
Pergamon Pattern Recognition, Vol. 27, No. 5, pp. 689 697, 1994
Elsevier Science Ltd

Copyright © 1994 Pattern Recognition Society
Printed in Great Britain. All rights reserved

0031 3203/94 $7.00+.00

0031-3203(93) E0029-7

LEARNING STRUCTURAL DESCRIPTIONS OF PATTERNS:
A NEW TECHNIQUE FOR CONDITIONAL CLUSTERING AND

RULE GENERATION

WALTER F. BISCHOF t and TERRY CAELLI~§
t Department of Psychology, Univ¢rsity of Alberta, Edmonton, Alberta, T6G 2E9, Canada

Department of Computer Science, Curtin University of Technology, Box U 1987, Perth 6001,
Western Australia, Australia

(Received 11 March 1993; in revised form 24 November 1993; received for publication 2 December 1993)

Abstract--A deterministic technique is developed for generating rules which can optimally classify patterns
(for example, in 3D object recognition) in terms of the bounds on unary (single part) and binary (part relation)
features which constitute different types of patterns. This technique, termed Conditional Rule Generation
(CRG), was developed to take into account the label-compatibilities which should occur between unary and
binary rules in their very generation, a condition which is generally not guaranteed in well-known rule
generation and machine learning techniques.

Clustering Machine learning Pattern recognition Rule generation

1. INTRODUCTION

Traditionally, pattern recognition has been concerned
with two problems: pattern encoding and the generation
of decision rules for pattern classification. Patterns are
typically encoded as vectors of characteristic features
which are chosen to optimize representational unique-
ness of patterns belonging to different classes and to
preserve uniqueness under specific feature transfor-
mations. Pattern classification is then achieved by
partitioning feature space into regions associated with
different pattern classes. Classification rules should
minimize miscl~issification while, at the same time,
maximizing the simplicity of feature space partitions
in order to improve the probability of correct classifi-
cation of new, unseen samples.

It goes without saying that traditional pattern rec-
ognition has been quite successful for simple isolated
patterns. However, as pattern complexity increases, as
is, for example, the case in 3D object recognition,
traditional methods become increasingly unsuccessful.
This can be attributed to a number of reasons. Descrip-
tions of complex patterns in terms of features charac-
terizing the whole pattern are often inadequate to
encode the variability of class samples. Typically, pat-
terns are best described as being composed of consti-
tuent parts and so pattern descriptions involve enum-
eration of both part (unary) features, and relationships
between parts (binary features), tl~ In 3D object recog-
nition, for example, an object may be described by
features characterizing surface parts (unary features)
such as average curvatures or mean boundary length,

§ Author to whom correspondence should be addressed.

and by features describing part relations (binary fea-
tures), such as centroid distance or normal angle dif-
ferences.

Mapping such structural descriptions onto simple
feature vectors as is required in traditional pattern
recognition approaches, leads to several problems.
First, and foremost, is the label-compatibility problem:
two patterns may be identical with respect to all unary
and binary features (attributes) yet be structurally dif-
ferent, i.e. they differ with respect to the occurrence of
specific labeled parts and their relationships. Second,
and this is typical in 3D object recognition, patterns
of different classes may share common feature states
and, in general, there can be as much within-class
sample variation as there is between classes, leading to
poor class discrimination performance. Third, uniform
treatment of pattern descriptors as feature-value tuples
ignores the problem of representational adequacy and
consistency for predicates of different arity.

Some of these problems have been dealt with in
recent evidence-based recognition systems (EBS) that
encode patterns as "rules" defined by region (volume)
bounds in unary and binary feature spaces which are
derived to optimally "evidence" different patterns or
classes by "evidence" weights. Such weights are typi-
cally derived from the relative frequencies of different
classes per region ~2~ or, more recently, by minimum
entropy and neural network techniques. ~3~ In either
case, the problem of generating rules subject to label-
compatibility constraints was not considered. Indeed,
the authors know of no technique, from the EBS pers-
pective, which generate rules satisfying label-com-
patibility constraints.

