3-D Multiview Object Representations for
Model-Based Object Recognition

by

Matthew R. Korn
Charles R. Dyer

Computer Sciences Technical Report #602

June 1985

3-D Multiview Object Representations for
Model-Based Object Recognition

Matthew R. Korn”
Charles R. Dyer

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

3-D multiview object representations are presented as an alternative approach to traditional 3-D
volumetric object representations. 3-D multiview models store features in a viewer-centered
representation and thus can be immediately used to match features derived from 2-D images.
Algorithms are presented that construct, search, and perform region growing on 3-D multiview
object models.

Index Terms: Model-based image analysis, property spheres, modeling, neighbor finding, and 3-D
object representations.

* Currently on leave from: Computing Systemns Deparument, IBM T.J. Waison Research Center, P.O. Box 218, York-
town Heights, NY 10598.

This research was supported in part by an IBM Resident Study Fellowship and in part by the National Science Founda-
tion under Grant ECS-8301521. David P. Anderson’s contribution 1o Section 4.6 is gratefully acknowledged.

1. Introduction

Table of Contents

2. Sampling the View SPherecvouiiiimriiiimiririe it

2.1. Icosahedron SubdiVISION ...vveeeiceiiiieiasine e riiia e naee
2.2. Parents, Children, NeighDOTSooimiiiini e
3. Constructing a Property SPhereo.ooiiiiiiiiinreee e
3.1. Pure Dynamic Methodooooiiiiiimiiirii e
3.2. Pure Static MEthoad ...oriee e it
3.2.1. Addressing the VIEWDPOINISoruieiiniiiiirnee e
3.3. Hybrid Static/Dynamic Methodoooiiiiimiimmiiieieirei e
3.4. Storage Considerations of Property Sphere Implementaioncocoeeveennn.

4. Property Sphere OPErationsc.oouierurmumisrnresien s rereceee
4.1. Finding Parents and Childrencoooiiiriiiiree
4.2. Finding Neighbors ...o.ouiioiimiiii et

4.2.1. Finding
4.2.2. Finding
4.2.3. Finding

Neighbors on a Single Icosahedron Faceccooeieiiinriens
Neighbors Across Icosahedron Facesc.cccovvvmniaeenen
Neighbors When All Viewpoints Are Not At The Same Level

4.3. Computing the Coordinates of a VIEWPOINTooemeiiieioiinrniieeenes

4.4, Enumerating VIEWPOINTSoeveiniuinieiiimienae e

4.5. REZION GIOWIIE «.euemnemnennenriure e nmna e st n st

4.6. Finding Viewpoints at a Distance D from a Given Viewpoint ...ooooveveeeaanns

5. References

~ W =

11
11
15
15
18
18
18
19
19

21
22
23
24
25
30

1. Introduction

Model-based object recognition requires matching features measured in an observed image,
with models of objects. The goal of the system is to return the identity, position, and orientation of
each object in an image. When 3-D objects may appear at any position and orientation, such as in a
robotics bin-picking task, 3-D object models must be used. Usually, objects are modeled using
either one object-centered representation of many viewer-centered descriptions (one for each

viewpoint).

1n 3-D object-centered representations, objects are modeled by 3-D volumetric or surface
models, which are rotationally-invariant and viewpoint-independent [Bro8la, Mar78]. Features
extracted from a 2-D image (in the viewer-centered coordinate sysiem) do not immediately
correspond to the object models (in the object-centered coordinate system). 3-D to 2-D, or 2-D to
3-D transformations must be performed before the observed features can be matched with the model.
This transformation can be time consuming; in applications where processing speed is important,
simplifying assumptions that limit the generality of the viewpoint-independence assumptions are made

to speed up recognition (e.g. [Bro81b]).

3-D multiview representations model objects by a finite set of viewer-centered descriptions.
Each member of the set models the object by its 2-D projection as seen from one viewpoint on the

view sphere. The entire set of 2-D models constitute an approximate model of a 3-D object.

3-D multiview object representations offer one major advantage over 3-D object-centered
representations: features extracted from images can be directly matched with features associated with
each member of the multiview model set, because both the model and the image represent features in
the viewer-centered coordinate system. The shift from object-centered models to viewer-centered
models shifts processing requirements from object recognition time to object modeling time. A
significant amount of processing time is spent (once) to build the 3-D multiview representation of

each object.

There is a trade-off between matching time and storage space: 3-D object-centered models can
be compactly stored, but require significant resources to compute features that can be matched with
features exwracted from images. 3-D multiview models can be quickly searched for matching
features, but require large amounts of storage. As the number of views in the model set of a 3-D
multiview representation increases, the storage space and matching time required for the model
increases. In the past, these two factors have served to limit the number of views in the 3-D

multiview object model.

The number of views that comprise a 3-D multiview object model has been steadily increasing.
Lieberman [Lie79] computes silhouettes of objects assuming objects can only occur in a few stable
orientations. Wallace et al. [Wal81] compute the contours of aircraft from 143 viewpoints. Goad
[Goa83] computes a list of visible object features (edges) from each of 216 viewpoints. Horn and
Ikeuchi [Hor84, 1ke82, 1ke81] compute the extended gaussian image [Smi79, Hor83, Hor79] of an
object from each of 240 viewpoints. Fekete and Davis [Fek83, Fek84] compute the silhouette of an
object as it would be seen from each of 320 viewpoints. In all these methods, each member of the
set is treated independently of the others. Object recognition algorithms based on each of these
models sequentially search through the members of the model set to find a best maich with features

from the observed image.

