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Abstract An algorithm for computing the convex hull of a simple polygon is presented. Its correctness 
and complexity are also shown. 
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l. INTRODUCTION 

The convex hull of a finite point set is the largest 
convex polygon generated by the set. The convex hull 
problem, particularly for a set of points in the plane, 
has been studied extensively and has applications 
in pattern recognition, image processing, computer 
graphics and operations research. There is a long list 
of articles "-7) containing results on the convex hull 
of a planar point set. For  n unstructured points 
the least available complexity of these algorithms is 
O(nlogn)J 8) 

The complexity can be less than O(nlogn) when the 
points are structured. An interesting case of the convex 
hull problem that occurs frequently in practice is 
when the points form the vertices of a simple polygon 
(i.e. a polygon without self-intersections). Several 
authors have tried to find a fast algorithm for this 
problem. In 1972 Sklansky (9) proposed a linear-time 
algorithm for computing the convex hull of a simple 
polygon. The algorithm is rather simple and elegant. 
Unfortunately, as has been pointed out by Bykat, (~ o) it 
does not always work. Another similar O(n) algorithm 
proposed by Shamos (~ ~) has also been discovered to 
fail for some types of simple polygons. A much 
more complicated linear-time algorithm that uses two 
stacks along with a proof of correctness was exhibited 
by McCallum and Avis. {12) Lee O3) later showed that 
only one stack is required. Graham and Yao "4) 
reported a compact algorithm that is similar in spirit 
to Lee's version. Both of Refs 13 and 14 included two 
types of pocket test. In the paper of Shin and Woo, {~ s) 
the Sklansky's original idea is adopted and only one 
pocket test is used. 

The utter simplicity of Sklansky's algorithm com- 
pared to the later algorithms that work is a strong 
reason for investigations of Toussaint and Avis. "6) 
They have proved that Sklansky's algorithm can be 
used in the construction of the convex hull of simple 
polygons which possess a special property called weak 

external visibility. Orlowsky "7) enlarged the class of 
simple polygons on which Sklansky's algorithm can 
be applied. He introduced a notion called external 
left visibility and showed that this criterion is a 
necessary and sufficient condition for the success of 
Sklansky's algorithm. Sklansky, tls) in 1982 presented 
an amendation to his algorithm of 1972 for handling 
arbitrary simple polygons, not a subclass. However, 
counterexamples are given by Toussaint and 
Gindy. ~19) Ghosh and Shyamasundar ~2°) propose a 
simple algorithm using only the Sklansky's convexity 
test and the comparison of the X coordinates of 
adjacent points. Though the statement of correctness 
is given, counterexamples similar to those in Ref. 19 
can be found. 

In this paper, a linear time algorithm for computing 
the convex hull of a simple polygon is described. With 
an augmented implicit pocket test for each candidate 
vertex of the input polygon, the convex hull can be 
found in a simple and elegant way. It is shown 
that the proposed algorithm is more compact than 
previous works. 

2. NOTATION AND TERMINOLOGY 

Let P be a simple polygon in the plane, which is 
represented by a sequence of vertices, i.e. 
P = (v0, vl . . . . .  vn-0, such that two adjacent vertices 
vi and v~+ 1 define an edge of the polygon. Each vertex 
vi, 0 < i <  n - 1 ,  is represented by its X and Y 
coordinates. The convex hull of P, denoted by CH(P), 
is the smallest convex polygon that contains P in its 
interior. An extreme point of the polygon P is a vertex 
of P that lies on the boundary of CH(P). A simple 
polygon is clockwise oriented if its interior lies to the 
right as the polygon is traversed. The orientation of 
P can be easily tested and, if necessary, reversed in 
linear time. It is henceforth assumed in this paper 
that all polygons are clockwise oriented. 

