
Pattern Recotmmon. Vol. 19, No. 6. pp 453 458. 1986.
Printed in Great Britain

0031 3203 86S3.00+ .00
Pergamon JournaLs Ltd.

Pattern Recognition Societ}

FINDING THE CONVEX HULL OF A SIMPLE
P O L Y G O N IN LINEAR TIME*

S. Y. SrtIN* and T. C. Woo

Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, M) 48109,
U.S.A.

(Received 8 February 1985; in rerisedlbrm 24 June 1985)

Abstract--Though linear algorithms for finding the convex hull of a simply-connected polygon have been
reported, not all are short and correct. A compact version based on Sklansky's original idea ~:~ and Bykat's
counter-example qs~ is given. Its complexity and correctness are also shown.

Convex hull Linear algorithm Computational geometry

I. I N T R O D U C T I O N

There have been many reports on a linear algorithm
for finding the convex hull of a simple polygon. Certain
versions were prone to counter-examples. In parti-
cular, a recent version by Ghosh and Shyamasundar Itl
turned out to be incorrect/2"31 Ideally, an algorithm
should be not only correct but also easy to implement.
McCal lum and Avis, ~41 for example, reported a version
using two stacks. Lee ~ used one stack but the
algorithm itself was two pages long. Recently, Graham
and Yao ~6~ reported a compact algori thm that is said
to be similar in spirit to Lee's version. Both Refs (5) and
(6) included two types of pocket test. In this paper, we
present a version employing only one pocket test.

Perhaps, the simplest version is still the one presen-
ted by Sklansky ~r~ in 1972. After a counter-example by
Bykat, ~s~ sufficiency condit ion was established by
Toussaint and Avis 19) in 1982 and by Orlowsky "°1 in
1983. Almost concurrently, Sklansky gave a modified
version ~t~ but it was later shown to be incorrect by
Toussaint and El Gindy. ~12~ Our search for a simple,
concise and correct linear convex hull algorithm traces
the following path. For simplicity, we adopt the ideas
from the original version by Sklansky. ¢7~ For concise-
ness, we follow the form of C H - P O L by Toussaint and
Avis. c9~ For correctness, we use the notion of a pocket
(or lobe) as in Graham and Yao ~6) (or Lee ~s~) with
Bykat's counter-example ~s~ in mind.

2. P R E L I M I N A R I E S

Let P be a simple polygon with n vertices. Each
vertex V~, i = 0, 1.2 (n - 1), is represented by its X
and Y coordinates, (X~, Y~). Let V o be the vertex with

* This work was supported in part by AFOSR under
contract F4920-82-C-0089 and in part by IBM Data Systems
Division.

1 To whom correspondence should be addressed.

the minimum Y coordinate. If two or more vertices are
tied then we choose among them the vertex with the
minimum X coordinate as V o. Starting from V o and
traversing the boundary B(P) of P in the clockwise

order, we label the j th vertex from V 0 as V i, where i is)
modulo n. These vertices in sequence are maintained as
a circular doubly linked list. Throughout this paper we
assume the following:

(1) The boundary B(P) of a simple polygon P is
traversed in the clockwise order from V o.
(2) No three consecutive vertices are colinear.

Definition 2.1. L(Pi, Pj) denotes a directed line
segment joining two points P~ and Pj in the direction
from P~ to Pj.

Definition 2.2. An ed,qe E(V~, Vi+ 1) of P is a directed
line segment L(V,, V~ +~)joining two adjacent vertices
V~ and V~+ t on B(P). A chain C(V~, V j) is a sequence of

edges E(V i, Vi+ 0, E(Vi÷ l, Vi+ 2) E(Vj_ 1, Vj)on
B(P) in the clockwise order.

Definition 2.3. A vertex V~ of P is extreme if V i cannot
be expressed as a convex combinat ion of other vertices
in P, i.e. V~ is extreme if and only if

V i ~ ~ ~2V,r ~ ~ = 1, and ~ > _ 0 .
i 4 1 /~ l

Definition 2.4. The convex hull CH(P) of P is the
smallest convex polygon containing P.

Definition 2.4 necessarily implies that every vertex
of CH(P) is an extreme vertex of P. Hence, one way to
find CH(P) is to discard all non-extreme vertices. To
characterize a non-extreme vertex, we employ the
notion of a pocket.