The simplest representation for patterns which takes
into account the label-compatibility of unary and bi-

689

690 W.F. BISCHOF and T. CAELLI

nary features is a labeled graph. From this, standard
graph matching techniques can then be used to solve
the recognition problem. A sample pattern structure
(for example, new data for classification) is matched to
a model structure by searching for a label assignment
that maximizes some objective similarity function.
Pattern classes are represented by sets of instances and
classification is thus achieved by searching through all
model graphs to determine the best match (see refer-
ences (4-7)).

In the following sections we focus on the develop-
ment of a new technique, termed Conditional Rule
Generation (CRG) which generates a tree of conditional
rules for learning structural descriptions of patterns
involving generalizations of training sample unary and
binary attributes. The proposed approach can be
characterized as follows:

(1) Rule conditions are generated as clusters in unary
and binary feature spaces.

(2) Unification of pattern classes is achieved via
conditional clustering of uniquely discriminable sub-
graphs.

(3) Deterministic classification rules are generated
through controlled decision tree expansion and cluster
refinement.

2. CONDITIONAL RULE GENERATION

2.1. Cluster tree oeneration

In the following, we present the conditional clustering
technique, first in an informal way, and then we present

the algorithm. Classification of a set of classes (in
vision, 2D patterns or 3D objects) is learned in non-
incremental batch mode. Each object is composed of
a number of parts (pattern components). Each part Pi,
i = 1 N is described by a set of unary features u(pl),
and pairs of parts (p~, p j) belonging to the same sample
(but not necessarily all possible pairs) are described
by a set of binary features b(pi, p j). Below, S(pi) denotes
the sample (in 3D object recognition, a "view") a part
Pl belongs to, C(pi) denotes the class S(pi) belongs to,
and H(i) refers to the information, or cluster entropy
statistic of cluster i

H(i) = - ~ qo In qo
J

where q~ defines the probability of elements of clus-
ter i belonging to classj.

We start constructing a unary feature space for all
parts U = {u(p3, i = 1 N} and cluster this feature
space into clusters U~. Clusters that are unique with
respect to class membership (with entropy H = 0) pro-
vide a simple classification rule for some patterns (e.g.
U3 in Fig. 1). Each non-unique cluster U~ is further
analyzed with respect to binary features by constructing
the (conditional) binary feature space UB~ = {b(p,, P,)l
u(p,)~U~ and S(p,)=S(ps)} . This feature space is
clustered with respect to binary features into clusters
UB o. Again, clusters that are unique with respect to
class membership provide classification rules for some
objects (e.g. UB 11 in Fig. 1). Each non-unique cluster
UB~ is then analyzed with respect to unary features of
the second part and the resulting feature space UBU o =

U

UB

UBU

UB12

UB1

I

UB2

I I

\

tU213]

UBU12 UBU21 UBU23

Fig. l. The conditional cluster tree generated by CRG. The unresolved unary clusters(U~ and U2)--having
more than one class represented in each cluster--are expanded to binary feature spaces UB1 and UB 2. This
process of clustering and expansion is continued until either all rules are resolved or the predetermined

maximum rule length is reached, in which case rule splitting occurs.

Learning structural descriptions of patterns 691

{u(ps) Ib(p,, Ps)~ UBo} is clustered into clusters UBUij k.
Again, unique clusters provide class classification rules
for some objects (e.g. UBU~21 in Fig. 1), the other
clusters have to be further analyzed, either by repeated
conditional clustering involving additional parts at
levels UBUB, UBUBU, etc. or through cluster refine-
ment, as described later.

In this implementation of CRG, clustering in each
feature space, both initially and for cluster refinement,
is achieved by using a simple splitting-based procedure,
similar to those used in decision trees.

The basic structure of the cluster-tree generation
algorithm is shown in Table 1. Cluster trees are gener-
ated in a depth-first manner up to a maximum level of
expansion and clusters that remain unresolved at that
level are split in a way described in the following
section. It should be noted that, in this implementation,
we have assumed symmetry in conditional rule struc-
tures. That is, activation of UBU rules could involve
any ordering of triples.

