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Abstract In this paper, we present a detailed model and analysis of several error sources and thier effects on 
measuring three-dimensional (3D) surface properties using the structured lighting technique. The analysis is 
based on a general system configuration and identifies three types of error surces--system modeling error, 
image processing error and experimental error. Absolute and relative error bounds in obtaining 3D surface 
orientation and curvature measurements using structured lighting are derived in terms of the system 
parameters and likely error sources. In addition to the quantization error, other likely error sources in system 
modeling and experimental setup are also considered. Even though our analysis is on structured lighting, the 
results are readily applicable to other triangulation-based techniques such as stereopsis. Finally, our analysis 
focuses on error in inferring surface orientation and principal surface curvature. Such analyses, to our 
knowledge, have never been attempted before. 
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1. I N T R O D U C T I O N  

The problem of reconstructing 3D surface structures 
from their 2D projections is an important  research 
topic in computer  vision. Over  the past two decades, 
a variety of techniques have been developed to infer 3D 
surface structures from 2D images using different 
imaging devices, shape cues and heuristics. (1-3) These 
techniques can rely on ambient light reflection (passive 
sensing) or  can employ a light source to actively probe 
the environment  (active sensing). They have also relied 
on many image shape cues such as stereo disparity, 
image brightness and surface pattern to recover the 
depth, orientation and curvature of an imaged surface. 

To study the feasibility of these 3D shape recon- 
struction techniques in industrial applications, it is 
imperative that their accuracy be understood. That  is, 
for each technique, rigid modeling and analysis of the 
inherent error sources and their effects on 3D shape 
inference are needed. However,  error analysis of all 
types of sensors used in machine vision is beyond the 
scope of this paper. Our  discussion will be limited to 
the structured light-sensing technique, which we have 
some experience with. Thus, the goal of this paper is to 
identify likely error sources and investigate their effects 
on computing surface properties using the structured 
light sensing technique. More  precisely, errors in using 
strucfured lighting to infer surface orientation and 
principal surface curvatures are analysed. Error  
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bounds are derived in terms of various system para- 
meters and error sources. Simulation was conducted to 
verify the correctness of the analysis. 

Structured lighting is an active sensing technique 
which projects a spatially modulated pattern to encode 
the image object for analysis. ~4-15) Tradit ional  struc- 
tured light techniques use a grid pattern and rely on the 
triangulation principle in the analysis, i.e. the observed 
pattern is matched with the projected one, and the 3D 
position of the pa t t e rn - -hence  that o f  the encoded 
surface-- is  recovered through triangulation. More  
recently, it was shown that it is possible to analyse the 
orientation and curvature of the projected pattern to 
infer the orientation and curvature of the encoded 
surfaces.(lo,11.13,14) 

Although many image analysis techniques have 
been developed using structured lighting, no formal 
modeling and analysis of errors in structured lighting 
have been attempted, except, maybe, for references (16, 
17). Frobin  (16'1v) considered the image processifig er- 
ror in his reconstruction equat ion and modeled such 
an error as uncorrelated Gaussian noise at each pixel 
location. He then computed the 3D surface position 
using the least-squares minimization, with sensor data  
weighted by the inverse of the observation error. How- 
ever, Frobin 's  analysis was on computing 3D surface 
position using structured lighting and the analysis 
results are not  applicable to the surface orientation 
and curvature computations.  

Other researches on error analysis in computer  
vision were mainly concerned with the analysis of the 
stereopsis technique and considered only the quantiza- 
tion error318 22) Duda  and Hart  ~23) gave a brief treat- 
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ment on the subject. McVey and Lee ~2°) performed 
a worst-case error analysis of the stereopsis technique, 
so did Solina. 126~ Matthies and Sharer ~19~ used 3D 
Gaussian distribution to model the triangulation error 
in the stereo vision. Blostein and Huang ~18~ used a uni- 
form distribution error model and derived the prob- 
hbility profile of the absolute positional error. 
Rodriguez and Aggarwal t21~ used an approach similar 
to that of in reference (18) but gave a formulation in 
terms of the relative error. 

All the above analyses were based on a simplified 
stereo configuration, in which the lines of sight of the 
two cameras were parallel. Verri and Torre (22) as- 
sumed a slightly more general configuration and 
allowed independent coordinate systems to be asso- 
ciated with the left and right cameras. However, their 
analysis results were applicable only to the plane in the 
scene which was of the same distance to the origins of 
the left and right coordinate systems. 

In contrast to the above, our analysis assumes a gen- 
eral system configuration, and in addition to the 
quantization error, other likely error sources in system 
modeling and experimental setup are also considered. 
Although our analysis is on structured lighting, the 
results are readily applicable to other triangulation- 
based techniques such as the stereopsis. Furthermore, 
our analysis focuses on error in inferring surface orien- 
tation and principal surface curvature; such analyses, 
to our knowledge, have never been attempted before. 

The remainder of this paper is organized as follows: 
Section 2 identifies likely error sources in the struc- 
tured light-sensing technique. Sections 3 and 4 analyse 
the error in inferring 3D surface orientation and prin- 
cipalsurface curvatures. Section 5 presents some simu- 
lation results. Finally, Section 6 presents concluding 
remarks. 

2. E R R O R  S O U R C E S  

As shown in Fig. 1, in the structured light techniquel 
one of the cameras in a passive stereo setup is replaced 
with a projection device. A grid pattern marked on 
a slide is projected to "encode" the imaged object's 
surface for analysis. The perceived pattern may com- 
prise k sets of parallel stripes, k >_ 1. The encoded scene 
is recorded using a camera. The perceived surface 
pattern in a structured light image can be used to 
compute three types of surface properties: the 3D 
position, orientation and principle surface curvatures 
of the imaged surfaces. 

We will use the following notational conventions 
throughout the discussion: We denote the computed 
value of a surface measurement as x*, where x can be 
the depth, orientation or curvature of the imaged 
surface. It can also be used to denote the computed 
value of some intermediate parameter in recovering 
a desired surface property. The corresponding theo- 
retical values (or the ground truth) of x* is denoted as 
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x (without an asterisk). We use the Greek letter A as the 
prefix for the absolute error and the Greek letter 6 as 
the prefix for the relative error. That  is, Ax = Ix* - xl 
and 6x = I(x*-- x)/xl. 

In  our analysis, we first identify likely sources of 
error and establish their theoretical error upper 
bounds. The error bounds are then used in the analysis 
in Sections 3 and 4. We identify three types of error 
sources: system modeling error, image processing er- 
ror and experimental error, which are discussed below. 

2.1. System modeling error 

An optical system is usually characterized by one of 
the following two models: perspective projection or 
parallel projection. The former is more accurate (it 
produces the correct projection foreshortening effect: 
objects closer to the camera appear larger in an image), 
but  requires a division in computing the 2D projection 
coordinates. The parallel projection model may be 
assumed in a shape inference process to simplify cer- 
tain analyses. For  example, by adopting a parallel 
projection model, we were able to avoid solving the 
difficult feature correspondence problem in our analy- 
sis of the structured lighting techniques. 11°'11'.3'14) 
However, error introduced by using a less faithful 
model need be considered, because, in the real world, 
projectors and cameras do not behave according to an 
ideal parallel projection model where all the projection 
rays are parallel. Rather, a projection ray makes an 
angle ~0 with respect to the optical axis: 

ILl Ill I11 
tanl~0l = ~ -  = 7 ~ ,  (1) 

where ILl denotes the size of the imaged object and ill 
that of its image; f is the focal length of the lens; d is the 
distance from the slide or the film to the lens (image 
distance); D is, in the case of a slide projector, the 
distance from the lens to the projection screen and, in 
the case of a video camera, the distance from the lens to 
the imaged object (object distance). In parallel projec- 
tion, it is assumed that f>> III and q, approaches zero. 
Hence, rays emitted from the projector or incident on 
the film all become parallel. 

In reality, (p is never exactly zero. Approximating 
a nonzero ~0 by zero introduces error in surface 
measurements. This error is defined to be the system 
modeling error and is a function of the angle ~0. The 
theoretical error upper bound  is therefore: 

W 
= maxlq~ - 01 = maxlq)l ~ t a n - * - -  2f '  (2) 

where W is the diagonal length of, in the case of a 
projector, the slide, and, in the case of a camera, the film. 

2.2. Image processing error 

The analysis of a structured light image depends 
heavily on the 2D features--such as positions of stripe 
junctions and orientations and curvatures of projected 

stripes extracted from images. This feature extrac- 
tion process suffers from an image processing error 
that consists of two separate error sources: error due to 
quantizat ion and error due to mislocating features in 
the image plane. 

