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Abstract--A set S is convex if for every pair of points P, Q~S, the line segment PQ is contained in S, This 
definition can be generalized in various ways. One class of generalizations makes use of k-tuples, rather than 
pairs, of points--for example, Valentine's property P3: For every triple of points P, Q, R of S, at least one 
of the line segments PQ, QR, or RP is contained in S. It can be shown that if a set has property P3, it is a 
union of at most three convex sets. In this paper we study a property closely related to, but weaker than, 
P3' We say that S has property CP3 ("collinear P3") if P3 holds for all collinear triples of points of S. We 
prove that a closed curve is the boundary of a convex set, and a simple arc is part of the boundary of a convex 
set, iff they have property CP a. This result appears to be the first simple characterization of the boundaries 
of convex sets; it solves a problem studied over 30 years ago by Menger and Valentine. 

Convexity Convex arcs Convex curves Generalized convexity Boundaries 

l. INTRODUCTION 

A set S is convex if for every pair of points P, QeS, the 
line segment PQ is contained in S. This definition can 
be generalized in various ways. For example, (1) S is 
called starshapedfrom Po E S if PoQ is contained in S 
for all QeS; thus S is convex if it is starshaped from all 
of its points. As another example, (2) S is called ortho- 
convex if PQ is contained is S for all P, Q ~ S such that 
PQ is horizontal or vertical. 

One class of generalizations of convexity, due to 
Valentine, 13) makes use of triples (or k-tuples), rather 
than pairs, of points. A set satisfies Valentine's property 
P3 if for every triple of points P, Q, R of S, at least one 
of the line segments PQ, QR, or RP is contained in S. 
For example, a polygonal arc consisting of two non-  
collinear line segments (Fig. 1) is not  convex, but  is 
easily seen to have property P3. (Note that the three- 
segment polygonal arc in Fig. lb  does not  even have 
property P3-) It can be shown that if a set has property 
P3, it is a union of at most three convex sets. 

In this paper we study a property closely related to, 
but  weaker than, P3- We say that S has property CP3 
("collinear P3") if P3 holds for all collinear triples of 
points of S. For  example, the three-segment arc in 
Fig. l b  has property CP 3. This property turns out to 
characterize (parts of) the boundaries of convex sets; 
in fact, we shall prove in this paper that a closed curve 
is the boundary  of a convex set, and a simple arc is part 
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of the boundary  of a convex set (e.g. Fig. lb), iff they 
have property CP3. This result appears to be the first 
simple characterization of parts of the boundaries of 
convex sets; it solves a problem studied over 30 years 
ago by Menger (4) and Valentine (5) (For arcs and closed 
curves, convexity is a very strong property; in fact, a 
closed curve or a nonsimple arc cannot  be convex, and 
a simple arc is convex iff it is a straight line segment. 
The weaker property CP3, on the other hand, will be 
shown in this paper to define very useful classes of arcs 
and curves.) 

In Section 2 we describe the partial characterizations 
of boundaries of convex sets given by Menger and by 
Valentine. In Section 3 we define property CP3. In 
Section 4 we prove the main theorems of the paper: A 
simple closed curve has property CP3 iff it is the 
boundary  of a convex set, and an arc has property CP3 
iff it is a connected subset of such a boundary. Finally, 
in Section 5 we establish some additional results about  
property CP3: an arc has property CP3 iff there is at 
least one supporting line (=  line such that the arc lies 
on one side of it) through each of its points; and a path 
having property CP3 is a simple closed curve, provided 
it does not have infinitely many multiple points. Sec- 
tion 6 briefly discusses the possibility of establishing 
analogous results for digital objects, and it also poses 
the problem of extending our results to three dimen- 
sions (i.e. characterizing surface patches which are 
subsets of the surfaces of convex sets). 

For  completeness, in the Appendix we summarize 
basic definitions and propositions about  arcs, curves, 
and convex sets that are used in this paper. Using 

1191 



1192 L. LATECKI et al. 

(a)  (b)  

Fig. 1. 

well-known character izat ions of bounded  convex 
sets, 16) we prove that the boundary of a bounded convex 
set (with nonempty interior) is a simple closed curve. 

