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Abstract--In this paper, we present a local approach to the computation of raw optical flow fields based 
on nonlinear relaxation, which is explicitly designed to be coupled with a nonlinear vector filtering technique 
so as to achieve an effective rejection of the outliers. We derive the approach from a standard linear 
algorithm the one-dimensional least squares. This is split down into two steps. First, the linear algorithm 
is formulated as an iterative procedure, in which image points in a suitable geometric neighborhood are made 
to interact each other. Second, a nonlinearity term in the elementary interaction between neighbors is added, 
which depends on the Gaussian interaction of elements of a velocity neighborhood. The results of a 
comparison with two linear local techniques show clearly the effectiveness of the approach, both in terms of 
motion boundary preservation and of optical flow field density. 

Optical flow Relaxation methods Optimization Nonlinear filtering 

1. INTRODUCTION 

The analysis of optical flow fields as a means to infer 
shape and motion information in an image sequence 
is one of the most challenging research areas in compu- 
ter vision, with applications in many different fields, 
from biomedical engineering to autonomous robots 
and pattern recognition. 

The term opticalflow refers to a bidimensional velo- 
city field that arises in the image plane, due to local 
changes in brightness, under the assumption of an overall 
constant brightness. (1) As such, the optical flow is an 
approximat ion of the projection onto the image plane 
of the tridimensional velocity field due to the relative 
mot ion of the observer and the observed ob jec t s - - the  
so called motion field. (2) The definition of optical flow 
above does not  have any "operat ional"  meaning, i.e. it 
does not  suggest a procedure for evaluating the optical 
flow. It determines simply a linear constraint between 
the two flow field components,  that is a constraint line 
in the velocity space, which apart from the degenerate 
case of when such a line passes through the o r ig in - - i s  
in a 1-1 correspondence with the optical flow com- 
ponent along the direction of the local brightness 
gradient, or normalflow. Comput ing the optical flow 
by its definition is thus an underconstrained problem, 
which exhibits strong analogies with the aperture prob- 
lem of biological vision: The motion of a straight edge 
observed through a narrow aperature is "undecidable" 
along the direction of the edge itself. (3) 

Several approaches have been developed in the last 
few years to solve the aperture problem for the optical 
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flow by introducing additional constraints and com- 
pute, among the infinite possible "optical flows," a flow 
both as similar as possible to the actual motion field 
and suitable for an a posteriori interpretation. Typical 
measures of the performance of optical flow estimation 
algorithms are the sensitivity to noise, the ability in 
preserving the flow discontinuities (motion boundaries) 
as useful cue's for a subsequent segmentation, and the 
density of the flow obtained. The so-called global ap- 
proaches (1'4) impose an additional constraint on the 
degree of smoothness of the vector field over the entire 
image, so that usually they produce an incorrect flat- 
tening of the optical flow on motion boundaries. Other  
techniques have been recently proposed, that explicitly 
take into account the presence of discontinuities in the 
mot ion fields by performing a piecewise global optim- 
ization. 15'6/These techniques enjoy the nice feature of 
simultaneously estimating the flow and segmenting it; 
yet, they are usually computat ionally demanding. 

Local approaches are among the simplest and fastest 
for optical flow computing. The flow produced by such 
approaches is the solution of an overdetermined set of 
equations, obtained by clustering constraint lines of 
neighboring points in the image plane ~7,s) or, more 
generally, by determining more than one constraint at 
each pixel (see Re£ 9 for a review). By their nature, local 
approaches do not impose smoothness constraints 
over large patches of the image, with better results in 
preserving the flow discontinuities than the global 
approaches. However,  they are likely to produce a 
noisy optical flow, thereby often requiring a flow fil- 
tering step, which is usually not required by global 
approaches, being already embedded in the flow esti- 
mation phase. Figure 1 illustrates the idea behind the 
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Fig. l. Optical flow intersection of constraint lines, u (normal flow) is the projection of the optical flow v 
onto the local brightness gradient direction n (see text). 

local approaches, showing the case of a uniform flow 
field over the entire neighborhood of a generic image 
point. In this case, the flow can be computed in principle 
as the unique point of intersection of all the constraint 
lines in the neighborhood, provided that the direction 
of the spatial 9radient of  brightness is not uniform over 
the neighborhood. (This last condition guarantees that 
in the neighborhood the constraint lines are not all 
mutually parallel; in which case, no point of intersection 
could be computed at all, due to the aperture problem.) 