An image coordinate can differ from its true value 
because the quantizat ion process restricts image pixels 
to lie on an integer grid. It was shown in references (18, 
21) that the quantizat ion error can be at most half 
a pixel, _+ r//2, in both the x and y directions, where 
t/denotes the size of a pixel. Then it is trivially shown 
that the total quantizat ion error, eq, is bounded above 

by t / / , ~ .  
Another usually more critical error is that image 

features might not  be properly located. For  example, in 
a typical structured light image, the observed pattern 
may not be sharply focused. Hence, the observed 
stripes may be wider than a pixel. Referring to Fig. 2, 
w o denotes the width of a stripe in the projection slide, 
w o denotes the width of the stripe projected on the 
imaged object's surface, and w e denotes the width of the 
perceived stripe in the image plane. Let 0g be the angle 
between the object surface and the light sheet from the 
projector and 0 i the angle between the object surface 
and the viewing direction, then the following relations 
hold: 

- w 0  c o s  0 .  - , = W o  c o s  o,  , 

therefore, dividing the above two expressions we have: 

diw~f o _ cos(0i -- n/2) 

fidowg cos(0 0 - n/2)' 

o r  

dgfi cos(0 i - (n/2)) d j i  sin 0 i 
wi difg cos(0g - (n/2)) % = dl f  9 sin 0g wg, (3) 

where dg and d i are the distances from the projector 
and the camera to the object, respectively. 

The width wi of a projected stripe in the image plane 
is computed using equation (3). When we is more than 
one pixel wide, we select the coordinate of a pixel 
which lies under the perceived stripe and report that 
coordinate as the position of the stripe in the image 
plane. Such a selection may not be unique as there may 
be as many as [ wl/~l j possible choices and an improper 
selection will misplace the stripe. This misplacement 
error is denoted as ey or the feature location error, 
which, in general, can be larger than the quantizat ion 
error. The image processing error is defined as: 

e r = eq -I- e l .  (4) 

It remains to be shown how large the error in 
locating image features (ey) can become. Here, we 
claim that for a projected stripe ofn  pixels wide, n _> 1, 
the feature location error is minimized if the coordi- 
nate of the projected stripe's central pixel is used. We 
introduce the following proposit ion (Proof of the 
proposit ion can be found in the Appendix): 
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Fig. 2. Feature location error. 

di 

Proposition 1. featurelocation error). If points on the 
central line along a perceived stripe are selected and 
reported as the position of the stripe in the image 
plane, then the feature location error introduced is: 

e I = I x *  - xl  

<_ dof i max(tan ~, tan fl) 
2difo sin2(00) %' (5) 

where x denotes the (true) coordinate of a point on the 
projected curve and x* is the coordinate of the ap- 
proximation point, i.e. the center pixel; wg is the stripe 
width in the projection slide, 2~ equals the projection 
angle and 2fl equals the viewing angle (Fig. 2). 

The validity of Proposition 1 can be intuitively 
verified as follows: When all the variables in equation 
(5) are held constant while varying, say, fi, it can be 
seen from Fig. 2 that wt increases as f~ increases. Hence, 
feature location error increases as a result of increasing 
fi. Similarly, increasing d o while holding all other 
variables constant results in an increase of Wo, and 
hence, an increase of w~ and the feature location error 
(Fig. 2). Increasing di and fg has the opposite effect of 
decreasing the size of w~, and hence the feature location 
error decreases. Therefore, we conclude that a smaller 

image processing error results if the grid marks in the 
projection slide are thin (i.e. wg is small) and/or the 
projector is positioned in such a way that the projec- 
tion direction is close to the normal direction to the 
imaged object surface (i.e. 0g ~ ~/2). 

2.3. Experimental error 

We define errors, other than those introduced in 
system modeling and image processing, as experimen- 
tal errors. In a structured light experiment, various 
types of errors may occur because of inappropriate 
operation and calibration of the imaging equipments. 
For example, if the patterned slide is not positioned 
level to the ground, orientation of the stripes in the 
pattern may be offby a few degrees from the calibrated 
value. The parameters of the imaging devices may not 
be absolutely accurate either, and the focal length of 
the camera lens may differ slightly from the marked 
value. Other examples of experimental errors include: 
numerical errors resulted from truncation and numeri- 
cal approximation, failure to accurately measure the 
relative position of the projector and the camera, 
distortion of the grid pattern, lens distortion, etc. These 
errors vary from one experiment to the next, depend on 
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the accuracy of the imaging equipments and may also 
depend on the experience level of the experimenter. We 
do not consider this type of error in our analysis, 
except for that stemmed from numerical methods 
which can be characterized. 

3. ERROR ANALYSIS OF ORIENTATION MEASUREMENT 

Since inferring 3D surface position using structured 
lighting relies on the same triangulation principle em- 
ployed in stereopsis, and error analysis of stereopsis 
has been addressed by various researchers, (18-22) we 
will not present a duplicate analysis here. Rather, we 
will concentrate our discussion on analysing error in 
inferring 3D surface orientation and principle surface 
curvature using structured lighting. Such analyses, to 
our knowledge, have not been attempted before. In the 
main body of the paper we will go through the analysis 
step-by-step and state various propositions without 
proving them. Proofs of the propositions used in the 
analysis can be found in the Appendix. 

3.1. Surface orientation inference technique 

The process of computing the orientation of an 
imaged surface from structured lighting is illustrated in 
Fig. 3 using a planar surface patch. If the stripe orienta- 
tions Lol and Lo2--where 1 and 2 denote the first and 
second sets of projection stripes on a planar surface 
patch, Po, are recovered, then the surface normal direc- 
tion Po can be readily computed by taking the cross 
product of Lol and Lo2: 

Po =(Pox, Poy, Poz) - L°I x Lo2 
ILoa x Lo2l" (6) 

Hence, surface orientation inference from structured 
lighting is to locate a pair of projected stripes on the 
imaged object's surface and use them to compute Lo~ 
and Lo2. Referring to Fig. 3 again, in a structured light 
image, let the stripe orientations observed in the image 
plane Pi be 1il and 1~2, and those in the grid projection 
plane P9 be 101 and 192. Using a parallel projection 
model, the stripe orientations Lol and Lo2 on the 
imaged object surface can be computed using the 
following equations: 

Lol = (P9 x 191 ) x (Pi  x 1il ) 

Lo2 = (P9 x 192 ) x (Pi × 1i2 ). (7) 

If the imaging configuration has been calibrated, P9 is 
known, so are 191,192 and Pi" Furthermore, lil and liE 
can be measured in the image plane. Hence, Lo~, Lo2, 
and Po can be computed using equations (6) and (7). 
The process to recover the orientation of a curved 
surface is similar to that for a planar surface and is 
described in more details in references (10, 11). 

To compute visible surface orientation using the 
technique discussed above, three vector products are 
carried out in equations (6) and (7) based on the 
observed pattern orientation in the image plane. 
Therefore, in our analysis, we first study the error in 
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Fig. 3. Surface orientation computation. 

computing the tangential direction of a projected 
stripe (Section 3.2). We then show how this error 
propagates through the vector product computation 
(Section 3.3). Finally, we combine the analysis results 
presented in Section 3.2 and 3.3 to analyse the error.in 
recovering visible surface orientation using structured 
lighting (Section 3.4). 

3.2. Error in computing stripe tangential direction 

In the following analysis, we assume that n sampling 
points (x k, Yk), k = 1 , . . . ,  n, are located along a projec- 
ted stripe in the image plane, and the chord formed by 
connecting any three adjacent points are not vertical 
(i.e. any three adjacent points have different x coordi- 
nates). If a chord of length three is vertical, a similar 
analysis by expressing x as a function of y, x(y), instead 
of y as a function of x, y(x), can be performed. We 
compute the tangent vector at a stripe junction (xl, Yl) 
using the midpoint rule (or central difference), i.e. the 
direction of the stripe tangent at point (x~,yi) is ap- 
proximated by the direction of the chord connecting 
points (x i_ 1, Yi- 1) and (x i+ 1, Yi + 1)- Appropriate ad- 
justment, using forward and backward difference for 
the tangent computation, is performed at the two end 
points. 

The error in computing the stripe tangential direc- 
tions using the midpoint rule is mainly due to two 
factors: (1) the midpoint approximation is not entirely 
correct. It is well established 124' 25) that the error in 
central difference approximation is proportional to the 
length of the interval Ix~+ 1 - x~_ 11 and to the maximal 
third derivative yt3)(~) of the curve at a point ~ inside 
the interval Ix i_ 1, xi+ 1], and (2) the y positions at xi+ 1 
and xi-  1 are not entirely reliable due to error in image 
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processing. In the following proposition, we establish 
the upper bound of the angular deviation, Ae, between 
the true tangent vector and that computed using the 
midpoint  rule. 

Proposition 2 (error in computing stripe tangential 
direction). The direction of the tangent vector com- 
puted using the midpoint  rule on a set of discrete 
points at (Xi, Yi) is within A~ to the true tangent of the 
curve y(x) at (x i, Yi), where: 

A~_<tan 1 4Ey, 2, (8) 
4 - Ey, 

and E ;  is the upper bound of Ay'(x) which is: 

E r h 2 
E,, = ~ + -~ M :, (9) 

where E r is the maximum image processing error in 
measuring a y coordinate; h is the length of the sam- 
pling interval; M :  is defined as: 

M :  = Max I y~3)(x)l, (10) 

for xg[x i_  l,xi+ l]. 

