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Abstract

In computer vision, the indexing problem is the problem of recognizing a few objects in a large database of objects while avoiding
the help of the classical image-feature-to-object-feature matching paradigm. In this paper we address the problem of recognizing
3-D polyhedral objects from 2-D images by indexing. Both the objects to be recognized and the images are represented by weighted
graphs. The indexing problem is therefore the problem of determining whether a graph extracted from the image is present or absent
in a database of model graphs. We introduce a novel method for performing this graph indexing process which is based both on
polynomial characterization of binary and weighted graphs and on hashing. We describe in detail this polynomial characterization
and then we show how it can be used in the context of polyhedral object recognition. Next we describe a practical recognition-by-
indexing system that includes the organization of the database, the representation of polyhedral objects in terms of 2-D characteristic
views, the representation of this views in terms of weighted graphs, and the associated image processing. Finally, some experimental
results allow the evaluation of the system performance.

Keywords: Object recognition, polyhedral object representation, polynomial graph characaterization, indexing, hashing, feature
extraction.

1. Introduction

The problem of object recognition in computer vision is the
problem of matching object features with image features. Nev-
ertheless, since an object has many features associated with it
and since an image contains features that do not necessarily
belong to that object, the matching process is a complex one
because of the large size of the set of image-feature-to-object-
feature assignments. Therefore, in the past, the rationale has
been to use constraints – such as the rigidity constraint – in or-
der to maintain the number of assignments as reduced as possi-
ble: Therefore, any search process, including exhaustive search,
is likely to be fast enough because it has to visit a few thousands
of nodes rather than millions.

Various implementations of matching-based recognition of
rigid objects take the form of either a search-graph or a search-
tree. Examples of search graphs are maximal-clique finding
algorithms introduced in computer vision by Ambler & al. [1],
popularized by Ballard & Brown [2], and applied to 2-D object
recognition by Bolles & Cain [3]. Subsequently, the advantage
of using trees rather than graphs was stressed by a large number
of authors such as Bolles & Horaud [4], Faugeras & Hebert [5],
Ayache & Faugeras [6], Grimson & Lozano-Perez [7], Goad
[8], Flynn & Jain [9], and many others.

However, most of the object recognition methods just men-
tioned restrict the recognition to object whose exact geometry
is known in advance. A more general approach consists of rep-
resenting both the image and the object by graphs and of cast-
ing the recognition problem into the graph matching problem.
Graphs are a convenient way of representing features and rela-
tionships between these features. Various graph representations

have been used by Kim & Kak [10], Flynn & Jain [11], Dick-
inson & al. [12], and Bergevin & Levine [13]. However, graph
matching is a difficult problem in itself. Whenever the two
graphs to be matched have the same number of nodes, graph
matching is equivalent to searching for graph isomorphism and
polynomial time solutions exist in this case, [14], [15], [16]. It
is however rarely the case that the image graph have the same
size as the object graph: The problem is therefore equivalent to
maximum subgraph matching – find the largest isomorphic sub-
graphs of the two graphs. So far, solutions proposed for solving
the maximum subgraph matching problem involve some form
of combinatorial optimization [17], [18].

If many objects rather than a single one (as it has often been
the case) are present in a database of objects to be recognized,
then the matching-based recognition becomes intractable be-
cause the complexity grows substantially with the number of
features. An indexing process is crucial whenever the recogni-
tion process has to select among many possible objects. Recog-
nition by indexing is therefore the process that attempts to
rapidly extract from a large list of objects, those few objects
that fit a group of image features while avoiding to establish
image-feature-to-object-feature assignments.