In the general case due to non uniform motion 
inside the neighborhood, to image noise, and the pre- 
sence of motion boundaries constraint lines have multi- 
ple points of intersection; ~°) the way to handle this 
overconstrained problem determines the differences 
among local approaches. A pseudo-intersection of the 
constraints is obtained as the result of standard least 
squares procedures, (see for example Refs 7, 11). Such 
linear techniques perform usually well in the presence 
of noise, but yield unsatisfactory results in the presence 
of occlusions. Other authors (e.gJ 8'12)) propose non- 
linear methods for constraint  clustering, based on 
"pruning offthe outliers" from sets of constraint inter- 
sections. These techniques are, in general, especially 
designed for preserving motion boundaries, and quite 
sensitive to noise. 

In this paper we propose a local approach to optical 
flow computation,  which is based on nonlinear relaxa- 
tion. Relaxation methods have been thoroughly studied 
in the past, thanks to their ability to solve nonlinear 
multiconstraint optimization problems ~13~ and their 
ameneability to analog VLSI circuits implement- 
ation. 114~ We derive the approach from a standard 
linear (one-dimensional least squares) algorithm. This 
is split down in two steps. First, the linear algorithm 
is implemented as an iterative procedure, in which 
image points in a suitable 9eometric neighborhood are 
made to interact each other. Second, a nonlinearity 
term in the elementary interaction between neighbors 
is added, which depends on the Gaussian interaction of 

elements of a velocity neighborhood. The algorithm is 
tailored for a combined use with nonlinear smoothing 
techniques of the raw optical flow. Explicitly, we let 
the relaxation stage produce a flow field which "decor- 
relates" at best the noise at its output, so as to be able 
to filter this long-tailed noise by means of a vector 
median filter, which is optimal for such kind of noise, ~15~ 
and has proven to be effective and fast for performance 
enhancement of local techniques in general." 67 

The logical flow of the paper is the following: in 
Section 2 we derive the relaxation equations for our 
method, as the result of the manipulation of the one- 
dimensional least squares technique. A case study is 
then presented in Section 3, in which the method is 
compared with two linear techniques, the one-dimen- 
sional least squares (which enables us to emphasize the 
benefits of the introduction of the nonlinearity term), 
and the bidimensional least squares technique, a stan- 
dard technique frequently encountered in applications. 
The comparison provides us with an insight into the 
main characteristics of both linear and nonlinear tech- 
niques, and clearly points out the superiority of non- 
linear, ad hoc techniques for the extraction of optical 
flow fields. We finally draw the conclusions in Section 4. 

2. DERIVATION OF THE RELAXATION EQUATIONS 

The approach is naturally divided in three different 
computational  phases. In the first phase, the constraint 
lines and the normal flow are evaluated. A nonlinear 
relaxation of the normal flow is then performed (second 
phase), and a raw estimate of the flow field is produced. 
The final optical flow is then obtained after the third 
phase of optical flow nonlinear filtering. 

This section is organized as follows. In Section 2.1 
we derive two alternative forms for the optical flow 
constraint and define operationally the normal flow. 
Then, in Section 2.2, we describe in detail the imple- 
mentat ion of the one-dimensional least squares tech- 
nique using relaxation. The nonlinear relaxation term 
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is introduced in Section 2.3, through heuristical consi- 
derations on the interactions among neighboring 
points at motion boundaries. Finally, in Section 2.4, 
we describe the nonlinear filtering procedure of vector 
median filtering of the raw optical flow. 