An interesting observation can be made about the 
proposition. Observing in equation (9) the size of the 
first term is inversely proport ional  to h, while that of 
the second term is squarely propotional  to h. The first 
term is due to the error in image processing. Since we 
assume that the error in reading the y coordinate is 
bound above by a constant  E r regardless of the x loca- 
tion, the closer the two end points the larger the effect 
E, has on the orientation measurement. The second 
term is due to numerical truncation, i.e. the midpoint  
rule is more accurate over a short interval, hence, 
a small h is preferred. Based on the above observations, 
we can derive the optimal sampling interval as follows: 
In order to determine a value h which .minimizes Er,, 
we find the stationary point  of Ey, or E'y,(h)= - 
(EffhZ)+(h/3)M:=O. We see that E'y,(h)=0 if 
h = (3E,/M:) 1/3, Therefore, by properly selecting the 
sampling interval h, we may lower the error in comput- 
ing Er,. Furthermore,  since Ey, << 1, we have: 

4Ey, 
4 _ E 2  ' *Ey,, 

when Ey, ~ 0. Therefore, due to the fact that Ey, << 1, 
Ae < Er, or Ae is also minimized. 

3.3. Error propagation in vector product 

The computed stripe orientation are used to recover 
the imaged surface orientation through equations (6) 
and (7), which involve three vector cross-products. 
Hence, the next logical step is to show how error in the 
stripe orientation propagates in a vector product. In 
the following discussion, all vectors are unit  vectors 
except where noted. To simplify the notation, we also 
use (a, b) as a short hand for the angle between vectors 
a and b. 

C C* 

I 
s n \ \  

~ b  

b* 

a 

Fig. 4. Error in vector cross-product. 

Proposition 3 (error propagation in vector product). 
Referring to Fig. 4, let a, a*, b, b* be unit  vectors, and 
e = sin (a, a*), 6 = sin(b, b*). If c = a x b, e* = a* x b*, 
and 7 = (e, e*), we have: 

sin 7 -< max(e, 6, x/z 2 + 6 - 2e6 cos (a*, b*)), (11) 
sin(a*, b*) 

< max(sin(a, a*), sin(b, b*)) max ( 2  /~, s in( : , ,  b,)  ) • 

(12) 

Especially, when ~/6 _< (a*, b*) _< ~z/2, we can obtain the 
following simplified inequality: 

sin 7 -< 2 max(sin(a, a*), sin(b, b*)). (13) 

In the above proposition, a* and b* denote mea- 
sured stripe orientations which may not  confirm with 
the true orientations a and b. Hence, the vector prod- 
uct e* = a* x b* also differs from the true vector prod- 
uct e = a  x b. The maximum angular derivation 
7 = (c, e*) is established in the proposition. 

3.4. Error in orientation measurement using structured 
lighting 

We are now ready to analyse the error in measuring 
surface orientation with structured lighting. As men- 
tioned in Section 3.1, surface normal Po is computed by 
taking three successive cross-products (Fig. 3): 

Po = Lol x Lo2 

= (No1 x Ni0  x (No2 × Ni2 ) 

= ((Po x 1ol ) X (Pi x 111)) X ((Po x 1o2 ) x (Pi X 1i2)). 

(14) 
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The goal is thus to arrive at an expression for 
(Po, P*), i.e. the angular  deviation between the true 
surface normal  (Po) and the computed one (P*), using 
equation (14) and results established in the two previ- 
ous sections. The analysis involves the following 
steps: 

(1) In the first line of equation (14), the angle be- 
tween Lol and Lo2 can be shown to be related to 
(Pa, Po), the angle between the normals  to the grid 
plane and to the imaged surface, by the following 
equations: 

cos(Lol, Lo2) = cos(Lol, Pa) c°s(Lo2, Pa) 

cos(Pa, Po) = sin(Lo 1, Pa) sin(Lo2, Pa) (15) 

When the angle between the grid plane and the object 
surface approaches ~z/2, no pat tern is shined on the 
surface and an analysis based on the perceived pat tern 
orientat ion is impossible. By restricting the computa-  
t ion only to the case where (Po, Po) < (11/24)~z(82.5°), 

* * _<~/2 [from (15), we have 7r/6 <_(Lo,,Lo2 ) equation 
assuming that  the difference between Loi and L'i,, i = 1, 
2 is small] and hence by Proposi t ion 3: 

sin(Po, P*) _< 2max(sin(Loa, L* 1), sin(Lo2, L* 2)). 

(2) In the second line of equation (14), the angle 
between Nak and Nik can be shown to be: 

(NOR. Nik ) = COS - I(COS 0 COS OrOk COS ~/yk 
• O " i + s i n  [//yk s i n  [/.lyk) , (16) 

where 0 is the angle between the X axis of the grid 
coordinate  system and that  of the image coordinate  
system (Fig. 1), ~,r°k is the angle between the Y axis of 
the grid coordinate  system and vectors lak, (k = 1, 2) 
and O~k is the angle between Y axis of the image 
coordinate  system and vectors Ilk, (k = 1, 2). 

In general, 0 r  is propor t ional  to $yo. When 0 >> 0, 
(Nak, Nik) increases as ~,r ° decreases. Intuitively, when 
O~ and ~ approach  ~/2, Nik and Ng k become parallel, 
and when ~k~ and ~ approach  0, the angle (Nak, Nik ) is 
no less than 0. If we have two sets of or thogonal  grid 

a marks, then O~a decreases as Oy2 increases• Hence, the 
best choice should be ~ky°l = ~,y° 2 = 7z/4. Therefore, if we 
choose ~ 1  = ~ 2  = ~/4, then (Nak, Nik ) 2> re/6. This 
yields (again by Proposi t ion 3): 

sin(Lok, Lo*0 < 2 max(sin(Nok, N0*), sin(N~k, N~*)), 

k = l o r 2 .  (17) 

Combining equations (16) and (17), we have: 

sin(P o, P*) < 2 max(sin(Lol, L*I), sin(Lo2, L'g)) 

< 4 max(sin(Nal,  N**), sin(Nag, N*2), 

sin(N~, N~I), sin(N~2, N*2)). (18) 

(3) Finally, the angle between P* and 1~, as well as 
that  between P* and I~*, k = 1 or 2, are almost  r~/2 (they 
will be exactly ~z/2 if the parallel  projection model  is 
assumed true). Hence, the condit ion in Proposi t ion 3 is 
satisfied (that the angle between the two cross-product  
vectors are larger than ~/3). We have [using the 

(a*, b*) = :~/2 approximat ion  in equation (40)]: 

sin(Nok. N'k) < ~/sin2 (P,. P * ) +  sin2(Igk, l'k) 

< ~/sin 2 cg + sin2(lg~. 1%) 

sin(Nik, N~k) _< x/sin2(Pi, P*) + sinE(lik, !*) 

--< ~/sin2 ~i + sin2(lik, Ii'~), (19) 

where we use qbg and O~ to denote the maximum 
modeling error, i.e. the error  in using a parallel model  
to approximate  the slide projection process and the 
image formation process, respectively. Substituting 
equat ion (19) into (18), we obtain: 

sin(Po , P . )  < 4max(x/sin2Oa + . 2 * sm (lak, lak), 

x/sinZ@i+sin2(lik, l*)), k =  1,2. (20) 

Furthermore,  the item sin2(lak, l~)  is an experimental  
error, which denotes the deviation of the stripe orienta- 
t ion in the projector  from its cal ibrated value. It can be 
made smaller than all the other error  terms by carefully 
placing the pat terned slide into the projector.  Especial- 
ly, when (I) a ~ qb~, the equation is simplified as: 

sin(Po, P*) < 4x/sin2qli + max(sinZ(l/k, 1")), k = 1, 2. 
(21) 

In equation (21), one notices that  there are two domi- 
nating error  sources in surface orientat ion computa-  
tion using structured lighting: • i, the parallel 
projection modeling error  (Section 2) and (Ilk, 1"), the 
error  in comput ing stripe tangential  directions (Sec- 
tion 3.2). The effect of the former can be reduced when 
a camera lens with a large focal length is used. The 
latter is composed of errors due to image processing 
and numerical differentiation. The effect of this term 
can be made small when the sampling interval is 
carefully chosen. 

4. E R R O R  ANALYSIS O F  C U R V A T U R E  M E A S U R E M E N T  

4.1. Principal surface curvature inference technique 

To compute  principal  surface curvatures using 
structured lighting, curvatures of the projected stripes 
on the imaged object 's surface are computed first. 
These curvatures are then related to those of the 
normal  sections that  share the same tangential  direc- 
tions as the projected stripes. Principal  curvatures and 
their directions at the stripe junct ion under consider- 
ation are then recovered using Euler's theorem. 113'14) 

Referring to Fig. 1, we first extract the projected 
pat tern l~k from a structured-light coded image and 
project it back onto the object surface. A curve fitting 
process is then performed on the back-projected stripe, 
Lok, in space. The curvature,  ~:k, of the back-projected 
space curve Lok is then.calculated. 

Next, the curvature of the normal  section which 
shares the same tangential  direction as the projected 
curve Lok at a stripe junct ion J is computed.  Referring 
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grid plane 

I rface~ 

i \projected curve 
i ~ Lok 

Fig. 5. The relation of a curve on the object surface and the normal section which shares the same tangential 
direction. 

to Fig. 5, a normal section at a point J on a surface S is 
the intersection of S with a plane which contains the 
normal  to S at J. A well-known theorem (Meusnier's 
theorem) in differential geometry relates the curvature 
G of Lok to the curvature, K,~, of the normal  section 
L . . . .  which shares the same tangential direction as Lok 
at J. Meusnier 's theorem/2v) states that the following 
relation holds (Fig. 5): 

K,, = K k cos ~k, (22) 

where ek is the angle between the surface normal m and 
the principal normal  direction n k of the curve Lok at the 
grid junct ion J (Fig. 5). 

