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Abstract--A deterministic technique is developed for generating rules which can optimally classify patterns 
(for example, in 3D object recognition) in terms of the bounds on unary (single part) and binary (part relation) 
features which constitute different types of patterns. This technique, termed Conditional Rule Generation 
(CRG), was developed to take into account the label-compatibilities which should occur between unary and 
binary rules in their very generation, a condition which is generally not guaranteed in well-known rule 
generation and machine learning techniques. 

Clustering Machine learning Pattern recognition Rule generation 

1. INTRODUCTION 

Traditionally, pattern recognition has been concerned 
with two problems: pattern encoding and the generation 
of decision rules for pattern classification. Patterns are 
typically encoded as vectors of characteristic features 
which are chosen to optimize representational unique- 
ness of patterns belonging to different classes and to 
preserve uniqueness under specific feature transfor- 
mations. Pattern classification is then achieved by 
partitioning feature space into regions associated with 
different pattern classes. Classification rules should 
minimize miscl~issification while, at the same time, 
maximizing the simplicity of feature space partitions 
in order to improve the probability of correct classifi- 
cation of new, unseen samples. 

It goes without saying that traditional pattern rec- 
ognition has been quite successful for simple isolated 
patterns. However, as pattern complexity increases, as 
is, for example, the case in 3D object recognition, 
traditional methods become increasingly unsuccessful. 
This can be attributed to a number of reasons. Descrip- 
tions of complex patterns in terms of features charac- 
terizing the whole pattern are often inadequate to 
encode the variability of class samples. Typically, pat- 
terns are best described as being composed of consti- 
tuent parts and so pattern descriptions involve enum- 
eration of both part (unary) features, and relationships 
between parts (binary features), tl~ In 3D object recog- 
nition, for example, an object may be described by 
features characterizing surface parts (unary features) 
such as average curvatures or mean boundary length, 

§ Author to whom correspondence should be addressed. 

and by features describing part relations (binary fea- 
tures), such as centroid distance or normal angle dif- 
ferences. 

Mapping such structural descriptions onto simple 
feature vectors as is required in traditional pattern 
recognition approaches, leads to several problems. 
First, and foremost, is the label-compatibility problem: 
two patterns may be identical with respect to all unary 
and binary features (attributes) yet be structurally dif- 
ferent, i.e. they differ with respect to the occurrence of 
specific labeled parts and their relationships. Second, 
and this is typical in 3D object recognition, patterns 
of different classes may share common feature states 
and, in general, there can be as much within-class 
sample variation as there is between classes, leading to 
poor class discrimination performance. Third, uniform 
treatment of pattern descriptors as feature-value tuples 
ignores the problem of representational adequacy and 
consistency for predicates of different arity. 

Some of these problems have been dealt with in 
recent evidence-based recognition systems (EBS) that 
encode patterns as "rules" defined by region (volume) 
bounds in unary and binary feature spaces which are 
derived to optimally "evidence" different patterns or 
classes by "evidence" weights. Such weights are typi- 
cally derived from the relative frequencies of different 
classes per region ~2~ or, more recently, by minimum 
entropy and neural network techniques. ~3~ In either 
case, the problem of generating rules subject to label- 
compatibility constraints was not considered. Indeed, 
the authors know of no technique, from the EBS pers- 
pective, which generate rules satisfying label-com- 
patibility constraints. 

The simplest representation for patterns which takes 
into account the label-compatibility of unary and bi- 
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nary features is a labeled graph. From this, standard 
graph matching techniques can then be used to solve 
the recognition problem. A sample pattern structure 
(for example, new data for classification) is matched to 
a model structure by searching for a label assignment 
that maximizes some objective similarity function. 
Pattern classes are represented by sets of instances and 
classification is thus achieved by searching through all 
model graphs to determine the best match (see refer- 
ences (4-7)). 

In the following sections we focus on the develop- 
ment of a new technique, termed Conditional Rule 
Generation (CRG) which generates a tree of conditional 
rules for learning structural descriptions of patterns 
involving generalizations of training sample unary and 
binary attributes. The proposed approach can be 
characterized as follows: 

(1) Rule conditions are generated as clusters in unary 
and binary feature spaces. 

(2) Unification of pattern classes is achieved via 
conditional clustering of uniquely discriminable sub- 
graphs. 

(3) Deterministic classification rules are generated 
through controlled decision tree expansion and cluster 
refinement. 