Nevatia & Binford [19] were among the first to describe in-
dexing as a part of an object recognition system. Ettinger [20]
described a hierarchically organized object library well suited
for indexing. Each object is decomposed into a list of sub-
parts. The rationale is that many objects share a common set
of sub-parts and what distinguishes one object from another is
sub-part relationships – the overall list of sub-parts grows sub-
linearly with the number of objects in the library. This idea is
applied to flat objects that are described by their outlines.
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The idea of using hashing in conjunction with object recog-
nition was introduced by Kalvin & al. [21]. Outlines of flat
objects are described in terms of footprints. The best way to
think of a footprint is of an intrinsic curve such as curvature
as a function of curvilinear abscissa. The footprint of an ob-
ject is further decomposed into intervals. Each such interval is
described by a set of numbers (the sine and cosine Fourier co-
efficients, for example) and these numbers are hashed in hash-
tables. The indexing itself takes the form of a vote: Each foot-
print interval detected in the image votes for those objects in
the database containing this footprint interval. Finally the ob-
ject that received the highest vote score is the recognized object.
A variation of this method using local frames and geometric
hashing was proposed by Lamdan & Wolfson [22] for solving
the matching problem, not the indexing problem.

Following the same idea of hashing, Stein & Medioni [23]
were able to recognize 3-D objects from 3-D data using
super-segments and surface-patches as features. Their struc-
tural hashing technique retrieves object hypotheses from the
database using hash-table indexing. A similar approach was
proposed by Breuel [24].

The approach advocated in this paper capitalizes onto the
representation of 3-D objects in terms of 2-D characteristic
views and of characterizing such a view with a number of
weighted graphs. An identical graph representation is extracted
from the image of an unknown 3-D scene. A polynomial char-
acterization of graphs allows us to organize the “model graphs”
into hash tables. Therefore, recognition consists of comput-
ing similar polynomial characterizations for the “image graphs”
and of indexing in the pre-stored hash tables. Finally, a voting
process ranks a number of candidate characteristic views as po-
tential recognized objects.

1.1. Paper organization
The remainder of this paper is organized as follows. Sec-

tion 2 introduces the polynomial characterization of a binary
graph that will be used, namely the second immanantal poly-
nomial of the Laplacian matrix of a graph. Then we briefly
describe an extension of this representation to weighted graphs.
Section 3 describes the graph indexing method that uses this
polynomial characterization of graphs. It describes as well an
object representation in terms of weighted graphs, the orga-
nization of the database of objects to be recognized, and the
indexing method itself which is based on hashing. Section 4
describes a representation of 3-D polyhedral objects in terms
of 2-D views and a representation of these views in terms of
weighted graphs. Section 5 describes how to extract these
weighted graphs from images and how to remove irrelevant im-
age data. Section 6 describes a recognition experiment carried
out with a set of 9 images of the same scene in the presence of
a database of 6 objects. Finally, section 7 draws some conclu-
sions and gives some directions for future work.

2. Polynomial characterization of a graph

The method that we propose in this paper in order to achieve
indexing uses graphs to represent both images and objects. Let

us suppose that one is able to extract a number of graphs from
an image and let G1 be such an image graph that has the same
number of nodes as a graph G2 extracted from an object. Such
a graph (an image or an object graph) is defined by a set of ver-
tices V and a set of edges E. The two graphs G1 = (V1, E1) and
G2 = (V2, E2) are said to be isomorphic if there is a bijection
ϕ : V1 −→ V2 such that:

(v1, v2) ∈ E1 if and only if (ϕ(v1), ϕ(v2)) ∈ E2

If A1 and A2 are the adjacency matrices of the two graphs,
one can easily see that G1 is isomorphic to G2 if and only if
there exists a permutation matrix P satisfying:

A2 = PA1P−1 (1)

Hence, there are two ways to decide whether two graphs are
isomorphic:

1. Find the permutation matrix P that satisfies the equation
above.

2. Find an algebraic characterization of the adjacency matrix
of a graph that is invariant under a similarity transforma-
tion of the adjacency matrix. Such a characterization has
been proved to be useful for graph classification.