Silberberg et al. [Sil84] do not precompute a 3-D multiview object model; at object recognition
time a variable resolution multiview model is built on the fly. Views of the object model are
computed from 80 viewpoints and are matched (using a generalized Hough technique) with features
from an image to find the most probable maich. Additional viewpoints are generated in a small
neighborhood around the most probable viewpoints to increase the accuracy of the match. This

process is iterated until a solution is converged upon.

The following basic operations have been previously defined and implemented for 3-D

multiview object representations:

(1) Hierarchically sample the view sphere [Sil84, Fek84]

(2) Find the viewpoints that are adjacent 10 a viewpoint [Fek84].
(3) Compute the 3-D coordinates of a viewpoint [Fek84].

(4) Find all viewpoints with associated property P [Goa83].

(5) Find viewpoint ¥ with associated property closest to property P [Hor84, Tke81, Tke82, Walgl,

Cha82, Lie79, Fek84, Sil84].

We propose region growing as a solution to some of the major drawbacks of 3-D multiview
representations discussed above. Adjacent views that are feature equivalent are grouped into regions
or neighborhoods. Only one representative member of each region will then be stored, thereby
reducing storage requirements and search time. Furthermore, regions will represent a continuous
range of viewpoints; recognition of an object from viewpoints that are not members of the initial

modeling set will now be possible.

Koenderink and van Doorn [Koe76a, Koe76b, Koe79] have shown that from almost all
viewpoints about an object, small movements can be made without affecting the observed topological
features of the object. These viewpoints are called siable vantage points and correspond precisely to

the regions we are proposing.

Based on the same observations, Chakravarty and Freeman [Cha82] divide the continuous view
sphere into a finite set of vaniage-point domains. Within a vantage-point domain, all views contain
the same junctions and lines (the projection of vertices and edges) of a given polyhedral model.
Object recognition proceeds by classifying an unknown view as a member of one of the characteristic
view partitions (the discrete representation of a vantage-point domain). Vantage-point domains also

correspond to the regions we are proposing.

In this paper we present the operations that are required to perform region growing on a 3-D
multiview representation. We also present several other basic 3-D multiview techniques. In

particular, the new operations that we define are:

(1)

)

(3)

(4)

Produce a depth-first/breadth-first ordering of the views.

Partition the viewpoints into maximally connected regions such that all viewpoints of a region

have the same value of property P.
Find all viewpoints at distance D (on the surface of the view sphere) from a given viewpoint V.

Find a pair of viewpoints ¥y, V, such that V; has property P, and V, has property P, and V)

is related to V5 by spatial relation (constraint) S.

To clearly define these operations on 3-D multiview object models, we first describe one

particular implementation of the representation. Section 2 describes one method that can be used to

pick viewpoints. Section 3 describes three methods that can be used to implement a view sphere data

structure based on the viewpoints chosen in Section 2. In Section 4 operations on the 3-D

multiview object representation are defined.

2. Sampling the View Sphere

3-D multiview object models are constructed by sampling the continuous view sphere
surrounding an object at discrete viewpoints. Sampling consists of (a) computing a 2-D projection of
the object from each viewpoint and (b) extracting features from each 2-D projection. In the modern
manufacturing environment, machine parts (objects) are initially designed with the aid of a
CAD/CAM (computer aided manufacturing/computer aided design) system that stores the 3-D
description of a part in an object-centered representation. A 2-D projection of an object from any
viewpoint can be computed by most CAD/CAM systems. Features such as object silhouette [Wal81,
Fek84, Lie79], extended gaussian image [Hor84, Ike$2, Ike81], or edges [Goa83, Sil84] are
computed from each 2-D projection. In this section, we describe how to select sample points
(viewpoints) on the view sphere. In Section 3 we discuss appropriate data structures for storing

features that have been extracted from each 2-D projection.

To select a set of viewpoints on the surface of the view sphere, start with a regular polyhedron,
such as a cube [Goa83], a dodecahedron [Hor84, 1ke82, Ike81], or an icosahedron [Bro77, Brog4,
Sil84, Fek84]. The vertices of the polyhedron lie on the surface of the view sphere. The faces
of the regular polyhedron are subdivided such that the projection of these facets on the view sphere
divides the surface into many approximately congruent bins (i.e. they tesselate the surface of the
sphere). The centers of these bins are chosen as the viewpoints. No method produces bins that (a)
enclose equal solid angles, (b) are congruent, and (c) are separated from the centers of neighboring
bins by equal amounts. (These properties only exist in five regular polyhedra, Euclid’s Platonic

solids: tetrahedron, cube, octahedron, dodecahedron, and icosahedron.)

2.1. Icoesahedron Subdivision

We will choose viewpoints by recursively subdividing the faces of an icosahedron. This

tesselation technique has the following advantages:

(1) All the bins are approximately congruent to each other in shape (i.e. they are all equilateral

triangles). (In contrast to a dodecahedron subdivision, where the initial polyhedron faces are

pentagons, and the subdivided facets are isoceles triangles).

(2) The recursive subdivision is regular, can be infinitely repeated (i.e. the sample points can be

made arbitrarily close together), and it need not be performed to the same depth on each facet.

(3) There are well known ways to calculate the position of the bin centers such that the bin centers

are approximately equidistant from each other [Bro77, Bro79a, Bro79b, Bro84, Cli71].

The first viewpoints are the points on the view sphere that correspond to the centers of the
icosahedron faces. See Figure 1. If additional viewpoinis are required, then each face of the
icosahedron can be subdivided: each edge of a face is divided into n equal segments (we choose
n=2), and ni=4 equilateral triangles are constructed on the face. These triangles are then

"pushed out” so that their vertices lie on the surface of the view sphere.

Each time a face is subdivided in this fashion, 4 new faces are constructed. However, only 3
additional viewpoints are found because the viewpoint corresponding to the old face is the same as the

viewpoint corresponding to one of the new faces. See Figure 2.