2. CONDITIONAL RULE GENERATION 

2.1. Cluster tree oeneration 

In the following, we present the conditional clustering 
technique, first in an informal way, and then we present 

the algorithm. Classification of a set of classes (in 
vision, 2D patterns or 3D objects) is learned in non- 
incremental batch mode. Each object is composed of 
a number of parts (pattern components). Each part Pi, 
i = 1 . . . . .  N is described by a set of unary features u(pl), 
and pairs of parts (p~, p j) belonging to the same sample 
(but not necessarily all possible pairs) are described 
by a set of binary features b(pi, p j). Below, S(pi) denotes 
the sample (in 3D object recognition, a "view") a part 
Pl belongs to, C(pi) denotes the class S(pi) belongs to, 
and H(i) refers to the information, or cluster entropy 
statistic of cluster i 

H(i) = - ~ qo In qo 
J 

where q~ defines the probability of elements of clus- 
ter i belonging to classj. 

We start constructing a unary feature space for all 
parts U = {u(p3, i =  1 . . . . .  N} and cluster this feature 
space into clusters U~. Clusters that are unique with 
respect to class membership (with entropy H = 0) pro- 
vide a simple classification rule for some patterns (e.g. 
U3 in Fig. 1). Each non-unique cluster U~ is further 
analyzed with respect to binary features by constructing 
the (conditional) binary feature space UB~ = {b(p,, P,)l 
u(p,)~U~ and S(p,)=S(ps)} .  This feature space is 
clustered with respect to binary features into clusters 
UB o. Again, clusters that are unique with respect to 
class membership provide classification rules for some 
objects (e.g. UB 11 in Fig. 1). Each non-unique cluster 
UB~ is then analyzed with respect to unary features of 
the second part and the resulting feature space UBU o = 

U 

UB 

UBU 

UB12 

UB1 

I 

UB2 

I I  

\ 

tU213 ] 

UBU12 UBU21 UBU23 

Fig. l. The conditional cluster tree generated by CRG. The unresolved unary clusters(U~ and U2)--having 
more than one class represented in each cluster--are expanded to binary feature spaces UB1 and UB 2. This 
process of clustering and expansion is continued until either all rules are resolved or the predetermined 

maximum rule length is reached, in which case rule splitting occurs. 
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{u(ps) Ib(p,, Ps)~ UBo} is clustered into clusters UBUij k. 
Again, unique clusters provide class classification rules 
for some objects (e.g. UBU~21 in Fig. 1), the other 
clusters have to be further analyzed, either by repeated 
conditional clustering involving additional parts at 
levels UBUB, UBUBU,  etc. or through cluster refine- 
ment, as described later. 

In this implementation of CRG, clustering in each 
feature space, both initially and for cluster refinement, 
is achieved by using a simple splitting-based procedure, 
similar to those used in decision trees. 

The basic structure of the cluster-tree generation 
algorithm is shown in Table 1. Cluster trees are gener- 
ated in a depth-first manner up to a maximum level of 
expansion and clusters that remain unresolved at that 
level are split in a way described in the following 
section. It should be noted that, in this implementation, 
we have assumed symmetry in conditional rule struc- 
tures. That is, activation of UBU rules could involve 
any ordering of triples. 

2.2. Cluster refinement 

All non-unique (unresolved) clusters remaining at a 
given level of the cluster tree generation (e.g. clusters 
UBU212, UBUzla,  and UBU232 in Fig. 1) have to be 
analyzed further to construct unique decision rules. 
One way of doing this is by further expanding the 
cluster tree, analyzing unary and binary attributes 
of additional parts to generate rules of the form 
"UBUBUB. . . ' .  However, from the original clustering 