Definition 2.5. A pocket PKT(V,, Vj) is one or more
regions bounded by L(V~, V j) and C(V~, Vfl such that
all points in C(V~, Vj) are on or to the right of L(V~, V2).

We state an interesting property of a pocket due to
Graham and YaoJ 6~

Lemma 2.1. Let V, be in a PKT(V~, V2t. If V, is
neither Vi nor V j, then v, is not an extreme vertex of P.

453

454 S.Y. SHIN and T. C. Woo

Z~

Z1

Z o - V o

Fig. 1. Vertices of a po lygon P and ZPR(V o, Vq).

3, PROPERTY OF ZIPPER

A pocket PKT(V~, V~) is said to be maximal with
respect to C(V o, Vq) if C(V~, V j) is not contained in
another pocket PK T(Vk, V,.), where 0 < i < j < q, and
0 < k < m < q. Le tan ordered list(Zo, Z i ,Z2 Zj)
be the sequence of all vertices in C(V o, Vq) such that
PKT(Zi, Zi+l), 0 < i < j, is maximal with respect to
C(V o, Vq). The sequence of line segments (L(Zo, Z0 ,
L(ZI, Z2) L(Z~_I, Zj)) is said to be a zipper
ZPR(Vo, Vq) as illustrated in Fig. 1.

In this section, we show that ZPR(V o, V~) is concave
and non-self-intersecting. Our first lemma forms the
basis for showing this property. In its proof and in all
subsequent discussions, we use the following
notations.

Vq+ 1 = the most recently visited vertex in P.

Vq = the previous (counter-clockwise) vertex of

Vq+t in P.

Zj = the vertex that is most recently added into
ZPR(V o, Vq).

Z j_ 1 = the previous vertex of Zj in ZPR(V o, Vq).

V, = the previous vertex of Zj in P.

Lemma 3.1. Let ZPR(V o, Vq) = (L(Z o, Zl), L(Z 1,
Z2) L(Zj_ 1, Z~)) and 0 < q < n. Any vertex V k in
the chain C(Z,, Vq) must be to the right of L(Zi, Z i . t), 0
< i < r < j, if V k # Zi.m-

Proof. The proof will be by the induction on the
subscript i of a zipper vertex Z~ in ZPR(V o, V~). Let
Z_ 1 be a point on the horizontal line containing Zo
such that Z_ 1 lies to the right of Z o. Let L~ be the line
containing L(Z~_ ~, Z~), i = 0, 1,2 j. L~ partitions the
plane into two half planes. Let LHP~ be the half plane
to the left of L(Z~_ 1, Zi) and RHPi be the other.

i = 0. Since V o is extreme, V o coincides with Z o. By
the way in which Vo is chosen, the Y coordinate of V o
is not greater than the Y coordinate of any other vertex
in P. Therefore, C(V o, Vq) cannot pass through LHPo.
Now, RHPo is partit ioned by L~ into two regions,
RHPo n LHP 1 and RHP o c~ RHP r We need to show
that C(ZI, Vq) cannot be in RHPo c~ LHPI. Suppose
that some vertices in C(ZI, Vq) are in RHPo c~ LHPr
Let W be the vertex in C(ZI, Vq) such that C(Zo, W) is
to the right of L(Z o, W). Clearly, PKT(Z o, W) contains
C(Zo, Z1), which contradicts the maximality of
PK T(Zo, Z i). Suppose that the lemma is true for i = m
- l < j - 2 .

i = m. We need to show that C(Z~. 1, Vq) cannot be
in

R = c~ LHPm+ i

as shown in Fig. 2.
Suppose that some vertices in C(Zm ÷ 1, Vq) are in R.

Let W be the vertex in C(Zm ÷ 1, Vq) such that C(Zm, W)
is to the right of L(Zm, W). PK T(Z m, W) contains C(Zm,
Zm+ 1), which contradicts the maximality of PKT(Zm,
Z,,.,). []

As illustrated in Fig. 3, the property described in
Lemma 3.1 does not necessarily hold true unless Vo is
an extreme vertex of P. We next state the iemmas
characterizing a ZPR(Vo, Vq), the proofs of which are
direct consequences of Lemma 3.1.

p.o
Lm

Zo-Vo Z-t

o=o

Convex hull of a simple polygon 455

Fig. 3. Lemma 3.1 does not hold true if V o is not extreme.