2. CHARACTERIZATIONS OF BOUNDARIES 
o r  CONVEX SETS 

Menger ~41 gave a rather complicated characteri- 
zation of the boundary  of a convex set which was 
simplified by Valentine ~5~ (p. 106, T8.1) essentially as 
follows: 

Let S be a compact set in the plane containing at 
least three points. Suppose that for each triple of non- 
collinear points xi (i = 1, 2, 3) of S we have 

S ~ i n t  A = ,~3 

Vic~S=~  i =  1,2,3 

W~kC~S¢~3 j , k= l ,2 ,3 ;  j ¢ k  

where (see Fig. 2) A is the closed triangle determined 
by Xl,X2,X3; in tA is the interior of A; V i is the olSen 
V-shaped unbounded  region abutt ing A at vertex x~; 
and W~j is an unbounded three-sided set abutt ing the 
edge xixi. We define W~j to contain the open line 
segment x~xj, and to be disjoint from the lines X~Xk, XjXk 
(k 4: i,j), so that it is neither open nor closed. Also if 
x~, x2, x3 are three distinct collinear points of S suppose 
that 

Sc~intvxixj¢(~3 i , j=1,2,3; i4:j 

where intv xixj is the interior of the interval x~xj. If all 
of these conditions are satisfied, S is the boundary  of 
a convex set. The converse is also true for compact sets. 

Valent ind 5) (p. 108, T8.3) stated a condition slightly 
stronger than our property CP3, and tried to relate it 
to the property of being a "convex curve", i.e. a (proper 
or improper) subset of the boundary  of a convex set. 
Let S be a closed connected set in the plane. Suppose 
that for each triple of distinct collinear points in S, the 

x2 a 

Fig. 2. 

x y Z 

Fig. 3. 

minimal line segment containing them belongs to S. 
Then the set S satisfies at least one of the following four 
statements: S is closed convex set; S is a convex curve; 
S is the union of two linear elements Ri (i = 1, 2) with 
R1 c~ R2 ~ ~ ,  where a linear element is either a closed 
line segment, a closed half line (ray), or a line; S is the 
union of three linear elements R1,R2, R 3 having a 
common end point x such that x e i n t  cony (Rt k 3 R  2 w 

R3) [where int cony(A) means the interior of the convex 
hull of the set A]. (Hence, S is a kind of three-legged 
star.) 

Note that Valentine's condit ion does not imply that 
S is a convex curve. Conversely, Fig. 3 (suggested by 
,David Mount) shows a convex curve which does not 
fulfill Valentine's condit ion (consider the triple of 
collinear points x, y and z). In this paper, we will show 
that a slightly weaker property, which we call CP3, 
does completely characterize convex curves. 

3. CP3-CONVEXITY 

Definition 

A set S ___ R 2 will be said to have property CP a if for 
every three collinear points in S, at least two of them 
are joined by a line segment contained in S. 

The main result of this paper is that property C P  3 

characterizes convex curves. We first need to establish 
some properties of CP3-convex sets. 

Definition 

A set S will be said to have property C3 if for each 
triple ofcollinear points in S, the minimal line segment 
containing them belongs to S. 

Note that this is the condition given by Valentine 
(see Section 2). It is clear that property C3 implies 
property CP3. 

Proposition 1 

The boundary of a bounded convex set has property 
C 3 . 

Proof. Let S be the boundary  of a bounded convex 
set C, and let L be any straight line. If L contains an 
interior point of C, then L intersects S in exactly two 
points (Theorem 30), so it cannot contain three collinear 
points of s. if  L does not contain any interior point of 
C and L ~ ( C w S ) : ~ i ,  then Lc~(CwS)=Lc~S. But 
L c~ (C w S) is a convex subset of L, since C w S is convex 
(Proposition 29). Hence Lc~(C w S) is a line segment, 
so that if L contains three collinear points of S, the 
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minimal line segment containing them belongs to 
LcaS c S, which proves that S has property C3. 

Corollary 2 

The boundary of a bounded convex set has property 
CP 3 

Lemma 3 

Let S be an arc with endpoints a and b such that 
S ¢ab. Let L(a, b) be the straight line passing through 
points a and b. If S has property CP3, then ScaL(a, b) 
has exactly two connected components, one containing 
a and the other containing b, and when these compo- 
nents are deleted, S lies in one of the open half planes 
into which L(a, b) divides R 2. 

Proof. The assumption that S ¢ab  implies that ab 
cannot be contained in S; otherwise ab would be a 
proper subarc of S with the same endpoints, which is 
impossible (Proposition 25). Hence S n L(a, b) has at 
least two connected components, since the connected 
components C(a) and C(b) containing a and b cannot 
be the same. On the other hand ifS n L(a, b) had a third 
component, S could not have property C P  3. 

