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Abstract--Given a digital planar curve of N ordered points, the dynamic programming algorithm is applied 
to find M dominant points, among the N points, which construct a globally optimal approximation to the 
given curve provided that a circular arc is properly designed between each pair of adjacent dominant points. 
This curve-fitting method is generalized to approximate closed curves. A fast algorithm for efficient 
computation is also introduced. The performance is shown by some experimental results. 
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1. INTRODUCTION 

Polygonal approximation is a very important  topic in 
the area of digital image processing. Many approaches 
have been proposed. An attractive approach among 
these is to formulate the approximation as 
an optimization problem/1-3~ The algorithms, t1'2) 
proposed by Ray recursively maximize the objective 
function to find the j th  vertex subject to the constraint 
that the ( j - 1 ) t h  vertex is fixed. Perez ~3) applied 
the dynamic programming algorithm to minimize 
the error function. The polygonal approximation 
constructed by this algorithm is a globally optimal 
approximation. 

Unfortunately,  not all of the digital curves are suit- 
able for applying the polygonal approximation. 
Smooth curves are usually hard to be approximated by 
using polygons. To improve the performance of ap- 
proximation, high-order curves should be used. 
Splines are the most commonly used. t4"5~ However, the 
computat ional  complexity is largely increased using 
splines. In this paper we use circular arcs to approxi- 
mate digital curves. Smooth curves can be efficiently 
fitted and the property of low computat ional  com- 
plexity is preserved. Only a few circular arcs are 
required to approximate a smooth curve. For a poly- 
gon-like curve, a set of circular arcs with small curva- 
tures are automatically chosen by algorithm to fit the 
curve. 

The dynamic programming algorithm is applied to 
find the optimal set of vertices. A simple approach is 
presented to estimate the parameters of the circular 
arcs, which are used to fit the given curve between each 
pair of adjacent vertices. The curve-fitting method is 
generalized to approximate closed curves. Finally, 
a fast algorithm is introduced to reduce the computa- 
tional complexity. Several experimental results are 
also presented. 
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2. PROBLEM FORMULATION 

The problem can be stated as follows: Given a digital 
curve of N ordered points, find M vertex points among 
those given and design a circular arc between each pair 
of adjacent vertices so that the resulting curve most 
closely fits the given digital curve. The set of N given 
points is denoted by: 

S = { s l , s 2  . . . . .  s , , } ,  

= {(xl,yl), (x2, Y2) . . . . .  (xs, yN)}. 

The set of M vertices to be found is denoted by: 

V= {v l , v2  . . . . .  vM}. 

The set of M - 1 circular arcs to be designed is denoted 
by: 

A = {arc(v1, v2), arc(v2, v3) . . . . .  arc(vM- 1, vM)}. 

where arc(vk, v k + 1) is the circular arc designed to fit the 
given points between v k and v k + 1. 

The approximation error of the kth arc arc(v k, v k + 1) 
is defined by: 

~)k÷l 

e(vk, vk+l)= ~ d[s,,arc(vk, vk+l)], (1) 
$~= v k 

where dis i, arc(vk, vk+ 1)] is the error measure between 
the point s i and the kth arc arc(v k, vk+ 1)- 

The problem can now be formulated as follows: 
Given an ordered point set S of length N, find 
M vertices V among S, where v 1 = s 1 and v M = s N, and 
properly design a circular arc between each pair of 
adjacent vertices, such that the approximation error is 
minimized. That  is, we seek to find the min imum error: 

M--1 

E ( N , M ) =  min ~ e(vk, vk+l), 
V c S , A  k = l  

M - 1  vk+ 1 

: min ~ ~ d[si, arc(vk, v~+l) ], (2) 
V c S , A  k = l  si=v ~ 
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where the error measure d is defined by: 

{R k - [ ( X i -  xc) +(yi--jck)2]} 2. d[si, arc(vk, Vk+l)] = 2 k 2 
(3) 

The reason to choose this unusual  error measure, 
which is neither integral absolute error nor  integral 
square error and its effect on the problem will be 
discussed later. 

3. DYNAMIC PROGRAMMING 

The problem can be solved using dynamic program- 
ming, which is based on the recursive function: 

E ( n , m ) =  min [ E ( j , m -  1) + e(sj, s.)], 
2 m  - 3 < j<_ n - 2 

where E(n, m) denotes the min imum approximation 
error of fitting {s l , s  2 . . . . .  s,} using m vertices, 
E(j,  m - 1) denotes the min imum approximation error 
of fitting {Sl, s2 . . . . .  s j} using m - 1 vertices and e(sj, s,) 
denotes the min imum approximation error of fitting 
{sj, s j+ a,. .- ,  s,} using a single arc, which ends at sj and 

S n . 