Table 1. Cluster tree generation 

level(root):= 0 
push (root, queue) 
while (queue not empty) 

c:= pop(queue) 
if level(c) = maxlevel then 

split(c) 
else 

f := ConditionalFeatureSpace(c) 
clist:= cluster(f) 
foreach cluster c'~ clist 

if unresolved (c') then 
level(c'):= level(c) + 1 
push (c', queue) 

endif 
endforeach 

endif 
endwhile 
ConditionalFeatureSpace(c) 
if c = root then 

type(f):= U 
elements(f):= {u(pi ), i = 1 . . . . .  N} 

else 
if type(c) = U then 

type(f):= B 
elements(f):= {b(p, q)lu(p)ec and (p, q) in a path} 

else 
type(f):= U 
elements(f):= {u(q)[b(p,q)~c} 

endif 
endif 
return (f) 

ranges this may never give completely "resolved" 
branches in the cluster tree. Alternatively, the clusters 
in the tree can be refined or broken into smaller, more 
discriminating feature bounds or rules as described 
below. Both approaches have their respective dis- 
advantages. Cluster refinement leads to an increasingly 
complex feature-space partitioning and thus may 
reduce the generality of classification rules. Cluster tree 
expansion, on the other hand, successively reduces the 
possibility of classifying objects from partial views or 
partial data. In the end, a compromise has to be estab- 
lished between both approaches. 

In cluster refinement, two issues must be addressed, 
the method used for cluster refinement and the level at 
which cluster refinement is performed. Consider the 
cluster tree shown in Fig. 1 with non-unique clusters 
UBU212, UBU213 and UBU232. One way to refine 
clusters (e.g. cluster UBU232) is to recluster the associ- 
ated feature space (UBU23) into a larger number of 
clusters. However, classification rules associated with 
sibling clusters (UBU231 and UBU233) are lost and 
have to be recomputed. Alternatively, given that each 
cluster is bounded by a hyper-rectangle in feature 
space, refinement of a cluster can be achieved by split- 
ting this rectangle along some optimal boundary. This 
ensures that sibling clusters remain unaffected. 

Consider splitting the elements of an unresolved 
cluster C along a (unary or binary) feature dimension 
F. The elements of C are first sorted by their feature 
value f(c), and then all possible cut points T midway 
between successive feature values in the sorted sequence 
are evaluated. For each cut point T, the elements of C 
are partitioned into two sets, P1 = {clf(c) <_ T} with 
n 1 elements and P2 = {clf(c) > T} with n 2 elements. 
We define the partition entropy He(T  ) as 

Hp( T) = n 1 H(P1) + n 2 H(P2). 

The cut point T F that minimizes He(Tv) is considered 
the best point for splitting cluster C along feature 
dimension F (see also reference (8)). The best split of 
cluster C is considered the one along the feature di- 
mension F that minimizes T r. 

Rather than splitting an unresolved leaf cluster CL 
(e.g. UBU232 in Fig. 1), one can split any cluster C~ in 
the parent chain of CL (in this case, UB23 or U 2 in 
Fig. 1). The cluster C~ that minimizes T F is considered 
the optimal level for refining the cluster tree. Clusters 
above CL may contain elements of classes other than 
those that are unresolved in CL. However, in computing 
H e for those clusters, we consider only elements of 
classes that are unresolved in C L. 

2.3. Rule orderin9 

Once the cluster tree has been completely resolved, 
the tree is reordered in such a way that the effort for 
sequential evaluation of rules associated with the leaf 
clusters is minimized. We let n, be a cluster conditional 
on a cluster n, and let pa~ be the conditional probability 
prob(paths from nil paths in n). It should be remembered 
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that such probabilities are determined from the fact 
that CRG may generate many rules for each class and 
that different rule paths can share common clusters in 
a given feature space but that the rule path is critical 
in defining a pattern. We then let ci be the cost of 
evaluating the rules under the cluster tree ni. The cost 
of evaluating a leaf cluster is proportional to the num- 
ber of feature dimensions, and the expected cost of 
evaluating n is 

c = c 1 + (1 - p a l ) c  2 + (1 - pa 1 - pa2)c 3 + . . . .  

The expected cost c is minimal if the clusters ni are 
sorted such that cdpa~ < c~+ ~/pai+ 1. Note that this is 
strictly correct only for disjoint clusters. For non- 
disjoint clusters the cost c is somewhat lower and 
more complex to evaluate, but this approximation is 
adequate given that most clusters in the conditional- 
cluster tree generation are disjoint. Disjoint clusters 
are guaranteed when splitti0g (refinement) alone is 
used as opposed to a combination of agglomeration 
clustering and splitting. Furthermore, in almost all 
cases CRG has produced more compact rules (in the 
sense described below) when splitting alone was used. 

3. TESTS ON THE CRG TECHNIQUE 

The CRG method is illustrated here with two different 
pattern classification problems of increasing complexity. 