Lemma 3.2. Let ZPR(V o, Vq) = (L(Z o, Z1), L(Z 1,
Z2) L(Zj_ 1, Z j)). The internal angle ANGL E (Z i,
Zi+l , Z~+2) between two consecutive line segments
L(Zi, Z i , 1) and L(Zi+ t, Zi+2), 0 < i < j - 2, is strictly
between 0 and 180 degrees.

Lemma 3.3. A ZPR(V o, Vq) is not self-intersecting.
Finally, we show that a zipper vertex Zk cannot be in

a pocket PK T(Z~, Z i + i) if k ~ i and k :~ i + 1. We use
this property to update ZPR(V o, Vq).

Lemma 3.4. Let ZPR(V o, Vq) be (L(Zo, ZO, L(Z1,
Z2), ~.., L(Zj_ 1, Z)).
Then,

Z k if k = i or i + 1
Z k ~ PKT(Zi, Zi+1) =

otherwise

for all 0 < i < j a n d 0 < k < j .
Proof Suppose that Zk C~ PKT(Z~, Zi+1) ~ ~ for

some k :~ i and k # i + I. Then either P is not simple
or V0 is not an extreme point. []

4. UPDATING OF Z I P P E R

Consider the relationship between two line seg-
ments L(Zj_ 1, Z) and E{ V,, Z) As illustrated in Fig. 4,
the vertex Vq + 1 can be in any one of the four quadrants
formed by the extensions of these two line segments.
The quadrants are:

Qla : to the right of L(Zj_ t, Z) and to the right of
E(V,, Z j)
Qlb : to the right of L(Zj_ 1, Z) and to the left of E(V,,
Z)
Q2a: to the left of L(Z~_ 1, Z) and to the right of E(V,,
Z j)
Q2b: to the left ofL(Zj_ 1, Z) and to the left of E(V,,
Z)

If Vq+ 1 is in Qlb , it is also in PKT(Zj_ 1, Zj). By
Lemma 2.1, I/q+ 1 and its clockwise vertices in
PKT(Z~_ 1, Z) can be deleted. Otherwise, we need to
show if the existing zipper vertices are to be deleted or
kept to advance to Vq+ 1- The following three lemmas
as illustrated in Fig. 5 are useful for the updating of
ZPR(V o, Vq).

Lemma 4.1. Let ZPR(Vo, Vq) = (L(Zo, ZO, L(Zs,
Zz) L[Zj_ ~, Z)) and Vq = Zj v~ V o. All pockets
P K T(Zi, Z~ + 1), 0 < i < j, are maximal with respect to
C(V o, Vq+1), if Vq+ 1 is in Qla .

/

/

/

/
. . . . Zj-1 Q2b Z V Q2a / . 7 'o,.

/
/

Fig. 4. Possible locations of vertex V0+ 1.

Proof If Vq + i : V o then ZPR(V o, Vq) together with
E(Vq, Vq+ ~) forms a convex polygon since Vq+ 1 = Vo
and ZPR(V o, Vq)is concave and non-selfintersecting.
Therefore, the result follows immediately.

Let us consider the case for I/q.1 :# Vo. Since
ZPR(Vo, Vq)implies that PKT(Zi, Zi+ 1). 0 _< i < j, is
maximal with respect to C(V o, Vq), all we need to show
is that E(Zj, Vq+ 1) is PKT(Zj, Vq+ I) and is maximal
with respect to C(V o, Vq + 1). First we show E(Zj, Vq + 1)
c~ PKT(Zi, Zi+z) =/= E(Zj, Vq+0 for any 0 _< i < j . By
Definition 2.5, Vq+ 1 cannot be in PKT(Zj_ 1, Zj) since
Vq+ 1 is in Qla . From Lemma 3.4, Zj cannot be in
PKT(Zi, Zi+ 1) for any 0 < i < j - 1. Therefore, E(Zj,
Vq + t) c~ PK T(Z~, Zi + 1) =/= E(Zj, V q + t) for any 0 _< i <

/ zj.l / / ~ .