The principal surface curvatures are then computed 
from the curvatures of the normal  sections at the stripe 
junct ion under consideration. Euler's theorem (2v) re- 
lates the normal  curvature along a particular tangen- 
tial direction to the extremal curvatures, ~c 1 and ~c2, at 
the same point by: 

Knk = 1('1 COS2 Ok @- K2 sin2 Ok, (23) 

where O k is the angle between the tangential direction 
of Lok and that of tq. 

F rom the above discussion, we see that Gk can be 
inferred from ~c k [equation (22)] and ~c k in turn can be 
computed based on the observed image pattern. Hence 
at a stripe junction, each stripe in the projection pat- 
tern provides one equation to solve for the unknowns 
x I and tc 2. In general, three sets of stripes are needed to 
solve for ~cl, tc 2 and the direction of ~c~ (the direction of 
K 2 is always perpendicular to that of ~c~ at a regular 
surface point). Although for certain simple surfaces, 
such as spherical, cylinderical and conic surfaces, it 
was proven that two sets of stripes are sufficient for 
shape recovery. Details of the process can be found in 
references (13, 14). 

In this section, we analyse the error in computing 
surface curvatures using structured lighting. In our 
analysis, the error which arises in computing the cur- 
vature of a projected curve is studied first. Recall that 
a projected curve on the imaged object's surface results 
from the intersection of the surface with a planar light 
sheet from the structured light projection, hence, the 
projected curves on the object's surface can be curved, 
but are always planar. After a suitable coordinate 
transform, a projected curve can be represented in 
a convenient form ofy = f ( x )  in a small neighborhood. 
Furthermore,  we make the assumption that the im- 
aged surface is locally C 2 (i.e. with continuous deriva- 
tives up to the second order), and hence, the projected 
curves are also locally C 2. Curvature computat ion 
proceeds as follows: firstly, a set of discrete sampling 
points are extracted along a projected curve; secondly, 
three adjacent sampling points are fitted with a conic 
arc; and finally, curvature is computed using the coeffi- 
cients from conic fitting. 

Our  analysis proceeds as follows: in Lemma 1 (Sec- 
tion 4.2), we establish an important  result  concerning 
the above curvature computat ion process based on 
local curve fitting. We show that if two C 2 curves share 
three common points over a closed interval which is 
the case with a projected stripe and its conic fitting 
over the three adjacent points used in the curvature 
computat ion then there exists at least one point in 
the interval where the two curves share the same 
curvature. Lemma 1 is then used to establish Proposi- 
tion 4 which gives the upper b o u n d - - o v e r  the whole 
curve fitting in te rva l - - in  the deviation of the curva- 
ture measurements between a projected stripe and its 
conic fitting. 

Up  to now we have not considered possible errors in 
image processing. As stated repeatedly, when points 
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are sampled along a projected curve, the extracted 
point locations along the curve are subjected to errors 
in image processing. In Proposi t ion 5 we modify 
Proposi t ion 4 to include the effects of the image pro- 
cessing error. Finally, in Section 4.3, we show how the 
curvature error propagates in applying Meusnier 's 
and Euler's theorems and establish the main result 
for analysing surface curvature computat ion using 
structured lighting. 

4.2. Error in computing the curvature of the projected 
stripes 

First, we introduce the following lemma: 

Lemma 1 (curvatures of two intersecting curves). 
Suppose that we are given two C 2 curves y = f(x) and 
y = g(x), g'(x)¢ 0, both defined on a Closed interval 
[a,b] with coincident end points, i.e. f(a)=g(a), 
f (b)  = g(b). If another  pOint c inside the interval [a, b] 
can be found where the two curves intersect, i.e. 
f(c) = g(c), then there exists at least one point in the 
interval where the two curves share the same curva- 
ture, or  3 ~ ~(a, b), ~c:(~) = t%(~). 

Lemma 1 is a generalization of the famous Mean 
Value Theorem (2s) and its proof  is given in the Appen- 
dix. This lemma establishes that if a conic fitting g(x) is 
used to approximate a projected stripe f(x) in such 
a way that they share three common sampling points 
(Xk, Yk), k = i--1,  i and i + 1, then there must exist 
a point in the interval (x i 1, xi+ ~) where the two curves 
share identical curvature measurement. However,  this 
particular point need not be x~, the place where we 
approximate x :  by tc o. Hence, the lemma alone is not 
slffficient for the analysis. The following proposit ion 
(Proposit ion 4) establishes the error bound for the 
whole curve fitting interval. 

Proposition4 (curvature approximat ion w/o image 
processing error). Suppose that we have two C2 curves 
y = f ( x )  and y = g(x) defined on a closed interval 
[a, b] and an increasing sequence of points (of length at 
least three) ,x  0 . . . . .  x, ~, a = x  0 < x ~ < . . . < x . _ ~ = b  
and f(xi)=g(xi), for i =  0 . . . . .  n - 1 .  Furthermore,  
denote the upper bound of the change of curvature 
inside interval [a, b] as M: and M o for curves f(x) and 
g(x), respectively, i.e. Ix~r(x)] _< M:, ~c'g(x)[ < Mg, and 
max]x~+ 1 -xi],  0_< i <  n - 1, as h, then we have: 

]~c:(x) - tc0(x)l < 2h(m: + Mg), for a < x < b. (24) 

When x = xl, we have: 

[Kf(x) - ~c0(x)[ _< h(M s + Mg). (25) 

Basically, Proposi t ion 4 states that if f(x) represents 
a projected stripe, then a conic fitting g(x) can be 
computed and tc o is used to approximate ~c I. Since g(x) 
is computed using three sampling points on f(x), it 
follows from Proposi t ion 4 that an upper bound can be 
established on the approximat ion of tcz by Ko. 

One obvious choice of g(x) is a circular arc which 
passes through points (Xi_l,f(xi_l)), (xi,f(xi)) and 
(xi+ 1,f(x~+a)). This choice is based on the following 

reasons: Firstty, it is evident that M o = 0 if a circular 
arc is used, hence equation (24) is simplified further. 
Secondly, for simple parametric surfaces such as 
planar, sphelTical, conic and cylinderical patches, the 
projected stripes can be easily shown to possess the 
shape of a circle, an ellipse, a parabola  or  a hyper- 
bola, la9) all of which can be approximated well by a set 
of circular arcs over a small neighborhood (for in- 
stance, four circular arc segments can be used to 
approximate an ellipse in descriptive geometry(3°)). 

Now, we consider the effect of the image processing 
error. When the sampling point positions are subjected 
to noise corrupt ion in image processing, g(x) does not 
share three points with the ideal projection curve f(x), 
but with the noise-corrupted version f*(x). The error 
in curve approximation is then due to two factors: (1) 
the use of a conic section g(x) to approximate f(x) 
which may or may not be a conic (Proposit ion 4) and 
(2) the use of f*(xi_l), f*(xi), *(Xi+I) in the curve 
fitting process. We introduce the following proposition. 

Proposition 5 (curvature approximat ion with image 
processing error). If a projected curve f(x) is approxi- 
mated by a set of circular arcs, with one fitting of g(x) 
over three adjacent sampling points (x i_ 1)' f*(xi-  1)), 
(xi,f*(xi)) and (xi+ 1, f*(xi+ 1)), 1 < i < n, in the neigh- 
borhood of junction (x~,f*(xl)), where f*(x) denotes 
the noise-corrupted version of f(x),  then the absolute 
error in approximating the curvature ~i(x) at (xi, f(xi) ) 
by ~co(x ) is bound by: 

4Er 
AK _< hMf + ~-,  (26) 

and the relative error is: 

/ 4 E r \  
& c < R ~ h M r + ~ 7 - ) ,  (27) 

where h is the length of the sampling interval, R is the 
radius of the circular arc used to approximate f*(x) 
at junction (xi,f*(x~)). M s is defined in Proposi t ion 
4 and E r is the upper bound of the image processing 
error. 

4.3. Error in curvature measurement using structured 
lighting 

In the previous section, we analysed the error in 
computing the curvature of the projected stripes, now 
we show how the error propagates in applying Meus- 
nier's and Euler's theorems in computing the principal 
surface curvatures from structured lighting. 