2.1. Formulations of  the opticaI f low constraint 

Let us introduce first the canonical form of the 
optical flow constraint equation. 

The optical flow is defined, at each image point (x, y) 
and at any time t, as the solution v = u% + vey of the 
equation 

0E 
VE.v + - -  = 0, (1) 

~3t 

where VE = (#E/Ox)e~ + (~E/@)% is the spatial gra- 
dient of the image brightness E(x, y, t). 

The constraint line represented by equation (1) deter- 
mines ~ possible velocity values at a given point p~, 
i.e. oc I points (u, v) in the velocity space. Note  that, as 
mentioned in the introduction and shown in Fig. 1, if 
a number of points with different gradient directions 
has the same velocity, the relative constraints in the 
velocity space will be nonparallel lines that meet at a 
point corresponding to the velocity common to all the 
points. Note  also from the figure that, in the case of 
sheer translation, the locus of all possible normal flow 
velocities of a neighborhood is a circumference passing 
through the origin and centered in (u/2, v/2). 

The normalflow at a given pointp~ is expressed as 

ui=(vi 'n i )ni= ~ t  iiVEII p~ - ~ , ( 2 )  

where n i = (VE/II VE 11 )p~ is the unit vector in the gra- 
dient direction at p~. Note  that this equation implies 
that the constraint line can be determined only at 
points where the image gradient is not zero. 

Two alternative formulations of the constraint (1) 
emerge from the condit ion that the velocity v~ at point 
Pi belongs to the constraint line at Pi- We can express 
that by rewriting the constraint as 

~ i ( v )  - (ui - v ) ' n i  (3)  

or, equivalently, by expressing the velocity v~ as 

Vi(S) = U i + sti, (4) 

where s ~ 2  and the unit vector t~= ex/x ey A n i pro- 
vides the local orientation of the constraint line at p~ 
(refer again to Fig. 1). 

and 
°~(S)= Z [~J (¥i(S))]2" (6) 

jlp.i~./~'i 

(These terms are zero if the velocity v~ belongs to the 
constraint lines of all the points in JVi.) In the first case 
we would have to solve a linear 2 x 2 system in (u, v) 
(bidimensional optimization problem) and obtain a 
solution in closed form. Optimizing equation (6)--  
which is simply obtained by using the alternative con- 
straint formulation (4) into equation (5), thus imposing 
that the solution belong to the constraint line yields 
the flow vector at p~ as the solution of the one-dimen- 
sional optimization problem of finding the right s. By 
setting 

= 0  ,7, 

we obtain the so lu t ionl  

g = Z2(ti'nj) [ (uj - ui)" n~] (8) 
Z~(ti'nj) 2 

and get the flow vector by using the constraint .(4) 

vi = ui  + ~ti. (9)  

Notice that the closed form solution can be derived 
only under the very special circumstances of a qua- 
dratic cost. 

We show now how to re-formulate the equations in 
order to solve the same least squares problem by 
means of an iterative procedure (relaxation). We con- 
sider the unknown parameter s as a function s(z) of 
time. ++ All the velocity values locally interact with each 
other, looking for a way to mutually satisfy the relative 
constraints, the relaxation of the constraints being 
described by a differential equation with ff as a stable 
attractor, and initial condition 

s(0) = 0, (10) 

which causes the optical flow be initialized by the 
normal flow. 

The relaxation can be written as a gradient descent 
method 

ds(z) ~ g,d°(s) 
- , ( 1 1 )  

dz 2 0s 

where the parameter ~ controls both the accuracy 
and the speed of convergence of the successive approxi- 
mations. Notice that, correspondingly to a displace- 
ment ds, the velocity point at p~ is displaced, in the 

2.2. Linear solutions 

Two linear solutions of equation (1) at point Pi can 
be obtained by clustering all the constraint lines in the 
neighborhood ~¢/~ of p~, by assuming that the flow be 
uniform in it, and minimizing the following two qua- 
dratic costs (least squares solutions): 

g(u ,v)=  ~ I-~jfvi)] 2 (5) 
jlp3~, l'i 

+ The aperture problem would manifest into this equation 
in the case of insufficient variability of the brightness gradient, 
by causing the denominator to vanish. 