Let L(vi, v j) denotes a directed line segment joining 
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two points v~ and vj in the direction from v~ to vj. A 
chain CHN(vi, vj) is a sequence of L(vi, vi+l), 
L(vi+ 1, vi+ 2) . . . . .  L(vj_ 1, vj). A closed region bounded 
by L(vi, v~) and CHN(vl, v j) is called a pocket denoted 
by PKT(vi, vj) if all points in CHN(vi, v j) are on or to 
the right of L(vl, v j). 

Given three vertices vl = (xi,y~), vj = (xj, yi), and 
v~ = (xi, y~), let S(vl, vj, Vk) = (X k -- xiXy j - yi) - (y~ - 
~iXx~ - xl). We have three cases, that is, S(vi, v~, vi). 

(a) > 0 implies vi is strictly to the right of L(v~, v j), 
that is, vj is a convex vertex with respect to v~ and yr. 

(b) = 0  implies three colinear points. 
(c) < 0 implies v~ is strictly to the left of L(vi, v j), 

that is, vj is a reflex vertex with respect to v, and Vk. 
The crux of the Sklansky's algorithm is a backtracking 
step which successively deletes non-convex vertices 
using the simple test stated above. However, as 
pointed out by Bykat, t~°~ a self-intersecting polygon 
may result during the deletion process. So the algor- 
ithm fails in some cases. In the following section, 
some observations are obtained by investigating the 
conditions which result in self-intersection. With these 
investigations we can avoid the intersection situation 
and then the convex hull can be found correctly. 

3. P R E L I M I N A R I E S  

Two interesting properties of a pocket due to 
Graham and Yao are cited first. 

Lemma 3.1. No vertices of P that lies in PKT(v,  vj), 
with the possible exception of v~ and vj, can be 
extreme. 

Proof. Omitted. 

Lemma 3.2. There is a successor of v~ in P that lies 
outside of PKT(vi, v j). 

Proof. Omitted. 

The successor of vj lying outside of PKT(vi,vj) is 
called the emergence vertex of PKT(vi, v j). 

Lemma 3.3. Reflex vertices of P lies in pockets. 

Proof. If vj is a reflex vertex of P, that is, 
S(vj_1,vj, v j+O<O, then vj is to the right of 
L(vj_l,v~+l) and on CHN(vj_I ,vj+0.  So, vj is in 
PKT(vj_ 1,vj+ t). 

Now let us go for the reason why the Sklansky's 
algorithm fails. Figure 1 illustrates a case where that 
algorithm will not work. Processing from v~ in a 
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Fig, I. A counterexample to Sklansky's algorithm. 

clockwise manner the algorithm discards vertex v 4 
then backtracks to the triplet v2vav5 which is convex. 
Every subsequent vertex test is convex and thus the 
algorithm outputs the polygon 1)l/32~33VsV6VTV 8 which 
is not only non-convex but also non-simple. The 
mistaken step which leads to the undesirable result is 
that v6 is accepted upon the convexity of the triplet 
vsv6vv being guaranteed. The vertex v6 is in 
PKT(v3, vs). The erroneous acceptance of v6 causes 
the intersection of L(v3, vs) and L(v6, vT). 

By lemma 3,1, vertices in PKT(v3,vs) should be 
discarded. And by lemma 3.2, the emergence vertex 
exists for PKT(va,vs). Thus, we have Fig. 2(a). A 
further convexity test deletes v5 and the final output 
is shown in Fig. 2(b). 

How to identify whether a vertex is in a pocket or 
not? The following lemmas give a simple way to 
compute it. 

Lemma 3.4. The vertex vj÷t is in PKT(vi, v~) if 
S(vj - l ,v j ,  vj+ O < 0 and S(vi, vj, vj+ l) > O. 

Proof. The result is quite obvious as illustrated in Fig. 
3. For  vi+ 1 to be in PKT(vi, vj), it lies to the right of 
L(vi, vi) and to the left of CHN(vl, v j). 