V q l

V.
f

/

(a)

Zj-z "~ZsNN -- - - -

PKT(Zj.] ,Zj) [~
v , . \

0o)

/

z j / "
- - - . - ~ ' ~ j ~ . ' - -

/

Fig. 5. Updat ing zipper vertices. (a) Il lustration of Lemma 4.1.
(bl Il lustration of Lemma 4.2. (c) Il lustration of Lemma 4.3.

456 S.Y. Sins and T. C. Woo

j. Finally, there does not exist a vertex V, in C(V o, V,)
such that C(V,, V,~+ ~) and L(V,, Vq+ ~) form a pocket
PKT(V,. V~÷ ~) since ZPR(V o, Vq) is concave and P is
simple. Hence, the result follows.~3

Lemma 4.2. Let ZPR(V o, V~) = (L(Zo, ZO, L(Z~,
Z 2) L(Zi_ ~, Z~)). If C(V~, V,), r > q , is in

c PKT(Z~._~, Z~), then V,+~ is also in PKT(Z~_~, Z~)
unless V,+~ is to the left of L(Z2_ ~, Z~).

Proof. Since P is simple, C(Vq, I/,+ 1) can get out of
PKT(Z/_ 1, Z~) only through L(Z~_ t, Z~).[]

Lemma 4.3. Let ZPR(V o, Vq) = (L(Zo, ZO, L(Z~,
Zz) L(Z~_~, Z~)). Then PKT(Z~_~, Z~) is not
maximal with respect to C(V o, V~+O, if V~+I is in
quadrant Q2a or Q2b.

Proof. ANGLE(Z~_ 1, Zj, Vq+ ~) is greater than or
equal to 180 degrees since Vq+ t is in Q2a or Q2b. Since
ZPR(Vo, V~) is concave and non-selfintersecting, there
must exist a vertex Z in ZPR(V o, V#) such that L(Z,
V,+~) and C(Z, V~.~) form a pocket PKT(Z, V~+O.
Clearly, PK T(Z, Vo + ~) contains C(Zj_ i, Z~).tZ

5. THE A L G O R I T H M AND ITS ANALYSIS

Our linear algorithm for finding the convex hull of a
simple polygon P takes V~, i = 0, 1 n - l, as input
and constructs a ZPR(V o, Vq) with vertices Z r

Algorithm 5. !
Step 0. Zo~-Vo, Z ~ - V , , j ~ - l , q , - - l .

while (Vq ~ Vo) do;
Step I, if Vq+j is to the right of L(Zj_~, Z),

then do:
Step la. if Vq+~ is to the right of E(V., Z)

t h e n j , - j + I, Z~,- Vq+~, q ~ q + 1.
Step lb. else while (Vq+~ is on or to the right

of L(Z/_ ~, Z,)) do;
q , - q + l
end
end

Step 2 else do;
while (Z /~ V o and Z/_ ~ is not to the
right of L(Z r Vq+ 0) do;
j,,-- j - I
end.
j ~ j + 1, Z/~- Vq+~,q,,-q + 1.
end
end

Step 3. Stop.

Case la: Vq.~ qualifies as a zipper vertex if PKT(Z:,
V~. j) is maximal with respect to C(Vc, V~. 0.
Since V~.~ is in quadrant Qla, by Lemma
4.1, PKT(Zj, V~+~) is maximal. Indeed, Step
la takes Vq+ j as the new Z~. Since the correct
vertex is added to the zipper the next time
Step l is reached, the induction holds. Now, %
Lemma 4.1 requires the precondition that V~
equals Z/. This precondition is satisfied
iteratively after executing Step la or Step 2.
After executing Step Ib, though Vq :~ Z~ the
control must go to Step 2 because V~+~
cannot be to the right of L(Z)_ ~, Zi). Hence,
the precondition for Lemma 4.1 is always
satisfied.

Case lb: Because V~+j is in quadrant Qlb, by
Definition 2.5, V,r+~ is in PKT(Zj_~, Zj).
Therefore, V~+~ should not be a zipper
vertex. Furthermore, by Lemma 4.2, all the
subsequent vertices in PK T(Zj_ j, Z~) should
not be in the zipper ZPR(Vo, Vq) either. This
is precisely what Step lb does. Since no
zipper vertex is added, the next time Step I is
reached, ZPR(Vo, V~) is still correct.

