
Pattern Recognition, Vol. 22, No. 5, pp. 561 565, 1989
Printed in Great Britain

0031-3203/89 $3.00 + .00
Pergamon Press plc

© 1989 Pattern Recognition Society

COMPUTING THE CONVEX HULL OF A SIMPLE
POLYGON

CHERN-LIN CHEN
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

(Received 15 July 1988; received for publication 28 November 1988)

Abstract An algorithm for computing the convex hull of a simple polygon is presented. Its correctness
and complexity are also shown.

Computational geometry Convex hull Simple polygon Algorithm

l. INTRODUCTION

The convex hull of a finite point set is the largest
convex polygon generated by the set. The convex hull
problem, particularly for a set of points in the plane,
has been studied extensively and has applications
in pattern recognition, image processing, computer
graphics and operations research. There is a long list
of articles "-7) containing results on the convex hull
of a planar point set. For n unstructured points
the least available complexity of these algorithms is
O(nlogn)J 8)

The complexity can be less than O(nlogn) when the
points are structured. An interesting case of the convex
hull problem that occurs frequently in practice is
when the points form the vertices of a simple polygon
(i.e. a polygon without self-intersections). Several
authors have tried to find a fast algorithm for this
problem. In 1972 Sklansky (9) proposed a linear-time
algorithm for computing the convex hull of a simple
polygon. The algorithm is rather simple and elegant.
Unfortunately, as has been pointed out by Bykat, (~ o) it
does not always work. Another similar O(n) algorithm
proposed by Shamos (~ ~) has also been discovered to
fail for some types of simple polygons. A much
more complicated linear-time algorithm that uses two
stacks along with a proof of correctness was exhibited
by McCallum and Avis. {12) Lee O3) later showed that
only one stack is required. Graham and Yao "4)
reported a compact algorithm that is similar in spirit
to Lee's version. Both of Refs 13 and 14 included two
types of pocket test. In the paper of Shin and Woo, {~ s)
the Sklansky's original idea is adopted and only one
pocket test is used.

The utter simplicity of Sklansky's algorithm com-
pared to the later algorithms that work is a strong
reason for investigations of Toussaint and Avis. "6)
They have proved that Sklansky's algorithm can be
used in the construction of the convex hull of simple
polygons which possess a special property called weak

external visibility. Orlowsky "7) enlarged the class of
simple polygons on which Sklansky's algorithm can
be applied. He introduced a notion called external
left visibility and showed that this criterion is a
necessary and sufficient condition for the success of
Sklansky's algorithm. Sklansky, tls) in 1982 presented
an amendation to his algorithm of 1972 for handling
arbitrary simple polygons, not a subclass. However,
counterexamples are given by Toussaint and
Gindy. ~19) Ghosh and Shyamasundar ~2°) propose a
simple algorithm using only the Sklansky's convexity
test and the comparison of the X coordinates of
adjacent points. Though the statement of correctness
is given, counterexamples similar to those in Ref. 19
can be found.

In this paper, a linear time algorithm for computing
the convex hull of a simple polygon is described. With
an augmented implicit pocket test for each candidate
vertex of the input polygon, the convex hull can be
found in a simple and elegant way. It is shown
that the proposed algorithm is more compact than
previous works.

2. NOTATION AND TERMINOLOGY

Let P be a simple polygon in the plane, which is
represented by a sequence of vertices, i.e.
P = (v0, vl vn-0, such that two adjacent vertices
vi and v~+ 1 define an edge of the polygon. Each vertex
vi, 0 < i < n - 1 , is represented by its X and Y
coordinates. The convex hull of P, denoted by CH(P),
is the smallest convex polygon that contains P in its
interior. An extreme point of the polygon P is a vertex
of P that lies on the boundary of CH(P). A simple
polygon is clockwise oriented if its interior lies to the
right as the polygon is traversed. The orientation of
P can be easily tested and, if necessary, reversed in
linear time. It is henceforth assumed in this paper
that all polygons are clockwise oriented.

Let L(vi, v j) denotes a directed line segment joining

561

562 CHERN-LIN CHEN

two points v~ and vj in the direction from v~ to vj. A
chain CHN(vi, vj) is a sequence of L(vi, vi+l),
L(vi+ 1, vi+ 2) L(vj_ 1, vj). A closed region bounded
by L(vi, v~) and CHN(vl, v j) is called a pocket denoted
by PKT(vi, vj) if all points in CHN(vi, v j) are on or to
the right of L(vl, v j).

Given three vertices vl = (xi,y~), vj = (xj, yi), and
v~ = (xi, y~), let S(vl, vj, Vk) = (X k -- xiXy j - yi) - (y~ -
~iXx~ - xl). We have three cases, that is, S(vi, v~, vi).