One obvious characterization that is invariant under similarity
is the characteristic polynomial associated with the adjacency
matrix [25], [26]. Indeed we have:

det(xI − PAP−1) = det(PxIP−1 − PAP−1)
= det(P(xI − A)P−1)
= det(xI − A)

Therefore, the similarity of adjacency matrices is a necessary
condition for isomorphism. Unfortunately it is far from being
a sufficient condition. However, an important idea stems out
from this example of graph characterization – one may seek to
characterize a graph, up to an isomorphism, by the coefficients
of a polynomial associated with that graph. More formally, we
seek a polynomial associated with a graph, say p(G) such that:

if G1 = G2 then p(G1) = p(G2)
and
if p(G1) = p(G2) then G1 = G2

(2)

Two graphs are said to be equal if they have the same number
of nodes and if they are isomorphic. Two polynomials are equal
if they have the same degree and if their coefficients are equal.
If a polynomial satisfying the above condition exists, it follows
that the problem of comparing two graphs of the same size is
equivalent to the problem of comparing the coefficients of their
associated polynomials. Notice however that graph characteri-
zation with a polynomial allows one to state whether two graphs
are isomorphic or not but it doesn’t provide the node-to-node
isomorphic mapping between the graphs. Graph characteriza-
tion is therefore exactly what one needs for model indexing,
i.e., rapidly state whether some sensed data equal some object
data. The search of an isomorphic node-to-node mapping is the
task of matching and not the task of indexing.
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Polynomials that characterize a graph unambiguously up to
an isomorphism have been thoroughly studied in the linear al-
gebra literature [26], [27]. Among these polynomials, the sec-
ond immanantal polynomial – or the d2-polynomial – is a good
candidate [28].

One may associate the second immanantal polynomial with
the adjacency matrix of a graph. There are however some rea-
sons to prefer the Laplacian matrix (defined below) to the com-
putationally simpler adjacency matrix. The Laplacian matrix is
positive semidefinite symmetric of rank n − 1 (if G is a con-
nected graph). Generally speaking, second immanantal poly-
nomials match up well with positive semidefinite matrices. The
greater complexity of Laplacian matrices, when compared with
adjacent matrices, suggests there may be fewer algebraic acci-
dents [28]. If the time to compute the determinant of a n × n
matrix is n3, the time to compute the coefficients of the second
immanantal polynomial is n4.

The elements of the Laplacian matrix of a binary graph,
L(G), are defined as follows:

li j =


di if i = j
−1 if there is an edge between nodes i and j
0 otherwise

(3)

where di is the number of graph edges meeting at node i and is
called the degree of the node i. The interest reader may find in
[29] a complete description of the properties of the Laplacian
matrix of a binary graph.

The second immanantal polynomial associated with a n × n
Laplacian matrix of a graph, L(G), can be written in generic
form as:

d2(xI − L(G)) = c0(L(G))xn − c1(L(G))xn−1 + ...

+ (−1)ncn(L(G)) (4)

The coefficients co, ..., cn of this polynomial are integers and
they can be computed using the following formulae which are
detailed by Merris [28] (n is the number of nodes of the graph
and m is the number of edges of the graph):

c0(L(G)) = n − 1
c1(L(G)) = 2m(n − 1)

...

ck(L(G)) =
∑

X∈Qk,n

(∑n
i=1 lii det (L(G){X}(i))

−det (L(G){X})
)

(5)

In these formulae lii denotes a diagonal term of L(G) and Qk,n

denotes the set of all the Ck
n strictly increasing sequences of size

k (2 ≤ k ≤ n) obtained from the set {1, 2, ..., n}. For any n × n
matrix M and for X ∈ Qk,n let M[X] be the k × k principal
sub-matrix of M corresponding to X. M{X} is the n × n matrix:

M{X} =
(

M[X] 0k

0k In−k

)
(6)

where In−k is the identity matrix of size n − k and 0k is the null
matrix of size k. M{X}(i) is the matrix obtained from M{X} by
removing the i-th row and the i-th column.

An important property of the second immanantal polynomial
associated with a graph is that it is preserved under similarity
permutation [27]:

d2(xI − L(G)) = d2(xI − PL(G)P−1)

Therefore, a necessary condition for two graphs to be isomor-
phic is that they have the same second immanantal polynomial.
However, it is not a sufficient condition. In practice, however,
there have been found very few examples of non-isomorphic
graphs that have the same second immanantal polynomial [25].

2.1. An example

Figure 1: These two graphs differ by one edge but their associated second im-
manantal polynomials are quite different.