Figure 1: Icosahedron face: Figure 2: lcosahedron face,
center of face is 1st viewpoint. subdivided once, yields 4
viewpoints, 3 of which are new.

There are other tesselation techniques that will yield facets of more uniform size [Bro79a,
Bro79b, Bro84, Cli71]. We have chosen the simple method above to demonstrate one particular

tesselation.

2.2. Parents, Children, Neighbors

The icosahedron subdivision procedure described in the previous section generates a hierarchy
of viewpoints. The initial 20 faces of the icosahedron form the highest level (level 0) of the
hierarchy. The 80 facets derived from the 20 icosahedron faces form the next level (level 1) of the
hierarchy. When a facet at level L is subdivided, 4 new facets at level L+ 1 are formed. The facet
at level L is called the parent of the 4 facets at level L+1. The 4 facets at level L+ 1 are called the
children of the facet at level L. Facets at level 0 do not have parents, and facets at the lowest level do

not have children.

The 4 children are individually known as child 0, child 1, child 2, and child 3 of the parent.
See Figure 3 for the layout of the 4 children in both up and down facets. The viewpoint derived from

child 0 is the same as the viewpoint derived from its parent. In the associated data structure storing

Child 1 Child 2

Child 3

Child 0

Child 0

Child 3

Child 1 Child 2

Figure 3: Children of up and down facets.

features associated with viewpoints, storage need not be allocated for a single viewpoint at multiple

levels; it is only necessary to allocate storage for each distinct viewpoint at one level.

Edge adjacent facets on the view sphere are known as neighbors. Each facet has 3 neighbors at
the same level as itself. Figure 4 shows the I neighbor, 2 neighbor, and 3 neighbor of both an up and
a down facet. Neighbors can exist at different levels when adjacent facets have been subdivided to
different levels. An algorithm for finding all neighbors of a facet (at all levels) is presented in

Section 4.2.

Neighbor
1

Neighbor
3

Neighbor
3

Neighbor
2

Figure 4: Neighbors of down and up facets.

3. Constructing a Property Sphere

Section 2 described a method to find sample points on the surface of a view sphere. A 2-D
projection of an object centered in the sphere is computed at each sample point, features are extracted
from each of the 2-D projections and are stored at the associated viewpoint. In this section we
describe the implementation of several data structures that could be used to store features associated

with each viewpoint.

The hierarchical viewpoint creation process (Section 2.1) is conveniently modeled as the
expansion of 20 quadtrees [Fek84]. Fekete and Davis [Fek84] call this set of 20 quadtrees a property
sphere. Each quadtree in the property sphere corresponds to the viewpoints obtained from the
subdivision of a single icosahedron face. The quadtree with a single node corresponds to the original
icosahedron face. Each time a facet is subdivided, 4 nodes are added to the quadtree as children of
the node corresponding to the parent facet. See Figures 5 and 6 for the quadtrees corresponding to

the facet subdivisions shown in Figures 9 and 10 respectively.

Since the viewpoint associated with a parent is the same as the viewpoint associated with its 0
child, it is not necessary to allocate storage space for feature data at non-leaf nodes in a property
sphere. Feature data are stored only at Jeaf nodes in a property sphere. In Sections 3.1 - 3.3 we

describe three possible data structures for a property sphere. In Section 3.4 we compare the space

0 4 8 12

Figure 5: Quadtree corresponding
to level 1 facet subdivision (M =3).

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Figure 6: Quadtree corresponding to level 2 facet subdivision (M = 3).

efficiency of these three methods. The following sections rely on these definitions:

g
I

maximum subdivision level (from Section 2.2)
4M — maximum number of viewpoints in each icosahedron face
— maximum number of leaf nodes in a single quadtree of the property sphere
20-4M = maximum number of viewpoints on entire view sphere
= maximum number of leaf nodes in the property sphere
P = number of viewpoints that have been sampled
= number of leaf nodes in the property sphere
C = number of bits of feature data stored at each leaf node

4 = number of bits in a data address (i.e. the number of bits in a pointer)

3.1. Pure Dynamic Method

A forest of 20 quaternary (4-ary) trees is built dynamically as the view sphere is sampled. If

there are P leaf nodes in the forest, then there are P-l non-leaf nodes [Knu68]. Each non-leaf

node in the tree stores 5 pointers (to its parent and its 4 children), requiring 54 bits. For simplicity

we assume that each leaf node uses the same 5A bits of space plus C bits for feature data.

10

Therefore, the total amount of space required to store a property sphere using this method is:

54- [P;1]+(5A-+ C)-P bits.

The parent-child relationships between viewpoints are made explicit by pointers stored in the
nodes. The pure dynamic method is the only way to implement a property sphere if M is not known

a priori.

3.2. Pure Static Method

The pure static method relies on the predetermination of M. A 2-dimensional array with 20
rows (one for each icosahedron face) and 4M columns (the maximum number of viewpoints derived
from each face) is statically preallocated. Each cell of the array is C bits wide. The array is indexed
by the addressing scheme described in Section 3.2.1. If some of the 4™ viewpoints on each face are
not sampled, then storage space will be wasted. The total amount of space required to store a
property sphere using this method is: 20-4M.C bits.

The parent-child relationships between viewpoints are implicit in the addressing scheme

described in Section 3.2.1.

Static preallocation of storage space for feature data has been used by Fekete and Davis [Fek84]

and Goad [Goa83], for example.

3.2.1. Addressing the Viewpoints

Every facet of the subdivided icosahedron can be assigned a unique address, derived from (a)
the face of the icosahedron from which the facet originated, (b) the level of the facet, and (c) the
number of the facet. Figure 7 shows an icosahedron that has been "unfolded” and "flattened” out.
The 20 faces of the icosahedron are numbered 1 through 20. Any assignment of numbers to faces
will do, however, the assignment shown in Figure 7 has some interesting properties described in

Section 4.2.2.

