Z~, Z i + i) if k ~ i and k :~ i + 1. We use 
this property to update ZPR(V o, Vq). 

Lemma 3.4. Let ZPR(V o, Vq) be (L(Zo, ZO, L(Z1, 
Z2), ~.., L(Zj_ 1, Z)). 
Then, 

Z k if k = i  or i +  1 
Z k ~ PKT(Zi, Zi+1) = 

otherwise 

for all 0 < i < j a n d 0  < k < j .  
Proof Suppose that Zk C~ PKT(Z~, Zi+1) ~ ~ for 

some k :~ i and k # i + I. Then either P is not simple 
or V0 is not an extreme point. [] 

4. UPDATING OF Z I P P E R  

Consider the relationship between two line seg- 
ments L(Zj_ 1, Z )  and E{ V,, Z )  As illustrated in Fig. 4, 
the vertex Vq + 1 can be in any one of the four quadrants  
formed by the extensions of these two line segments. 
The quadrants  are: 

Qla :  to the right of L(Zj_ t, Z )  and to the right of 
E( V,, Z j) 
Qlb :  to the right of L(Zj_ 1, Z )  and to the left of E(V,, 
Z )  
Q2a: to the left of L(Z~_ 1, Z )  and to the right of E(V,, 
Z j) 
Q2b: to the left ofL(Zj_ 1, Z )  and to the left of E(V,, 
Z )  

If Vq+ 1 is in Qlb ,  it is also in PKT(Zj_ 1, Zj). By 
Lemma 2.1, I/q+ 1 and its clockwise vertices in 
PKT(Z~_ 1, Z )  can be deleted. Otherwise, we need to 
show if the existing zipper vertices are to be deleted or 
kept to advance to Vq+ 1- The following three lemmas 
as illustrated in Fig. 5 are useful for the updating of 
ZPR( V o, Vq). 

Lemma 4.1. Let ZPR(Vo, Vq) = (L(Zo, ZO, L(Zs, 
Zz) . . . . .  L[Zj_ ~, Z))  and Vq = Zj v~ V o. All pockets 
P K T(Zi, Z~ + 1), 0 < i < j, are maximal with respect to 
C(V o, Vq+1), if Vq+ 1 is in Qla .  

/ 

/ 

/ 

/ 
. . . .  Zj-1 Q2b Z V Q2a / .  7 'o,. 

/ 
/ 

Fig. 4. Possible locations of vertex V0+ 1. 

Proof If Vq + i : V o  then ZPR(V o, Vq) together with 
E(Vq, Vq+ ~) forms a convex polygon since Vq+ 1 = Vo 
and ZPR(V o, Vq)is concave and non-selfintersecting. 
Therefore, the result follows immediately. 

Let us consider the case for I/q.1 :# Vo. Since 
ZPR(Vo, Vq)implies that PKT(Zi, Zi+ 1). 0 _< i < j, is 
maximal with respect to C( V o, Vq), all we need to show 
is that E(Zj, Vq+ 1) is PKT(Zj,  Vq+ I) and is maximal 
with respect to C( V o, Vq + 1). First we show E(Zj, Vq + 1) 
c~ PKT(Zi, Zi+z) =/= E(Zj, Vq+0 for any 0 _< i < j .  By 
Definition 2.5, Vq+ 1 cannot be in PKT(Zj_ 1, Zj) since 
Vq+ 1 is in Qla .  From Lemma 3.4, Zj  cannot  be in 
PKT(Zi, Zi+ 1) for any 0 < i < j - 1. Therefore, E(Zj, 
Vq + t) c~ PK T(Z~, Zi + 1) =/= E(Zj, V q + t) for any 0 _< i < 

/ zj.l / / ~ .  

V q l  

V. 
f 

/ 

(a) 

Zj-z "~ZsNN -- - -  - 

PKT(Zj.]  ,Zj ) [ ~  
v , . \  

0o) 

/ 

z j / "  
- - - . - ~ ' ~  j ~ . '  - -  

/ 

Fig. 5. Updat ing  zipper vertices. (a) Il lustration of Lemma 4.1. 
(bl Il lustration of Lemma 4.2. (c) Il lustration of Lemma 4.3. 
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j. Finally, there does not exist a vertex V, in C(V o, V,) 
such that C(V,, V,~+ ~) and L(V,, Vq+ ~) form a pocket 
PKT(V,.  V~÷ ~) since ZPR(V o, Vq) is concave and P is 
simple. Hence, the result follows.~3 

Lemma 4.2. Let ZPR(V o, V~) = (L(Zo, ZO, L(Z~, 
Z 2) . . . . .  L(Zi_ ~, Z~)). If C(V~, V,), r > q ,  is in 

c PKT(Z~._~, Z~), then V,+~ is also in PKT(Z~_~, Z~) 
unless V,+~ is to the left of L(Z2_ ~, Z~). 