++ We denote relaxation time by the symbol r. This empha- 
sizes that relaxation must take place on a different and 
much shorter--time scale (adiabatic relaxation) than the 
movement of the objects in the image. This means that, during 
relaxation, the objects can be considered as fixed and the 
values u~ and uj constant. 
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velocity space, by 

dvl = dVlds = tids. (12) 
ds 

In the quadratic case of equation (6), equation (11) 
can. be written as 

ds(z) _ ~ ds(r) (13) 

d~ j dr  If 
where 

ds(r) # ° : ( t i ' n j )~J (V i (S ) ) "  (14) 
dr j 

Equat ion (14) gives the intensity of the contribution 
to dvi of the constraint line gj(v) = 0, with pjE~lJ~/: 

dvi [j = ti ds [j. (15) 

It is easy to show that this contribution will cause a 
displacement of  v~ in the direction of the intersection 
between the two constraint lines 0~ = 0 and Cj = 0. In fact, 
the contribution is such that Io~j(v~(s))l, the distance 
between the velocity point v~ which belongs to the 
constraint line of p~--and the constraint line of pj is 
minimized: 

ds(-c) = :~d 2 
dz j --2 ds Egj(vi(s))] 

d 
= --o;[~j(vi(s))lds[O~j(vi(s))]. (16) 

The intensity of displacement (14) will vanish in two 
different geometrical situations: first, when the two 
constraint lines are parallel, in which case 

t i" nj  = O; (17) 

second, when the point v~ corresponds to the intersec- 
tion of the two constraint lines: 

Cj(v~) = o. (18) 

This last equation confirms that the relaxation pro- 
cess stops (ideally) when all the velocities in the neigh- 
borhood of p~ are at the intersection of all the constraint 
lines. Besides, equation (17) guarantees that two almost 
parallel constraint l ines - -whose  intersection in the 
velocity space is very f a r - -have  little interaction. 

2.3. Nonlinear relaxation 

The linear solutions presented in Section 2.2 leads 
invariably to blurring motion discontinuities like those 
one may observe, e.g. in occlusions. To understand this 
effect, let us consider e.g. the one-dimensional case, and 
the image projection of two bodies A and B (Fig. 2). 

In the velocity space, We have two "stars" of cons- 
traint lines. The first star is made of the constraint lines 
of points of the body A. All these constraint lines 
converge in a point VA, corresponding to the true 
velocity of A. A second star, corresponding to cons- 
traint lines of points of B converges on vs. 

Let us consider a point Pi belonging to A and lying 
very close to the border at which A occludes B. Since 
we are averaging ~i, the neighborhood ,J¢~ will contain 
both points of A and points of B. The velocity point vi 
will move on the constraint line ofp~ under the influence 
of the other points in A which will try to pull it 
towards v A and the points in B which will try to 
pull it towards the respective intersections, such as w 
in Fig. 2.b. Not  only this, but the term [o~j(vi(s))l in 
equation (16) is bigger for points p~ belonging to B and 
therefore at least in i t ia l ly- - the  attraction towards w 
will dominate  the attraction towards v A. This will 
cause vi to reach an equilibrium far from VA, causing 
the blurring effect near the borders of the body A. The 
same reasoning also applies to points on the border of 
the body B. This is mostly unfortunately, since the 
borders are the places where the best part of the motion 
information is contained. (17) 

