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Abstract--The detection of dominant points is an important preprocessing step for shape recognition. An 
effective method of scale-space filtering with a Gaussian kernel is introduced to detect dominant points on 
digital curves. The conventional polygonal approximation algorithms are time-consuming and need input 
parameter tuning for Gaussian smoothing the noise and quantization error, also they are sensitive to scaling 
and rotation of the object curve. The above dit~culty can be overcome by finding out the dominant points 
at each scale by scale-space filtering. By tracing back the dominant point contours in the scale-space image, 
the stable cardinal curvature points can be detected very accurately. This new method requires no input 
parameters, and the resultant dominant points do not change under translation, rotation and scaling. 
Meanwhile a fast convolution algorithm is proposed to detect the dominant points at each scale. 

Dominant points Scale-space Gaussian smoothing Curvature 

I. I N T R O D U C T I O N  

Various representations of two-dimensional shape 
have been developed in the computational vision 
literature. (11 It has been suggested from the viewpoint 
of the human visual system that the dominant points 
having high curvature are sufficient to characterize the 
shape of the object. In general, the current existing 
methods for detecting dominant points are divided 
into two major groups: one is to detect the dominant 
points directly through angle or corner detection 
schemes, (2-7~ and the other is to obtain a piecewise 
linear polygonal approximation of the digital curve 
subject to a certain constraint on the goodness of 
fit.(s-101 

The recent Teh-Chin algorithm (7) is a good example 
of detecting dominant points based on angle detection. 
The algorithm does not require input parameters and 
works well on an object curve which is not corrupted 
with noise. However, it is very sensitive to noise, some 
false dominant points will be detected due to quantiz- 
ation error and noise effect. On the other hand, the 
curvature guided polygonal approximation method (1°~ 
makes use of Gaussian smoothing to reduce the effect 
of noise, but it requires two input parameters, namely, 
the width of a Gaussian filter and the collinearity 
tolerance for doing a split-and-merge algorithm. There 
is a trade-off in seleoting the width of the Gaussian 
filter, a larger width will remove small details of the 
boundary curvature, a smaller width will permit false 
concavities and convexities. Recently, Ansari and 
Huang used the advantages of both approaches, they 
introduced a new method (~11 which was non-para- 
metric with no input parameters and less sensitive to 
noise. However, this method requires the support 
region for each contour point to be determined, and 
then the contour is smoothed by an adaptive Gaussian 

filter with a width proportional to the support region. 
This complicates the smoothing procedure a lot and 
increases the computational efforts and complexities. 

Mokhtarian and Mackworth "2~ have suggested a 
number of necessary criteria which any reliable method 
for curve representation and recognition must satisfy: 

(11 The feature selection or extraction method must 
be computed efficiently. 

(2) The extracted feature should be invariant under 
translation, rotation and scaling. 

(3) The feature representation should contain infor- 
mation about the curve at varying levels of detail, and 
should uniquely specify a single curve. 

In order to satisfy the above conditions, we introduce 
the scale-space filtering to find out the relevant domi- 
nant points at each scale. Scale-space filtering (~ 31 is a 
useful signal description method that deals gracefully 
with the problem about scales by treating the size 
parameter of the smoothing kernel as a continuous 
parameter. As the scale parameter is varied, the domi- 
nant points of each scale in the smoothed signal in 
general move continuously. By tracing back the domi- 
nant point contour in the scale-space image, we are 
able to detect the stable cardinal curvature points very 
accurately. They are extreme curvature points of the 
digital curve that are stable with respect to Gaussian 
smoothing for a reasonable wide range of Gaussian 
filter width, and can represent a unique shape attribute 
of the curve. Also the resultant dominant points are 
shown to be invariant under translation, rotation and 
scaling. Meanwhile a fast convolution algorithm is 
proposed to extract the dominant points at each scale 
very efficiently. 