Proof. Since P is simple, C(Vq, I/,+ 1) can get out of 
PKT(Z/_ 1, Z~) only through L(Z~_ t, Z~).[] 

Lemma 4.3. Let ZPR(V o, Vq) = (L(Zo, ZO, L(Z~, 
Zz) . . . . .  L(Z~_~, Z~)). Then PKT(Z~_~, Z~) is not 
maximal with respect to C(V o, V~+O, if V~+I is in 
quadrant Q2a or Q2b. 

Proof. ANGLE(Z~_ 1, Zj, Vq+ ~) is greater than or 
equal to 180 degrees since Vq+ t is in Q2a or Q2b. Since 
ZPR(Vo, V~) is concave and non-selfintersecting, there 
must exist a vertex Z in ZPR(V o, V#) such that L(Z, 
V,+~) and C(Z, V~.~) form a pocket PKT(Z,  V~+O. 
Clearly, PK T(Z, Vo + ~ ) contains C(Zj_ i, Z~).tZ 

5. THE A L G O R I T H M  AND ITS ANALYSIS 

Our linear algorithm for finding the convex hull of a 
simple polygon P takes V~, i = 0, 1 ..... n - l, as input 
and constructs a ZPR(V o, Vq) with vertices Z r 

Algorithm 5. ! 
Step 0. Zo~-Vo,  Z ~ - V , , j ~ - l , q , - - l .  

while (Vq ~ Vo) do; 
Step I, if Vq+j is to the right of L(Zj_~, Z),  

then do: 
Step la. if Vq+~ is to the right of E(V., Z)  

t h e n j , - j  + I, Z~,- Vq+~, q ~ q  + 1. 
Step lb. else while (Vq+~ is on or to the right 

of L(Z/_ ~, Z,)) do; 
q , - q + l  
end 
end 

Step 2 else do; 
while (Z /~  V o and Z/_ ~ is not to the 
right of  L(Z r Vq+ 0) do; 
j,,-- j - I 
end. 
j ~ j  + 1, Z/~- Vq+~,q,,-q + 1. 
end 
end 

Step 3. Stop. 

Case la: Vq.~ qualifies as a zipper vertex if PKT(Z:, 
V~. j) is maximal with respect to C( Vc, V~. 0. 
Since V~.~ is in quadrant Qla, by Lemma 
4.1, PKT(Zj, V~+~) is maximal. Indeed, Step 
la takes Vq+ j as the new Z~. Since the correct 
vertex is added to the zipper the next time 
Step l is reached, the induction holds. Now, % 
Lemma 4.1 requires the precondition that V~ 
equals Z/. This precondition is satisfied 
iteratively after executing Step la or Step 2. 
After executing Step Ib, though Vq :~ Z~ the 
control must go to Step 2 because V~+~ 
cannot be to the right of L(Z)_ ~, Zi). Hence, 
the precondition for Lemma 4.1 is always 
satisfied. 

Case lb: Because V~+j is in quadrant Qlb,  by 
Definition 2.5, V,r+~ is in PKT(Zj_~, Zj). 
Therefore, V~+~ should not be a zipper 
vertex. Furthermore, by Lemma 4.2, all the 
subsequent vertices in PK T(Zj_ j, Z~) should 
not be in the zipper ZPR(Vo, Vq) either. This 
is precisely what Step lb does. Since no 
zipper vertex is added, the next time Step I is 
reached, ZPR(Vo, V~) is still correct. 

Case 2: Step 2 deletes Z/since PKT(Z,_~, Zj) is not 
maximal with respect to C(Vo, Vq~.t) by 
Lemma 4.3. The old Z i_ ~ becomes the new 
Z~. This process is repeated until either Z / =  
Z0 or Z~_~ is to the right of L(Z i, Vq+~). At 
that point PKT(Z~, Vq,j) is maximal with 
respect to C(Vo, V~+l), because ZPR(Vc, 
V~,t) is concave and non-self-intersecting. 
Hence, the lemma is true. 