2.2. Cluster refinement

All non-unique (unresolved) clusters remaining at a
given level of the cluster tree generation (e.g. clusters
UBU212, UBUzla, and UBU232 in Fig. 1) have to be
analyzed further to construct unique decision rules.
One way of doing this is by further expanding the
cluster tree, analyzing unary and binary attributes
of additional parts to generate rules of the form
"UBUBUB. . . ' . However, from the original clustering

Table 1. Cluster tree generation

level(root):= 0
push (root, queue)
while (queue not empty)

c:= pop(queue)
if level(c) = maxlevel then

split(c)
else

f := ConditionalFeatureSpace(c)
clist:= cluster(f)
foreach cluster c'~ clist

if unresolved (c') then
level(c'):= level(c) + 1
push (c', queue)

endif
endforeach

endif
endwhile
ConditionalFeatureSpace(c)
if c = root then

type(f):= U
elements(f):= {u(pi), i = 1 N}

else
if type(c) = U then

type(f):= B
elements(f):= {b(p, q)lu(p)ec and (p, q) in a path}

else
type(f):= U
elements(f):= {u(q)[b(p,q)~c}

endif
endif
return (f)

ranges this may never give completely "resolved"
branches in the cluster tree. Alternatively, the clusters
in the tree can be refined or broken into smaller, more
discriminating feature bounds or rules as described
below. Both approaches have their respective dis-
advantages. Cluster refinement leads to an increasingly
complex feature-space partitioning and thus may
reduce the generality of classification rules. Cluster tree
expansion, on the other hand, successively reduces the
possibility of classifying objects from partial views or
partial data. In the end, a compromise has to be estab-
lished between both approaches.

In cluster refinement, two issues must be addressed,
the method used for cluster refinement and the level at
which cluster refinement is performed. Consider the
cluster tree shown in Fig. 1 with non-unique clusters
UBU212, UBU213 and UBU232. One way to refine
clusters (e.g. cluster UBU232) is to recluster the associ-
ated feature space (UBU23) into a larger number of
clusters. However, classification rules associated with
sibling clusters (UBU231 and UBU233) are lost and
have to be recomputed. Alternatively, given that each
cluster is bounded by a hyper-rectangle in feature
space, refinement of a cluster can be achieved by split-
ting this rectangle along some optimal boundary. This
ensures that sibling clusters remain unaffected.

Consider splitting the elements of an unresolved
cluster C along a (unary or binary) feature dimension
F. The elements of C are first sorted by their feature
value f(c), and then all possible cut points T midway
between successive feature values in the sorted sequence
are evaluated. For each cut point T, the elements of C
are partitioned into two sets, P1 = {clf(c) <_ T} with
n 1 elements and P2 = {clf(c) > T} with n 2 elements.
We define the partition entropy He(T) as

Hp(T) = n 1 H(P1) + n 2 H(P2).

The cut point T F that minimizes He(Tv) is considered
the best point for splitting cluster C along feature
dimension F (see also reference (8)). The best split of
cluster C is considered the one along the feature di-
mension F that minimizes T r.

Rather than splitting an unresolved leaf cluster CL
(e.g. UBU232 in Fig. 1), one can split any cluster C~ in
the parent chain of CL (in this case, UB23 or U 2 in
Fig. 1). The cluster C~ that minimizes T F is considered
the optimal level for refining the cluster tree. Clusters
above CL may contain elements of classes other than
those that are unresolved in CL. However, in computing
H e for those clusters, we consider only elements of
classes that are unresolved in C L.

2.3. Rule orderin9

Once the cluster tree has been completely resolved,
the tree is reordered in such a way that the effort for
sequential evaluation of rules associated with the leaf
clusters is minimized. We let n, be a cluster conditional
on a cluster n, and let pa~ be the conditional probability
prob(paths from nil paths in n). It should be remembered

692 W.F. BISCHOF and T. CAELLI

that such probabilities are determined from the fact
that CRG may generate many rules for each class and
that different rule paths can share common clusters in
a given feature space but that the rule path is critical
in defining a pattern. We then let ci be the cost of
evaluating the rules under the cluster tree ni. The cost
of evaluating a leaf cluster is proportional to the num-
ber of feature dimensions, and the expected cost of
evaluating n is

c = c 1 + (1 - p a l) c 2 + (1 - pa 1 - pa2)c 3 +

The expected cost c is minimal if the clusters ni are
sorted such that cdpa~ < c~+ ~/pai+ 1. Note that this is
strictly correct only for disjoint clusters. For non-
disjoint clusters the cost c is somewhat lower and
more complex to evaluate, but this approximation is
adequate given that most clusters in the conditional-
cluster tree generation are disjoint. Disjoint clusters
are guaranteed when splitti0g (refinement) alone is
used as opposed to a combination of agglomeration
clustering and splitting. Furthermore, in almost all
cases CRG has produced more compact rules (in the
sense described below) when splitting alone was used.