11

Figure 7: 20 Faces of Flattened Icosahedron. Identically
lettered vertices correspond to the same point.

The level of the facet will be a number between 0 and M. A facet at level L (0=L=M) arises
from L subdivisions of an icosahedron face. Up to 4 facets (and corresponding viewpoints) can be
constructed on each icosahedron face. Facets on each face will be numbered 0 to 4M—1. 20-4M
facets will be constructed over the entire icosahedron. The following table shows the number of

viewpoints generated for several values of M.

Levels of Number of Viewpoints | Number of Viewpoints
Subdivision per Icosahedron Face on entire Icosahedron

0 1 20

1 4 80

2 162 320

3 643 1280

4 256 5120

5 1024 20480

6 4096 81920

Of course, this subdivision need not be performed to the same level on all facets, so the

numbers in the table are upper bounds on the number of viewpoints at each level.

For example, assume M = 3. By definition, the facet number of an original icosahedron face

(at level 0) is O (see Figure 8). The facet numbers of the 4 children (0= i=23), are computed from

12

48

16 32

Figure 8: Facet0 at level 0. Figure 9: Facet numbers of
level 1 facets (M = 3).

the facet number of the parent, the level of the parent (0= parent.level <M), and M:

child[i]. number = pareni.number+ -4~ parent level — 1

|

child{i]. level

11

parent, level + 1

i

child[i]. face = parent. face

Conversely, the facet number of a parent can be computed from the facet number of a child,

the level of the child (0 < child. level=M), and M:

i

,4M~ child level + 1

. child. number
parent.number nt |-

4 M~ child level + 1

|

parent.level = child. level =1

!

parent. face = child. face

The facet numbers of the 4 children of facet O at level 0 are 0, 16, 32, and 48 at level 1 (see
Figure 9). Figure 10 shows the facet numbers of the level 2 facets. Figure 11 shows the facet

numbers of all facets obtained by subdividing an icosahedron face three times.

13

A

48
52 56
4 8
28 44
16 32
20 24 36 40

Figure 10: Facet numbers of level 2 facets (M =3).

9

61
49
2

a 62
50
55 5
56
53 58
5 10
31 47
28 a4
29 46
17 34
23 43
40
21 22 25 20 37 38 41 42

5

20

Figure 11: Facet numbers of level 3 facets (M =3).

14

In Section 2.2 we pointed out that the viewpoints corresponding to a parent, and its O child are
the same. Notice that the facet numbering preserves this correspondence - a facet and its 0 child will
both have the same facet number. This is important because data associated with the viewpoint will

be accessed using this address.

Fekete and Davis [Fek84] present a similar scheme for computing facet addresses. Their
method does not take advantage of the fact that the maximum subdivision depth is known a priori.
Their addresses are strings of length proportional to the current subdivision level; address strings

must be converted to and from integers for use as array indices.

3.3. Hybrid Static/Dynamic Method

When some of the 4™ viewpoints on each face are not sampled, the pure static method wastes
storage space. The hybrid static/dynamic method tries to save space by only allocating A4 bits
(instead of C bits) in each cell of the 2-dimensional array with 20 rows and 4M columns. The 4 bits
will be used for a pointer to dynamically allocated blocks of C bits. The C bit blocks will only be
allocated for the P viewpoints that are actually sampled. If 4 <<C then the hybrid static/dynamic
method will require less space than the pure static method. The total amount of space required to

store a property sphere using this method is: 20-4"-4+ P~ C bits.

The parent-child relationships between the viewpoints are implicit in the addressing scheme

described in Section 3.2.1.

3.4. Storage Considerations of Property Sphere Implementaion

In this section, the three property sphere implementation methods (pure static, pure dynamic,
hybrid static/dynamic) are compared to determine which method provides the most space efficient

data representation. The most space efficient method can be chosen based on the range of

P . . .
, the percent of viewpoints that will be sampled.
20-4M p p p

15

First, an expression is derived for the case when the pure static method should be used instead
of the hybrid static/dynamic method:
20-4M.C < 20:4M- 4+ P-C

20-4M(C—-A) < P-C

C-4 _ _P
C 20-4M
C ~ 20-4M

Thus the pure static method requires less storage than the hybrid static/dynamic method when

the percent of sampled viewpoints, is greater than 1—%. Generally the number of bits

20-4M "’
in a pointer (A4), will be very small compared to C, so the fraction -A(:: will be very close to 0, and

1- —f: will be very close to 1. The pure static method is the most space efficient representation when

100% (or nearly 100%, based on A and C) of the viewpoints will be sampled.

Next, an expression is derived for the case when the pure dynamic method should be used

instead of the hybrid static/dynamic method:

5A-[P;1 +(5A+C)P < 204M-4+ PC
5A~{P;] +54P+PC < 20-4M-4+ PC
SA-[P—]]+5AP<20-4M-A
P;1+P<4-4M

4P—1 < 3-4M*1
P—— < 3:4M

Since P, and M are integers, this inequality can be re-expressed as:

P < 3-4M

16

This inequality indicates that when P, the number of sampled viewpoints, is less than 3-4M
then the dynamic method should be used instead of the hybrid static/dynamic Method. If both sides

of the inequality are divided by 20-4M (the maximum number of leaf nodes in the property sphere):

P _ 3-4M
20-4M 20-4M

P__3
20.4M 20

In other words, when less than 15% of the maximum number of possible viewpoints are
actually sampled, then the dynamic method should be used to implement a property sphere.