\ 

W 

Hi 

Fig. 2. Occlusion between two bodies with opposite velocities (a), and consequent situation oftheconstraint 
lines in the velocity space (b). 
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The reason for this behavior can be traced to the 
fact that the least squares solution has no way to make 
the intersections with constraint lines of A outweight 
the intersections with constraint lines of B that are in 
general much farther away from v~. We should intro- 
duce a method by which intersections that are close to 
vg are weighted more than the intersections that are far 
from % 

This is tantamount to the introduction of a double 
neighborhood structure around Pi. On one side, we have 
the geometric neighborhood ~A~, which dictates that 
only points geometrically close to p~ should be consi- 
dered for relaxation with p~. Besides, we introduce a 
velocity neighborhood structure, which dictates that p~ 
should weight more, at relaxation time z, intersections 
with constraints lines that are closer to the velocity 
vi(s(z)). The introduction of this second neighborhood 
structure also introduces a nonlinearity in the relaxa- 
tion equations. Because of this, a closed-form solution 
is no longer possible, neither it is possible to trace back 
to the energy function minimized by the relaxation 
process. 

We suppose that intersection points in the velocity 
space be modulated by a Gaussian interaction, so that 
equation (16) rewrites as 

ds(~) 
dr j = c~(t'ni)gj(vi(s))'~J(fl)' (19) 

where 

~q(fl) = exp[  [[ v ~ v ~  [[ ' ]  

is the Gaussian interaction term that determines the 
velocity neighborhood structure. Note that since the 
support of the Gaussian term is the whole real axis, the 
interaction is never zero. This makes the velocity neigh- 
borhood a fuzzy set. Notice also that the new nonlinear 
term is such that ~ij(fl)= ~.ji(fl), that is the nonlinear 
interaction between two neighbors in the velocity space 
is symmetrical. The parameter fl~ R controls the spread 
of interaction: if fl is small, only points that have very 
close velocity (and that are geometrically close) will 
interact; if fl ~ Go, we are back in the linear case, in 
which all geometrically close points interact, no matter 
what their velocities are. On the other side, small 
values of fl result in limited relaxation and, therefore, 
slow convergence. 

The presence of the nonlinear term ~j(fl) solves 
many of the problems presented by the linear solution 
in handling occlusions. Going back to the example of 
Fig. 2, we expect that the velocity v~ be closer, at 
relaxation time 0, to the velocity of other points of A 
than to the velocity of points in B,§ and therefore, we 

§Note that this assumption may fail under very special 
circumstances, for instance in the presence of very rapid 
rotation or of very sudden changes in the direction of the 
gradient. All these circumstances can be seen as limitations 
of the method, to be overcome either by augmenting the 
acquisition rate or the density of velocity evaluation points. 

expect p~ to interact more with other points in A that 
with points in B. The closer vi gets to the intersection 
point VA, the stronger p~ will interact with points of A. 
In the same time, interaction with points of B will 
become weaker as they start to cluster around the 
point v~. By this mechanism, the term ~ij(fl) effectively 
contributes to the separation of point clusters in the 
presence of occlusions. 

2.4. Optical flow smoothing 

A restoration procedure is applied to the raw optical 
flow field obtained after relaxation, which is specifically 
aimed to remove the estimation errors made in the 
relaxation phase due to spikes of noise, and to the 
presence of motion boundaries passing exactly through 
the center of the neighborhood. These errors unavoid- 
ably occur due to the fact that the raw optical flow 
vector estimated at a generic image point is assumed 
to belong to the constraint line at the same point, and 
this can be even grossly incorrect if the point lies on a 
motion boundary or if the image noise at that point is 
big. 

For this purpose, vector median filtering--a non- 
linear processing--is used in the place of the traditional 
averaging techniques, thus achieving a better edge 
response (motion boundaries preservation). In fact, it 
can be easily shown that the median is an optimal 
estimate in the maximum likelihood sense if the input 
distribution is double exponential (longtailed noise), 
while the average (a linear technique) is the maximum 
likelihood estimate for the Gaussian distribution (short- 
tailed noise). 