The philosophy of dynamic programming is to de- 
rive E(', m) from E(-, m - 1) recursively. E(n, m) is found 
by adjusting j, such that the sum of E ( j , m  - 1) and 
e(sj, s,) reaches its min imum value. That  is, the fitting of 
the first n points using m vertices is partitioned into the 
fitting of the first j points using m - 1 vertices and the 
fitting of the remaining points by a single arc, which 
ends at the j th  and nth points. 

A circular arc can be designed to pass through three 
consecutive points; therefore, 2 m -  3 points can be 
f t ted without error by choosing the 1st, 3rd,. . .  and 
(2m - 3)th point (m - 1 points in total) as vertices. That  
is, E ( 2 m - 3 , m -  1) is equal to zero and 2 m - 3  is the 
lower bound of)'. Further  reduction o f j  will not  reduce 
E ( j , m - 1 ) ;  on the contrary, it will increase e(sj, s,). 
Similarly, n - 2 is the upper bound of j, because the 
(n - 2)th, (n - 1)th and nth point can be fitted without 
error by the additional arc. 

To ensure that the first point will be chosen as the 
vertex, the value of E(1, 1) is set at zero and the values 
of all the E(n, 1) with n :~ 1 are set at infinity. There- 
after, the algorithm can be started from the initial state 
E(., 1). 

The dynamic programming algorithm is sum- 
marized as follows: 

Aloori thm 1. 

E(1, 1)= 0. 
For  n = 2  N, 

E(n, 1) = + m. 
Endfor. 
For  m = 2 -M,  

F o r n = 2 m - 1  N, 
E(n, m) = min [E( j ,  m - 1) + e(s~, s,)]. 

2 m - 3 < _ j , n - 2  

Endfor. 
Endfor. 
Return E(N,  M).  

The computat ion of e(sj, s,) will be discussed in the 
next section. 

4. ESTIMATION OF ARC PARAMETERS 

To compute the approximation error e(sj, s.), the 
circular arc arc(s1, s.) should be designed in advance. 
The opt imum values of the arc parameters depend on 
the definition of the error measure. The most common-  
ly used error measures are integral absolute error, 
integral square error, and so on. However, the optimal 
values corresponding to these error measures are hard 
to be solved efficiently. 

U.M. Landau has suggested an iterative algorithm 
for solving a similar problem36) Since the algorithm is 
based on an iterative mechanism, its computational 
complexity is high. An efficient algorithm for solving 
Landau's  problem is proposed by S.M. ThomasJ 7~ The 
exact solution is found by carefully redefining the error 
function. He chose "area" instead of "length" as the 
quanti ty of the error measure. Due to the redefinition 
of error measure, an estimation bias results. This bias is 
small and approaches zero as the number  of points 
approaches infinity. 

In order to design the arcs efficiently, we use the 
modified error function defined by Thomas, which is 
given by equation (3). Therefore, the parameters, which 
are the center (xc, Yc) and the radius R, of the arc (s j, s.) 
can be solved by minimizing the error function: 

J =  ~ { R 2 - [ ( x i - x c ) e + ( y i - y c ) 2 ] }  2. (4) 
i=) 

In our problem, the arc should pass through the points 
sj and s.. Therefore, the arc center must lie on the line: 

y = a x  + b ,  

where 

x n - x j  
a ~ - - - -  

y.  -- y j '  

= X j  + X n b YJ + y" a - -  
2 2 

That is, yc can be expressed in terms of xc by: 

yc = ax~ + b. (5) 

The arc radius R can be expressed in terms of the arc 
center (xc, yc) by: 

R 2 = (xj -- Xc) 2 + (yj -- yc) 2. (6) 

Substituting equations (5) and (6) into (4), it becomes: 

J = ~ { E(x~ - x~)2.+ (Yi - (ax~ + b)) z ] 
i=j 

- [(xi - x~) 2 + (Yl - ( a x c  + b))2] } 2. 

Differentiating with respect to x c and setting to zero 
yields: 

~"7=jK1K2 (7) x ¢ -  ~ .  " g ' 
l - - ,  i = j l (~ l 3 
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where 

K 1= - - x j - a y j + x  i+ayi ,  
K 2 = x 2 + (Yj - b) 2 - x 2 _ (yl - b) 2, 

K 3 = - 2 x ;  - 2a(y; - b) + 2x i + 2a(y i - b). 

Then, Yc and R are solved by substituting x c back into 
equations (5) and (6). The approximation error is 
calculated by substituting all these parameters back 
into equation (4). 

Remarks  

• If yj = y,, equation (5) will not be valid. In such 
cases, the equation x c = (x; + x,)/2 is used. Then the arc 
parameters can be solved by similar derivations. 