Case 2: Step 2 deletes Z/since PKT(Z,_~, Zj) is not
maximal with respect to C(Vo, Vq~.t) by
Lemma 4.3. The old Z i_ ~ becomes the new
Z~. This process is repeated until either Z / =
Z0 or Z~_~ is to the right of L(Z i, Vq+~). At
that point PKT(Z~, Vq,j) is maximal with
respect to C(Vo, V~+l), because ZPR(Vc,
V~,t) is concave and non-self-intersecting.
Hence, the lemma is true.

When V~ coincides with Vo, Step 3 terminates the q
algorithm, and the lemma is still true by the induction
hypothesis. []

Since ZPR(Vo, Vq) is concave and non-self-
intersecting, it must form a convex polygon P,. contain-
ing P if V~ -- V o. Since every vertex of Pc is a vertex of
P, it is clear that PC is the smallest convex polygon
containing P. By Definition 2.4, P~ must be the convex
hull of a simple polygon P.

Theorem 5.1. Algorithm 5.1 finds the convex hull of a
simple polygon P with n vertices in 0(n) time.

Proof. The algorithm moves forward, except in Step
2, until V o is revisited. Step 2 is executed at most a total
of n - 3 t imes . []

We show the correctness of Algorithm 5.1 with the
following lemma.

Lemma 5.1. Algorithm 5.1 constructs ZPR(Vo, Vq)
correctly.

Proof. The proof will be by induction on the number
of times Step 1 is reached. Initially, the statement is
trivially satisfied by Step 0 of the algorithm. Suppose
that the lemma is true when Step 1 is executed m times.
Then, there are three cases:

(1) Case la: Vq+ 1 is in Qla
(2) Case lb: Vq+t is in Qlb
(3) Case 2: Vo+ ~ is in Q2a or Q2b.

6. C O N C L U D I N G REMARKS

Algorithm 5.1 removes the vertices that cause self-
intersection ~s~ in CH-POL/9) It is shorter than the
version by Graham and Yao 16~ when both the Left Hull
and the Right Hull are taken into account.

SUMMARY

A new linear algorithm for finding the convex hull of
a simple polygon is given. Based on the original idea by

Convex hull of a simple polygon 457

Sklansky, ~ our version is easy to unders tand. Adopt -
ing the form of C H - P O L by Toussa in t and Avis, c9~ the
presenta t ion is concise. As shown in the Appendix, a
PASCAL implementa t ion of the a lgor i thm itself is
only half a page long.

In the paper, we define a "'zipper" as a non-self-
intersecting, concave chain. Choos ing an extreme
vertex of the polygon as the initial zipper, we update it
by classifying a vertex of the given polygon by one of
three cases. Case 1: vertex of the given polygon is added
to the zipper. Case 2: vertex of the given polygon is not
added to the zipper. Case 3: zipper vertex is deleted. We
show that, after a complete traversal of the given
polygon, the zipper thus const ructed is the convex hull.

Acknowledgement--The authors wish to thank J. D. Wolter
and H. C. Lee for their critical reading of the manuscript and
their constructive suggestions. J. D. Wolter implemented
Algorithm 5.1 in several languages. His version in PASCAL is
supplied in the Appendix.

REFERENCES

1. S. Ghosh and R. Shyamasundar, A linear time algorithm

for obtaining the convex hull of a simple polygon, Pattern
Recognition 16, 587-592 (1983).

2. R. Shyamasunder, Note on a linear time algorithm for
obtaining the convex hull of a simple polygon, private
communication. 28 August (19841.

3. T. Woo and S. Shin. Counterexamples, private commun-
ications, 10 July and 15 October t1984).

4. D. McCallum and D. Avis, A linear time algorithm for
finding the convex hull of a simple polygon, lnlbr. Proc.
Lett. 9, 201-205 11979).

5. D. Lee, On finding the convex hull of a simple polygon.
Int. J. Comput. Inlbr. Sci. 12, 2, 87-98 t1983).

6. R. Graham and F. Yao, Finding the convex hull of a
simple polygon, J. A I.qorithms 4, 324-331 (1983).

7. J. Sklansky, Measuring concavity on a rectangular
mosaic, IEEE Trans. Comput. 21, 1355-1364 (1972}.

8. A. Bykat, Convex hull of a finite set of points in two
dimensions, Infor. Proc. Lett. 7, 6. 296-298 {1978}.

9. G. Toussaint and D. Avis, On a convex hull algorithm
and its application to triangulation problems. Pattern
Recognition 15, 23-29 (1982}.