Since vj+l is in PKT(vi, v~), it should be discarded 
according to lemma 3.1. Then another vertex after 
v j+ t may become the immediate successor of vj. This 
discarding process continues until the emergence 
vertex of PKT(v~, v j) appears. Points inside a pocket 
are deleted, hence self-intersection can be avoided. 
The generalization of lemma 3.4 is given as follows. 

Lemma 3.5. For  a vertex vk which becomes an immedi- 
ate successor of vi, due to the discarding of 
its preceding vertices, is in PKT(v, vj) if 
S(Dj_I,Uj, vj+ I) < 0 and S(oi, Vj, Vk) > O. 

Proof. For k ---j + 1, this is the case of lemma 3.4. 
For  k > j  + 1, vk is the immediate successor of vj 
means that v j+ t, v j+2 . . . . .  and vk-1 are deleted. They 
are all in PKT(v,  v j). Because vk-1 is in PKT(vl, v j) 
and S(v,  v~, vk) > O, v~ is to the right of L(vi, v j), and 
must be left of CHN(vi,vj). Otherwise L(Vk-l,Vi) 
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Fig. 2. A remedy to find the convex hull. 
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Fig. 3. Points inside PKT(vi, v j). 
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would intersect with CHN(vl, vj), which contradicts 
the definition of a simple polygon. 

4. THE ALGORITHM 

The proposed algorithm for finding the convex hull 
of a simple polygon is illustrated by the diagram in 
Fig. 4. The algorithm follows the original Sklanksy's 
algorithm with an implicit pocket test augmented. 
The main data structure used is an auxiliary stack 
H = (hg, hi_ 1 . . . .  , h0), where h 0 denotes the bottom of 
the stack, and the variable j points to the stack top. 
The variable k refers to the current input vertex, and 
i refers to the vertex immediately preceding h r. The 
input polygon is represented by a circular singly- 
linked list. The first vertex Vo should be specified as 
one of the four extreme vertices: the leftmost, the 
rightmost, the top, and the bottom, to guarantee that 
Vo is on CH(P). Other vertices of P then linked in 
clockwise order. 

Box I initializes the stack by pushing the first two 
vertices into H. Box II tests the convexity of the 
vertex on the top of H with respect to its preceding 
vertex in H and the current input vertex. If non- 
convex, box III pops one vertex from H and then 
asks whether the elements in H are less than two. If 
the answer is 'NO',  a backtracking step is taken. Due 
to lemma 3.4 and 3.5, box IV is the second convexity 
test before accepting a point and box V deletes all 
points inside. PKT(hj_ 1, h~). Box VI pushes the input 
vertex into H and gets another input. When the vertex 
vl is encountered again, this procedure stops. The 
contents of H, which are now (ho, h~,..., hi,  h0) from 
top down, are the vertices of CH(P) in counter- 
clockwise order. 

5. PROOF OF CORRECTNESS 

The correctness of the proposed algorithm is proved 
by establishing three lemmas. 

Lemma 5.1. Vertices removed do not belong to CH(P). 

Proof. In the procedure (Fig. 4), vertices removed are 
due to being reflexive (box III) or being inside a pocket 

(box V). By lemma 3.3 a reflex vertex is in a pocket. 
Points in these two cases do not satisfy the definition 
of CH(P). 

Let H(P) denote the polygon represented by the 
elements in H after processing the input polygon P. 

Lemma 5.2. H(P) forms a convex polygon. 

Proof. In the algorithm, box V deletes points inside 
PKT(hj_t,hj), thus CHN(ho,h~) will not stretch its 
next segment into PKT(hj_ 1, h j). Self-intersection is 
avoided, so H(P) is a simple polygon. With the 
backtracking action (box lII), reflexive vertices are 
popped from H. Points in H are currently convex 
vertices. Upon completion, each vertex hl, 0 < i < j, 
is convex with respect to h I_1 and hi+l. H(P) is a 
simple polygon and with convex vertices only, it is a 
convex polygon. 