Combining this result with the comparison of pure static verses hybrid static/dynamic produces the

following table for values of w%
20-4M

P
Value of
20-4M
.15 =.15 & 1- = =1- =
< 5 < c c
Pure Dynamic | Hybrid Static/Dynamic | Pure Static

A and C are always known for a given application. The percent of viewpoints that will be

sampled, 50-aM may not be known a priori for every application. If the maximum subdivision

depth M is not known or cannot be approximated, then only the dynamic method can be used.

17

4. Property Sphere Operations

In this section we present several basic operations on property spheres. These are some of the
operations that will be required when implementing an object recognition program based on a 3-D

multiview object representation.

The operations will be described in an implementation independent form — the property sphere

can be implemented using any of the three methods described in Section 3.

4.1. Finding Parents and Children

Parent and children finding is the most primitive of all property sphere operations. Neighbor
finding (Section 4.2), coordinate computation (Section 4.3), and node enumeration (Section 4.4)

operations all rely on the ability to quickly and easily determine the parents and children of a node.

When the property sphere is implemented using the dynamic method, parent-child
relationships are made explicit by the pointers stored in the tree nodes. When the property sphere is
implemented using the pure static or hybrid static/dynamic method, parents and children are

calculated using the addressing scheme described in Section 3.2.1.

4.2. Finding Neighbors

Neighbor finding is a basic property sphere operation that returns a list of viewpoints derived
from facets that share an edge with a given viewpoint’s facet. This is the 3-D equivalent of neighbor
finding techniques for images represented by quadtrees [Sam82]. One application of the neighbor

finding operation is region growing, which is discussed in Section 4.5.

In Section 4.2.1 we describe a simple algorithm to find neighboring viewpoints that are
contained in the same icosahedron face as the given node. In Section 4.2.2 we modify this algorithm
to permit neighboring viewpoints to lie on different icosahedron faces. This algorithm will only find
neighbors that are at the same level as the given viewpoint. In Section 4.2.3 we describe an

algorithm that will find all neighboring viewpoints, regardless of level.

18

4.2.1. Finding Neighbors on a Single Icosahedron Face

The following table-lookup can be performed to find the neighbors of a viewpoint that lie on the

same icosahedron face and are of the same size as the given face.

Type of child 1-Neighbor | 2-Neighbor 3-Neighbor
0 child 1 child 2 child 3
of parent of parent of parent
child 3 child 0 child 1
1 of parent’s of parent of parent’s
1-Neighbor 3-Neighbor
child 0 child 3 child 2
2 of parent of parent’s of parent’s
2-Neighbor | 3-Neighbor
chiid 2 child 1 child 0
3 of parent’s of parent’s of parent
1-Neighbor | 2-Neighbor

This definition of neighbors is recursive. If the level of a node is L, then at most L of the

node’s ancestors will need to be visited (i.e. L+1 calls to the neighbor procedure will be made) to

find all three neighbors of a node.

When a neighbor lies on an adjacent icosahedron face, this table-lookup will fail, because it

will try to find the parent of a level 0 node, which is undefined.

4.2.2. Finding Neighbors Across Icosahedron Faces

When the neighbor finding algorithm needs to find the neighbor of a level 0 node, we simply

use this table:

19

Face Nghbr | Nghbr | Nghbr Face Nghbr | Nghbr | Nghbr
Number ! 2 3 Number 1 2 3
1 10 2 11 11 19 13 1
2 1 3 12 12 20 14 2
3 2 4 13 13 11 15 3
4 3 5 14 14 12 16 4
5 4 6 15 15 13 17 5
6 5 7 16 16 14 18 6
7 6 8 17 17 15 16 7
8 7 9 18 18 16 20 8
9 8 10 19 19 17 11 9
10 9 1 20 20 18 12 10

Figure 7 shows the corresponding numbering of icosahedron faces. This table is easily
summarized by the following expressions based on F (the face number):
let T = (F-1) div 10

The 1-neighbor of face F is face = ((F+8—T) mod 10)+(7-10+1)

i

The 2-neighbor of face F is face = ((F+ T) mod 10)+(7-10+1)

The 3-neighbor of face F is face = F—20-T+10

Example: The 1-neighbor of facet 0 at level 0 on icosahedron face 2 is facet 0 at level 0 on

icosahedron face 1.

Based on the layout of neighbors shown in Figure 4, one can easily determine the neighbors of
faces 1 - 10 by examining Figure 7. It is also easy to find neighbor 3 of faces 11 - 20 (simply
choose the face above or below). To find the 1 and 2 neighbors of faces 11 - 20, one must make the
observation that faces 11, 13, 15, 17, and 19 all wrap together at the top of the icosahedron (and
faces 12,14,16,18, and 20 wrap at the bottom). When the faces are wrapped together, you can see
that face 11 is the 1-neighbor of face 13, turned on its side. All faces on the ends (faces 11-20) must
be treated as though they have been turned on their sides when calculating 1 and 2

neighbors. This observation leads to the correction:

20

if the initial viewpoint is on any of faces 11 - 20, and the 1 or 2 neighbor of the viewpoint is on a
different face then
if the neighbor is a 1 or 2 child then make the neighbor the 3 child of its parent;
else if the neighbor is a 3 child then
if this is neighbor 1 of the viewpoint then make the neighbor the 2 child of its parent
else if this is neighbor 2 of the viewpoint then make the neighbor the 1 child of its parent

4.2.3. Finding Neighbors When All Viewpoints Are Not At The Same Level

The neighbor finding algorithm presented in Sections 4.2.1 and 4.2.2 finds only the three
neighbors of a node that are at the same level as the given node. But the neighbor of a node at level
L may not exist if the property sphere does not contain the maximum number of leaf nodes (20-4M),

There are 3 distinct cases:

Case 1: Node is at level L, and neighbor is at level L (Figure 12)
Case 2: Node is at level L, and neighbor is at level K, K <L (Figure 13)
Case 3: Node is at level L, and neighbors are at levels >L (Figure 14)

When the neighbor of a node at level L is a node at level K, and K is less than L, then the
table look-up presented in Section 4.2.1 will fail when trying to find the non-existent level L

descendants of the level K node. The level K ancestor is simply returned as the neighbor.