(a) > 0 implies vi is strictly to the right of L(v~, v j),
that is, vj is a convex vertex with respect to v~ and yr.

(b) = 0 implies three colinear points.
(c) < 0 implies v~ is strictly to the left of L(vi, v j),

that is, vj is a reflex vertex with respect to v, and Vk.
The crux of the Sklansky's algorithm is a backtracking
step which successively deletes non-convex vertices
using the simple test stated above. However, as
pointed out by Bykat, t~°~ a self-intersecting polygon
may result during the deletion process. So the algor-
ithm fails in some cases. In the following section,
some observations are obtained by investigating the
conditions which result in self-intersection. With these
investigations we can avoid the intersection situation
and then the convex hull can be found correctly.

3. P R E L I M I N A R I E S

Two interesting properties of a pocket due to
Graham and Yao are cited first.

Lemma 3.1. No vertices of P that lies in PKT(v, vj),
with the possible exception of v~ and vj, can be
extreme.

Proof. Omitted.

Lemma 3.2. There is a successor of v~ in P that lies
outside of PKT(vi, v j).

Proof. Omitted.

The successor of vj lying outside of PKT(vi,vj) is
called the emergence vertex of PKT(vi, v j).

Lemma 3.3. Reflex vertices of P lies in pockets.

Proof. If vj is a reflex vertex of P, that is,
S(vj_1,vj, v j+O<O, then vj is to the right of
L(vj_l,v~+l) and on CHN(vj_I ,vj+0. So, vj is in
PKT(vj_ 1,vj+ t).

Now let us go for the reason why the Sklansky's
algorithm fails. Figure 1 illustrates a case where that
algorithm will not work. Processing from v~ in a

1

2
2

7
7

(a) (b)

Fig, I. A counterexample to Sklansky's algorithm.

clockwise manner the algorithm discards vertex v 4
then backtracks to the triplet v2vav5 which is convex.
Every subsequent vertex test is convex and thus the
algorithm outputs the polygon 1)l/32~33VsV6VTV 8 which
is not only non-convex but also non-simple. The
mistaken step which leads to the undesirable result is
that v6 is accepted upon the convexity of the triplet
vsv6vv being guaranteed. The vertex v6 is in
PKT(v3, vs). The erroneous acceptance of v6 causes
the intersection of L(v3, vs) and L(v6, vT).

By lemma 3,1, vertices in PKT(v3,vs) should be
discarded. And by lemma 3.2, the emergence vertex
exists for PKT(va,vs). Thus, we have Fig. 2(a). A
further convexity test deletes v5 and the final output
is shown in Fig. 2(b).

How to identify whether a vertex is in a pocket or
not? The following lemmas give a simple way to
compute it.

Lemma 3.4. The vertex vj÷t is in PKT(vi, v~) if
S(vj - l ,v j , vj+ O < 0 and S(vi, vj, vj+ l) > O.

Proof. The result is quite obvious as illustrated in Fig.
3. For vi+ 1 to be in PKT(vi, vj), it lies to the right of
L(vi, vi) and to the left of CHN(vl, v j).

Since vj+l is in PKT(vi, v~), it should be discarded
according to lemma 3.1. Then another vertex after
v j+ t may become the immediate successor of vj. This
discarding process continues until the emergence
vertex of PKT(v~, v j) appears. Points inside a pocket
are deleted, hence self-intersection can be avoided.
The generalization of lemma 3.4 is given as follows.

Lemma 3.5. For a vertex vk which becomes an immedi-
ate successor of vi, due to the discarding of
its preceding vertices, is in PKT(v, vj) if
S(Dj_I,Uj, vj+ I) < 0 and S(oi, Vj, Vk) > O.

Proof. For k ---j + 1, this is the case of lemma 3.4.
For k > j + 1, vk is the immediate successor of vj
means that v j+ t, v j+2 and vk-1 are deleted. They
are all in PKT(v, v j). Because vk-1 is in PKT(vl, v j)
and S(v, v~, vk) > O, v~ is to the right of L(vi, v j), and
must be left of CHN(vi,vj). Otherwise L(Vk-l,Vi)

1

B '~ 8 2

(a) (b)

Fig. 2. A remedy to find the convex hull.

i_~ r ~ - - - - - , ,
I-,

x

Fig. 3. Points inside PKT(vi, v j).

Computing the convex hull of a simple polygon 563

would intersect with CHN(vl, vj), which contradicts
the definition of a simple polygon.

4. THE ALGORITHM

The proposed algorithm for finding the convex hull
of a simple polygon is illustrated by the diagram in
Fig. 4. The algorithm follows the original Sklanksy's
algorithm with an implicit pocket test augmented.
The main data structure used is an auxiliary stack
H = (hg, hi_ 1 , h0), where h 0 denotes the bottom of
the stack, and the variable j points to the stack top.
The variable k refers to the current input vertex, and
i refers to the vertex immediately preceding h r. The
input polygon is represented by a circular singly-
linked list. The first vertex Vo should be specified as
one of the four extreme vertices: the leftmost, the
rightmost, the top, and the bottom, to guarantee that
Vo is on CH(P). Other vertices of P then linked in
clockwise order.