In order to illustrate the above formalism let us consider two
simple binary graphs and let us outline the computation of their
associated second immanantal polynomials. An example of two
4-node binary graphs are shown on Figure 1. The Laplacian
matrices are given by equation (3) and they are easy to compute:

L(G)1 =


3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1


L(G)2 =


2 0 −1 −1
0 1 −1 0
−1 −1 3 −1
−1 0 −1 2


For n = 4 the sets of all the Ck

4 strictly increasing sequences
of size k (2 ≤ k ≤ 4) are:

Q2,4 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
Q3,4 = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}
Q4,4 = {(1, 2, 3, 4)}

It is straightforward to compute the matrices L(G){X} and the
matrices L(G){X}(i), for X ∈ Qk,4. For example, L(G)1{(1, 2)} is
a 4×4 matrix obtained by appending the first two rows and first
two columns of L(G)1 with I2 and 02 as follows:

L(G)1{(1, 2)} =


3 −1 0 0
−1 1 0 0

0 0 1 0
0 0 0 1


3



L(G)1{(1, 2)}(2) is a 3×3 matrix obtained from L(G)1{(1, 2)} by
removing its 2nd row and 2nd column:

L(G)1{(1, 2)}(2) =

 3 0 0
0 1 0
0 0 1


After some straightforward computation we obtain the follow-
ing coefficients for the associated polynomials:

d2(xI − L(G)1) = 3x4 − 18x3 + 33x2 − 24x + 6
d2(xI − L(G)2) = 3x4 − 24x3 + 105x2 − 68x + 24

One may also compute the characteristic polynomials asso-
ciated with the Laplacian matrices, i.e.:

det(xI − L(G)1) = x4 − 6x3 + 9x2 − 4x

det(xI − L(G)2) = x4 − 8x3 + 19x2 − 12x

From this example it is obvious that the second immanantal
polynomial is a richer graph description than just the character-
istic polynomial.

2.2. Weighted graphs
In general, binary graphs are not sufficient for describing

the structure of either images or objects. Weighted graphs are
graphs which have a weight wi j associated with the edge link-
ing nodes i and j. The definition of the Laplacian matrix may
easily be extended to weighted graphs, as follows:

lwi j =


Di if i = j
−wi j if there is a weighted edge between i & j
0 if there is no edge between nodes i & j

(7)

with Di being equal to the sum of the weights of the edges meet-
ing at the node i:

Di =

n∑
j=1

wi j (8)

This matrix has the same properties as the Laplacian matrix
associated with a binary graph – it is symmetric semidefinite
positive and of rank n−1 which makes it suitable for computing
the d2-polynomial.

3. Graph indexing

The graph characterization in terms of the coefficients of the
second immanantal polynomial allows one to assert whether
two graphs with the same number of nodes (n) are “equal”. The
difference between two graphs G1 and G2 is given by the for-
mula:

Diff(G1,G2) =
n∑

k=1

(c1
k − c2

k)2 (9)

where ci
k is the k-th coefficient of the second immanantal poly-

nomial associated with graph i. Since we assume that the above
equation is valid only for graphs with the same number of
nodes, c0 has been skipped out from the summation.

In the case of indexing we are faced with the problem of com-
paring an image graph with many database graphs and of decid-
ing which are the few graphs in the database that are equal to the
image graph. In that case the graph difference mentioned above
is not efficient. One way to implement indexing efficiently is
to use hashing [30]. Hashing can be briefly described as fol-
lows. Each database object has a numerical key associated with
it. Then a hash function maps this key onto the address of an
array of a manageable size. The address thus computed for an
object is also called the hash-code of that object. In practice,
hashing is composed of an off-line step (database construction)
and a runtime step (indexing):

• Database construction consists of computing a hash-code
for each object to be stored in the database. Several objects
may well have the same address (hash-code). Therefore a
list of objects will be associated with each address. The
database takes therefore the form of an array (or a hash-
table), a list of objects being stored at each array-element
address.

• Indexing consists of computing the address (hash-code) of
an unknown object in order to determine whether this ob-
ject is in the hash-table or not.