C(a) and C(b) are subarcs of S (Proposition 17), and 
so must be the images of initial and final subintervals 
I f  l(a),u] and [v, f - l (b)]  of I, respectively, where 
u < v. Let x, y be distinct points of S that do not lie on 
L(a,b), where (say) f l ( x )<f - l ( y ) ;  then we must 
have u < f l(x) < f -  l(y) < v. Let A be the subarc of 
S joining x and y; then A = f ( [ f  l (x ) , f -  l(y)]), i.e. A 
is the image of a subinterval of I that is disjoint from 
[ f  l(a),u] and [v, f  l(b)]. Thus A cannot intersect 
L(a, b); but this means that x and y must lie in the same 
open half plane defined by L(a, b). 

Lemma 4 

Let S be an arc or a simple closed curve. Let x, z, y e S 
be three different points, and let L(x, z)= L be the 
straight line containing x and z [Fig. 4(a)]. Let the subarcs 
arc(x,z) and arc(z,y) of S be such that arc(x,z)n 
arc(z, y) = {z} and arc(x, z) ¢ xz. If there exists a point 

pearc(x, z) with nonzero distance to L such that p and 
y lie in one of the closed half planes into which L 
divides R 2, then S does not have property CP 3. 

Proof. Let M be any straight line intersecting line 
segments xp, pz and zy but not passing through points 
x, z, p or y. Such a line exists, since x and z are different 
points of line L, p and y are two different points in one 
of the closed half planes into which L divides R 2, and 
p is at nonzero distance from L. (The cases in which y 
is also at a positive distance from L, and y lies on L, 
are illustrated in Fig. 4(b) and (c)). By Proposition 34, M 
intersects S in at least three points lying on the following 
subarcs of S: arc(x, p), arc(p, z), and arc(z,y). One of 
these points, say q, lies between the other two on M. 
Let J and K be two straight lines different from M and 
from each other which pass through q and satisfy the 
same conditions as M [see Fig. 4(d)]; the lines J and K 
can evidently be obtained by slightly rotating line M 
around point q so that the rotated lines still intersect 
line segments xp and zy. Each of the lines M, J and 
K intersects S in at least two points different from q in 
such a way that q lies between these two points (on 
M, J and K, respectively). 

We now have six rays emanating from q and inter- 
secting S. By Proposition 21, initial segments of at 
most two of these rays can be contained in S. Therefore, 
for at least one of the three lines, neither of its two 
intersection points with S different from q can be 
joined with q by a line segment contained in S. This 
implies that S does not have property CP 3. 

Proposition 5 

Let S be an arc with endpoints x and y. If S has 
property CP3 and S ¢ xy, then S ca xy = {x, y}. 

Proof. Let z e S n xy be different from x and y. Since 
S has property CP3, at least one ofxz and zy, say zy, is 
contained in S. Then xz cannot be contained in S. 
Indeed if xz were contained in S, then xy would be 
contained in S, so that xy would be a proper subarc of 
S with the same endpoints as S, which is impossible 
(Proposition 25). Since S is arc-connected, there exists 
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x " k , . _ . J  z r 
P 

Fig. 5. 

an arc arc(x, z) _ S joining x and z. Let L be the straight 
line containing x and z and let p e arc(x, z)be any point 
whose distance to L is greater than 0. Such a point 
exists, since arc(x, z) vL xz (see Fig. 5.). 

Then the assumptions of Lemma 4 are fulfilled for 
x, z, y, and p: x and z lie on L; arc(x, z) and arc(z, y) = zy 
are subarcs of S such that arc(x,z)c~arc(z,y)= {z} 
(Proposition 23); arc(x, z) ~ xz; and points p and y lie 
in one of the closed half planes into which L divides 
R 2, since y lies on L. Hence by Lemma 4, S cannot have 
property CP3, contradiction; it follows that S c~ xy = 
{x,y}. 

The following corollary makes use of Proposition 
26. 

Corollary 6 

Let S be an arc with endpoints x and y. If S has 
property CP 3 and S ~ xy, then S w xy is a simple closed 
c u r v e .  

4. THE MAIN THEOREMS 

In this section we prove the main theorems of this 
paper. 

Theorem 7 

A simple closed curve has property CP3 iff it is the 
boundary of a convex set. 

Theorem 8 

An arc has property CP3 iff itis a connected subset 
of the boundary of a convex set. 