Box I initializes the stack by pushing the first two
vertices into H. Box II tests the convexity of the
vertex on the top of H with respect to its preceding
vertex in H and the current input vertex. If non-
convex, box III pops one vertex from H and then
asks whether the elements in H are less than two. If
the answer is 'NO', a backtracking step is taken. Due
to lemma 3.4 and 3.5, box IV is the second convexity
test before accepting a point and box V deletes all
points inside. PKT(hj_ 1, h~). Box VI pushes the input
vertex into H and gets another input. When the vertex
vl is encountered again, this procedure stops. The
contents of H, which are now (ho, h~,..., hi, h0) from
top down, are the vertices of CH(P) in counter-
clockwise order.

5. PROOF OF CORRECTNESS

The correctness of the proposed algorithm is proved
by establishing three lemmas.

Lemma 5.1. Vertices removed do not belong to CH(P).

Proof. In the procedure (Fig. 4), vertices removed are
due to being reflexive (box III) or being inside a pocket

(box V). By lemma 3.3 a reflex vertex is in a pocket.
Points in these two cases do not satisfy the definition
of CH(P).

Let H(P) denote the polygon represented by the
elements in H after processing the input polygon P.

Lemma 5.2. H(P) forms a convex polygon.

Proof. In the algorithm, box V deletes points inside
PKT(hj_t,hj), thus CHN(ho,h~) will not stretch its
next segment into PKT(hj_ 1, h j). Self-intersection is
avoided, so H(P) is a simple polygon. With the
backtracking action (box lII), reflexive vertices are
popped from H. Points in H are currently convex
vertices. Upon completion, each vertex hl, 0 < i < j,
is convex with respect to h I_1 and hi+l. H(P) is a
simple polygon and with convex vertices only, it is a
convex polygon.

Lemma 5.3. H(P) = CH(P).

Proof. By lemmas 5.1 and 5.2, vertices removed are
not candidates for extreme points of P and the
remaining points, ho, ..., hi, form a convex polygon.
Thus H(P) is the maximum convex polygon generated
by the vertices of P, that is, the convex hull of P,
CH(P).

The main theorem of this paper is the following.

Theorem 5.1. The proposed algorithm finds the convex
hull of a simple polygon correctly and takes linear
time.

Proof. The correctness is guaranteed by lemma 5.3.
As the running time of this algorithm, it is seen that
each input point can be pushed onto or popped from
the stack at most once, if it is not rejected outright.
Every popping or pushing consumes only constant
time. Therefore, the algorithm takes time O(n).

6. EXAMPLE

The simplicity and elegance of the proposed algor-
ithm can be illustrated by an example. Consider the
17-vertex simple polygon shown in Fig. 5. Different

t- qVI

1I I' 1 i ~ i + l ' j * J ÷ l -J,
,, h , . v , Fi

i

11 I k*(k+l)mod n I ,I
I_ _J

~ YES
(STOP 3

Fig. 4. Flowchart of the proposed algorithm.

C BEGIN ,)

ho~vo , h14Vl
i ~ - O , j * l , k *2

IV ~ II

i I . I

ii ' / NO ii " ~ IINo
1 N°

I I I I
, •

PR 22:5-G

564 CHERN-LIN CHEN

Table 1. Stages of operations for the simple polygon in Fig. 5

Input Stack S(hj_l,hj, vk) S(vj, vj+t,vj+2) Action

2 1, 0 - Pop
3 2, 0 - Pop
4 3, 0 + + Push
5 4, 3, 0 - Pop
5 3, 0 + + Push
6 5, 3, 0 + - Reject
7 5, 3, 0 + Reject
8 5, 3, 0 - Pop
8 3, 0 + + Push
9 8, 3, 0 + + Push

10 9, 8, 3, 0 0 Pop
10 8, 3, 0 + + Push
11 10, 8, 3, 0 + + Push
12 11, 10, 8, 3, 0 + + Push
13 12, 11, 10, 8, 3, 0 + + Push
14 13, 12, 11, 10, 8, 3, 0 - Pop
14 12, 11, 10, 8, 3, 0 + + Push
15 14, 12, 11, 10, 8, 3, 0 + - Reject
16 14, 12, 11, 10, 8, 3, 0 + Reject
0 14, 12, 11, 10, 8, 3, 0 - Pop
0 12, 11, 10, 8, 3, 0 - Pop
0 11, 10, 8, 3, 0 0 Pop
0 10, 8, 3, 0 + + Push
1 0, 10, 8, 3, 0 Stop

stages of operat ion for computing the convex hull are
given in Table 1. In the column of action, 'pop ' means
deleting the top element of the stack and 'push' means
adding the input vertex to the stack and 'reject' means
discarding the current input. The final content of the
stack is the convex hull obtained in counterclockwise
order.