Since a graph may be described by the integer coefficients
of a polynomial, these coefficients may well be viewed as the
hash-codes of the graph. Hence, a graph with n nodes can
be mapped onto n hash tables. For reasons that will be made
clear below, the size of the graphs we deal with varies be-
tween 5 nodes and 10 nodes. Within this size range the sec-
ond immanantal polynomial uniquely characterizes binary and
weighted graphs. It follows that graph indexing will become
an efficient technique because the hashing will have very few
collisions associated with it.

Polynomial characterization of graphs combined with graph
indexing will eventually allow us to perform object recognition
by indexing. However, two important issues need be raised be-
fore we describe a practical object recognition system: object
representation and database organization.

3.1. Object representation
Object representation has been thoroughly studied in Com-

puter Vision and a recent paper by Flynn & Jain [11] provides
a good state of the art. In general there are two possible rep-
resentation classes: Object frame centered and viewer frame
centered representations. Within our approach we use a rep-
resentation that is not tight to a specific coordinate frame. An
object is mainly described by a list of characteristic views. In
the representation that we use the definition of a characteristic
view (CV) should be understood in a broad sense. It is a net-
work of object features and feature relationships that are simul-
taneously visible from some viewpoint. Such a representation
is by no means limited to the aspect graph representation of an
object. The features in the network may well be either 2-D or
3-D, object-centered or viewer-centered. The important char-
acteristic here is not as much the dimensionality of the features
or the coordinate frame to which they relate, but instead, the
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Figure 2: The database has a three layer structure: graphs, characteristic views,
and objects. An object may well have more than 2 characteristic views associ-
ated with it.

intrinsic properties of the feature network. As we already men-
tioned, such a feature network can be conveniently represented
by a weighted graph.

However, the data associated with some view of an object
rarely encodes a whole characteristic view associated with that
object. The data are corrupted by noise, occlusions, self occlu-
sions, and accidental alignments. Therefore it will not be very
useful to directly store in the database the graph associated with
a characteristic view. Instead, each characteristic view is further
decomposed in a number of, possibly overlapping, “smaller”
views or subviews, where each such subview is in fact associ-
ated with a subgraph of the graph describing the characteristic
view. There are several reasons in support of the decomposition
of a characteristic view into a number of subviews:

• Following the results of section 2, one can compare only
graphs with the same number of nodes. Since a graph ex-
tracted from the data has rarely the same number of nodes
as the graphs associated with the characteristic views of
the objects to be recognized, one may still attempt to com-
pare an unknown-object-view with a characteristic-view
by comparing subgraphs associated with subviews of the-
ses views.

• The cost of the computation of the coefficients of the sec-
ond immanantal polynomial is proportional to n4, where n
is the number of nodes of the graph. Since “raw” charac-
teristic views may have a large number of features associ-
ated with them, it may not be efficient to compute polyno-
mial characterizations for very large graphs.

• Consider a data graph that is composed of a large network
of features. It is very unlikely that such a large data graph
belongs to a unique object. Recognition based on such
large graphs will fail because these graphs are not present
in the database.

It is therefore clear that object recognition by indexing must

adopt a representation such that each characteristic view is de-
composed in a number of subviews or subgraphs. A compro-
mise must be made concerning the size of these subgraphs:
Very small subgraphs are too ambiguous because they do not
capture information that is object specific while large subgraphs
are difficult to extract from the data. At the limit, a single-node
graph belongs to all the objects in the database and indexing is
useless in this case. At the other extreme, a very large graph en-
capsulates more than one object and the indexing process will
fail to find this graph in the database.

3.2. Database organization and the indexing mechanism

Following the above discussion, the organization of the
database follows a three-layer structure. A first layer contains a
list of graphs of various sizes that are organized in hash tables.
The second layer contains characteristic views. A third layer
contains descriptions of the object themselves. This structure is
shown on Figure 2.

It is clear that a graph belongs to several characteristic views
and hence, it may belong to several objects. Therefore, an im-
age graph that matches a graph in the database provides handles
to more than one object. The interesting feature of this three-
layer organization is that the graph list grows sub-linearly with
the number of characteristic views.