In Meusnier 's theorem, tc,~ is the projection of K k in 
the plane containing the normal  section L,o k. Hence, 
the error in computing tGk is due to the error in 
computing ~c k and in the projection process: 

Kn* k ~ /£* COS* ~k 

= (Kk + AKk)(c°s ~k + Acos ~k), 
thus 

AK,k = K,*~ -- K,k 

KkA COS ~k -~- COS O~kl~Kk, 
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and 
AK,,~ 

/(nk 

&c~ + & cos % (28) 

The first term in equation (28) is given in the previous 
section and the second term denotes the relative error  
in comput ing cos :% Recall that ~k is the angle between 
the normal  vector n~ and the surface normal  m at the 
junct ion under considerat ion (Fig. 5). By denoting one 
other stripe at the junction as Lo~, and the normal  to 
the light sheet containing stripe Lo~ as No~, we can write 
COS 0~ k as: 

cos  ~k = nk" m 

= (Lok X Nok)'(Lok X Lof t 

= (Lo~.Lok) (Nok'Loj) - (Log. Loj)(No~'Lo~) 

= I Lokl 2 (No~-Loe) --  (Log" Lo;)" 0 

= ILokle(Na~ "Loft 

= ILo~l e cos (N0~, Lo~)lN0~l ILojI 

[Lo~l = cos (No,, Loft 

ILo~l ~ sin(Lo~, Loft 

- c°s(N°~' L°ft (29) 
sin(Lo> Lof t "  

Hence, by denoting angles (N~, Loj ) and (Lok , Lof  t as % 
and ~2, we have 

cos(% + A ~ )  cos~ 1 
Acosc¢ k =  ~ + A : ~ 2 )  sin~2 

_< Isin ~e cos(% + A~a) - sin(% + A%)cos cql 
sin2 ~2 

Isin(% -- ~1 -- A%) -- sin(~ 2 -- % + A,~2) I 
2 sine~'e 

< IA~I + zX~2) 
- 2 sin e :~2 

I(No~,N*~)I + I(l,,, l*)l 

2 sin 2 (Lok, Lof  t 

Then the relative error  in computing cos :~ is: 

I(N°~'N*)I + I(l'~'l*0l (30) 
cos c~ k _< 2 sin(Lok, Loj) cos(Ng~, Loft' 

where (N~, N*~), (Lok, Lo0 and (Loj, Loj) are the angular  
errors in computing the directions of vectors Ng~, Lok 
and Loj, respectively. As discussed in Section 3.4, 
(Ng~, No* ) ~ (P~, P*) _< ~o [equation (19)]. The error  in 
computing Log and Lo~ is given in equation (17). 

The last step is to investigate the error  in comput ing 
the principal  surface curvature using Euler's theorem. 
As indicated in references (13, 14), three equations in 
three unknowns ~q, x2 and 01 are solved for the 
principal  curvatures and their directions for general 
types of surfaces. While for the four parametr ic  surfa- 
ces, planes, spheres, cones and cylinders, either K1 = Xe 
(for planes and spheres) or ~:2 = 0 (or cones and cylin- 
ders). Hence we end up with two equations in terms of 

two unknowns tq and 01. Here we restrict our dis- 
cussion to the four primitive surface types. The analy- 
sis of general free-form surfaces is similar, but  the 
resulting expressions are much more complicated. 

Cones and cylinders are simple surfaces of revol- 
ution which are obtained by rotat ing a line about  an 
axis of revolution. The fact that  the ruling is linear 
infers the special proper ty  ~c 2 = 0 for cones and cylin- 
ders. This special proper ty  enables us to compute  ~c 1 
and 01 using equation (23) with two sets of stripes: 

K1 cos 2 01; 

where we use 01,2 as a shorthand for (L<, Lo2 ). Solving 
the above equations, we obtain: 

1 ( G - e c o s 0 1 2  G x / ~ G ~ + G ) .  (31) 
K1 sin 2 0Le . . . .  

Now let: 

u(~c.~, ~c) = tc.~ + tc.~ -- 2cos 0 1 , 2 ~ ,  

the relative error  of tc x is: 

-l KI l 
I,/ /~* * • 2 I ( n * '  sln 01, 2 
~ a ~ -  1 

I u(G~,  K.=) s in  01,2 

sine 01 2Au(G~ G~) - u(G~, G~) A sine 01.e I 

u(K . . . . .  )sin 01, 2 [ 

I & ( t q . ,  *%) - & s in  2 01,21 

A~c,~ + AG~ ~ 2 cos 0 1 , z A ~  

~c.~ + sc.~ - 2  cos 0 ~ , e ~  

A_ sin 2 01,21 

sin2 01,2 I 

+ - c o s  

1 to., + rc.~ - 2 c o s  0 1 , 2 ~  

sin(201,2 -}- m01,2) sin A01,z 

(/(nl --  COS 0 1 , 2 ~ ) t ~ / g n i "  

+ (~.~ - cos  01,2 K.X/7~K~. )&c. 2 

tc.~ + ~c.~ -- 2 c o s  0 1 , 2 ~  

- -  2 cot 01,2 sin A01,2 

0%1 + to. - -2cos01  e ~ ) ( & c .  + &c.=) 
4 

x (~c.~ + K.2 - 2 c o s  01,2 ~.x/727Q-.~. ) 

- 2 cot 01 ,e sin AOl,e 

_ (6G~4&%2) 2cot01,esinA01,  a 

< (&c.l'  &c.2) 
4 ~- 2 c° t  01'2 sinlA01'2l" (32) 
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Fig. 6. 3D position error curve. 

As can be seen in equation (32), &c 1 comprises two 
terms. The first term is the relative error in computing 
the curvature of the normal  sections that share the 
same tangential direction as the projected stripes 
[equation (28)]. This term itself is the sum of two error 
factors: 6~c k, error in computing the curvature of pro- 
jected stripes which was discussed in Section 4.2, and 
6 cos c( k, error due to the projection process in Meus- 
nier's theorem which was given in equation (30). Both 
6cost( k and the second term 2cot01,2sinlA0~,2l are 
functions of the angle between the tangential direc- 
tions of two stripes at the junct ion under consider- 
ation. The relationship between 01, 2 and (P0, Po) - t h e  
angle between the normal  to grid plane and the imaged 
surface normal  is given in equation (15). 

5. S I M U L A T I O N  R E S U L T S  

For  the simulation results presented here, we as- 
sume the following system parameters: 

f i=fo= 100 _+ 0.5 ram, 

D ~ 5 m ,  

W= 13.312mm (1024 pixels), 

wg ~ 39/zm (3 pixels wide), 

where f l  and fg are the focal lengths of the camera and 
the projector, D is the distance from the camera to the 
imaged object, W is the size of the image CCD array 
and wg is the pattern width in the projection slide. 
These values are chosen to be their typical settings 
used in our  experiment. W confirms with typical 
vendor specs in trade journals.  

In the first simulation, we examine the effect angle 
0 - - t h e  angle between the x axes of the projector and 
the cam era - -ha s  on the computat ion of 3D surface 
position. In Fig. 6, we plot the maximum relative error 
in computing surface depth as a function of 0 which 
assumes a range 5-90 °. Three cases where the focal 
lengths of the camera and the projector assume the 
values of 35, 50 and 100 mm (curves a, b and c in Fig. 6, 
respectively)--are shown. As can be seen from Fig. 6, 
for all three curves, the largest error occurs when 
0 approaches zero, which implies that a stereo con- 
figuration where the optical axes of the two cameras 
are parallel is not  an ideal choice as far as 3D position 
accuracy is concerned. Intuitively speaking, a large 
0 reduces the size of the uncertainty region where 
a feature point  can lie and hence reduces the maximum 
relative error. Also, larger focal lengths do reduce the 
position error. The reason is that large focal lengths 
reduce the size of the field of view, and allow the same 
spatial image resolution to be used to describe a small- 
er 3D volume. Hence, higher feature resolution is 
achieved to reduce positioning error. 

The second simulation gives the maximum angular  
error in computing surface orientation as a function of 
the angle 0. Again in Fig. 7, three curves are shown 
with different (Pg, Po) angle which denotes the angle 
between the imaged surface normal  and the projection 
direction (or the grid plane normal  direction). As 
mentioned before, the desired configuration is to have 
the grid plane facing the imaged object surface, other- 
wise the width of the projected pattern increases 
[equation (3)], and so is the relative error in feature 
extraction [equation (5)]. Hence, a large (Pg, Po) reduc- 
es the accuracy. It can also be seen in Fig. 7 that a large 
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0 angle helps reducing the maximum angular error as 
we have predicted. 

Finally, we perform a simulation to analyse the error 
in computing principal surface curvature. We use 
equation (32) to plot the curves in Fig. 8. As we have 
predicted, a large 0 stabilizes the computat ion which 
a large (Pg, Po) increases the error for the same reasons 
as stated above. 

6. CONCLUSIONS 

In summary, a detailed study of a number  of error 
sources and their effects on measuring 3D surface 
properties using the structured lighting technique is 
presented in this paper. The derived error expressions 
give the absolute and relative error bounds in obtain- 
ing 3D surface position, orientation and curvature 
measurements. Error  expressions are given in terms of 
the system parameters and likely error sources. We 
show that careful choice and calibration of the system 
parameters can greatly reduce the error in computing 
surface properties using structured lighting. There- 
fore, the designer of a structured light sensing system 
can use the derived expressions to fine tune the choice 
of the system parameters. Several suggestions on 
reducing the error in inferring surface properties 
using structured lighting can be drawn from this 
research: 

• Use lenses of large focal length. Large focal length 
reduces the size of the field of view, allows the same 
spatial image resolution to be used to describe a small- 
er 3D volume. Hence, a higher feature resolution is 
obtained. 

• Choosing a large angle between the optical axes 
of the projector and the camera helps reducing the 
size of the uncertainty region in locating a point in 
space. 