The arrangement of this paper is organized as 
follows. In Section 2, we introduce how to detect the 
dominant points at each scale by scale-space filtering. 
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In Section 3, we explain how to correct the moved 
dominant points on each scale into the right locations 
by tracing back the scale-space image. Section 4 de- 
scribes how to determine an appropriate scale to find 
out the stable cardinal curvature points accurately. 
Also a fast convolution algorithm is introduced in 
Section 5 to compute the derivative of curvature ef- 
ficiently. Finally conclusions are made in Section 6. 

2. DETECTION OF DOMINANT POINTS BY 
SCALE-SPACE FILTERING 

Points with high curvature along a shape contour 
are rich in information content and are sufficient to 
characterize the object contour. We call these points 
the dominant points. In this section, the curvature 
computation and the dominant point detection will be 
described in detail. 

2.1. Curvature computation on a curve 

Consider a path length variable t along the curve C 
and express the curve in terms of two functions x(t) 
and y(t) 

C = {x(t),y(t)} (l) 

where t is the path length of the curve, x(t) the 
x-coordinate of the curve at path length t, and y(t) the 
y-coordinate of the curve at path length t. Let K be the 
curvature of a planar curve at a point p which is defined 
as the instantaneous rate of change of the slope angle 
of the tangent at point p with respect to length t 

dO 
K = - - .  (2) 

dt 

K can be computed if the curve is expressed in terms 
of the derivatives of functions x(t) and y(t). Define 

, dy y , ,  d2y (3) 
Y = dx' dx 2" 

It is known that 

y l /  

K - (1 + (y,)2)3/2' (4) 

Since the curve is a function of path length t, the above 
y' and y" can be expressed in terms of the first and 
second derivatives of x(t) and y(t). Denote 

dx d2x dy d2y 

~ = d t t '  ~ = d t  2' Y = d t '  J > = d ~ '  (5) 

Then 

and 

f 
y ' = ± ,  y " =  (6) 

x .~3 

K - (~2 + 3)2)3/2" (7) 

2.2. Finding out the relevant dominant points by scale- 
space filtering 

Scale-space filtering is useful to describe a signal 
qualitatively. (la) A unified and organized description 
can be produced by treating each contour in the 
scale-space image as a single physical event, observed 
through a continuum of Gaussian smoothing filters, 
rather than as a set of unrelated events. Hence we can 
find out the relevant dominant points from the contour 
in the scale-space image. In this section, we introduce 
how to derive a scale-space image from a shape and 
how to find out the dominant points from the scale- 
space image. 

Let g(t, a) be the Gaussian kernel 

1 _ e-t2/2o ~ oct, ,~) - ~ (8) 

where t is the path length of the shape contour and ~r 
the filter width (spatial support) of the Gaussian 
kernel. By changing the value of a, we can get the 
Gaussian kernel at various scales. 

In order to reduce the quantization error and noise 
in computing the curvature of the digital curve, the 
digital curve is first smoothed by the Gaussian filter 
with small scale a, i.e. 

co 
1 ~ x(z)e_o_o2/2O2dz 

x(t) = x(t) .g(t ,  (r) =/12rrt# 
x /  x J v l oo 

(9a) 

1 co 
y(t) = y(t) • g(t, o-) - v,-,/197r~tr -:o ~ y('r) e - t t -  ,)2/2o2 dz 

(9b) 

where * is the convolution operation and a = 2 pixeis 
is used in our paper. By equation (7), the curvature of 
the contour can be evaluated by using the above 
smoothed x(t) and y(t) 

K(t) - (~2 + ~2)3/2' (10) 

The curvature of the contour at various scales is 
computed by convolving K(t) with a one-dimensional 
kernel g(t, tr) 

co 
1 ~ K(z)e_(t_,)2/2O~d~ 

K i t ,  ~r) = K ( t ) * g ( t ,  ~r) - x / (2~)  ~ -co 

(11) 

where K(t, tr) is the curvature at scale a. Since the 
dominant points are located at the extreme of curvature 
which is equivalent to the zero-crossing of the derivative 
of the curvature 

li:(t, ~) - dK(t, ~) (12) 
dt 

Equations ( l l )  and (12) are combined to reduce the 
quantization error 

l ( ( t ,~r )=d  {K(t)*g(t, cr)} = K(t)* dg(t'a) (13) 
dt 
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Fig. 1. Original curve of a wire cutter. 