By Theorems 7 and 32, a set is a simple closed curve 
and has property CP 3 iffit is the boundary of a bounded 
convex set with nonempty interior. Similarly, a set is 
an arc and has property CP3 iffit is a closed, connected 
subset of the boundary of a convex set. 

Proof of Theorem 7. "~" :  This follows from the 
Corollary to Proposition 1. "~" :  Let S be a simple 
dosed curve. By the Jordan Curve Theorem, S separates 
R 2 into exact!y two components, one bounded and the 
other unbounded, and S is the boundary of each of 
these two components. Let C be the bounded compo- 
nents together with S. Then S is the boundary of C, 
and C is closed. 

We will show that ifC is not convex, then S does not 
have property CP3. Let L be a straight line passing 
through an interior point of C and intersecting S (the 
boundary of C) in at least three distinct points, say x, z 
and y (Theorem 30). We can assume that z is between 
x and y on L, and that the interior point is between x 
and z. Therefore, xz cannot be contained in S. If zy is 

also not contained in S, then S does not have property 
CP3; so, it remains only to consider the case where zy 
is contained in S. Since (S\zy) u {z, y} is an arc contain- 
ing z, y and x, there exists an arc joining x and z: 
arc(x, z) ~_ (S\zy) ~ {z, y) ~ S. Therefore, arc(x, z) c~ 
zy = {z}. Let p~arc(x,z) be any point with nonzero 
distance to L; such a point exists, since arc(x, z) ¢ xz, 
because xz is not contained in S. 

Hence the assumptions of Lemma 4 are satisfied for 
x, z, y, and p: x and z lie on L; arc(x, z) and arc(z, y) = zy 
are subarcs of S such that arc(x,z)c~arc(z,y)= {z}; 
arc(x, z) ¢ xz; and points p and y lie in one of the closed 
half planes into which L divides R 2, since y lies on L. 
Thus by Lemma 4, S does not have property CP 3. 

Remark. Theorem 7 can also be proved along the 
same lines as the proof of Theorem 30 given in (Ref. 6 
pp. 114-116, solutions 1-4 and 1-5). 

From Theorem 30 we also have the following. 

Corollary 9 

A simple closed curve S has property CP 3 iff every 
straight line passing through an arbitrary interior point 
C (the set bounded by S) intersects S in exactly two 
points. 

Corollary 10 

A simple closed curve has property CP 3 iff it is 
C3-convex. 

Proof. This follows from Theorem 7 and from the 
Corollary to Proposition 1. 

In order to prove Theorem 8, we first prove 

Theorem 11 

Let S be an arc with a and y as endpoints. If S has 
property CP3, so has Suay .  

Proof. If S = ay, the theorem is trivially true; there- 
fore we assume that S ~ ay. Note that in this case ay 
cannot be completely contained in S (Proposition 25). 
Let L be the line containing ay. By Lemma 3, S lies in 
one of the closed half planes into which L divides R 2. 

Suppose S way did not have property CP3, and let 
M be a straight line intersecting S way in three different 
points x, z and d in such a way that no line segment 
joining two of them is contained in S way. It is easy to 
see that two of these points must belong to S\ay and 
the third one to ay, say x, z eS \ay  and d~ay. Further- 
more, d cannot be between x and z on M, since then x 
and z could not lie in the same closed half plane defined 
by L [see Fig. 6(a)]. We will now show that this situation 
contradicts the assumption that S has property CP 3. 

Since x and z lie on the same side ofd on line M, the 
distances from x and z to d cannot be equal. Let x be 
farther from d than z. Since xz is not contained in S, 
the subarc arc(x, z) _~ S joining x and z is not contained 
in M [see Fig. 6(a)]. Therefore, there exists a point pc 
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arc(x, z) with nonzero distance to M. Since d is on ay, 
either a or y must lie in the same closed half plane 
defined by M as point p does; suppose, as shown in 
Fig. 6(a), y and p lie in the same closed half plane. There 
exists a subarc arc(z, y) ~ S joining z and y [see Fig. 6(b) 
and (c)]. By Proposition 24, either arc(x, z) ___ arc(z, y) 
or arc (x , z )narc ( z , y )  = {z}. If arc(x,z)  ~ arc(z ,y)  
[Fig. 6(c)], then the set arc(x, y) = (arc(z, y)\arc(z, x)) u 
{x} is evidently an arc joining x and y with the property 
arc(x, y) ~ arc(z, x) = {x}. Therefore we know that there 
is an arc joining either x or z to y [Fig. 6(c) and (b), 
respectively] such that arc(x, y ) n  arc(z, x) = {x} or 
arc(x, y) n arc(z, x) = {z}, respectively. In either case, 
the assumptions of Lemma 2 are fulfilled: Points x and 
z lie on a straight line M; arc(z,x) and arc(z,y) (or 
arc(x, y)) are subarcs of S such that arc(z, y) n arc(z, x) = 
{z} (or arc(x,y)c~arc(z,x)= {x}) and arc(z ,x)~ zx; pc 
arc(z, x) has nonzero distance to M; and p and y lie in 
one of the closed half planes defined by M. Hence by 
Lemma 4, S cannot have property CP3, contradiction. 