The indexing mechanism proceeds as follows. Let’s suppose
that an unknown object view has to be recognized. First, this
unknown view is decomposed into subviews and a graph is as-
sociated with each subview. Polynomial characterizations are
computed for these unknown graphs. Based on these charac-
terizations and on the hashing technique just described, each
unknown graph is assigned a unique graph in the database. As
a consequence, a list of characteristic views may now be asso-
ciated with each unknown graph in the image. In other terms,
each unknown graph votes for a number of characteristic views.
This process is repeated for each unknown graph belonging to
the unknown view. The characteristic view that received the
largest number of votes is the model that best matches the un-
known view.

Consider, for example the database depicted on Figure 2 and
suppose that two unknown graphs are assigned graph1 and
graph2 respectively. It follows that two characteristic views
(CV12 and CV21) received 2 votes while one characteristic view
(CV11) received only one vote.

4. 2-D characteristic views of polyhedral objects

In order to recognize an object with the method described
above, one has to represent that object in terms of a few char-
acteristic views and to describe each such characteristic view in
terms of a set of weighted graphs. Unlike solutions that con-
sists of computing characteristic views from CAD object de-
scriptions, our approach for obtaining these views is to gather
as many images of an object as characteristic views are needed
for describing that object unambiguously. Although in this pa-
per we use an ad-hoc technique, more formal methods may be
found in [31], [32]: The authors define a set of characteristic
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Figure 3: An example of a characteristic view of an object and a few graphs
extracted from this view.

views of a polyhedral object by partitioning a large set of ob-
ject views into small sets of characteristic views.

The task of decomposing a characteristic view into subgraphs
is not an easy one. The most general approach would be to im-
plement a graph decomposition method. For example, one may
attempt to partition a graph into a pre-specified number of sub-
graphs such that the number of connections (edges) between
the subgraphs is minimized [33]. Here we prefer a more prag-
matic solution. For example, one may consider all the nodes
of a characteristic view and form subgraphs around each such
node. A subgraph is thus formed by this node as well as the
nodes that are at a distance less or equal than p edges away
from this node. It turns out that this redundant decomposition
of a characteristic view in small graphs of various sizes is one
key to the success of our recognition method. Indeed, small
perturbations in the topology of a view (due essentially to noise
or to segmentation errors) will not affect the topology of all the
subgraphs extracted from this view.

In the particular case of polyhedral objects, if the degree of a
node is, on an average, equal to 3 and for p ≤ 2 then the num-
ber of nodes of the associated subgraphs varies between 5 and
10. Figure 3 shows a characteristic view of a simple polyhedral
object and some subgraphs extracted from this view with p = 2.

As it has already been discussed, the topology of a charac-
teristic view is not sufficient for describing the view unambigu-
ously. For example, Figure 4 shows six different binary graphs
which are isomorphic (they have the same topology). Clearly,
one would like to be able to state that the top three graphs are
different and the bottom three ones are identical. In other words,

Figure 4: Top – three graphs having the same topology. Bottom – three other
graphs having the same topology and the same appearance.

the top three ones do not look the same, although they have the
same topology. The question of how to describe the 2-D ap-
pearance of a polyhedral object has already been addressed (see
for example [34]) but the question of how to represent such an
appearance with a weighted graph has not.

One way to label an edge is to characterize it according to
the structure of the vertices at each endpoint of that edge. If
we consider polyhedra that have at most 3 edges meeting at a
vertex, then we obtain a catalogue of possible edge structures
or edge appearances. It is sufficient to assign labels to these
various appearances and to associate a weight to each label.
Figure 5 shows an exhaustive catalogue of edge appearances
and their weights.

There are three possible vertex structures: a 2-edge vertex or
an “L”, and two 3-edge vertices, an “Y” and an “Arrow”. Since
an edge divides the plane into two regions – the left side and the
right side – we obtain the following list of features that allows
the labelling and the weighting of an edge (see Figure 6 for an
example of an edge labelled “15”):

• the type of the first vertex (Arrow);

• the type of the second vertex (Arrow);

• the number of edges associated with the first vertex lying
on the left side of the edge; (1)

• the number of edges associated with the first vertex lying
on the right side of the edge (1);

• the number of edges associated with the second vertex ly-
ing on the left side of the edge (2);

• the number of edges associated with the second vertex ly-
ing on the right side of the edge (0).