( o )  G = 3  ( b )  i f =  19 

Then we can find the dominant  points at each scale. 
Figure 1 shows the original contour of a wire cutter. 
As the scale parameter tr is varied and increased by a 
small amount,  the extrema or zero-crossing in the 
smoothed curvature and its derivatives in general 
move continuously. The behavior of extrema over scale 
is characterized in terms of the scale-space image as 
shown in Fig. 2. The scale-space images contain several 
contours which are closed at the top and open at the 
bottom, now extrema points are created at higher 
levels of detail (more smoothing). One can track back 
the extreme points at lower levels in the neighborhood 
of the previous ones at higher levels. The positions of 
dominant  points on the contour at various scales are 
illustrated in Figs 3(a)-(d). In the next section, we will 
describe how to combine various levels of information 
in the scale-space image in order to obtain a represen- 
tation for the curve. 

3. POSITION CORRECTION OF DOMINANT POINTS 
BY TRACING BACK ALONG SCALE-SPACE CONTOURS 

From Figs 3(a) to (d) notice that the locations of 
dominant  points will drift as the scale increases (see 
the top two sharp tips of the wire cutter in Fig. 3(c)). 

( c )  ~ = 41 ( d )  ~ = 5 0  

Fig. 3. The detected dominant points on the contour at 
various scales. Notice that the top two sharp tips in (c) drift 

from the original positions very severely. 

In order to correct the shifting, we must trace it back 
along the contour in the scale-s pace image, as shown 
in Fig. 4~a). 

The location position of the dominant  points at 
smaller scale is much more accurate than the ones at 
larger scale. In this paper, we start the scale-space 
filtering from the scale tr = 3, and compute the curva- 
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Fig. 2. Scale-space image of the wire cutter in Fig. l, with the dominant points drifted as the scale increases. 



( b )  o " = 9  ture of various levels for the scales tr = 3, 5, 7, 9 , . . . ,  79. 
Let array p3(0 record the root location of dominant  
points at the smallest scale, array p2(i) the location of 
dominant  points at current tr, and array pl(i) the 
location of dominant  points at the preceding scale 
t r -  2. The tracing back step is done immediately 
following the detection of the dominant  points at each 
scale, this will correct the shifted dominant  points into 
the right position, the major algorithm is summarized 
as follows: 

(1) Start at scale a = 3, find the dominant  points at 
the extreme of curvature K(t, 3), which are located at 
path length t = nl, n2,n3,... ,nM1. Then save them in 
array p3(i) and pl(i) for i = 1, 2 . . . . .  M1. 

(2) Increasing the filter width by 2, tr = tr + 2. Find 
the dominant  points at the extreme of curvature 
K(t, tr), which are located at path length t = ml, m 2 , . ,  
mu2  Then save them in array p2(i) for i = 1, 2 . . . . .  M2. 
By the scale-space theory, (14) the number  of dominant  
points is monotonously decreasing as the scale is 
increased, i.e. M2 < M1. 

( c }  o " = 1 3  

Scale 

Path-length 

Fig. 4(a). Position correction of dominant  points by tracing 
back along scale-space contours. 

(o)  0-=,5 
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( d )  o" = 1 9 ~ 4 1  

Fig. 5. The detected dominant  points on the curve at various 
scales are traced back into the right locations, as compared 
with Fig. 3. There are 12 stable extreme curvature dominant  
points detected in the range of Gaussian smoothing tr = 19-41. 