3. TESTS ON THE CRG TECHNIQUE

The CRG method is illustrated here with two different
pattern classification problems of increasing complexity.

The first example involves a small number of parts and
objects and are used to illustrate different aspects of
the CRG method. The second is more typical of 3D
object recognition problems, involving many objects
per class, a substantial intra-class variation of both
unary and binary features, and each sample not in-
corporating all aspects of the class--analogous to an
object view only encoding part of the object.

The first example, shown in Fig. 2, consists of four
classes with four examples ("views") each. Each example
consists of two parts (lines) and is described by the
unary features "line length" and "orientation", and the
binary features "distance between line centers" and
"intersection angle". CRG was run on this example
(without feature ordering) with maximum rule length
(maxlevel in Fig. 3) set to 1 (U), 2 (UB) and 3 (U B U) .

The cluster trees produced for each condition are shown
in Fig. 3. A summary of the rules produced for each
condition is given in Table 2. The following measures
are used to describe the rules: number of rules (number
of leaves in the cluster tree), average number of paths
per rule where "path" is used as described in Section
2.1, and the average feature space volume V per rule
where V is an indicator for rule generality with V= 0
for rules covering a single case. As can be seen both
from Fig. 3 and Table 2, bounds on features can be
increased with increasing rule length, without affecting
rule uniqueness.

/ / / class 1

class 2

class 3

X / class 4

view 1 view 2 view 3 view 4

Fig. 2. Four examples ("views") of four different classes for learning. The samples are described by the unary
features "line length" and "orientation" and by the binary features "distance between line centers" and

"intersection angle".

Learning structural descriptions of patterns 693

Table 2. Rule summary for example 2 (Fig. 2) for max imum rule lengths of 1 (U),
2 (UB) and 3 (UBU)

Maxlevel = 1 Maxlevel = 2 Maxlevel = 3

Number of rules 11 7 8
U-rules 11 2 2
UB-rules - - 5 2
UBU-rules - - - - 4
Average paths/rule 2.91 4.57 4.00
Average volume/rule 0.06 0.48 0.54

173

21 l e n g t h 100 21 loo 21 l e n g t h
106

2

l e n g t h l

d i s t a n c e 22
175

l 100

o

"12 O

d i s t a n c e

53 l e n g t h 65

22

Fig. 3. Conditional clustering solutions three different max imum rule lengths (maxlevel = 1, 2, or 3). Unary
feature axes correspond to length (abscissa) and orientation (ordinate). Binary feature axes correspond to
distance between line centers (abscissa) and intersection angles (ordinate). Regions correspond to rules in
each of the 6 conditional feature spaces and arrows point from an unresolved cluster to the conditional

feature space.

Table 3. Rule summary for example 2 (Fig. 4) for max imum rule lengths of 5
(UBUBU), 7 (UBUBUBU) and 9 (UBUBUBUBU)

Maxlevel = 5 Maxlevel = 7 Maxlevel = 9

Number of paths 1608 3872 7708
Number of rules 431 544 562
U 0 0 0
UB 26 4 1
UBU 12 14 14
UBUB 316 111 68
U B U B U 77 94 92
U B U B U B - - 256 124
U B U B U B U - - 65 66
U B U B U B U B - - - - 157
U B U B U B U B U - - - - 40
Average paths/rule 3.73 7.12 13.72
Average volume/rule 0.59 0.99 1.30

694 W.F. BISCnOF and T. CAELLI

The second example, shown in Fig. 4, consists of 5
classes with 4 "views" (examples) each consisting of
5-10 parts with a total of 143 parts. Parts are described
by the unary features "number of corners" and "perim-
eter", and by the binary features "centroid distance"
and "sum of distances between corners". Note that, in
this example, all classes share parts with the same
unary features, and hence discrimination between class-
es relies mostly on binary features. A summary of the
rule produced by CRG (without feature ordering) is
shown in Table 3, for maximum rule lengths of 5
(UBUBU), 7 (UBUBUBU) and 9 (UBUBUBUBU). A
majority of rules are of even length, i.e. of the form
"...UB", reflecting the fact that class discrimination
relies mostly on binary features. Again, as with example 2,
rule generality, as measured by the average feature
space volume per rule, increases with increasing length
of the rules.