• Differentiation is a process notorious for being 
noise-sensitive. The problem only becomes worse 
when high-order derivatives are used. )k useful ap- 
proach to stabilize high-order differentiations is to first 
apply conic fitting and smoothing, then derivatives can 
be computed based on the fitting coefficients. This 
method can greatly improve the accuracy in comput-  
ing surface curvatures. 

• The tangential direction computat ion is used 
in both the orientation and curvature measurements. 
It is also noise-sensitive. Carefully selecting the size 
of the sampling interval is one way to reduce error. 
Curve fitting to smooth out the undulat ion caused 
by noise before numerical differentiation is also im- 
portant.  

• Face the projector to the normal  direction of the 
imaged surface area. This will help keeping the angle 
between the two projected stripes on the object surface 
large. Hence, computing surface normal  as the vector 
product  of the tangential directions of the projected 
stripes will be more stable. 
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APPENDIX A: PROOFS OF PROPOSITIONS AND LEMMAS 

Proposition 1 (featurelocationerror). Ifpoints on the central 
line along a perceived stripe are selected and reported as the 
position of the stripe in the image plane, then the feature 
location error introduced is: 

e I = Ix* - xl 

< dof i max(tan c~, tan fl) 

_ 2difo sin2(00) wg, 

where x denotes the (true) coordinate of a point on the 
projected curve and x is the coordinate of the approximation 
point, i.e. the center pixel; w o is the stripe width in the 
projection slide, 2c~ equals the projection angle and 2/3 equals 
the viewing angle (Fig. 2). 

In order to prove the above proposition, the following 
lemma is needed. 

Lemma 2 (bisecting angle of a triangle). Given a triangle 
ABC and a line segment__ AD which diyfdes a n g l e / C A B  into 
21 and a 2 and side BC into two segments BD and DC, then the 
lengths of BD and DC satisfy the following relation: 

IBDI sinai"sin(7--  ~2) 
IDCl - sin a2.sin(7 + 21)' (33) 

where 7 -= /- ADB. Furthermore, if AD bisects side BC into 
two segments of equal length or ]BDI = I DCI, then the bisect- 
ing angles ~1 and ~2 approach each other as 7 approaches n/2. 
Proof of Lemma 2 is straightforward and will not be pres- 
ented here. Now we are ready to prove Theorem 1. 

Proof. Consider a light sheet resulting from the projection of 
a stripe in the slide onto the imaged object surface. Referring 
to Fig. 2, in a typical structured light experiment cp0, the angle 
between the projection direction and the optical axis of the 
projector, and ~o/, the angle between the viewing direction and 
the optical axis of the camera, are small [because f>> Ill in 
equation (1)]. This implies that 70, the angle between the 
projection direction and the grid plane, and 7i, the angle 
between the viewing direction and the image plane, are close 
to n/2. Hence, if the center line of a stripe is selected as the 
position of the stripe, then by Lemma 2, we have a~ ~ c~ 2 ~ ~, 
fl~ ~ f12 ~ fl (Fig. 2). 

Apply Lemma 2 to the triangles formed by the grid projec- 
tion and the image formation (Fig. 2), we have: 

L 1  _ s i n ( 0  o - e )  1~ _ s i n ( 0 ~  - - / 3 )  

L z sin(0 o+~) '  12 sin(0/+/3) 

Since: 

and 

where 

Wo=L t + L 2 = l  1 +12, 

Awo = ILl -- 11 I 

LI-~L 2 11+1112 w°' 

LI sin(00 - e) 

L1 + L2 - sin(00 + c0 + sin(0 o - c~) 

sin00 cos c~ - cos 0, sin 

2 sin 00 cos 

= ½(1 - cot 00 tan e), 
and 

11 = ½(1 - cot 0/tan/3), 
l s + 12 

therefore, the relative error is: 

gpw= L1 la1112+ 
L1 + L2 

= ½1cot 0g tan :~ - cot 0 i tan/31 

< ½(]cot 00 tan el + Icot 0~ tan/~)l 

= ½(Icot 00 II tanc~l + Icot0~ll tan/31) 

< ½ max(ttan ~l, Itan/31) (]cot 0gl + Icot 0il)- 
Since 

0-<00--< 5 , 0 < 0 / <  5 , 

/T 7C 
0 _ < ~ < ~  0 < f i < ~ ,  

we have 

Itanc~l = t a n e ,  Itan/3l =tan/3, 

[cot 0gl + [cot 0/t = [cot 0 o + cot 0~l. 

The above inequality becomes: 

6w < ½ max(ltan c~l, [tan ill)( [cot 0 o[ + [cot Oil ) 

= ½ max(tan c~, tan/3)([cot 0 0 + cot O/l) 

1 - , ,  [sin (00 - O~)l 
= ~max(tan ~ tanp)  - -  

' I sin 00 sin 0/I 

< ½max(tan c~, tan fl) 1 
- [sin 00 sin Oij" 

6w deduced above holds both on the object surface in three 
dimensions and in the image plane. Hence, the feature loca- 
tion error in the image plane is: 

e f = w i • (~ .w 

< dof i max(tan a, tan fl) 

- 2d/, fo sinz (0o) w°" [] 

Proposition 2 (error in computing stripe tangential direc- 
tion). The direction of the tangent vector computed using the 
midpoint rule on a set of discrete points at (x/, y/) is within Ae 
to the true tangent of the curve y(x) at (x/, y~), where: 

As_<tan a 4Ey, 
4 - -  E f t , '  

and Ey, is the upper bound of Ay'(x), which is: 

E h 2 
Ey, = z ~ + ~ M f ,  
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where  E, is the  m a x i m u m  image  process ing error  in measu r -  
ing a y coordinate;  h is the length of the sampl ing  interval;  My 
is defined as: 

My = m a x  ly~3)(x)[, 

for x e Ix i_ i, xi + 1]. 

Proof. According  to the m id po in t  rule, the  t angen t  to a curve 
C at  point  p = (xl, y~) is ap p rox im a ted  by a chord  AB,  where  
A = (x i 1, Yi 1) and  B = (xi+ i, Yi+ t) are two other  poin ts  on 
C and  x~_ ~ + h = x~ = x~ + ~ - h .  Us ing  Taylor ' s  theorem,  ~2.'2s) 
we have: 

y,(xl) Yi+i - Yl-  1 h2 
2h 6 y~3)(~), (34) 

where  ~ lies in between x~_l an d  xi+l .  The  last  te rm in 
equa t ion  (34) gives the t runca t ion  error: 

h :  
et = ~_y13)(~), (35) 

which is caused by numer ica l  differentiation. However ,  as jus t  
ment ioned ,  e~ is no t  the only error  source  in a numer ica l  
tangent ia l  compu ta t i on .  There  is ano th e r  error  source  due  to 
image  processing,  i.e. we m a y  not  locate y~_~ and  Y~+I 
precisely. Deno te  the m easu red  y values at x~ ~ and  x~+ ~ as 
Y*  1 and  y*+ l, then  we have: 

YT+l - Y * - i  
y ' ( x l )  2h et - -  em' (36) 

and  

y L I - y L 1  Y i + l - - Y l  t e~= ~ ~ 

Y?+I  - - Y i + l  Y*-i  - - Y i - 1  
= ~ 

1 
< - - ~ m a x ( l y * + l - y i + l [ , l y * - t - y i  l]) (37) 

denotes  the error  caused  by image  processing.  If the upper  
er ror  b o u n d  in image  process ing  is E, = max(e,)  [e, is defined 
in equa t ion  (4)], i.e. lY* - Y[ -< E,, for x e [xi l, xi + 1], then  the 
total  er ror  in eva lua t ing  y ' ( x ) - - c o n s i d e r i n g  bo th  error  in 
numer ica l  a p p r o x i m a t i o n  and  in image  p r o c e s s i n g - - i s  
b o u n d  by: 

h z E r 
Ey, = max(e,) + max(e,,) = ~ - m y  + ~-. 

Since y'(x) denotes  the slope of a curve,  er ror  Ay'(x) induces  an  
angu la r  er ror  Ac~, which is: 

y '* = tan  ~* 

= tan(c~ + A:0 

tan  c~ + tan  Ac~ 

- 1 - tan c~ tan Act 

y' + tan  Ac~ 

1 - y'  tan Act' 

hence,  we obtain:  

Ay' 
Act = tan 1 _ _  

y ' y ' * +  1 

Ay'  
= t a n -  1 

(y,.)z _ Ayy '*  + 1 

Ey, 
N t a n -  1 

(y,.)2 _ Ey,y'* + 1" 
(38) 

W h e n  y '* = - E S 2 ,  express ion (y,.)2 _ E~,y '*+ 1 reaches  its 
m i n i m u m  value  of 1 - E ~ , / 4  and  Ac~ reaches  its m a x i m u m  
value  of: 

t a n - t  4Er, [ ]  
4 - E ~ , "  

Proposit ion 3 (error p ropaga t ion  in vector  product) .  
Referring to Fig. 4, let a, a*, b, b* be uni t  vectors,  and  
e = s i n ( a , a * ) ,  6 =  sin(b,b*). If c = a  × b, c* = a *  x b* and  
7 = (c,c*), we have: 

sin ,; < max(t ,  6, x /e  2 + 62 - 2e6 cos(a, b*)) 

sin(a*, b*) 

Especially, when  ~ / 6 _  (a*, b*)_< 7r/2, we can a t ta in  the fol- 
lowing simplified inequali ty:  

sin 7 _< 2max(s in(a ,  a*), sin(b, b*)). 