(3) Trace the shifted dominanl point location back 
to tr = 3 The algorithm is listed as follows: 

For i = 1 to M2 
search pl(k) so that Min Ipl(j) -p2(i) l ,  

k 

f o r l < j < M 1  p3(i)=p3(k) 
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Fig. 4(b). Tracing back scale-space image of Fig. 2. 
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end for 

(4) For i = 1 to M2 
pl(i) = p2(i) 

end for 
go to step (2). 

This tracing back algorithm is very simple and can be 
computed very efficiently. Figure 4(b) illustrates the 
tracing back scale-space image of Fig. 2. The dominant 
points detected on the curve at various scales are 
traced back into the right locations as shown in 
Figs 5(a)-(d). By comparison of Figs 3(c) and 5(d) with 
the same scale a = 41, the dominant points found by 
tracing back are more accurate. Also we notice that 
there are 12 extreme curvature dominant points in 
Fig. 5(d) that are stable with respect to Gaussian 
smoothing for a reasonable range of values oftr = 19-41. 
We shall refer to those stable local extreme curvature 
points as the cardinal curvature points. It°) 

( 0 )  0 " = 5  

are stable with respect to a reasonable degree of 
scaling. The simplest method is that the number of 
dominant points is specified in advance. The scale is 
gradually increased until the number of dominant 
points at one scale is equal to the specified one. 
Another preferred method is that we terminate the 
algorithm when the number of dominant points does 
not change in a duration A,  above some threshold. We 
modified step (4) of the above algorithm in Section 3 as 

(4) If M1 = M2 then 
counter = counter + 1 
If counter > threshold, find the cardinal domi- 
nant points. 
else if counter < threshold, go to step (2). 

else if M1 # M2, then 
counter = 0 
M1 = M 2  
go to step (2) 

where the counter measures the duration Air where the 
number of dominant points does not change, i.e. 
M1 = M2, the typical threshold value is chosen from 
6 to 8 in our computer simulations. Figures 6(a)-(d) 
show another more complex example of the Africa 

4. TERMINATION AT AN APPROPRIATE SCALE VALUE 
TO DETECT THE CARDINAL CURVATURE POINTS 

How to decide the scale value to terminate Gaussian 
smoothing? The resultant cardinal curvature points 

( b )  O" = 13 

( c )  O" = 1 9  ( d )  O" = 2 9 ~ 4 !  

Fig. 6. The traced-back detected dominant points of the Africa curve at various scales, in which 10 cardinal 
curvature points in (d) are accurately detected and stable in the scale range from a = 29 to 41. 
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curve in which 10 cardinal curvature points are accu- 
rately detected and stable in the range from a = 29 to 
41. 

5. FAST ALGORITHM 

Chen et al. (15) proposed a fast algorithm for comput- 
ing the convolution of an image with LOG (Laplacian 
of Gaussian) mask. They used a well-known property 
that a LOG of width cr can be decomposed as a 
Gaussian mask and a LOG of width a~ < a. Since the 
Gaussian kernel is neither time-limited nor band- 
limited, they must carefully establish effective, inde- 
pendent limits on the LOG and Gaussian mask 
required for proper performance." 6,17) 

Here, we can derive a similar fast algorithm for 
computing the convolution of a curvature with the 
derivative of Gaussian kernels (see equation (13)). This 
fast technique is described in Section 5.1. 

5.1. Fast convolution with the derivative of the Gaussian 
kernel 

There is a special property about the Gaussian 
function as follows. 

Theorem 1. The convolution of two Gaussian func- 
tions with width aa and a2 will produce another 
Gaussian function with width a = (a~ + 2 1/2 a2) . This 
means that 

9(t,a) = g(t, ax)*O(t, a2), where a = ~/(a2x + a~). 