When V~ coincides with Vo, Step 3 terminates the q 
algorithm, and the lemma is still true by the induction 
hypothesis. [] 

Since ZPR(Vo, Vq) is concave and non-self- 
intersecting, it must form a convex polygon P,. contain- 
ing P if V~ -- V o. Since every vertex of Pc is a vertex of 
P, it is clear that PC is the smallest convex polygon 
containing P. By Definition 2.4, P~ must be the convex 
hull of a simple polygon P. 

Theorem 5.1. Algorithm 5.1 finds the convex hull of a 
simple polygon P with n vertices in 0(n) time. 

Proof. The algorithm moves forward, except in Step 
2, until V o is revisited. Step 2 is executed at most a total 
of n - 3 t imes .  [ ]  

We show the correctness of Algorithm 5.1 with the 
following lemma. 

Lemma 5.1. Algorithm 5.1 constructs ZPR(Vo, Vq) 
correctly. 

Proof. The proof will be by induction on the number 
of times Step 1 is reached. Initially, the statement is 
trivially satisfied by Step 0 of the algorithm. Suppose 
that the lemma is true when Step 1 is executed m times. 
Then, there are three cases: 

(1) Case la: Vq+ 1 is in Qla  
(2) Case lb: Vq+t is in Qlb  
(3) Case 2: Vo+ ~ is in Q2a or Q2b. 

6. C O N C L U D I N G  REMARKS 

Algorithm 5.1 removes the vertices that cause self- 
intersection ~s~ in CH-POL/9) It is shorter than the 
version by Graham and Yao 16~ when both the Left Hull 
and the Right Hull are taken into account. 

SUMMARY 

A new linear algorithm for finding the convex hull of 
a simple polygon is given. Based on the original idea by 
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Sklansky, ~ our  version is easy to unders tand.  Adopt -  
ing the form of C H - P O L  by Toussa in t  and  Avis, c9~ the 
presenta t ion  is concise. As shown in the Appendix,  a 
PASCAL implementa t ion  of the a lgor i thm itself is 
only half  a page long. 

In the paper,  we define a "'zipper" as a non-self- 
intersecting, concave chain. Choos ing  an  extreme 
vertex of the polygon as the initial zipper, we update  it 
by classifying a vertex of the given polygon by one of 
three cases. Case 1: vertex of the given polygon is added 
to the zipper. Case 2: vertex of the given polygon is not  
added to the zipper. Case 3: zipper vertex is deleted. We 
show that,  after a complete  traversal  of the given 
polygon, the zipper  thus  const ructed  is the convex hull. 
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their constructive suggestions. J. D. Wolter implemented 
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supplied in the Appendix. 

REFERENCES 

1. S. Ghosh and R. Shyamasundar, A linear time algorithm 

for obtaining the convex hull of a simple polygon, Pattern 
Recognition 16, 587-592 (1983). 

2. R. Shyamasunder, Note on a linear time algorithm for 
obtaining the convex hull of a simple polygon, private 
communication. 28 August (19841. 

3. T. Woo and S. Shin. Counterexamples, private commun- 
ications, 10 July and 15 October t1984). 

4. D. McCallum and D. Avis, A linear time algorithm for 
finding the convex hull of a simple polygon, lnlbr. Proc. 
Lett. 9, 201-205 11979). 

5. D. Lee, On finding the convex hull of a simple polygon. 
Int. J. Comput. Inlbr. Sci. 12, 2, 87-98 t1983). 

6. R. Graham and F. Yao, Finding the convex hull of a 
simple polygon, J. A I.qorithms 4, 324-331 (1983). 

7. J. Sklansky, Measuring concavity on a rectangular 
mosaic, IEEE Trans. Comput. 21, 1355-1364 (1972}. 

8. A. Bykat, Convex hull of a finite set of points in two 
dimensions, Infor. Proc. Lett. 7, 6. 296-298 {1978}. 

9. G. Toussaint and D. Avis, On a convex hull algorithm 
and its application to triangulation problems. Pattern 
Recognition 15, 23-29 ( 1982}. 

10. M. Orlowsky, On the condition for success of Sklansky's 
convex hull algorithm. Pattern Recognition 16, 579-586 
( 1983). 