The first example involves a small number of parts and 
objects and are used to illustrate different aspects of 
the CRG method. The second is more typical of 3D 
object recognition problems, involving many objects 
per class, a substantial intra-class variation of both 
unary and binary features, and each sample not in- 
corporating all aspects of the class--analogous to an 
object view only encoding part of the object. 

The first example, shown in Fig. 2, consists of four 
classes with four examples ("views") each. Each example 
consists of two parts (lines) and is described by the 
unary features "line length" and "orientation", and the 
binary features "distance between line centers" and 
"intersection angle". CRG was run on this example 
(without feature ordering) with maximum rule length 
(maxlevel in Fig. 3) set to 1 (U), 2 (UB)  and 3 ( U B U ) .  

The cluster trees produced for each condition are shown 
in Fig. 3. A summary of the rules produced for each 
condition is given in Table 2. The following measures 
are used to describe the rules: number of rules (number 
of leaves in the cluster tree), average number of paths 
per rule where "path" is used as described in Section 
2.1, and the average feature space volume V per rule 
where V is an indicator for rule generality with V= 0 
for rules covering a single case. As can be seen both 
from Fig. 3 and Table 2, bounds on features can be 
increased with increasing rule length, without affecting 
rule uniqueness. 

/ / / class 1 

class 2 

class 3 

X / class 4 

view 1 view 2 view 3 view 4 

Fig. 2. Four examples ("views") of four different classes for learning. The samples are described by the unary 
features "line length" and "orientation" and by the binary features "distance between line centers" and 

"intersection angle". 
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Table 2. Rule summary  for example 2 (Fig. 2) for max imum rule lengths of 1 (U), 
2 (UB) and 3 (UBU) 

Maxlevel = 1 Maxlevel = 2 Maxlevel = 3 

Number  of rules 11 7 8 
U-rules 11 2 2 
UB-rules - -  5 2 
UBU-rules - -  - -  4 
Average paths/rule 2.91 4.57 4.00 
Average volume/rule 0.06 0.48 0.54 

173 

21 l e n g t h  100 21 loo 21 l e n g t h  
106 

2 

l e n g t h l  

d i s t a n c e  22 
175 

l 100 

o 

"12 O 

d i s t a n c e  

53 l e n g t h  65 

22 

Fig. 3. Conditional clustering solutions three different max imum rule lengths (maxlevel = 1, 2, or 3). Unary 
feature axes correspond to length (abscissa) and orientation (ordinate). Binary feature axes correspond to 
distance between line centers (abscissa) and intersection angles (ordinate). Regions correspond to rules in 
each of the 6 conditional feature spaces and arrows point from an unresolved cluster to the conditional 

feature space. 

Table 3. Rule summary  for example 2 (Fig. 4) for max imum rule lengths of 5 
(UBUBU), 7 (UBUBUBU)  and 9 (UBUBUBUBU)  

Maxlevel = 5 Maxlevel = 7 Maxlevel = 9 

Number  of paths 1608 3872 7708 
Number  of rules 431 544 562 
U 0 0 0 
UB 26 4 1 
UBU 12 14 14 
UBUB 316 111 68 
U B U B U  77 94 92 
U B U B U B  - -  256 124 
U B U B U B U  - -  65 66 
U B U B U B U B  - -  - -  157 
U B U B U B U B U  - -  - -  40 
Average paths/rule 3.73 7.12 13.72 
Average volume/rule 0.59 0.99 1.30 
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The second example, shown in Fig. 4, consists of 5 
classes with 4 "views" (examples) each consisting of 
5-10 parts with a total of 143 parts. Parts are described 
by the unary features "number of corners" and "perim- 
eter", and by the binary features "centroid distance" 
and "sum of distances between corners". Note that, in 
this example, all classes share parts with the same 
unary features, and hence discrimination between class- 
es relies mostly on binary features. A summary of the 
rule produced by CRG (without feature ordering) is 
shown in Table 3, for maximum rule lengths of 5 
(UBUBU), 7 (UBUBUBU) and 9 (UBUBUBUBU). A 
majority of rules are of even length, i.e. of the form 
"...UB", reflecting the fact that class discrimination 
relies mostly on binary features. Again, as with example 2, 
rule generality, as measured by the average feature 
space volume per rule, increases with increasing length 
of the rules. 

