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We study the decomposition of K,* (the complete directed graph with »
vertices) into arc-disjoint elementary k-circuits, primarily for the case k even.
We solve the problem for many values of (n, k) and in particular for all z in
the cases k = 4, 6, 8, and 16.

Let K,,* be the complete directed graph with n vertices: Every ordered
pair of vertices is connected by exactly one arc (directed edge). By a
k-circuit we mean a (directed) elementary circuit of length k; we denote
a k-circuit by (x;, Xg ..., X3, X;) with x; # x; unless i = j. We are
interested in the following problem: For what values of n is it possible to
decompose K, * into pairwise arc-disjoint k-circuits (that is, to partition
the arcs of K,* into k-circuits)? A necessary condition is that the number
of arcs of K,* be a multiple of k; thus we have Proposition 1.

ProposiTiON 1. If K,* (n = k) can be decomposed into k-circuits,
then n(n — 1) = 0 (mod k).

In the case k = 3, it has been proven by the first author [3] that this
condition is sufficient except for n = 6.

THEOREM 1. K, * (n = 3) can be decomposed into 3-circuits if and only
ifnn—1)=0 (mod 3) except for n = 6 (in this case the decomposztzon
is not possible.)

In this paper we give results on the decomposition of K, * into k-circuits,
primarily in the case k even, and solve the problem completely in the cases
k =4, 6, 8, and 16.



The decomposition of the undirected complete graph, K, , into
(undirected) k-cycles has been discussed by Kotzig [10] and Rosa [12, 13].
We summarize their results in Section 5.

1. DECOMPOSITION OF K,* INTO n-CIRCUITS (HAMILTONIAN CIRCUITS)

The problem in this case is a generalization of a similar problem in the
undirected case (due to Kirkman): When is it possible to decompose the
edges of the complete (undirected) graph K, into Hamiltonian cycles ?
The answer is given by Theorem 2.

THEOREM 2 (see [2, p. 233]). The complete (undirected) graph K, can
be decomposed into Hamiltonian cycles if and only if n is odd.

CoROLLARY 1. If n is odd, K,* can be decomposed into Hamiltonian
circuits.

Proof. We obtain such a decomposition by associating with each
n-cycle, x;x, -+ x,x; , of a decomposition of K, the two opposmg n-circuits
(xlaxza 9xn:x1)and(xlaxns x2>x1)

This problem is also closely related to a problem of E. G. Strauss:
When is it possible to decompose K,* into Hamiltonian (spanning)
paths ? In fact, we have

PROPOSITION 2. K,* can be decomposed into Hamiltonian paths if
and only if K}, can be decomposed into Hamiltonian circuits.

Proof. If K,* is decomposed into » Hamiltonian paths P, , but some
vertex is not an initial vertex of one of the paths, it would be the terminal
vertex of n arcs, an impossibility. Similarly, each vertex is a terminal vertex
of one of the paths. To decompose K, into Hamiltonian circuits, one
needs only to consider K, as K, * together with a vertex x which is joined
to each vertex of K,*. The required circuits are C; = (x, P;, x). The
converse is obvious.

The problem of E. G. Strauss has been studied in [I, 7, 8, 11, 16]. In
[11] Mendelsohn has pointed out that a decomposition of K,* into
Hamiltonian paths is possible if there exists a complete latin square of
order n (that is, a latin square in which every ordered pair of elements
appears exactly once in the rows and once in the columns.) Mendelsohn
also showed that if there was a finite sequencable group of order 7 (a
finite group of order m is sequencable if its elements can be listed

81, 825, 8 SO that the partial products g;,g; 2s,.., 2182 " g, are
distinct), then a complete latin square of order n exists (see Lemma 1);



he exhibited a sequencing of the nonabelian group of order 21. Gordon
[8] has shown that an abelian group has a sequencing if and only if it has
- exactly one element of order 2. Wang [1 6] wrote a computer program which
produced sequencings for the nonabelian groups of orders 39, 55 and 57.
It follows that K,* can be decomposed into Hamiltonian circuits for all
odd n and n = 22, 40, 56, and 58.

Bankes [1] wrote a computer program to decompose K,* into
Hamiltonian circuits; he found that K,* can be decomposed into
Hamiltonian circuits if # = 8, 10, 12, and 14. For example, a decompo-
sition of Ky*is: (1,2, 3,4, 5,6, 7,8, 1), (1,3,2,4,6,538,7,1), (1,4, 2,
5,7,3,8,6,1),(1,5,2,6,8,3,7,4, 1), (1, 6, 4, 7, 2,8,53,1),(1,7,6,
3,5,4,8,2,1),(1,8,4,3,6,2, 17,5, 1). ‘

For n = 4 and n = 6 we have verified by considering all possible cases
that K,* and Kg* cannot be decomposed into Hamiltonian circuits (this
result was confirmed by the program of Bankes.) This was also announced
in [11], where it was said that K, * cannot be decomposed into Hamiltonian
paths for n = 3, 5, and 7. (Apparently K;* can be decomposed into
Hamiltonian paths as the decomposition of Kg* into Hamiltonian circuits
shows.)