(14) 

By Theorem 1, we derive the convolution of the 
curvature with the derivative of the Gaussian kernel 
as follows: 

a) = d {K(t)*9(t, a)} = 
d /~(t, ~t {K(t)*O(t, aO*O(t, Aa)} 

= K(t)*~tO(t, al) *O(t,A~) 

with a = ~/(~2 _ a~). (15) 

Thus, the derivative of curvature at current scale a can 
be computed efficiently by convolving the derivative 
of curvature at the preceding scale a l with a Gaussian 
kernel with width Aa. This can save a lot of derivative 
operations at each scale except at the smallest starting 
scale e = 3. 

Since the Gaussian smoothing function is not time- 
limited, if we take the finite Gaussian filter length as 
[ - 3 a , 3 a ] ,  there must occur some truncation error. 
Also we sample the continuous Gaussian filter into a 
discrete Gaussian filter, since the Gaussian filter is not 
band-limited, this will cause some aliasing error during 
the sampling process. These aliasing and truncation 
errors will accumulate as this itcrativc convolution 
process goes on. In order to overcome this accumula- 
tion error effect, we adopt the sampling interval for the 
Gaussian kernel as 1 pixel for all scales, also the scale 

interval A~r is switched from 2 to 4 pixels at large scales. 
This can reduce the aliasing error effectively. By 
equation (15), we summarize the fast algorithm as 
follows: 

(1) By equation (13), start computing the derivative 
of curvature at the smallest scale cr 1 = 3, and denote 
it by / ( ( t ,  tr~). 

(2) Set the scale interval to 2 pixels, thus the next 
scale is a2 = trl + 2, then /~(t, az) can be computed 
simply by convolving K(t, tr 0 with the Gaussian kernel 
#(t, Aa), this means that 

/~(t, a2) = I((t, a,)*9(t, Aa). (16) 

(3) Repeat step (2) until the scale a = 12. 
(4) Reset the scale interval Aa to 4 pixels to reduce 

aliasing error. Repeat step (2) until the dominant 
points have been found. 

Combining this fast method and the tracing-back 
algorithm, we can find the relevant dominant points 
rapidly. 

In order to see that the detected dominant points by 
this approach are very stable and remain unchanged 
with respect to translation, rotation and scaling, we 
perform several experiments the results of which are 
shown in Figs 7 and 8. The detected dominant points 
of the original curves at normal scale are shown in 
Figs 7(a) and 8(a), respectively. Figures 7(b) and 8(b) 
show the results when the two curves are reduced by 
half, i.e. scaling = 0.5. The detected curve shown in 

(a) 

(b) 
(c) 

Fig. 7. The detected 12 dominant points by scale-space 
filtering are very stable and remained unchanged with respect 
to translation, rotation and scaling: (a) original curve; (b) 

• scaling = 0.5; (e) translation = (10, 10) pixels, scaling = 0.5 
and rotation = 30 deg. 
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(b) 

Fig. 8. Ten stable cardinal dominant points of the Africa 
curve are detected under (a) original scale and (b) half scale 

at scaling = 0.5. 

Fig. 7(c) is obtained if the wire cutter curve is translated, 
scaled and rotated under translation = (10, 10) pixels, 
scaling = 0.5 and rotation = 30 deg. Notice that the 
detected dominant  points by this approach remain 
very stable and do not change under translation, 
rotation and scaling. Hence the dominant  points found 
by the scale-space algorithm satisfy Mokhtar ian and 
Mackworth 's  criteria "2~ discussed above for reliable 
recognition. 

6. CONCLUSIONS 

The information of a curve is concentrated and 
characterized at the dominant  points with high cur- 
vature. In this paper, we have introduced the method 
of scale-space filtering with a Gaussian kernel to effec- 
tively detect these cardinal curvature points on the 
digital curve. These extracted features can uniquely 
specify a curve qualitatively. 

The uniqueness of this method is that the dominant  
points found remain very stable, and will not change 
as the curve translates, rotates and scales. Thus we can 
recognize shapes using the dominant  points under 
distortion of translation, rotation and scaling. 

Another advantage of finding dominant  points is 

that it is very useful in the recognition of partial 
shapes.Ii 8,19) 
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