The filtered optical flow vector at Pi, r% is computed 
as the vector median (VM) of the raw optical flow 
vectors rcj of the neighborhood Jd'~ of p~ 

~ = V M  ( {~l j, Jl pjE Jf'~} ). (20) 

In the general case, the median of a vector set ~ is 
defined as 

VM(~U)=v~' / / I  ~ I Iv i -v j l lL=min (21) 
v j ~  Y " 

where II 'I[L is a suitably defined norm in the velocity 
space. The characteristics of vector median filtering are 
known to depend heavily on the choice of the norm, 
usually resulting in a trade-off between the performance 
in edge preservation and in noise removal. The most 

2 widely used are the L2, L 1 and L 2 (Euclidean) norms. 
It has been found that the L 2 norm is the best for edge 
preservation, while the L~ norm is the best for medium- 
tailed noise removal, vector median filtering becoming 
in this case quite similar to an averaging operation. 
Using an L 1 norm yields a performance which is inter- 
mediate between the two. Vector median filtering 
(especially with the choice of the Euclidean norm) is 
quite useful for the task of achieving motion boundary 
preservation and restoration, since it allows to substi- 
t u t e - b y  its definition (21) the incorrect raw optical 

PR ZS-7-D 
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flow vectors evaluated at a point on a motion boundary 
with one of the (possibly) correct raw optical flow 
vectors in its ne ighborhood  

Notice that the good edge response characteristics 
of vector median filters are not achievable by a simple 
componentwise smoothing of the vector field that is, 
by applying a scalar median filter to the field compo- 
nents separately 

3. A CASE STUDY 

In this section, we present a case study of estimation 
based on a sequence of synthetic images, of which the 
true optical flow ("ground truth") is known, allowing 
us to carry out performance evaluations and com- 
parisons. 

Each image in the sequence- -one  sample which 
is reported in Fig. 3 is 64 x 64 pixel, with 256 gray 
levels. The sequence represents the nontrivial case of 
two partially overlapping squares moving on a trans- 
lating background. The upper square translates with 

Fig. 3. One frame from the sequence used in the experiment. 

a speed of ( 1.2, 1.2) pixel/frame. The lower square 
rotates with a speed of 2.8°/frame. The background 
translates with a speed of( 0.707, -0.707) pixel/frame 
(in all drawings, the origin is in the upper-left corner). 
The squares and the background are covered with a 
sinusiodal texture, the sinusoid covering the back- 
ground having a higher spatial frequency. 

In this experiment, we estimate the optical flow 
using three different techniques. We always start with 
the same normal flow, computed using equation (2) 
and approximating derivatives by finite differences of 
image brightness, and use: 

• Two-dimensional  least squares (2DLS): velocity 
vectors are not constrained on their constraint lines, 
and are the solution of the optimization of the cost in 
equation (5). 

• One-dimensional least squares (IDLS): velocity 
vectors are constrained to lie on their constraint lines, 
and locally grouped by optimizing the parameter s 
in equation (4) according to equation (8). 

• Our nonlinear relaxation approach (IDNR),  
which is based on equations (12), (13), (19)--using 

=/7 = 0.l , equations (3) and (10), and is run for 64 
iterations. 

For  all the tests, we report the results both in the 
image space (x, y ) - -where  velocities are drawn as vec- 
t o r s - a n d  in the velocity space (u, v ) - -where  velocities 
are drawn as points. The "ground truth" is drawn in 
Fig. 4, while the normal optical flow is drawn in Fig. 5. 
The results for the 2DLS algorithm are reported in 
Fig. 6 (before filtering) and Fig. 7 (after vector median 
filtering), those for 1DLS are reported in Figs 8 and 9, 
and those for 1DNR are in Fig. 10 and Fig. 11. Fig. 12 
sketches the mean error in all the cases tested. 