11. J. Sklansky, Finding the convex hull of a simple polygon, 
Pattern Recognition Lett. l, 79-83 (19821. 

12. G. Toussaint and H. El Gindy, A counterexample to an 
algorithm for computing monotone hulls of simple 
polygons. Pattern Reco,qnition Lett. 1,219-222 (1983). 

About the Author--SuNG Y. Stun is a Ph.D. candidate in Industrial and Operations Engineering at the 
University of Michigan. His research interests include computational geometry, algorithm design and 
analysis, CAD/CAM, and information systems. 

After receiving his B.S. degree in 1970 from Hanyang University in Seoul, Korea. Mr. Shin was involved in 
developing computer-integrated manufacturing systems for various industries in Korea. 

About the Author--ToNy C. Woo received his B.S., M.S. and Ph.D. degrees, in Electrical Engineering, from 
the University of Illinois in 1968, 1974 and 1975, respectively. 

Joining the University of Michigan in 1977, Dr. Woo is currently Associate Professor in Industrial and 
Operations Engineering. He teaches courses in computer graphics, and geometric modeling. His research is 
in the design of geometric algorithms for CAD, CAM and robotics applications. He is the 1985 recipient of 
the TRW Foundation Award in Manufacturing Engineering. 

APPENDIX 

program main (input, output); 

var X, Y: array [0..50] of real; {coordinates of points', 
V,Z: array [0..50] of integer; {polygon and hull} 
q j :  integer; {index into polygon and hull', 
n: integer; /number of vertices', 

i: integer; {loop indexl 

~Is point p to the left of Line (a,b)?} 
function left (p,a,b: integer) :boolean; 
begin 

left = (Y[p] - Y[a]).(X[b] - XIa]) > (Xlfl] - Xla])*( Y[b] - YIa]): 
end; 

{Is point p to the right of Line (a,b)?} 
function right (p,a,b: integer) :boolean; 
begin 

right = ( Y'[p] - Y[a])*(X[b] - X[a]) < (X[p] - X[a])*( Y[h] - Y[a]): 
end; 

{Read in the Polygon} 
procedure readin; 
var i: integer; 

W: array [0..50] of integer; 
rex,my: real; 
rni: integer; 
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begin 

end; 

begin 

{Read in the number of points} 
repeat 

write(' Number of points? '): 
read(n); 

until (n > 3) and (n < 50); 

m x =  1e38; 
my = le38; 

{While reading in vertices, find an extremal one} 
f o r i = 0 t o n - 1  

do begin 
write(' 'd:3, ' :  '); 
read(X[I], Y[,]); 
IV[,] = i: 
if ( Fit] < my) or ( ( Y[t] = my) and (X[,] < rex) ) 

then begin 
mx = xIt]; 
m y  = Y[,]; 
mi = i; 

end; 
end; 

{Reorder with an extreme vertex first} 
V[n] = Wire,l; 
for i =  0 t o n -  1 

do begin 
H i ]  = wire,]; 
mi  = (mi  + l) mod n; 

end; 

{Get the polygon, and echo it back} 
readin;  
write I n('Polygon:'); 
for i = O to n - l do  

writeln('[:]', 1:3, ": [] ' ,x[  v[ i]]: l O:5, ",[]', Y[  V[i]] : I O:5 ); 
{Step 0} 
q = l ;  
j = l ;  
Z[OI = VlOl; 
, I l l  = Hl] ;  

while (q < n) do 
if right (V[q + 1], Z[] -- 1], Z[/]) 

then 
if right (Viq + 1]. V [ q -  I], V[q]) 

then begin 
{Step la} 
j = j + l ;  
q = q +  l; 
Z[/] = V[ql; 
end 

else 
{Step lb} 
while not left (V[q  + 1], 27[/ - 1], Z't/]) do 
q = q +  I; 

else begin 
{Step 2} 
whilej  > 0 and not right ( Z [ / -  1], Z[/], viq + 1]) do 

j = j -  l; 
j = j +  !; 
q = q +  l; 
Z[/] = ~q]; 
end; 

{Print the hull} 
write I n('Hull:'); 
f o r i = 0 t o j -  I d o  

writeln(' [] ", i:3, ": [] ",X [ z eq ] : !  0:5, '. []', Y[Z[ i ] ] : l  0:5); 
end. 