Like any evidenced-based system, the rules generated
by CRG will classify new patterns or pattern fragments,

provided that they are sufficiently similar to patterns
presented during training and contain enough parts to
instantiate rules. Here we investigate the use of cluster
trees and associated classification rules with partial
rule instantiation. A rule of length m (for example, a
UBUBU-rule with m = 5) is said to be partially instan-
tiated by any shorter (l < m) sequence of unary and
binary features (for example, a UBU-sequence with
l = 3). From the cluster tree shown in Fig. 1 it is clear
that a partial instantiation of rules (for example, to the
UB-level) cannot only lead to unique classification of
certain pattern fragments (for example, those matched
by the rules associated with U3 or UB11) but may also
reduce classification uncertainty for other pattern frag-
ments (for example, those matched by the rule associ-
ated with UB23).

This is further illustrated in Fig. 5 which shows the
expected classification performance for different lengths
of sequences of unary and binary features for the two
examples presented in this section. Expected classifi-

i | 1 Class 1

Class2

io Class3

I I A
Class4

Class5

View 1 View2 View3 View4

Fig. 4. Complex patterns--four samples ("views") for each of five classes used to train CRG. The samples
share common micropatterns and are mainly differentiated by their relative positions.

Learning structural descriptions of patterns 695

1.0
C ~ C ~ C ~

0.5

I~nc$

I I

2 4 6
Sequence length

I I

8 10

Fig. 5. Probability of correct classification (P(C)) for partial
data for four different classification problems. "Sequence
length" refers to the length of the "UBU..'" sequence used for
classification. The maximum lengths were 3 for lines (Fig. 2),
5 for CP5, 7 for CP7 and 9 for CP9 (complex patterns (CP)

in Fig. 4).

cation performance corresponds to the proportion of
correctly classified sequences of a given length, com-
puted over the complete set of training samples. As can
be seen from Fig. 5, expected classification performance
reaches moderate levels even for relatively short se-
quences. This then makes it feasible to use partial rule
instantiations for pattern classification, as is discussed
below.

At runtime, a sequence of unary and binary features
of a path through a test pattern is classified by a
breadth-first search through the conditional cluster
tree. At each node, the next feature of the "UBU.. ."
sequence is tested against the feature bounds of the
node. The search stops when a (resolved) leaf of the
cluster tree has been reached, or when the full length
of the test path has been tested. In the former case,
classification of the test path is unambiguous; in the
latter case, several branches of the cluster tree may
have been instantiated. In this case, the classification
vector with the lowest entropy is taken as the best
classifier.

Figure 6 shows best classification performance (de-
fined by minimum entropy of the classification vectors
over all paths) for a selection of partial and distorted
patterns from example 2 (see Fig. 4). Here, the classifi-
cation vectors correspond to the least ambiguous
interpretation of the data with respect to what was
learned by CRG and what evidence was available from
the data. In each case, we have identified the class
"view" from which the sample was most likely to come
from. We have deliberately chosen difficult samples to
illustrate the power of CRC in dealing with partial and
distorted data. This is not to imply that CRG is not
capable of being successful at such levels of difficulty.
From Fig. 6, we have shown that it can learn to "struc-
turally describe" each class perfectly--given the ap-
propriate trade-off between rule length and general-
ization in the various feature spaces. Rather, we have

m-

c=[0 0 0 1 0] H=0

(in view 1 of cla~ 1)

c=[0.88 0.120 0 0] H=0.38

(in view 1 of el~t,m 1 and view 3 of class 2)

c = [0 0.2 0.2 0 0 .6] H = 0 . 9 5

(in v i e w 4 of clam 5)

,dk c = [0 0.5 0 0 0.5] H=0.69

(in view 2 of class 5 and view 3 of da~ 2)

c = [0 0 0 0.33 0.671 H = 0 . 6 4

(in v i e w 3 of clA,~ 4)

Fig. 6. Classification vectors (c) and entropy (H) of the classi-
fication vectors for each of five degraded data samples for the
complex patterns shown in Fig. 4. Here the most likely views

from which the samples came, are also identified.

endeavored to construct quite difficult data to de-
monstrate how the system works under limited data
conditions.