Proof of Theorem 8. " ~ " :  Let S be an arc with a and 
b as endpoints. If S = ab, the theorem is trivially true. 
If S ¢ ab, then by Proposition 5, S nab = {a, b}; hence 
S u ab is a simple closed curve (Proposition 26). Since 
S has property CP3, Theorem 11 implies that Swab 
also has property CP 3. Thus Theorem 7 implies that 
Swab is a boundary of a convex set. Therefore, S is a 
connected subset of the boundary of a convex set. 

"~" :  Let S be the boundary of a convex set C. We 
prove this part of the theorem for every connected 
bounded proper subset of S, and therefore for every 
arc. Let T be a connected bounded proper subset of S. 
If the interior of C is empty, then T is a line segment, 
and the theorem is trivially true. If the interior of C is 
nonempty,  then S is a simple closed curve (Theorem 

32). Let a, b, c ~ T  be three collinear points with b 
between a and c. By Proposition 1, S has property C3; 
therefore the minimal line segment ac containing a, b, 
c belongs to S. Since T is a connected subset of a simple 
closed curve containing a, b, c, at least one of line 
segments ab and bc must be contained in T; indeed, if 
neither of them were contained in T, then T would not 
be connected (Proposition 27). 

While proving Theorem 8, we also have proved. 

Theorem 12 

Let S be an arc with endpoints a and b. S has 
property CP 3 iffS u ab is the boundary of a convex set. 

Corollary 13 

If a simple arc or curve S has property CP3, so has 
any arc-connected subset of S. 

Proof. This follows from Theorems 7 and 8 and 
Propositions 17 and 18. 

5. SOME OTHER RESULTS ABOUT PROPERTY CP 3 
5.1. Supporting lines 

Theorem 14. An arc S has property CP 3 iffthrough 
each of its points there passes at least one supporting 
line. 

Proof. " ~ " :  If S has property CP 3, by Theorem 8 
it is part of the boundary  of a convex set. Hence 
Theorem 31 implies that through each point of S there 
passes at least one supporting line. 

" ~ " :  Let S be an arc such that through each of its 
points there passes at least one supporting line. Let S' 
be the intersection of all closed half planes containing 
S. Then S' is convex. Since through each point of S 
there passes at least one supporting line, every point of 
S is a boundary point of S'. Since S is an arc that is 
contained in the boundary of a convex set S', it follows 
from Theorem 8 that S has property CP 3. 

5.2. Simplicity 

Theorem 15. Letf(I)  be a path defined by f : l  ~ R  2 
such that the preimage of the set of multiple points of 
f is a finite nonempty subset of 1. If f ( l )  has property 
CP3, then f ( l )  is a simple closed curve. 

Note that when f(1) is a simple closed curve, only 
the endpoints of I are mapped into a multiple point, 
which is the only such point; and that f ( l )  is an arc if 
f has no multiple points. 

Lemma 16. Let f(1) be a path defined by f : l ~ R  2, 
and suppose f ( x )  = f ( y )  for some x , y~ l ,  where.x < y. 
Let f ( [ x , y ] ) = S ,  and let K be a line segment in R 2 
which does not contain any multiple point of f.  If K 
intersects S and is not contained in S, then K is not 
contained in f(1). 
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Proof. Since K does not contain any multiple point 
o f f  and f (x)= fly) is a multiple point off, we have 
Kc~S ~f((x,y)),  where (x,y) is an open interval. We 
show that the assumption K ~ f(I) leads to inconsis- 
tency. 