5. Image processing

In this section we describe the process by which a number
of graphs is extracted from an image. This graph extraction
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Figure 5: An exhaustive catalogue of the possible appearances of the edges of
a polyhedral object that has, at most, 3 edges meeting at a vertex.

Figure 6: The labelling of an edge depends on the structure of the two vertices
at each endpoint of that edge (see text).

process has some similarities with feature grouping since its
goal is to provide a few “key” image features and reduce the
complexity of the object recognition process. Image processing
starts with extracting edges and with approximating these edges
with straight lines. Junctions are next extracted. The junctions
and the straight lines form a network of features, or a graph –
the image graph.

If the scene is composed of just one object, then this image
graph corresponds, up to some noise, to a view of that object.
Single object scenes are used for building the database of char-
acteristic views and it has been previously described.

If the scene is composed of more than one object and if
the background is not uniform, then the image graph has to
be further processed in order to be split into smaller graphs.
Each small graph thus obtained is examined in order to decide
whether it should be considered for recognition or not. To sum-
marize, the process of extracting graphs from an image com-
prises the following steps:

1. image graph extraction;
2. image graph splitting, and
3. graph evaluation.

Step 1. Image graph extraction has been briefly outlined at the
beginning of this section and is described in detail in [35].

Step 2. Image graph splitting is based on a number of heuris-
tics:

2.1 Isolated and “dangling” edges are thrown out.

2.2 It is assumed that “T” junctions arise from occlusions
(an object in front of another object, an object in front
of some background, or a self occlusion). Hence, the
image graph is cut off at T junctions. Notice that
this process may produce isolated edges which are
immediately thrown out.

2.3 Sequences of collinear edges are assumed to arise
from the same physical edge and hence, collinear
edges are fused into a unique edge.

2.4 Finally, the image graph is decomposed into con-
nected components.

Step 3. Graph evaluation considers each connected compo-
nent, one by one, and evaluates it in order to decide
whether it should be further considered for recognition or
thrown out. Let n be the number of nodes of a graph and let
di be the degree of node i, i.e., equation (3). The quantity:

f (G) =
1
n

n∑
i=1

di

allows one to measure the complexity of a graph. It is
straightforward to notice that for f (G) = 2 the graph has
at most one cycle. Since graphs without cycles are not
really relevant, one may consider only graphs for which:

f (G) ≥ 2

The graphs that don’t satisfy this constraint are consider
irrelevant and therefore they are thrown out.

Let us illustrate with an example the graph extraction process
that we just described. Figure 7 shows an intensity image (top-
left) and a network of lines and junctions extracted from this
image (top-right) from which isolated and dangling lines are re-
moved (middle-left). The next image (middle-right) shows the
T-junctions that are removed from the list of junctions. This
T-junction removal process produces isolated lines and dan-
gling lines on one hand (which are removed) and collinear lines
which are fused into a unique line on the other hand (bottom-
left). We are left now with a number of connected image graphs.
Each such connected component is evaluated according to the
Step 3 just above. The latter process leaves 4 connected com-
ponents in the image (bottom-right). These remaining image
graphs will be further decomposed into subgraphs in order to
be used by the indexing process. The decomposition of the 4
image graphs into subgraphs is not shown.

6. Experiments

All the object recognition experiments that we performed
used the same database, namely 20 characteristic views asso-
ciated with 6 objects, as shown on Figures 8 and 9. All the

7



Figure 7: An example of extracting a set of 4 image graphs from an inten-
sity image (top-left): Lines and junctions are detected (top-right), isolated and
dangling lines are removed (middle-left), T-junctions are detected and removed
(middle-right), collinear lines are fused into longer lines (bottom-left), the re-
maining graphs are evaluated and four of them survive (bottom-right).

objects in this database are 3-D polyhedral shapes with one ex-
ception. The database was built by showing each object, view
by view, to the camera and by applying the graph extraction
process described in section 5.

We carried out many experiments in which the input image
varied from a very simple one with just one object against an
uniform background to more complex images with many ob-
jects against a non-uniform background.