It is also important to note that, in this example,
binary rules appear to be more discriminating. This is
due to two reasons: first, the discrete nature of the
unary features such as "number of corners'; and second,
the fact that most samples had similar parts and that
classes thus were more easily defined by the relative
positions of these parts.

4. DISCUSSION

Since CRG develops structural descriptions of pat-
terns in the form of decision trees (see Fig. 1) on attribute
bounds on ordered predicates, it is useful to compare
it with other techniques from machine learning which
attain similar ends symbolically. First, CRG shares
with ID3 (9) and related techniques similar methods
for the search and expansion of decision trees. These
techniques, however, were not designed to generate
rules satisfying label-compatibility between unary and
binary predicates. CRG, on the other hand, is explicitly
designed to develop rules for unique identification of
classes with respect to their "structural" (linked unary
and binary feature) representation.

696 W.F. BISCHOF and T. CAELLI

Recently, however, Quinlan tx°) and Muggleton and
Buntine tx~) have investigated general methods for
learning symbolic relational structures in the form of
Horn clauses. In FOIL, Quinlan t9) considers the prob-
lem of learning, from positive examples (closed world)
or positive and negative examples, conjunctions of
iiterals of the form

C ~ L x , . . . , L m

where C would correspond, in our case, to a class label.
FOIL solves such problems by expanding the literals--
adding predicates and their variables--to the right-
hand side to maximize the capturing of positive inst-
ances and minimize negative ones from the training
database. In this framework, then, CRG is also con-
cerned with generating similar class descriptions of
the specific forms:

C~ ,-- UI(X), B~(X, Y), U2(Y), B2(y, Z), U3(Z)

C]' *-- UI(X) ,BI(X, Y), U2(Y),B2(y, Z), Us(Z)

C ~ Ut(X), B ' (X , Y), U2(y), B2(y, Z), U3(Z)

C~, '~ U' (X) ,Bx(X, Y), U2(y),BZ(Y,Z), U3(Z)

However, CRG differs significantly from FOIL insofar
as: (1) the choice of unary (U) and binary (B) rules--
as bounded attribute (feature) states--is determined
within the continuous unary and binary feature spaces;
(2) the orderino of literals must be satisfied in the rule
generation; (3) the search technique uses backtracking
and recursive splitting; and (4) the resultant rules are
not only Horn clauses but each literal indexes bounded
regions in the associated feature space (as shown in
Fig. 1).

This does not imply that FOIL could not be run on
our data--wi th every part and relation correspond to
a very large set ofinstantiated literals. Rather, we argue
that problems involving numerical and continuous data,
as they typically occur in pattern recognition, can be
solved more efficiently by the type of technique dev-
eloped here.

The CRG method is an example of the general
solution to complex pattern recognition problems in-
volving the generation of rules, as bounded predicate
Horn clauses, which are linked together in ways that
determine "structure" uniquely enough to identify
classes but enabling maximum generalization to tol-
erate maximum distortions. Both aims, uniqueness
and generalization, are not explicitly guaranteed in
other methods, such as neural networks (see reference
(12)) or decision trees. Further, in CRG, they explicitly
constitute the equivalent of a "cost" function and a
search technique has been developed to satisfy these
constraints.

What we have not solved here, as yet, is the problem
of using CRG to recognize classes Of objects in complex
montages of other objects. This is the subject of current
work. However, we should emphasize that the current

system does function with partial class da ta- -both in
learning and run time modes.

Finally, CRG raises the question as to what consti-
tutes a "structural description" of a set of patterns. For
a set of patterns, CRG generates conditional classifi-
cation rules which are general in the sense that they
are as short as necessary and that they constrain
feature bounds a little as necessary for discriminating
different classes. For classes with complex and highly
variable patterns, CRG may generate many rules which
give a set of equivalent structural descriptions for the
data. One can even introduce a notion of typicality
through the number of paths that are covered by a
branch in the conditional cluster tree. However, as can
be particularly true with the complex patterns in Fig. 4,
this may not really be a meaningful definition of struc-
ture and a "structural description" may have to be
defined as the minimum set o f equivalent rules that CRG
generates for patterns, particularly if generalization is
necessary and the run time data are incomplete.