To  prove the proposi t ion ,  we in t roduce  the following lemma.  

Lemma 3 m a x i m u m  of funct ion  F(x,  y) = x 2 + y2 _ 2;txy 
Given  0 _< 2 _< 1, the  func ton  F(x,  y) = x 2 + y2 _ 22xy  defined 
.on [-0, e] x [0, 6], e, 6 > 0 a t ta ins  its m a x i m u m  at  the three 
corner  po in t s  (~,0), (0,6) and  (e,6) of the rec tangula r  
[0,e]  x [0 ,6 ]  and:  

F(x, y) _< max(e 2, 62, e 2 + 62 - 2).e6). (39) 

P roof  of the above  l e m m a  is s t ra igh t forward  and  will not  be 
presented  here. N o w  we are ready to prove  Propos i t ion  3. 

P r o @  We have: 

Icllc*lsin T = Ic x c*J 

= l ( a  x b) x (a* x b*)l 

= I [ (a  x b ) ' b * ] a *  - [ (a  x b ) . a * ] b * l  

= ~ / [ [ ( a ' ~  b ) . b * ] a * -  [(a x b ) . a * ] b * l  2 

/ l (a  x b) 'b*] 2 ÷ I(a x b)-a*] 2. 

= "~/J - 21(a x b)-b* II (a x b) 'a* l  cos(a* x b*). 

N o w  per form a coord ina te  ro ta t ion  so tha t  a and  b lie on the 
X - Y  plane, then  c = a x b is a l igned a long  the Z direct ion 
with a length of sin(a,b). One  can easily verify tha t  the 
projected length of a in the Z direction is be tween 0 ]if(a, a*) 
lies in the X - Y  plane]  a n d  s in(a ,a*)  [if (a,a*) is a long  the 
z-axis[,  thus  the dot  p roduc t  (a x b)-a* satisfies: 

0 < I(a x b)" a*l  _< ]sin(e, b)sin(a, a*)[ = [sin(e, b)e[. 

Similarly, we have  for b*: 

0 < I(a x b). b*l < Isin(a, b)sin(b, b*)l = ]sin(e, b)6 I. 

Subs t i tu t ing  x with I(a x b)- b*l, Y with I (a x b). a* I and  2 with 
cos(e*, b*) into L e m m a  3, we have: 

le[le*l s i n , / =  ]c x c*l 

/ l ( a  x b)-b*l 2 + I(a × b ) a * l  2" 
/ 

N/ - 2 1 ( a  x b)-b*l l (ab)-a*lcos(a*,b*)  

2 2 2 2 

\/e 2 sinZ(a, b) + 6 z sin2(a, b)- 

-- 2e3 sin2(a, b) cos (a*, b*)) 

= sin(a, b) max(e,  & x / e  2 + 62 - 2e6 cos(a*, b*)). 
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f (a )  = g(a), f ( g )  = g(b), 
~c~(a, b), f (c) = g(c). 

F a c t  I 

~rh~(a, b), i = 1 , . . . ,  n, n _> 2, 

f '(rh) = g'(th), 
tl~ < c < t l , .  

-rip1 

7PI  ~ Q  1 
nP~ ~ R ~  
Q, ^ R~ ~ P~ 
P~ 

F a c t  II 

P l : 3 x l ,  x 1 ~(a, b), 

~:(xO >- ~.(xO. 

7 P  2 
F a c t  I I I  7P2  -~ Q2 

P2:3x2,x2e(a,b) ,  , q P2-~ R2 
tcI(x2) N ko(x2). Q2 A R z -~ P2 

P2 

Fac t  IV 
P:3~, ~e(a,b), 
~:(0 = K~(~) 

W h e r e  Q1 :Vx~(~/1,r/,), f ' ( x )  > g'(x). 
R 1 :Vxe(a ,  ql), f ' ( x )  < g'(x). 

Q2 :Vxe( th ,  q,), f ' ( x )  < g'(x). 
R 2 : g x e ( r  h ,  b), f ' ( x )  > g'(x). 

Fig. A1. S teps  in  p r o v i n g  L e m m a  1. 

Hence: 

[C × C*[ 
sin 7 = - -  

Icllc*l 

Ic × c*l 
"sin(a, b) sin(a*, b*) 

max(e, 6, ~/e2 + 62 _ 2e+ cos (a*, b*)) 

sin(a*, b*) 

We have proved inequality (l 1). If certain ranges of (a, b) are 
given, the value of sin 7 is bound as  follows: 

max(e, 6) 
0 _< (a*,b*) < n/3; 

sin(a*, b*)' 

s i n T <  2 : m a x ( ~ , ~ ) ,  n / 3 < ( a * , b * ) < n / 2 ;  (40) 

x/e 2 + 6 2, (a*, b*) = n/2; 

that is: 

• f /2  1 k 
sin7 < max(sin(a,a*), sin(b, b ) ) m a x , 2  ~/~,  ~ ) ) .  

Especially, when 7r/6 < (a*, b*)_< n/2, the following can be 
directly derived from inequality (11): 

sin y < 2max(sin(a, a*), sin(b, b*)). 

Lemma 1 (curvatures of two intersecting curves). Suppose 
that we are given two C z curves y = f ( x )  and y = g ( x ) ,  
g'(x) ¢ O, both defined on a closed interval [a, b] with coinci- 
dent end points, i.e. f(a) = g(a), f(a) = g(b). If another  point 
c inside the interval [a,b] can be found such that the two 
curves intersect, i.e. f(c) = g(c), then there exists at least one 

point in the interval where the two share the same curvature, 
or ?~e(a,b), Xs(0 = ~g(O. 

Proof. The proof process is sketched graphically in Fig. A1 
and consists of four steps. First we prove Fact (I), which 
asserts that there exists an increasing sequence of points n i of 
length at least two in the open interval (a,b), that  is 
a<r /1  < ..- < t/, < b, n>_2, which satisfies f'(rh) = g'(r/i), i =  
1 , . . . ,n ,  and ql < c <  q,. 

Fact (I) will then be used to establish Facts (II) and (III), 
which state that in interval (a, b) there must  exist at least one 
point where ~c I > x a [Fact  (II)] and another  point where 
rc s _< ~% [Fact (III)]. Since both f and g are C 2, Facts (II) and 
(III) together establish that there exists at least one point in 
the interval where f and g assume the same curvature 
measurement  ~c s = x 0 (Fact IV and the Lemma). 

Proof of Fact. (I). Apply the Mean Value Theorem (Cau- 
chy) ~2s) to f (x)  and g(x) in the interval [a, c] and we know that  
there mus t  exist at least one point tljE(a,c) such that: 

f'(tljl) f ( c ) -  f(a) 
g'(qjl) g(c) -- g(a) 

Furthermore,  because f and g coincide on three points a, b 
and c, or f la)= g(a), f(c)=0(c), we have f ' ( q j , ) =  g'(r/j~). 
Notice that g(c) - g(a) will not  vanish. If g(c) - g(a) = 0, then 
by Rolle's Theorem (28) there must  exist at least one point 
pe(a,c) such that g ' (#)=0. .  This contradicts with the as- 
sumpt ion that  g'(x)¢ 0 in (a, b). Following a similar argu- 
ment, one can easily show that there must  exist at least one 
point r/i e(a, b) such that f ' ( t / i )  = g'(~/j). 

Certainly, r/j, and qj~ should be included in the sequence r h 
which proves that such a sequence exists with at least two 
points. Since we can always choose r h and ~/, in such a way 
that  r h < ~/j~ < c and c < r/i~ < ft, , hence we have r h < c < r/,. 
This completes the proof of Fact (I). 
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Proof o f  Facts (II) and (III). Next, we prove Facts (II) and 
(IIl); the proof  procedures of these facts are similar and only 
one proof [ that  of Fact (II)] will be presented here. That  is, we 
want to prove the following proposition Pl:3Xxf(a ,b) ,  
, 9 ( x O  > Ko(xO. 

We prove P1 by contradiction. As sketched in Fig. 9, we will 
assume that -7 P~ is true (i.e. Px is false). Then based on Pi we 
can prove two additional facts Q~ and Rl which, when put  
together, imply P1. Hence, a contradiction results which 
implies that  Pt  is true. Below we give the proof in four steps: 

(1) First, let ~ P1 :Vxi(a,b) ,  tCs(X ) < ~Cs(X ) be our hypoth-  
esis. 

(2) ~ P1 --' Q1, where Qx :Vxf(q l ,  G), f ' (x)  > g'(x). 