Lemma 5.3. H(P) = CH(P). 

Proof. By lemmas 5.1 and 5.2, vertices removed are 
not candidates for extreme points of P and the 
remaining points, ho, ..., hi, form a convex polygon. 
Thus H(P) is the maximum convex polygon generated 
by the vertices of P, that is, the convex hull of P, 
CH(P). 

The main theorem of this paper is the following. 

Theorem 5.1. The proposed algorithm finds the convex 
hull of a simple polygon correctly and takes linear 
time. 

Proof. The correctness is guaranteed by lemma 5.3. 
As the running time of this algorithm, it is seen that 
each input point can be pushed onto or popped from 
the stack at most once, if it is not rejected outright. 
Every popping or pushing consumes only constant 
time. Therefore, the algorithm takes time O(n). 

6. EXAMPLE 

The simplicity and elegance of the proposed algor- 
ithm can be illustrated by an example. Consider the 
17-vertex simple polygon shown in Fig. 5. Different 
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Fig. 4. Flowchart of the proposed algorithm. 
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Table 1. Stages of operations for the simple polygon in Fig. 5 

Input Stack S(hj_l,hj,  vk) S(vj, vj+t,vj+2) Action 

2 1, 0 - Pop 
3 2, 0 - Pop 
4 3, 0 + + Push 
5 4, 3, 0 - Pop 
5 3, 0 + + Push 
6 5, 3, 0 + - Reject 
7 5, 3, 0 + Reject 
8 5, 3, 0 - Pop 
8 3, 0 + + Push 
9 8, 3, 0 + + Push 

10 9, 8, 3, 0 0 Pop 
10 8, 3, 0 + + Push 
11 10, 8, 3, 0 + + Push 
12 11, 10, 8, 3, 0 + + Push 
13 12, 11, 10, 8, 3, 0 + + Push 
14 13, 12, 11, 10, 8, 3, 0 - Pop 
14 12, 11, 10, 8, 3, 0 + + Push 
15 14, 12, 11, 10, 8, 3, 0 + - Reject 
16 14, 12, 11, 10, 8, 3, 0 + Reject 
0 14, 12, 11, 10, 8, 3, 0 - Pop 
0 12, 11, 10, 8, 3, 0 - Pop 
0 11, 10, 8, 3, 0 0 Pop 
0 10, 8, 3, 0 + + Push 
1 0, 10, 8, 3, 0 Stop 

stages of operat ion for computing the convex hull are 
given in Table 1. In the column of action, 'pop '  means 
deleting the top element of the stack and 'push' means 
adding the input vertex to the stack and 'reject' means 
discarding the current input. The final content of the 
stack is the convex hull obtained in counterclockwise 
order. 

7. CONCLUDING REMARKS 

An algorithm has been presented for obtaining the 
convex hull of a simple polygon in linear time. Its 
correctness is shown and an example is given. In the 
algorithm of Fig. 4, omitt ing the box IV and V results 
in the original Sklansky's algorithm. The situation of 
three colinear points is treated in the proposed 
algorithm without any further testing. Due to its 
simplicity, it is the author 's  belief that the proposed 
algorithm is much easier to understand than previous 
works. 

SUMMARY 

Though linear-time algorithms for finding the con- 
vex hull of a simply-connected polygon have been 

0~ F ~ ~ 11 

Fig. 5. A 17-vertex simple polygon and its convex hull. 

reported, not all are concise and correct. In this paper, 
a new algorithm for computing the convex hull of a 
simple polygon on the plane, along with a proof  of 
correctness, is presented. The central idea of this 
algorithm is the original concept of Sklansky's scan ~9) 
augmented with an implicit pocket test. By exploiting 
some properties of pockets in simple polygons, the 
elegant structure of Sklansky's scan is preserved and 
its effectiveness is extended to general cases. 
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