Let / be the unit interval [0, 1]. I fK ___f[0, 1]), then 
K kS ~ G~ and K \ S _ f([0,  x] w [y, 1 ]). Since [0, x] w 
[y, 1] is a compact set, f r0, x] w [y, 1]) is also compact, 
and therefore closed. Hence cl(K\S) ~ f([0, x] u [y, 1]), 
where cl is the usual closure operator in R 2. Since S is 
closed (as an image of a compact set) and K is a line 
segment (and therefore closed), K\S is not closed. 
Therefore, there exists pecl(KkS) such that p¢(K\S). 

Now pecl(KkS) implies that p~f([O,x]w[y, 1]). 
On the other hand peKnS,  since p~cl(KkS) ~ K and 
pCKkS. Hence p~f((x,y)), because K n S  ~ f((x,y)). 
Thus p is in the image (under f )  of both (x, y) and its 
complement, and so is a multiple point; but p EK, 
contradiction. 

Proof of Theorem 15. Let d ___ I be the preimage of 
the set of multiple points off .  Let x, yeJ, where x < y, 
be points of /such that f(x) = f(y) and such that there 
exists no pair of points of J strictly between x and y 
with the same property, i.e. there do not exist a, bE J, 
where x < a < b < y, such that f(a) = f(b). Such points 
x, y must exist, because otherwise J would be infinite. 
The restriction fG.y)of  f to the open interval (x, y) 
is an injection and f is continuous. Therefore, S = 
f([x,y]) is a simple closed curve. If x and y are the 
endpoints of I, we are done; hence we can assume that 
at least one of them is not an endpoint. We show that 
this assump-tion leads to inconsistency with property 
CP 3 of f(l). 

By the Jordan Curve Theorem, S separates R 2 into 
exactly two components, one bounded and the other 
unbounded, and S is the boundary of each of these 
components. Let C be the bounded component together 
with S; then S is the boundary of C. Since at least one 
of x and y is not an endpoint, there exists a point 
z~l\[x,  y] such that zCJ. 

Let L be a straight line passing through f(z) and 
through an interior point of C, but not intersecting 
f(J), i.e. L does not contain any multiple point of f 
[see Fig. 7(a), (b)]; such a line exists since J, hence f ( J ) ,  
is finite. Then L intersects S in at least two distinct 

points f(u),f(v) such that the line segment f(u)f(v) 
contains an interior point c of C. Therefore, f(u)f(v) 
is not contained in S. By Lemma 16, f(u)f(v) cannot 
be contained in f(1). 

Evidently f(u)f(z)is not contained in S, since f(z)¢S. 
Hence by Lemma 16, f(u)f(z) cannot be contained in 
f(l). In exactly the same way, we can show that f(v)f(z) 
cannot be contained in f(l). Since the line segment 
joining any two of the three collinear points f(z),f(u) 
and f(v) in f(I) cannot be contained inf(I), f(l)  does 
not have property CP3. This contradiction proves the 
theorem. 

6. C O N C L U D I N G  REMARKS 

In this paper we have introduced a new generalization 
of convexity, and have shown that it characterizes arcs 
which are subsets of boundaries of convex sets in the 
plane. This is the first simple characterization of such 
arcs; it solves a problem first stated over 30 years ago. 
Incidentally, we could give somewhat shorter proofs 
of Theorems 7 and 8 by first showing (using the proof 
of Lemma 4) that if an arc or curve is CP3-convex, it 
is contained in the boundary of its convex hull. How- 
ever, if we took this approach, it would be harder to 
prove Theorem 12. 

Our characterization of parts of the boundaries of 
convex sets could be used in (digital) image analysis to 
determine whether a region could be convex, given 
only an image of part of its boundary. Note, however, 
that we have not yet established analogs of our results 
for digital images; we plan to do so in a forthcoming 
paper. It should be pointed out that there exist classical 
characterizations of convex sets that do not hold in the 
digital case. For example, it is well known ~7) that a set 
S is convex iff it is locally convex, i.e. every point of S 
has a neighborhood N such that S n N  is convex. This 
is not true for digital sets, as illustrated in Fig. 8; here 
every point of S intersects its 3 x 3 neighborhood in a 
digitally convex set, but evidently S is not digitally 
convex. 