We prove the logical equivalent proposition -7 Q~ --* P1. If 
Q~ is not  true, then there must  exist at least one point 
~f(rh, r/,) such that f ' (#)  <_ g'(l~). The C z property guarantees 
the continuity of f ' (x )  and g'(x), hence there must  exist 
a nonzero region around/~ such that the relation of the first 
derivatives of f and g is preserved. Tha t  is, a region (u,v) 
exists, with u e [t/l, r/,), v f(r/1, r/,] and u < # < v such that 
f '(x)<_9'(x) for all xf(u ,v) .  Furthermore,  we have 
f ' (u) = g'(u) and f '(v) = g'(v) [i.e. f '  and g' change sign at the 
end points of the region (u, v)]. Hence, by Rolle's Theorem, 
there must  exist a point ( f (u ,  v) = f"(~) = g"(O. Furthermore,  

is in the interval (u, v) and h e n c e f ' ( 0  _< g'(~). Substitute this 
into: 

ly"(x) l 
~CYlx) (1 + y ' ( x ) 2 )  3/2' 

we conclude that rc~-(0 > tc0(~), which is P1. 
(3) ~ P~ ~ R 1, where R 1 :gxf (a ,  rh), f ' (x)  < g'(x). 
Again, we prove the logical equivalent proposition 

~R1- -+P P - q R  1 implies that  there exists at least one 
#! (a ,  r/l) for which f'(/~) _ g'(#). Then since c < G, the resol- 
ution must  hold in the interval (a,c). Now define 
s(x) = f (x)  -- g(x), then s'(x) > 0 on (a, c), that is, s(x) is a non- 
decreasing function. However, we know that  s(a) = s(c) = 0, 
which implies s(x) = f (x)  - g(x) ~ 0, Vxf (a ,  c). This contra- 
dicts with the hypothesis ~ Pp  

(4) Q1 A R t  - - ' P r  

Let us select a region (u, v) such that  u < th, r h < v < r/, and 
de'note t(x) = f ' (x)  - g'(x). It is shown in the above discussion 
that  t(u) < O, t(v) > 0. Hence, we have: 

0 < t ( v )  - t ( u )  = t ' ( ~ ) ( v  - u ) ,  

o r  

t ( v )  - t ( u )  
0 < - -  t'(~), 

V--U 

where #!(u,v).  Now let both u and v approach r/t, or u ~ t / t  , 
v ~ r/1, then the above expression approaches the derivative of 
t(x) at r/l: 

t(v) - t(u) 
0 _< lira t'(r/O, 

u,v~n~ 13 - -  U 

that is, f ' ( r /1)>-g'( th) .  Together with f ' ( r /0  = g'(th) implies 
that Px is true. Hence, we obtain a contradiction. This 
completes our proof  for the part of P p  

Using a similar proof procedure, one can prove 
P2:3x2 if(a, b), ~co (x2) < ~cs(x2). 

Proof o f  Facts (IV). Combine  the two propositions P1 and P2 
with the fact that  both ~c,(x) and ~co(x) are cont inuous func- 
tions on (a, b), we obtain proposition P which states that for at 
least one point in the interval (a, b), f and g must  share the 
same curvature value. That  completes the proof  of the 
Lemma.  [] 

Proposition 4 (curvature approximation w/o image process- 
ing error). Suppose that  we have two C 2 curves y = f (x )  and 
y = g(x) defined on a closed interval [a, b]  and an increasing 

sequence of points (of length at least three), x 0 . . . . .  x ,_  l, 
a = X o < X l < . . . < x  . l = b  and f (x l )=g(x i ) ,  for i =  
0 . . . .  , n -  1. Furthermore,  denote the upper bound of the 
change curvature inside interval [a,b] as M I and Mg for 
curves f (x )  and g(x), respectively, i.e. In~r(x)l<M l, 
[x'o(x)l ~ M o, and maxlxi+ 1 --xi], 0 _< i < n - 1, as h, then we 
have: 

[rci(x ) -- ~c0(x)[ _< 2h(M s + Mo) , for a < x < b. 

When x = x i, we have: 

]~cf(x) - ~¢g(x)[ _< h(My + Mo). 

Proof. Since the x i sequence spans the whole interval [a, b] 
and is of length at least of three, every point x which lies in the 
interval must  fall in between a pair of points in the xl 
sequence, i.e. Vxe(a,b),3i such that x f ( x i_>x i+t ) .  By 
Lemma 1, there must  exist a point ~ in the interval (x i_ i ,  x~ + 1 ) 

such that xi(~ ) = Kg(¢). Thus,  we have: 

IKs(x) - K,(x)l ___ I K / x )  - xs(¢)l  + I Ks(~) - K0(x)l 

= IKs(x) - ~ /~ )1  + G ( ¢ )  - K,(x)l 

= I ~ ( ~  1 ) ( x  - ¢)1 + I G ( ~ 2 ) ( ~  - x)l 

< Mzlx - ¢1 + Molx -- ~1 

<_ 2h(M I + Mg). 

If x = xi then Ix - ~1 _< h. Hence, we have: 

[~cf(x) - ~c,(x)[ _< h(Mf  + Mo). (41) 
[ ]  

Proposition 5 (curvature approximation with image process- 
ing error). If a projected curve f ( x )  is approximated by a set 
of circular arcs, with one fitting of g(x) over three adjacent 
sampling points ( X i _ l , f * ( X i _ l ) ) ,  ( x i , f * ( x i ) ) ,  and (xi+ 1, 
f*(x~+l) ), I < i < n ,  in the neighborhood of junct ion (x~, 
f*(xl)), where f* (x )  denotes the noise-corrupted version of 
f(x),  then the absolute error in approximating the curvature 
rcf(x) at (x i, f(xi)  ) by ~co(x) is bound by: 

2E~ 
At¢ <_hMf-r h3 , 

and the relative error is: 

f 2 E , \  
~Sx < R t h M y + - - - ~ -  ), 

where h is the length of the sampling interval, R is the radius of 
the circular arc used to approximate f*(x)  at junct ion (xl, 
f*(xl)  ). My  is defined in Proposition 4 and E, is the upper 
bound of the image processing error. 

Proof. The first term of equation (26) denotes the max imum 
error caused by using a conic arc g(x) to approximate a pro- 
jected stripe f (x)  which may  be of a higher order. This term 
comes directly from Propositional 4 with g(x) being a circular 
arc and M o = maxlKbl = 0. 

The second term represents the image processing error. 
Consider the triangle formed by using the three points under 
consideration, (xi_ ~, f ( x  i_ 1)), (xl, f(xi)), and (xi+ 1, f(xi+ t)), 
as vertices and denote the three sides of the triangle as a, b and 
c. Then the radius of the circle which passes through these 
three points is: 

abc 
R = - -  (42) 

2 S '  

where S is the area of the triangle abc and can be computed as: 

S=½ xl 1 S(x, i) 1 . 
f(x,)  1 (43) 

xi+ 1 f (x i+l)  1 

Since (x;_ 1, f i x , _  1)), (x,, f(xl)  ) and (x,+ i, f(xi+ i)) are three 
successive sample points extracted from the projection stripe 
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f ( x ) ,  we have x i + l - - x i = x i - - x i _ l = h .  If we denote 
f (x l )  - f ( x i _  1) and f ( x  i + 1) - f ( x l )  as d 1 and d2, respectively. 
Then the following relations hold: 

x~+i--xl i=2h 

f ( x ,+  1) - - f ( x i -  1) = dl + d2, 

and hence: 

h 
S = ~ (d 2 - d l ) ,  

abc = x / (h  2 + d~)(h 2 + d~)(4h 2 + (d 1 + d2)2). 

Substituting the above into equation (42), we have: 

R -  x/(hE +d~)(hE +d~)(4h2 + ( d l  +d2)2) (44) 

2h(d 2 - dl) 

In computing R*, we use the noise-corrupted version f * ( x ) .  
The largest error in computing R* occurs when Af (x  i 1) = 
Af(x i+  1)= E, and A f ( x i ) =  - E ,  (or A f ( x  i_ 1)= Af(x~+ 1)= 
-Er  and Af ( x~ )=  E r, but this will not  affect the following 
analysis). Then equation (44) becomes: 

(h + (dl + Adl)2 (h 2 + (d2 + Ad2) 2- 

R* = X] (4h2 + (dl + d2 + Adl + Ad2)2) 

2h(d 2 - d 1 + Adz - Adl) 

(h q- (d I q- 2Er)2(h 2 4- (d 2 - 2Er) 2" 

= ~ /  (4h 2 + (dl + d2) 2) 

2h(d 2 - d I - 4Er) 

hence, given E, << d i and E r << h, we have: 

IA~c01 = I x *  - K.I 

= 2h(d 2 - d I - 4E~) 

x/(h2 +(dl  + 2Er)2(h 2 +(d2--2Er)2)(4h2+(dl  +d2) 2) 

and 

2h(d 2 - dl) d2)2 ) 
x / (h  2 + dal){hS~+da27(4-~2 + (dl + 

8E r 

x / (h  2 + d2)(h 2 + d22)(4h 2 + (dl + d2) 2) 

4E r < - -  
h a 

I~Ax) - ~0*(x) l = I ~ / x )  - (~0(x) + AK.(x))I 

< h M f  + iA~c0(x)l 

4Er 
< h M r  + h 2 . 

Thus, we conclude that the absolute error in the curvature 
computat ion is: 

4Er 
AK < h M  y ÷ h2 , 

and the relative error is: 

( 6 K < R  h M  s +  h2 f .  [ ]  
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