Let us first comment  the results from a qualitatively 
viewpoint, based on the direct inspection of the figures, 
and then give and interpret the numerical results. As 
clear from the figures, most of the error is concentrated 
near occlusion boundaries, due to the "blurring" effect 
discussed in the previous section. This is mostly evident 

~ z  " / / / / / / / / / / / / / / / / / A t ~  
o •  

• • C o o  
o e o e  

o e  

o e  
o e o o  
~ w g .  
• m o o  

o e  
• e o o  

1 o o o o  • o o o o o o •  
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e o e o ~ o o  • g o  

Fig. 4. The "ground truth" for one frame of the experimental sequence. 
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Fig. 6. Optical flow estimation results for 2DLS in (a) the image and (b) the velocity spaces. No filtering. 
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Fig. 7. Optical flow estimation results for 2DLS in (a) the image and (b) Jche velocity spaces. Vector median 
filtering. 
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Fig. 11. Optical flow estimation results for 1DNR in (a) the image and (b) the velocity spaces• Vector median 
filtering• 

2DLS 1DLS 1DNR 

Fig. 12. The distribution of the mean error in the image plane for the three algorithms tested, before and 
after the filtering step. Brighter areas correspond to bigger errors. 

for 2DLS, even after the filtering stage; this is due to 
the fact that ,  as men t ioned  before, vector  median  filter- 
ing is very effective in removing  outl ier  vectors caused 
by sporadic  errors, bu t  not  nearly so in removing 
the highly systematic error  caused by 2DLS's  blurring• 
1DLS represents  an  improvemen t  in terms of compu-  
ta t ional  e f fo r t - - i t  reduces the p rob lem from 2n vari- 
ables to n. Results are worst  than  2DLS's  before filtering 

but, since vector median  filtering is more  effective in 
this case t han  for 2DLS, the final e r ror  is lower than  
for 2DLS. Concern ing  the 1DNR approach ,  the figures 
show tha t  it has, even before filtering, an  highly im- 
proved behav io r  in cor respondence  of the m o t i o n  
boundaries .  Yet it exhibits, as we expected, a slightly 
worst  behav ior  in the inter ior  of the figures. After the 
filtering step, 1DNR provides the best result  of the 
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three experiments.  In fact, it is appa ren t  from Fig. 1 lb  
tha t  the two concent ra t ions  of points  in the velocity 
s p a c e - - c o r r e s p o n d i n g  to the t rans la t ion  of the upper  
square and  the  b a c k g r o u n d - - h a v e  been correct ly 
identified, and  also the " inver ted L" of Fig. 4b, charac-  
terizing the rotat ion,  has been correctly detected. 

We compare  now the performance of the three algo- 
r i thms tested on the basis of the numerical  results. Let 
us denote  the "g round  t ru th"  by V, of which the com- 
puted  optical  flow v is an  estimate. The  per formance  
paramete r s  are defined as follows: the local error is 

the mean error is 

1 u 

and the rms error is 

= ( ~ i  - ~ ) 2 ,  

i 

where N is the n u m b e r  of pixels in the geometric 
ne ighborhood.  Finally, we define the f low density 6~o 
as the percentage of flow vectors with local er ror  less 
than/~o pixel/frame. 

Tables 1 and  2 repor t  the numerical  values of the 
performance parameters /~,  a and  60. 5 obta ined  in the 
tests, and  Tables 3 and  4 summarize  the results of a 
compar i son  of the three algori thms.  Notice  that ,  the 
performance of the algorithms is evaluated both in the 
overall image and at motion boundaries, so that  it is 
possible to emphasize  the behav ior  of each technique 
in the presence of flow discontinuities.  