When the neighbors of a node at level L are nodes at levels higher than L, then the table
look-up presented in Section 4.2.1 returns a common ancestor of the neighboring leaf

nodes. Case 3 is handled by enumerating the descendants of this ancestor according to the

“Figure 12: Node and Figure 13: Node at Figure 14: Node at
neighbor atsame level L, neighbor at level L, neighbors at
level. level K, K<L. levels >L.

21

following table:

Ancestor is: Neighbors are:
1-neighbor all existing 2- and 3-children of the ancestor
2-neighbor all existing 1- and 3-children and its
3-neighbor all existing 1- and 2-children descendants

4.3. Computing the Coordinates of a Viewpoint

It is often necessary to compute the Cartesian coordinates of a viewpoint. For example, to
direct a CAD/CAM system to generate 2-D projections of an object, the 3-space coordinates of the
camera positions must be computed. As another example, assume that properties of an object in an
image match properties with one viewpoint in the property sphere. The coordinates of the viewpoint,
along with the known orientation of the object, can be used to retrieve the orientation of the object in

the image.

Coordinate computation is performed in two steps. First the Cartesian coordinates of the
vertices of a facet are computed. Second, the coordinates of the center of the facet (the viewpoint),

are computed from the coordinates of the vertices of the facet.

The coordinates of the three vertices of a facet at level L are computed from the coordinates of
the vertices of the facet’s ancestors at levels L—1, L—2,...,0. The ancestor at level 0 is an
icosahedron face; The coordinates of the twelve icosahedron vertices are placed at

O, xa,xb), (xa,=b,0), and (= b,0,% a) [Bal82] where:

1+ Vs
2 ?

golden ratio =

N golden ratio
1

54

Q
I

sphere radius- , and

1

<
i

sphere radius -

1
V golden ratio -5 4

22

Given the array icos vertices (array[1..12] of coordinates), initialized with values from
[0,z a,= b], and an icosahedron face number F, its three vertices are given by:
corner 1 = icos vertices[((F+7) mod 10)+1]
corner 2 = icos vertices [F —((F—1) div 10)-10]
corner 3 = if F=10 then icos vertices [((F +8) mod 10)+1]

else icos vertices[12—(F mod 2)]

Next, for every level K between 1 and L, the coordinates of the vertices of the ancestor at level
K must be computed from the coordinates of the vertices of the ancestor at level L—1. These three
coordinates are chosen from the set of six coordinates (the three coordinates of the ancestor at the
previous level plus the midpoints between these three coordinates) depending on whether the ancestor
at the current level is a 0, 1, 2, or 3 child. The coordinates of the vertices of each ancestor are

pushed out to the radius of the view sphere by normalizing the directed vector that they lie on to be

the length of the view sphere radius.

Once the coordinates of the vertices of the level L facet have been computed, the center of the
facet is found by averaging together these three coordinates. The center point is also normalized so

that it lies on the surface of the view sphere.

4.4. Enumerating Viewpoints

There are many applications where one needs to enumerate the viewpoints in the property
sphere, e.g. when directing a CAD/CAM system to generate 2-D projections from each viewpoint;
as part of a region growing operation (Section 4.5); when searching for a viewpoint with a particular

associated property [Hor84, Ike 81, Ike82, Wal81, Cha82, Lie79, Fek84, Sil84].

Node enumeration corresponds to a traversal of the property sphere that visits every node. A
breadth first traversal of the property sphere will enumerate the viewpoints in a hierarchical manner:

level 0, then level 1, ..., level M, as follows:

23

procedure Breadth First Property Sphere Traversal;
for i := 1 to icosahedron faces do begin
node.number := 0;
node.level 1 = 0;
node.face : = i;
push fifo(node)
end;
search depth 1= M;
while not queue empty do begin
pop fifo(node);
visit(node);
if node.level < search depth then begin
children : = children of(node);
for j : = 0 to 3 de push fifo(children[j])

end
end;

To visit nodes in a depth-first ordering, replace the push fifo, pop fifo, and queue empty

functions with push lifo, pop lifo, and stack empty functions, respectively.

4.5. Region Growing

Region growing is a property sphere operation that merges viewpoints into maximally
connected regions such that all viewpoints of a region have the same value of a given property P.
This operation is of course analogous to region growing in 2-D images [Bal82]. Region growing is
a useful, basic operation 10 be performed on 3-D multiview object representations that leads to a

more space and search-time efficient representation.

Region growing algorithms for 2-D images are usually based on grey level properties, textural
properties, and gradient space properties. What properties should be used to segment property
spheres? Koenderink and van Doorn [Koe76a, Koe76b, Koe79] proposed stable-vantage points
(regions) where all views from that region exhibit the same topological properties. Chakravarty and
Freeman [Cha82] proposed vantage-point domains (regions) where all views from that region contain
the same vertices and edges. Any partitioning property must be one that can be derived from the 2-D

viewer-centered representation of each viewpoint.

To partition the property sphere into regions based on the value of property P, it is first
necessary to compute the value of property P associated with each viewpoint in the property sphere.

Larger numbers of viewpoints (in the property sphere) will lead to more precise region boundaries.