It would be of interest to find a similar characteriza- 
tion of surface patches which are subsets of the surfaces 
of convex sets in three dimensions; we plan to investigate 
this in a subsequent paper. 

i 
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Fig. 7. Fig. 8. 
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APPENDIX A: BASIC DEFINITIONS AND PROPOSITIONS 

Definition 

A set S ~_ R 2 is called a (simple) arc if it is a homeomorphic  
image of a closed interval. A set S _ R 2 is called a simple 
closed curve (Jordan curve) if it is a homeomorphic  image of 
a circle of nonzero radius. An arc is called degenerate if it 
consists of a single point. 

Definition 

A set P ___ R 2 is called a path if it is a cont inuous image of a 
closed interval I. A point p of a path P is a multiple point if p 
is the image of two distinct points of I. A point which is not 
a multiple point will be called a simple point. 

For example, all points of an arc are simple points. Note 
also that a path P that contains only simple points is an arc, 
since then the function from I to P is also one-to-one, and a 
continuous one-to-one function on a closed interval is a 
homeomorphism onto its image. 

Definition 

Let P be an arc which is the image of the closed interval 
[a, b] _~ R by the homeomorphism f :  [a, b] -~  R z. The points 
p = f(a)  and q = f(b) will be called the endpoints of P; P will 
be said to "join" p and q, and will sometimes be denoted 
by arc(p, q). 

Definition 

A set S is arc-connected if for every pair of points p, q E S, 
there is an arc joining p and q contained in S. A closed 
arc-connected subset of R 2 will be called a figure. 

Definition 

Let P be an arc which is the image of the closed interval 
I _~ R by the homeomorphism f :  I ~ R 2, and let J be a closed 
subinterval of I. The image f (J)  will be called a subarc of P. 
Note that the restriction of f to J is a homeomorphism: 
J--,R2; hence a subarc of an arc is an arc. 

We now state some propositions which are useful in the 
proofs of the theorems in this paper. Most  of them are stated 
without proof, because they are well-known, basic facts about 
arcs and closed curves. 

Proposition 17 

Every closed arc-connected subset of an arc is a subarc. 

Proposition 18 

Every closed arc-connected proper subset of a simple closed 
curve is an arc. 

Proposition 19 

A subset of an arc is connected iff it is arc-connected 

Proposition 20 

Three nondegenerate closed subarcs of an arc cannot  pair- 
wise intersect in a single point. 

Proof. Let S=f(1) be an arc, and let A, B, C=S be 
nondegenerate closed subarcs which pairwise intersect in a 
single point. Then f - l (A), f -I(B), f-I(C) would be three 
nondegenerate closed subintervals of I which pairwise inter- 
sect in a single point, which is impossible. 

Proposition 21 

Let S be an arc, and let A, B, C c S be three nondegenerate 
closed line segments. Then A, B, C cannot pairwise intersect 
in a single point. 

Proof. This follows from Propositions 17 and 20. 

Proposition 22 

Let S be an arc which is the image of the closed interval 
I ~_ R by the homeomorphism f :  I --* R 2. Then for every three 
points a, b, c ~ I we have b ~ [a, c] iff f(b) 6f( [a, c] ) = a rc ( f  (a), 
f(c)). 

Note that by this proposition, the order of the points on S 
is the same as or the reverse of the order of the points on I. 

Proposition 23 

Let S be an arc which is the image of the closed interval 
I ~_ R by the homeomorphism f :  I --* R z. If b~arc(a, c) ~_ S, 
then arc(a, b) c7 arc(b, c) = {b}. 

Proof. By Proposition 22, f l(b)~ I f -  l ( a ) , f -  1(c)] (or its 
reversal). Hence the intervals [ f  l(a),f  l(b)] and [ f - l ( b ) ,  
f -  1(c)] can have only f l(b) in common.  Applying f to both 
sides proves the proposition. 

Proposition 24 

Let S be an arc and let arc(a,b) and arc(a,c) be subarcs 
of S such that b¢arc(a,c); then either arc(a,c)_~ arc(a,b) or 
arc(a, c) c7 arc(a, b) = {a} (see Fig. AI ). 

Proof. Let S = f ( l ) ,  where f is a homeomorphism.  By 
Proposition 22, f -  l(b) cannot lie between f l(a) and f l(c). 
If f -  1(c)is between f -  l(a) and f -  l(b), then arc(a, c) ~_ arc(a, b). 
If f -  l(a) is between f -  l(b) and f -  1(c), we have arc(a, c) c7 
arc(a, b )=  {a} by Proposition 23. 

Proposition 25 

A proper subarc of an arc S cannot have the same endpoints 
as S. 