• If the denominator  of equation (7) is equal to or 
approximately equal to zero, a straight line segment is 
used to approximate the given points. 

• The incremental computat ion method introduc- 
ed in reference (3) can also be applied here to reduce the 
computat ional  complexity. 

• If we want to minimize integral square error, in 
other words, the error measure: 

d[si, arc(vk, Vk+ l)] = [ R k - - X / ( X i - -  xk)2 -l-(Yi-- yc)k 212 
(8) 

is chosen instead of that given by equation (3), then 
equations (5), (6) and (7) provide good estimations of 
the optimal arc parameters. The estimation bias is 
small and approaches zero as the number  of points 
approaches infinity. The approximation error can be 
calculated by substituting these parameters into the 
integral square error function: 

e(sj, s , )=  ~ [R - - N / ( X i - - ~ ' ( c )  2 +(yi--yc)2]  2. (9) 
i = j  

That is, our algorithm can be applied to construct 
suboptimal approximation of the given curve in least 
integral square error sense. 

5. F I T T I N G  C L O S E D  C U R V E S  

If the given digital curve is a closed curve, a straight- 
forward method to find the globally optimal approxi- 
mation is to try with all the N possible initial points 
and choose the min imum error outcome. In doing so, 
many of the approximation errors e(sj, s.) are repeated- 
ly used. The computat ional  complexity can be largely 
reduced by carefully designing the algorithm. 

Before proposing our algorithm, let us survey a simi- 
lar work by Maes. (s) In 1974, Wagner and Fischer 
proposed an algorithm for solving the string-to-string 
correction problem, (9) An edit graph was constructed 
by using the edit operations. Then, the dynamic pro- 
gramming was applied to compute the edit distance. 
A generalized algorithm was proposed by Maes to 
handle cyclic strings. 

Let us now apply the concept proposed by Maes to 
generalize our algorithm. The approximation errors 
used in Algorithm 1 for fitting curves with fixed initial 

point are: 

e(sj, s.), where 1 _<j _< n <_ N. 

To fit closed curves, the required approximation errors 
are: 

e(sj, s,), where 1 < j, n < N. 

Notice that, the closed curve is treated as a cyclic 
string; that is: 

S = { S l , S  2 . . . . .  SN} , 

={Sk, Sk+l . . . . .  Su, Sl . . . . .  Sk 11, Vk~{l ,2  . . . . .  N}. 

TO compute the approximation error e(s~,s,} with 
j > n, the error of the string {sj, sj+ 1 . . . .  , s u, s 1 . . . . .  s,} 
with respect to the arc arc(s t, s,} is taken into consider- 
ation. The approximation errors e(s), s,} with n - j  = 0, 
1 and 2 are setted to zero without any effect on the 
result. 

Since these approximation errors are repeatedly 
used, they are computed and saved in advance. Each 
time when an approximation error is required, it is 
picked out from the memory instead of computed once 
more. 

In the kth loop of our algorithm, the kth point of the 
given digital curve is chosen as the initial point. The 
temporary digital curve to be fitted is: 

S k = {Sk, Sk+ 1 . . . . .  SN, S 1 . . . . .  S k _ l ,  Sk}.  

The length of the temporary curve is N + 1, because 
the curve to be designed must start from and terminate 
at the same point. The number  of vertices to be used is 
M + 1. The last point of the temporary curve is a vir- 
tual point and will be chosen as the last vertex. This 
vertex will be merged with the first vertex, resulting in 
a closed curve of M vertices in total. 

The algorithm for fitting closed curves is now sum- 
marized as follows: 

Algorithm 2. 

Compute the approximation error array ( of size 
N x N, where: 

~(i , j )=e(si ,  sj) , l <_i,j<_N. 
Construct the appended array: 

N = N + I .  

h 4 = M +  1. 

For k = l N. 
Construct the temporary approximation error 

array ~', where: 

~ ( i , j ) = ~ , ( i ÷ k - l , j + k - 1 ) ,  l < _ i , j < N .  

Call Algori thm 1. 
E.(k) = E(N,  M). 

Endfor. 

E,. = min E,(k). 
ke{ 1,2,...,N} 

Return E,,. 
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6. EXPERIMENTAL RESULTS 

In order to verify the performance of the present 
algorithm, we have applied our algorithm to the four 
digital curves used in reference (10), namely, a chro- 
mosome-shaped curve [Fig. l(a)], a leaf-shaped curve 
[Fig. 2(a)], a figure-eight curve [Fig. 3(a)] and a curve 
with four semicircles [Fig. 4(a)]. The vertices chosen by 
the dynamic programming algorithm are marked by 
small circles and the solid lines are the constructed 
curves. As shown in the figures, our algorithm con- 
structs good approximations of smooth curves as well 
as polygon-like curves. 