Acknowledoement--This project was funded by grants from
the Center for Intelligent Decision Systems and the Natural
Science and Engineering Research Council of Canada.

REFERENCES

1. L. Shapiro and R. Haralick, Structural descriptions and
inexact matching, IEEE Trans. Pattern Analysis Mach.
lntell. 3, 504-519 (1981).

2. A. Jain and D. Hoffman, Evidence-based recognition of
objects, IEEE Trans. Pattern Analysis Mach. lntell. 10,
783-802 (1988).

3. T. Caelli and A. Pennington, An improved rule generation
method for evidence-based classification systems, Pattern
Recognition 26, 733-740 (1993).

4. P. Flynn and A. K. Jain, 3D object recognition using
invariant feature indexing of interpretation tables. Compur
Vision, Graphics and Image Process. 55, 119-129 (1992).

5. P. Flynn and A. K. Jain, Three-dimensional object recog-
nition. Handbook of Pattern Recognition and Image Pro-
cessing, Vol. 2: Computer Vision. Tzay Y. Young, ed.,
Academic Press, New York (1993).

6. W. E. L. Grimson, Object Recognition by Computer, MIT
Press, Cambridge, Massachusetts (1990).

7. K. Ikeuchi and T. Kanade, Automatic generation of
object recognition programs, Proc. IEEE 76, 1016-1035
(1988).

8. R. C. Bolles and P. Horaud, 3DPO: A three-dimensional
part orientation system, Int. J. of Robotics Research 5,
3-26 (1986).

9. M. A. Fischler and R. A. Elschlager, The representation
and matching of pictorial structures, IEEE Trans. Compur
22, 67-92 (1973).

10. R. Mohan and R. Nevatia, Using perceptual organization
to extract 3-D structures, IEEE Trans. Pattern Analysis
Mach. lntell. 11, 1121-1139 (1989).

11. D.G. Lowe, Three-dimensional object recognition from
single two-dimensional images, Artif. lntell. 31, 355-395
(1987).

12. R. Michalski and R. E. Stepp, Automated construction of
classifications: conceptual clustering vs numerical taxo-
nomy. IEEE Trans. on Pattern Analysis and Machine
lntellioence 5, 396-409 (1983).

13. A.K. Jain and R.C. Dubes, Aloorithms for Clusterin 9
Data. Prentice-Hall, Englewood Cliffs, New Jersey (1988).

14. U. Fayyad and K. Irani, On the handling of continuous-

Learning structural descriptions of patterns 697

valued attributes in decision tree generation, Machine
Learning 8, 87-102 (1992).

15. J. R. Quinlan, Learning logical definitions from relations,
Mach. Learning 5, 239-266 (1990).

16. J. R. Quinlan, Induction of decision trees, Mach. Learning
l, 81-106 (1986).

17. S. Muggleton and W. Buntine, Machine invention of
first-order predicates by inverting resolution, Proc. Fifth
Int. Conf. on Machine Learning, pp. 339-352. Morgan
Kaufmann, San Mateo (1988).

18. R.P. Lippmann, An introduction to computing with
neural nets, IEEE ASSP Mag. April (1987).

About the Author--WALTER BlscHov received his Ph.D. from the University of Bern in 1982. Since then he
has been active in research in the areas of human and machine vision. He is Associate Professor of
Psychology and Computer Science at the University of Alberta, Alberta, Canada, and a Senior Research
Fellow at the Collaborative Information Technology Research Institute, The University of Melbourne,
Victoria, Australia. His research interests, at present, focus on modelling aspects of human and machine
motion processing, machine pattern and object recognition and medical image processing.

About the Author--TERRY CAELLI received his Ph.D. from the University of Newcastle in 1975. Since then
he has been active in research in the areas of human and machine vision. He is Professor of Computer
Science at The University of Melbourne and interests lie in human and machine pattern/object recognition
and machine learning.