The extension of 2-D region growing 1o property spheres is straightforward. Each leaf node of
the property sphere is visited (using the algorithm in Section 4.4) and if the node is not already a
member of some region, then label it the "seed” node for a new region » and propagate this label to
all unlabeled neighboring viewpoints that have the same value of property P:
push(seed node)
while node stack < > empty do begin
pop(node)
if node is not 2 member of any region then
if same feanires as the region r seed node then begin
mark this node as a member of region
find all neighbors of this node
for each neighbor, if it is net a member of any region then push(neighbor)

end
end

To determine if two viewpoints are part of the same region, the values of their property P are
compared. This algorithm compares property values exactly once for each pair of adjacent
viewpoints. When there are 20-4" viewpoints in the property sphere (i.e. the property sphere is

complete to level M), each viewpoint is adjacent to three other viewpoints. In this case

20-4M.3

5 = 1.5-20-4™ property value comparisons will be made. When the property sphere is not

complete, there are less than 20-4M viewpoints, and less than 1.5-20-4M pairs of adjacent
viewpoints, where M is the level of the lowest level viewpoint. Therefore, region growing can always

be performed in time proportional to the maximum number of nodes in a complete property sphere.

If two non-connected regions both have the same value of partitioning property P, then the

orientation of the object cannot be uniquely determined based on P alone.

4.6. Finding Viewpoints at a Distance D from a Given Viewpoint

An object recognition system based on property spheres might try to deduce the identity, or

orientation of an object from multiple views of the object. Multiple views V;, . .., V, of the object

25

are taken from camera positions C,, . .., C,. Feawres derived from view V) are matched against
features stored in the property sphere; each node in the property sphere that matched view V; is
added to a list L,,. Views V., ..., V¥, are used to verify or contradict each member of list L,,.
Spatial constraints S», . . ., S, are derived from the geometric spatial relationships between camera
position C; and camera positions Cs, . .., C,. That is, for each node N that is a member of L,
compute a list L, of all nodes in the property sphere that are related to node N by spatial constraint
S; (2=i=n). If there exists a member of L, with features that match view V;, then node N is
confirmed as a candidate match for view V;. With this stereo vision application as motivation, we

discuss in this section the computation of list L, given a node N and a spatial constraint §.

Figure 15 shows a pair of camera positions C; and C, separated by angle 6 (0=6=m). If L,
is the list of viewpoint nodes that match the features associated with the view from C;, then for each

node N that is an element of L,, we want to compute the list L, of nodes separated from N by angle

Camera |
Position 1

Camera
Position 2

Figure 15: D = RO, for 0 in radians.

26

6. The spatial constraint S between N and the nodes in list L, is that they are separated by angle 6.
Since all nodes in the property sphere correspond to viewpoints taken from points that lie on the
surface of the view sphere, spatial constraint S is equivalently stated to be the spherical distance
corresponding to 6. Spherical distances between any two points on the surface of a sphere are

measured along the great circle that connects them. So the spherical distance between two points

separated by angle 6 is D = 217]?--2% = RO, where R is the radius of the view sphere.

To find all the nodes at distance D from node N, conceptually, we want to anchor a string of
length D at the point on the view sphere corresponding to the center of node N (call this point N).
The string is pulled tight on the surface of the view sphere and swept around in a circle. Each
triangular patch 7, that the free end of the string passes through is considered to be at distance D

from node N. The property sphere node corresponding 1o each 7, is added to list L,.

One way to find all the T, patches would be to check the triangular patch corresponding to
each node in the property sphere (i.e the nodes in the property sphere are enumerated using the
algorithms of Section 4.4). If the free end of the string of length D passes through triangular patch
I, then the corresponding node in the property sphere is added to list L. In other words, if D is
greater than or equal to the shortest distance between N, and T,, and D is less than or equal to the

greatest distance between N, and T,

p» then the property sphere node corresponding to T, is added to

L.

The shortest distance between N, and triangular patch T, is the distance between N, and the
point 7, that is closest to N. The greatest distance between N, and I, is the distance between N,
and the point on T}, that is farthest from N. So the problem is reduced to finding the points on T,

that are closest and farthest from N,. There are three cases, depending on the region point N, lies

in with respect to triangular patch 7,. See Figure 16.

To decide which region point N, lies within, compute Vy, V,, and V3, the coordinates of the
triangular patch T, (see Section 4.3). Then compute the normal of the great circle GC, that passes

through ¥y and Vy: GCy=Vx V. Similarly: GCo= V)% V3; GCs= Vax V3. Next compute the

27

Figure 16: Triangular patch T, (defined by V4, V2, V3), its projection on
the opposite side of a sphere (dot-dash), and great circles GCy,...,GCq2
which divide the sphere into regions A,B,C,D,E,F and G. Regions are
bounded by solid lines. Bold lines are on the front surface of the sphere;
thin lines are-on the back surface of the sphere.

normal of the great circle GC, that passes through V; and is perpendicular to GC: GC4= V%X GC;.
Similarly: GCs=Vox GC1; GCg=V3Xx GCy; GCr=VXGCr; GCg=VyxGCy; GCo=V3X GCj.
Finally, compute the normals of the great circles perpendicular to and passing through the midpoints

of the sides of triangular patch 7,. The midpoint between V; and V; is computed by averaging V;

L VaVy L V4V VsV
and Vy. Myp= y o M= ; Mayz=————; GC1g=M 13X GCy; GO =M3X GCy;

G512=M33X 663.

28

Point N, is within region A if it lies on the same side of GCy as V3, and it lies on the same
side of GCy as V,, and it lies on the same side of GC3 as V. (To determine if two points both lie
on the same side of a great circle, compute: (a) the dot product of the first point and the normal of
the great circle and (b) the dot product of the second point and the normal of the great circle. If the
signs of the two dot products are equal, then the points both lie of the same side of the great circle.)

Similarly, we can compute whether a point lies within regions B,C,D,E,F or G.