In one such experiment we grabbed 9 images of the same
scene and we processed these images identically (with exactly
the same segmentation parameters). Figure 10 shows these 9
images where the camera position and orientation varies with
respect to the observed scene. Figure 11 shows the graphs ex-
tracted from these images. The images are numbered 1 to 9
from left to right and top to bottom.

Table 1 summarizes the results of recognizing the two objects
based on the two graphs (labelled “0” and “1”) extracted from
the 9 images. The figures in this table correspond to the scores
(number of votes) received by each characteristic view when
the image graphs are indexing the database. For each image

Figure 8: This figure shows the intensity images of 20 characteristic views
associated with 6 objects. These views and objects constitute the database.

graph the table records its highest score, sometimes the two
highest scores. The first object (the graph labelled “0”) has
been correctly recognized 7 times and incorrectly recognized
twice (images 5 and 9). Notice the high scores (between 16 and
24) obtained in the case of a correct recognition in comparison
with the less high scores (between 6 and 8) obtained in the case
of an incorrect recognition.

The same phenomena can be observed with the second ob-
ject (the image graph labelled “1”) which has been correctly
recognized 6 times (the score varies between 8 and 25) and in-
correctly recognized 3 times (the score varies between 4 and
7). An interesting remark is that all 5 incorrect recognitions
assigned the same characteristic view to the unknown image
graphs, namely the view labelled “pieceLd02m” (the bottom-
rightmost view on Figure 9). One may notice the poor segmen-
tation associated with this characteristic view.

The recognition results reported above are barely affected if
one increased the size of the database of characteristic views
by adding views of very different objects. Of course, if the
database contains two very similar objects, the system will fail
to discriminate between these two objects.

7. Discussion

Unlike the prevailing paradigm in computer vision that sug-
gests image-feature-to-object-feature matching to solve for ob-

8



Figure 9: The 20 graphs (lines and junctions) extracted from the previous im-
ages. These 20 graphs are decomposed into subgraphs (the decomposition is
not shown) and stored in the hash-tables associated with the database.

ject recognition, we described an approach that uses an in-
dexing technique to compare objects in an image with ob-
jects in a database. Our method doesn’t rely neither on pre-
cise knowledge about the geometry of the objects nor on reli-
able feature-to-feature assignments. Instead we describe both
the images and the models by weighted graphs and we com-
pare these graphs through their polynomial characterization,
namely the second immanantal polynomial of the Laplacian
matrix of a graph. This graph comparison was implemented
in two steps (off-line and on-line): a database construction step
(model graphs are stored in hash tables) and an indexing step
(an image graph indexes in the pre-stored hash tables).

It is worthwhile to notice that, in the past, polynomial charac-
terization of graphs has been used to represent and identify the
topology of molecules [36]. At our knowledge, the graph theory
literature doesn’t describe any attempt to generalize polynomial
characterizations to weighted graphs. It turns out that, at least
for our purposes, this generalization is straightforward since the
Laplacian matrix of a weighted graph has the same mathemati-
cal properties as the Laplacian matrix of a binary graph.

We believe that our indexing scheme based on this algebraic

Figure 10: Six images of two objects to be recognized where the camera varies
in position and orientation with respect to the two objects.

Figure 11: The graphs extracted from the previous images. Notice that the noise
corruption of these graphs varies a lot even if there is only a small change in
camera position and orientation.

graph representation has a promising potential in computer vi-
sion and may provide in the future an interesting paradigm for
indexing.
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image graph characteristic view
number number Ut01m Ut02m M01m M02m L05m Ld02m

1 0 18⋆ 24⋆

1 23⋆

2 0 16⋆ 16⋆

1 17⋆

3 0 18⋆

1 8⋆

4 0 17⋆ 24⋆

1 13⋆ 10
5 0 6 7

1 9⋆

6 0 17⋆ 23⋆

1 6 7
7 0 23⋆

1 4
8 0 16⋆

1 4 5
9 0 6 8

1 13⋆

Table 1: This table shows the results of recognition for 9 images of the same
scene. The figures correspond to scores (number of votes) as a result of the
graph indexing process. The scores over-scripted by a ⋆ correspond to a correct
recognition.
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