Like any evidenced-based system, the rules generated 
by CRG will classify new patterns or pattern fragments, 

provided that they are sufficiently similar to patterns 
presented during training and contain enough parts to 
instantiate rules. Here we investigate the use of cluster 
trees and associated classification rules with partial 
rule instantiation. A rule of length m (for example, a 
UBUBU-rule with m = 5) is said to be partially instan- 
tiated by any shorter (l < m) sequence of unary and 
binary features (for example, a UBU-sequence with 
l = 3). From the cluster tree shown in Fig. 1 it is clear 
that a partial instantiation of rules (for example, to the 
UB-level) cannot only lead to unique classification of 
certain pattern fragments (for example, those matched 
by the rules associated with U3 or UB11) but may also 
reduce classification uncertainty for other pattern frag- 
ments (for example, those matched by the rule associ- 
ated with UB23 ). 

This is further illustrated in Fig. 5 which shows the 
expected classification performance for different lengths 
of sequences of unary and binary features for the two 
examples presented in this section. Expected classifi- 

i | 1  Class 1 

Class2 

io Class3 

I I  A 
Class4 

Class5 

View 1 View2 View3 View4 

Fig. 4. Complex patterns--four samples ("views") for each of five classes used to train CRG. The samples 
share common micropatterns and are mainly differentiated by their relative positions. 
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1.0 
C ~  C ~  C ~  

0.5 

I~nc$ 

I I 

2 4 6 
Sequence length 

I I 

8 10 

Fig. 5. Probability of correct classification (P(C)) for partial 
data for four different classification problems. "Sequence 
length" refers to the length of the "UBU..'" sequence used for 
classification. The maximum lengths were 3 for lines (Fig. 2), 
5 for CP5, 7 for CP7 and 9 for CP9 (complex patterns (CP) 

in Fig. 4). 

cation performance corresponds to the proportion of 
correctly classified sequences of a given length, com- 
puted over the complete set of training samples. As can 
be seen from Fig. 5, expected classification performance 
reaches moderate levels even for relatively short se- 
quences. This then makes it feasible to use partial rule 
instantiations for pattern classification, as is discussed 
below. 

At runtime, a sequence of unary and binary features 
of a path through a test pattern is classified by a 
breadth-first search through the conditional cluster 
tree. At each node, the next feature of the "UBU.. ."  
sequence is tested against the feature bounds of the 
node. The search stops when a (resolved) leaf of the 
cluster tree has been reached, or when the full length 
of the test path has been tested. In the former case, 
classification of the test path is unambiguous; in the 
latter case, several branches of the cluster tree may 
have been instantiated. In this case, the classification 
vector with the lowest entropy is taken as the best 
classifier. 

Figure 6 shows best classification performance (de- 
fined by minimum entropy of the classification vectors 
over all paths) for a selection of partial and distorted 
patterns from example 2 (see Fig. 4). Here, the classifi- 
cation vectors correspond to the least ambiguous 
interpretation of the data with respect to what was 
learned by CRG and what evidence was available from 
the data. In each case, we have identified the class 
"view" from which the sample was most likely to come 
from. We have deliberately chosen difficult samples to 
illustrate the power of CRC in dealing with partial and 
distorted data. This is not to imply that CRG is not 
capable of being successful at such levels of difficulty. 
From Fig. 6, we have shown that it can learn to "struc- 
turally describe" each class perfectly--given the ap- 
propriate trade-off between rule length and general- 
ization in the various feature spaces. Rather, we have 

m- 

c=[0 0 0 1 0] H=0 

(in view 1 of cla~ 1) 

c=[0.88 0.120 0 0] H=0.38 

(in view 1 of el~t,m 1 and view 3 of class 2) 

c = [ 0  0.2 0.2 0 0 .6]  H = 0 . 9 5  

(in v i e w  4 of clam 5) 

,dk c = [ 0 0.5 0 0 0.5 ] H=0.69 

(in view 2 of class 5 and view 3 of da~ 2) 

c = [ 0  0 0 0.33 0.671 H = 0 . 6 4  

(in v i e w  3 of clA,~ 4) 

Fig. 6. Classification vectors (c) and entropy (H) of the classi- 
fication vectors for each of five degraded data samples for the 
complex patterns shown in Fig. 4. Here the most likely views 

from which the samples came, are also identified. 

endeavored to construct quite difficult data to de- 
monstrate how the system works under limited data 
conditions. 