7. CONCLUDING REMARKS

An algorithm has been presented for obtaining the
convex hull of a simple polygon in linear time. Its
correctness is shown and an example is given. In the
algorithm of Fig. 4, omitt ing the box IV and V results
in the original Sklansky's algorithm. The situation of
three colinear points is treated in the proposed
algorithm without any further testing. Due to its
simplicity, it is the author 's belief that the proposed
algorithm is much easier to understand than previous
works.

SUMMARY

Though linear-time algorithms for finding the con-
vex hull of a simply-connected polygon have been

0~ F ~ ~ 11

Fig. 5. A 17-vertex simple polygon and its convex hull.

reported, not all are concise and correct. In this paper,
a new algorithm for computing the convex hull of a
simple polygon on the plane, along with a proof of
correctness, is presented. The central idea of this
algorithm is the original concept of Sklansky's scan ~9)
augmented with an implicit pocket test. By exploiting
some properties of pockets in simple polygons, the
elegant structure of Sklansky's scan is preserved and
its effectiveness is extended to general cases.

REFERENCES

1. R. L. Graham, An efficient algorithm for determining
the convex hull of a planar set, Inf. Process. Lett. 1, 132-
133 (1972).

2. R. A. Jarvis, On the identification of the convex hull of
a finite set of points in the plane, Inf. Process. Lett. 2,
18-21 (1973).

3. F. P. Preparata and S. J. Hong, Convex hulls of finite
sets of points in two and three dimensions, Communs
A C M 20, 87-93 (1977).

4. S. G. Akl and G. T. Toussaint, A fast convex hull
algorithm, Inf. Process. Lett. 7, 219-222 (1978).

5. A. M. Andrew, Another efficient algorithm for convex
hulls in two dimensions, Inf. Process. Lett. 9, 216-219
(1979).

6. F. P. Preparata, An optimal real-time algorithm for
planar convex hulls, Communs ACM 22, 402-405 (1979).

7. D. G. Kirkpatrick and R. Seidel, The ultimate planar
convex hull algorithm?, S l A M J. Comput. 15, 287-299
(1986).

8. A. C. Yao, A lower bound to finding convex hulls, J.
ACM 28, 780-789 (1981).

9. J. Sklansky, Measuring concavity on a rectangular
mosaic, IEEE Trans. Comput. 21, 1355-1364 (1972).

10. A. Bykat, Convex hull of a finite set of points in two
dimensions, Inf. Process. Lett. 7, 296-298 (1978).

11. M. I. Shamos, Problems in computational geometry,
Ph.D. diss., Yale Univ., New Haven, CT, 296-298 (1978).

12. D. McCallum and D. Avis, A linear algorithm for finding
the convex hull of a simple polygon, Inf. Process. Lett.

Computing the convex hull of a simple polygon 565

9, 201-206 (1979).
13. D. T. Lee, On finding the convex hull of a simple

polygon, Int. J. Comput. Inf. Sci. 12, 87-98 (1983).
14. R. L. Graham and F. F. Yao, Finding the convex hull

of a simple polygon, J. Algorithms 4, 324-331 (1983).
15. S. Y. Shin and T. C. Woo, Finding the convex hull of a

simple polygon in linear time, Pattern Recognition 6,
453-458 0986).

16. G.T. Toussaint and D. Avis, On a convex hull algorithm
for polygons and its application to triangulation prob-
lems, Pattern Recognition 15, 23-28 (1982).

17. M. Orlowski, On the conditions for success of Sklansky's
convex hull algorithm, Pattern Recognition 16, 579-586
(1983).

18. J. Sklansky, Finding the convex hull of a simple polygon,
Pattern Recognition Lett. 1, 79-83 (1982).

19. G. T. Toussaint and H. E. Gindy, A counterexample to
an algorithm for computing monotone hulls of simple
polygons, Pattern Recognition Lett. 1, 219-222 (1983).

20. S. K. Ghosh and R. K. Shyamasundar, A linear time
algorithm for obtaining the convex hull of a simple
polygon, Pattern Recognition 16, 587-592 (1983).

About the Author--CHERN-LIN CHEN received his B.S. and Ph.D. degrees in Electrical Engineering from
the National Taiwan University in 1984 and 1987, respectively. In the summer of 1987 he joined the same
school. He teaches courses in discrete mathematics and computer algorithms and his current research
interests are directed at computational geometry and its applications to CAD and robotics.