Case 1: Point N, lies within region 4. Since region A4 is the wriangular patch 7, the closest point

on T, is N, itself.

Case 2: Point N, lies within region B,C or D. The closest point on T, is at the intersection of the

perpendicular between N, and the closest edge of T,, (GC; GC», or GCj, respectively).

Case 3: Point N, lies within region E,F or G. The closest point on Tp is Vi Vy, or Vi,

respectively.

To find the point on triangular patch T, that is farthest from point N, project N, to the
opposite side of the view sphere; call this point N.'. Then find the point on triangular patch T, that
is closest to N,' using the same procedure described above. This point is the point on triangular

patch T, that is farthest from point N,.

This algorithm requires testing the distance between each node N of L,, and each triangular
patch 7, corresponding to a node in the property sphere. The time to compute list L, for each node

N is proportional to the number of nodes in the property sphere.

29

5. References

[Bal82]

[Bro81la]

[Brog§1b]

[Bro84)]

[Bro77]

[Bro79a]

[Bro79b]

[Cha82]

[Cli71]

[Fek83]

[Fek84]

[Goa83]}

[Hor79]
[Hor83]
[Hor84)

[Tke81]

[1ke82)

[Knu68)

[Koe76a]

[Koe76b]

[Koe79)]

D.H. Ballard and C.M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, N.J.,
1982, 492-493.

R.A. Brooks, Symbolic Reasoning Among 3-D Models and 2-D Images, Ariificial
Intelligence, Vol. 17, August 1981, 285-348.

R.A. Brooks and T.O. Binford, Geometric Modeling in Vision for Manufacturing, Proc.
SPIE, Vol. 281, 1981, 141-159.

P. Brou, Using the Gaussian Image to Find the Orietation of Objects, International
Journal of Robotics Research, Vol. 3, No. 4, 1984, 89-125.

C.M. Brown, Representing the orientation of dendritic fields with geodesic tesselations,
Technical Report TR-13, Department of Computer Science, University of Rochester,
Rochester, NY, February 1977.

C.M. Brown, Two descriptions and a wwo-sample test for 3-D vector data, Technical
Report TR-49, Department of Computer Science, Universtiy of Rochester, Rochester,
NY, February 1979.

C.M. Brown, Fast Display of Well-Tesselated Surfaces, Computers and Graphics, Vol. 4,
1979, 77-85.

I. Chakravarty and H. Freeman, Characteristic Views as a Basis for Three-Dimensional
Object Recognition, Proc. SPIE, Vol. 336, Robot Vision, 1982, 37-45.

J.D. Clinton, Advanced structural geometry studies, part 1: polyhedral subdivision
concepts for structural applications, NASA CR-1734/35, September 1971.

G. Fekete, Generating Silhouettes of Polyhedra, Technical Report CAR-TR-48, Center
for Automation Research, University of Maryland, College Park, MD, December 1983

G. Fekete and I1..S. Davis, Property Spheres: A New Representation for 3-D Object
Recognition, Proc. Workshop on Computer Vision: Represeniation and Control, 1984,
192-201.

C.A. Goad, Special Purpose Automatic Programming for 3-D Model-Based Vision, Proc.
Image Understanding Workshop, June 1983, 94-104.

B.K.P. Horn, Sequins and Quills, MIT A.1. Memo No. 536, May 1979.
B.K.P. Horn, Extended Gaussian Images, MIT A.1. Memo No. 740, July 1983.

B.K.P. Horn and K. lkeuchi, The Mechanical Manipulation of Randomly Oriented
Parts, Scientific American, Vol. 251, No. 2, August 1984, 100-111.

K. Ikeuchi, Recognition of 3-D Objects Using the Extended Gaussian Image, Proc.
IJCAIL 1981, 595-600.

K. Ikeuchi and Y. Shirai, A Model Based Vision System for Recognition of Machine
Parts, Proc. AAAIL, 1982, 18-21.

D.E. Knuth, The Art of Computer Programming, Vol 1: Fundamenial Algorithms,
Addison-Wesley, Reading, Mass., 1968.

J.K. Koenderink and A.J. van Doorn, The singularities of the visual mapping, Biological
Cybernetics, Vol. 24, 1976, 51-59.

J.K. Koenderink and A.J. van Doorn, Visual perception of rigidity of solid shape,
Journal of Mathematical Biology, Vol. 3, 1976, 79-85.

J.K. Koenderink and A.J. van Doorn, The Internal Representation of Solid Shape with
Respect to Vision, Biological Cybernetics, Vol. 32, 1979, 211-216.

30

[Lie79]

[Mar78]

[Sam82]

[Sil84]

[Smi79]

[Wal81]

L.1. Lieberman, Model-Driven Vision for Industrial Automation, in Advances in Digital
Image Processing, P. Stucki, ed., Plenum, New York, 1979, 235-246,

D. Marr and K.H. Nishihara, Representation and Recognition of the Spatial
Organization of Three-dimensional Shape, Proc. of the Roval Society of London, Series B,
Vol. 200, 1978, 269-294.

H. Samet, Neighbor Finding Techniques for Images Represented by Quadtrees,
Computer Graphics and Image Processing, Vol. 18, No. 1, 1982, 37-57,

T.M. Silberberg, L.S. Davis and D. Harwood, An Iterative Hough Procedure for
Three-Dimensional Object Recognition, Partern Recognition, Vol. 17, 1984, 621-629.
D.A. Smith, Using Enhanced Spherical Images for Object Representation, MIT A.L
Memo No. 530, May 1979.

T.P. Wallace, O.R. Mitchell, and K. Fukunga, Three-Dimensional Shape Analysis
Using Local Shape Descriptors, JEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. 3, 1981, 310-323.

31