It is also important to note that, in this example, 
binary rules appear to be more discriminating. This is 
due to two reasons: first, the discrete nature of the 
unary features such as "number of corners'; and second, 
the fact that most samples had similar parts and that 
classes thus were more easily defined by the relative 
positions of these parts. 

4. DISCUSSION 

Since CRG develops structural descriptions of pat- 
terns in the form of decision trees (see Fig. 1) on attribute 
bounds on ordered predicates, it is useful to compare 
it with other techniques from machine learning which 
attain similar ends symbolically. First, CRG shares 
with ID3 (9) and related techniques similar methods 
for the search and expansion of decision trees. These 
techniques, however, were not designed to generate 
rules satisfying label-compatibility between unary and 
binary predicates. CRG, on the other hand, is explicitly 
designed to develop rules for unique identification of 
classes with respect to their "structural" (linked unary 
and binary feature) representation. 
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Recently, however, Quinlan tx°) and Muggleton and 
Buntine tx~) have investigated general methods for 
learning symbolic relational structures in the form of 
Horn clauses. In FOIL, Quinlan t9) considers the prob- 
lem of learning, from positive examples (closed world) 
or positive and negative examples, conjunctions of 
iiterals of the form 

C ~ L x , . . . , L m  

where C would correspond, in our case, to a class label. 
FOIL solves such problems by expanding the literals-- 
adding predicates and their variables--to the right- 
hand side to maximize the capturing of positive inst- 
ances and minimize negative ones from the training 
database. In this framework, then, CRG is also con- 
cerned with generating similar class descriptions of 
the specific forms: 

C~ ,-- UI(X), B~(X, Y), U2(Y), B2(y, Z), U3(Z) .... 

C]' *-- UI(X) ,BI(X,  Y), U2(Y),B2(y, Z), Us(Z) .... 

C ~  Ut(X), B ' (X ,  Y), U2(y), B2(y, Z), U3(Z) .... 

C~, '~ U' (X) ,Bx(X,  Y), U2(y),BZ(Y,Z),  U3(Z) .... 

However, CRG differs significantly from FOIL insofar 
as: (1) the choice of unary (U) and binary (B) rules--  
as bounded attribute (feature) states--is determined 
within the continuous unary and binary feature spaces; 
(2) the orderino of literals must be satisfied in the rule 
generation; (3) the search technique uses backtracking 
and recursive splitting; and (4) the resultant rules are 
not only Horn clauses but each literal indexes bounded 
regions in the associated feature space (as shown in 
Fig. 1). 

This does not imply that FOIL could not be run on 
our data--wi th  every part and relation correspond to 
a very large set ofinstantiated literals. Rather, we argue 
that problems involving numerical and continuous data, 
as they typically occur in pattern recognition, can be 
solved more efficiently by the type of technique dev- 
eloped here. 

The CRG method is an example of the general 
solution to complex pattern recognition problems in- 
volving the generation of rules, as bounded predicate 
Horn clauses, which are linked together in ways that 
determine "structure" uniquely enough to identify 
classes but enabling maximum generalization to tol- 
erate maximum distortions. Both aims, uniqueness 
and generalization, are not explicitly guaranteed in 
other methods, such as neural networks (see reference 
(12)) or decision trees. Further, in CRG, they explicitly 
constitute the equivalent of a "cost" function and a 
search technique has been developed to satisfy these 
constraints. 

What we have not solved here, as yet, is the problem 
of using CRG to recognize classes Of objects in complex 
montages of other objects. This is the subject of current 
work. However, we should emphasize that the current 

system does function with partial class da ta- -both  in 
learning and run time modes. 

Finally, CRG raises the question as to what consti- 
tutes a "structural description" of a set of patterns. For 
a set of patterns, CRG generates conditional classifi- 
cation rules which are general in the sense that they 
are as short as necessary and that they constrain 
feature bounds a little as necessary for discriminating 
different classes. For classes with complex and highly 
variable patterns, CRG may generate many rules which 
give a set of equivalent structural descriptions for the 
data. One can even introduce a notion of typicality 
through the number of paths that are covered by a 
branch in the conditional cluster tree. However, as can 
be particularly true with the complex patterns in Fig. 4, 
this may not really be a meaningful definition of struc- 
ture and a "structural description" may have to be 
defined as the minimum set o f  equivalent rules that CRG 
generates for patterns, particularly if generalization is 
necessary and the run time data are incomplete. 
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