10. M. Orlowsky, On the condition for success of Sklansky's
convex hull algorithm. Pattern Recognition 16, 579-586
(1983).

11. J. Sklansky, Finding the convex hull of a simple polygon,
Pattern Recognition Lett. l, 79-83 (19821.

12. G. Toussaint and H. El Gindy, A counterexample to an
algorithm for computing monotone hulls of simple
polygons. Pattern Reco,qnition Lett. 1,219-222 (1983).

About the Author--SuNG Y. Stun is a Ph.D. candidate in Industrial and Operations Engineering at the
University of Michigan. His research interests include computational geometry, algorithm design and
analysis, CAD/CAM, and information systems.

After receiving his B.S. degree in 1970 from Hanyang University in Seoul, Korea. Mr. Shin was involved in
developing computer-integrated manufacturing systems for various industries in Korea.

About the Author--ToNy C. Woo received his B.S., M.S. and Ph.D. degrees, in Electrical Engineering, from
the University of Illinois in 1968, 1974 and 1975, respectively.

Joining the University of Michigan in 1977, Dr. Woo is currently Associate Professor in Industrial and
Operations Engineering. He teaches courses in computer graphics, and geometric modeling. His research is
in the design of geometric algorithms for CAD, CAM and robotics applications. He is the 1985 recipient of
the TRW Foundation Award in Manufacturing Engineering.

APPENDIX

program main (input, output);

var X, Y: array [0..50] of real; {coordinates of points',
V,Z: array [0..50] of integer; {polygon and hull}
q j : integer; {index into polygon and hull',
n: integer; /number of vertices',

i: integer; {loop indexl

~Is point p to the left of Line (a,b)?}
function left (p,a,b: integer) :boolean;
begin

left = (Y[p] - Y[a]).(X[b] - XIa]) > (Xlfl] - Xla])*(Y[b] - YIa]):
end;

{Is point p to the right of Line (a,b)?}
function right (p,a,b: integer) :boolean;
begin

right = (Y'[p] - Y[a])*(X[b] - X[a]) < (X[p] - X[a])*(Y[h] - Y[a]):
end;

{Read in the Polygon}
procedure readin;
var i: integer;

W: array [0..50] of integer;
rex,my: real;
rni: integer;

458 S.Y. SHIN and T. C. Woo

begin

end;

begin

{Read in the number of points}
repeat

write(' Number of points? '):
read(n);

until (n > 3) and (n < 50);

m x = 1e38;
my = le38;

{While reading in vertices, find an extremal one}
f o r i = 0 t o n - 1

do begin
write(' 'd:3, ' : ');
read(X[I], Y[,]);
IV[,] = i:
if (Fit] < my) or ((Y[t] = my) and (X[,] < rex))

then begin
mx = xIt];
m y = Y[,];
mi = i;

end;
end;

{Reorder with an extreme vertex first}
V[n] = Wire,l;
for i = 0 t o n - 1

do begin
H i] = wire,];
mi = (mi + l) mod n;

end;

{Get the polygon, and echo it back}
readin;
write I n('Polygon:');
for i = O to n - l do

writeln('[:]', 1:3, ": [] ' ,x[v[i]]: l O:5, ",[]', Y[V[i]] : I O:5);
{Step 0}
q = l ;
j = l ;
Z[OI = VlOl;
, I l l = Hl] ;

while (q < n) do
if right (V[q + 1], Z[] -- 1], Z[/])

then
if right (Viq + 1]. V [q - I], V[q])

then begin
{Step la}
j = j + l ;
q = q + l;
Z[/] = V[ql;
end

else
{Step lb}
while not left (V[q + 1], 27[/ - 1], Z't/]) do
q = q + I;

else begin
{Step 2}
whilej > 0 and not right (Z [/ - 1], Z[/], viq + 1]) do

j = j - l;
j = j + !;
q = q + l;
Z[/] = ~q];
end;

{Print the hull}
write I n('Hull:');
f o r i = 0 t o j - I d o

writeln(' [] ", i:3, ": [] ",X [z eq] : ! 0:5, '. []', Y[Z[i]] : l 0:5);
end.