Table 1. Errors with the three algorithms (whole image) 

Whole Algorithm 
image 

2DLS 1DLS IDNR 
Parameter Raw Filtered Raw Filtered Raw Filtered 

/~, pixel/frame 0.504 0.483 0.585 0.442 0.511 0.380 
a, pixel/frame 0.541 0.474 1.361 0.440 1.124 0.415 
6o. 5,~ 76.465 77.222 78.784 81.421 85.352 87.622 

Table 2. Errors with the three algorithms (motion boundaries) 

Motion Algorithm 
boundaries 

2DLS 1DLS 1DNR 
Parameter Raw Filtered Raw Filtered Raw Filtered 

/~, pixel/frame 0.996 0.974 1.253 0.878 1.209 0.774 
a, pixel/frame 0.885 0.829 2.930 0.744 2.975 0.785 
~0.5,~ 27.876 27.434 22.124 32.301 33.186 48.673 

Table 3. Performance comparison of the three algorithms (whole image) 

Whole Parameter 
image 

Performance Raw Filtered Raw Filtered Raw Filtered 

Best 2DLS 1 DNR 1DLS 1DNR 1DNR 1DNR 
Intermediate 1DNR 1DLS 1DNR 1DLS 1DLS 1DLS 
Worst 1DLS 2DLS 2DLS 2DLS 2DLS 2DLS 

Table 4. Performance comparison of the three algorithms (motion boundaries) 

Motion Parameter 
boundaries 

/~ a 6 
Performance Raw Filtered Raw Filtered Raw Filtered 

Best 2DLS 1DNR 1DNR 1 DLS 1 DNR 1 DNR 
Intermediate 1DNR 1DLS 1DLS 1DNR 2DLS 1DLS 
Worst 1 DLS 2DLS 2DLS 2DLS 1 DLS 2DLS 
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We also analyze separately the results after the raw 
es t imat ion  step and  after the vector  median  filtering 
step. 

We  say, of course, tha t  the smaller  p the bet ter  the 
performance,  and  the bigger 6u6 the bet ter  the perfor- 
mance.  Concern ing  the performance in terms of rms 
error though,  we consider it to be inversely proportional 
to ~r before filtering, and  directly proportional to a after 

filtering. In fact, given the non l inear  filtering scheme 
a d o p t e d - - w h i c h  is most ly  effective in the presence of 
impulsive noise (big values of a) a raw es t imat ion  
a lgor i thm is considered the more  effective the more  it 
keeps the noise on the flow field spatially decorrelated.  

F r o m  the tables  it is evidenced that:  

• After vector median  filtering, the 1DNR has al- 
ways the best performance.  

• 2DLS performs well before filtering, even if only 
in terms of mean  er ror  and  not  in terms of density. 
2DLS becomes the wors t  of all after filtering, the 
improvemen t  of per formance  in the filtering step being 
very poor.  The per formance  in terms of rms error  is 
also poore r  t han  the two 1D algori thms.  

• 1DLS performs always bet ter  than  2DLS after 
filtering, for the reason described above,  namely,  it 
allows for a higher  spatial  decorre la t ion  of the error. 

.0 1DNR is even bet ter  than  1DLS because, for an 
equal  a t t i tude to be nonl inear ly  filtered, it has a bet ter  
per formance  than  1DLS in terms of mean  error  before 
filtering, being it less sensitive to outliers. 

4. CONCLUSIONS 

We presented a novel  local app roach  to the est ima- 
t ion of optical  flow, which is based on closely coupl ing 
non l inear  re laxat ion with vector  median  filtering. The 
non l inear  re laxat ion technique is ob ta ined  as the result 
of the t r ans fo rmat ion  of a s t andard  l inear  technique,  
and  is initialized by the normal  flow field. We use 
Eucl idean n o r m  for vector median  filtering. The case 
of a "difficult" synthet ic  sequence was presented,  and  
the knowledge of the "g round  t ru th"  enabled  us to 
compare  the per formance  of our  me thod  with tha t  of 
o ther  two local t e c h n i q u e s - - t h e  one- and  bi-dimen-  
signal least squares. 

The  results show clearly the effectiveness of our  
approach ,  bo th  in terms of mot ion  bounda ry  preserv- 
a t ion and  of optical flow field density. 
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