In order to compare with the Teh-Chin algo- 
rithm, c1°) the integral square error given by equation 
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Fig. l(a). Opt imal  approx imat ion of  a chromosome-shaped 
curve using circular arcs (N = 60, M = 10). 
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Fig. l(b). Polygonal approximation of a chromosome- 
shaped curve using the Teh-Chin algorithm (N=60, 

M = 15). 
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Fig. 2(a). 
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Optimal approximation of a leaf-shaped curve 
using circular arcs (N = 120, M = 18). 
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Fig. 2(b). Polygonal approximation of a leaf-shaped curve 
using the Teh-Chin algorithm (N = 120, M = 29). 

(8) is chosen as the error measure in our experiments. 
As discussed in the last remark of Section 4, subopti- 
mal approximations of the given curves are construc- 
ted by our algorithm. From another point of view, the 
resultant curves are optimal approximations of the 
given curves subject to the constraint that the par- 
ameters of all circular arcs are estimated using equa- 
tions (5), (6) and (7). Of course, these equations provide 
good estimations of the optimal values. 

The Teh-Chin algorithm (1°) is a famous algorithm 
for constructing polygonal approximations of digital 
curves. Teh and Chin are the first to propose the 
concept that the region of support of each point should 
be determined independently. Their algorithm pro- 
vides excellent polygonal approximations of digital 
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Fig. 3(a). Optimal approximation of a figure-eight curve 
using circular arcs (N = 45, M = 8). 
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Fig. 4(a). Optimal approximation of a curve with four 
semicircles using circular arcs (N = 102, M = 4). 
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Fig. 3(b). Polygonal approximation of a figure-eight curve 
using the Teh Chin algorithm (N = 45, M = 13). 
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Fig. 4(b). Polygonal approximation of a curve with four 
semicircles using the Teh Chin algorithm (N = 102, M =22). 

Table 1. Results of the present method and the Teh-Chin algorithm 

Digital curve Fig. 1 Fig. 2 Fig. 3 Fig. 4 

Number of points 60 120 45 102 

Results of the present method 
Number of dominant points 10 18 8 4 
Integral square error 2.99 8.25 2.51 6.94 

Results of the Teh-Chin algorithm 
Number of dominant points 15 29 13 22 
Integral square error 7.20 14.96 5.93 20.61 
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curves based on this concept. Teh and Chin state their 
procedure as follows: 

"The procedure first determines the region of sup- 
port for each point based on its local properties, then 
computes measures of relative significance (e.g. curva- 
ture) of each point and finally detects dominant  points 
by a process of nonmaxima suppression. ' '"°)  

Some experimental results of the Teh -Ch in  algo- 
rithm are shown in Figs l(b), 2(b), 3(b) and 4(b). The 
vertices detected by the Teh-Ch in  algorithm are 
marked by small circles and the solid lines are the 
polygonal approximations. In these experiments, the 
k-cosine measure is selected as the measure of signifi- 
cance. 

Some features of our  algorithm and the Teh Chin 
algorithm are tabulated in Table 1, including the 
number  of dominant  points and the integral square 
error. As shown in Table 1, our algorithm outperforms 
the Teh -Ch in  algorithm in the sense of approximation 
errors. Our  algorithm results in smaller errors and 
requires fewer vertices than the Teh -Ch in  algorithm. 
The computat ional  complexity of our algorithm is 
higher than that of the Teh-Ch in  algorithm. However, 
it is still in the acceptable range. 

7. DISCUSSION 

The number  of vertices to be used can be given 
arbitrarily or selected by the algorithm automatically. 
For  example, we can constrain the approximation 
error to be within some threshold per point. The 
dynamic programming algorithm is terminated at the 
value of M which first meets the constraint. In this way, 
the constructed curve will have a min imum number  of 
vertices and acceptable level of approximation error. 

If the digital curve is corrupted with noise, a prepro- 
cess will be required to smooth out the noise. The 
method proposed by Ansari and Huang °1) can be 
applied. In their algorithm, a smoothing procedure is 
proposed to reduce the noise effect based on the Gaus- 
sian filter. 

8. CONCLUSIONS 

In this paper the dynamic programming algorithm 
is applied to choose an optimal set of vertices. A simple 
approach is proposed to design circular arcs between 
each pair of adjacent vertices with low computational 
complexity. The curve-fitting method is generalized to 
approximate closed curves and fast algorithm is also 
provided. Our  algorithm has been tested on a number  
of digital curves and satisfactory results have been 
obtained. 
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