Proposition 26 

The union of two arcs which are disjoint except for one 
endpoint is an arc. If they are disjoint except for both 
endpoints, their union is a simple closed curve. 

a 

Fig. A1. 



Proposi t ion  27 

Deleting one point (other than an endpoint) from an arc, 
or two points from a simple closed curve, disconnects it. 

) 

Defini t ion 

The line segment joining two points x and y will be denoted 
by xy. 

Defini t ion 

A set S ~ R 2 is called convex if for every two points in S the 
line segment joining them is contained in S. 

Evidently, a convex set is arc-connected. Note also that if 
S is convex, then for any three points in S the triangle 
determined by them (with its interior, if any) is contained in 
S. Thus  if S contains three noncollinear points, it has a 
nonempty interior. This proves 

Proposi t ion  28 

A convex set with empty interior must  be a line, a ray, or 
a line segment. 

Proposi t ion  29 

The closure of a convex set is convex. 

Proof. Let A be a convex set whose closure clA is not 
convex. Then there exist two points a, bec lA such that the 
line segment ab is not contained in clA. Therefore, there exists 
a point c ~ ab and 5 > 0 such that B(c, e) n A = O (see Fig. A2), 
where B(c, e) denotes the ball (i.e. a disk) having center c and 
radius e. 

If we take 0 < 6 < 5, theda two points x and y exist such that 
xEB(a,3)c~A and y~B(b,6)c~A, because a,b~clA. The line 
segment xy cannot be contained in A, since xyc~ B(c, e) ~ 0 
and B(c,e)r~A = 0 .  Hence A cannot be convex. 

In the book of Yaglom and Boltyanskii, ~6) the following 
two characterizations of convex sets are given. 

Theorem 30 

A bounded figure in R 2 is convex iff every straight line 
passing through an arbitrary interior point of  the figure inter- 
sects the boundary o f  the figure in exactly two points (see 
Ref. 6, p. 7). 

Defini t ion 

A straight line L passing through a boundary point p of a 
set S __ R 2 is called a supporting line of S at p ifS is contained 
in one of the closed half-planes into which L divides R 2. 

Theorem 31 

A bounded figure in R 2 is convex iff through each of  its 
boundary points there passes at least one supporting line (see 
Ref. 6, p. 12). 

In order to characterize connected subsets of the bound-  
aries of convex sets, it is enough to give such a characterization 
for arcs and simple closed curves, since (Proposition 28) a 
bounded convex set with empty interior is a line segment, and 
the boundary of a bounded convex set with nonempty interior 
is a simple closed curve, as we shall now prove. 

a b 

Fig. A2. 
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Theorem 32 

The boundary of  a bounded convex set with nonempty interior 
is a simple closed curve. 

Proof. Every point in R 2 can be described as a pair (r, 0), 
where r is the distance to the origin and 0 is an angle, 
0 ~< 0 < 2n. The function f :  R2\  { (0, O)} ~ B, f((r,  0)) = (1, 0), 
where B is the unit circle, is continuous and onto B. 

Now let S be the boundary of a bounded convex set C with 
nonempty interior. Translate C so that the origin is in its 
interior. Function f restricted to S, f :  S ~  B, is "1-1"  and 
"onto", by Theorem 30 (see Fig. A3). Since S is a boundary 
of a bounded set, it is bounded and closed, hence compact. 
Thus f is a homeomorphism between S and the unit circle, 
since it is a continuous bijection on a compact  set. 

By Propositions 18 and 28, we thus have 

Corol lary  33 

A closed arc-connected proper subset of  the boundary of  a 
bounded convex set is an arc. 

Proposi t ion  34 

For any pair of distinct points x, y E R 2, every straight line 
that intersects line segment xy  also intersects every arc(x,y) 
(see Fig. A4). 

Proof. Let f :  I ~ arc(x, y) be a continuous function from 
the closed interval I onto arc(x, y) mapping the .endpoints of 
I onto x and y. Obviously, the straight line M that contains 
x and y intersects every arc(x, y) at least in x and y. Let L be 
any straight line that intersects xy in a single point p. Let nL 
be the projection of R 2 along L onto M. The composition 
7tL o f :  I ~ M is a continuous function mapping the endpoints 
of I onto x and y. Therefore, nL o f  takes on every intermediate 
value between x and y on line M, i.e. every value on xy, and 
in particular value p. This implies that L intersects arc(x, y) 
in at least one point. 

x 

Fig. A4. 
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