With an improved version of the program of Bankes, we found that
K,* can be .decomposed into Hamiltonian circuits for n — 16 and 18
before time limitations occurred. Thus the smallest undecided values are
n = 20 and 24. ‘

2. DECOMPOSITION OF K}, INTO n-CIRCUITS

THEOREM 3. For every n, K,y can be decomposed into n-circuits.

In order to prove this theorem we need the following lemma which is
an adaptation of R. C. Bose’s method of “symmetrically repeated
differences” [6].

LemMMA 1. Let I' be a group. Let G be any directed graph on elements
in I'. If e = (x, y) is a directed edge in G, let w, = yx7L. If all members
of the collection (w, : e € G) are distinct, then the graphs {Gg: g€ I'} are
arc disjoint.

Proof. Suppose Gg and Gh have an arc in common, that is, there exist
e = (x,y)and f = (x,, y,), arcs in G, such that eg = fh. Then (xg, yg) =
(X1 h, y1h), and so xg = x,h and yg = y,h. Thus yx~t = y,x7* which
implies that e = f'and hence g = .

Proof of Theorem 3. We shall apply the lemma with P=7, -
{0, 1,...,» — 1} and denote the vertices of K,* by the elements of 7, .



Case 1: n even. Let the vertices of K, ; be the elements of Z, U {0}
where oo is a new symbol satisfying x + oo = oo for all x € Z, . Define
a circuit P by P = (00,0,n— 1,1,n—2,..,n2-+1, n2—1, o0).
Since among the differences on the edges of P, all nonzero residues
modulo n except 1 occur precisely once, developing P according to Z,
produces a total of n n-circuits. If we adjoin one additional circuit
C =(0,1,2,....n — 1,0), we obtain n + 1 circuits forming a decompo-
sition of K7, . '

Case 2: n odd. Again let the vertices of K}, be the elements of
Z, U {0}, Define a circuit P by P = (0, 0,n — 1,1, n — 2,..., [n/4] — 1,
[3n/4] + 1, [n/4], [3n/4] — 1, [n/4] + 1,.., [n2] — 1, [n/2], o). Since
among the differences on the edges of P, all nonzero residues modulo »
except a = [n/2] -+ 1 occur precisely once, developing P according to Z,
produces a total of n n-circuits. If we adjoin one additional circuit
C = (0,a,2a3a,..,(n—1)a,0), we obtain n+ 1 circuits forming a
decomposition of Kt ; .

Remark. Wilson [17] has proved that if n =0 or 1 (mod k) and
n > C(k), then the (undirected) complete graph K, can be decomposed
into edge disjoint K; and K., . By applying Theorem 3 for K, and
Corollary 1 for K;* (k odd), we deduce that if k is odd, then n = 0 or 1
(mod k) and n > C(k) imply that K, * can be decomposed into arc disjoint
k-circuits. For example, if k is a power of a prime, the necessary condition
in order to decompose K, * into k-circuits, n(n — 1) = 0 (mod k) reduces
ton = 0 or | (mod k) and so for large values of n the condition is also
sufficient. Sotteau has recently shown [15] that if k is odd, then K,* can
be decomposed into arc disjoint k-circuits for all n = 0 or 1 (mod k).

Tn the case k even, we can deduce a similar result whenever K;* can be
decomposed into k-circuits (see Theorems 5 and 6).

3. Two LEMMAS

DEFINITION.  The complete directed bipartite graph, K , , is the directed
graph whose set of vertices is X U ¥ with | X | = m and | Y| = n and
whose arcs are all the ordered pairs (x, y) and (y, x) where x€ Xand y € Y.

We have the following lemmas which will be useful in the case k even
(all the circuits of K} , being of even length).

LEMMA 2. If K, *, K,* and K}, can be decomposed into k-circuits,
then K., can be decomposed into k-circuits.

Proof. The proof is obvious and is omitted.



LEMMA 3. If K31, K.y, and K, can be decomposed into k-circuits,
then K, ., can be decomposed into k-circuits.

Proof. Let the set of vertices of K5, ., be X U Y U {xg} with| X | = m
and | Y| = n. The arcs of K. 41 can be partitioned into the arcs of
the complete graph on X U {x,}, isomorpnic to K,,, the arcs of the
complete graph on Y U {x,}, isomorphic to K}, , and the arcs of the
complete bipartite graph on X and ¥, isomorphic to K*

m,n °

4. DECOMPOSITION OF K%, INTO 2k-CIRCUITS

THEOREM 4. If m = k, n = k and if k divides m or n, then K, can
be decomposed into 2k-circuits.

Proof. We shall suppose that k divides m.

Step 1. Kj¥, where k < r < 2k — 1 can be decomposed into
2k-circuits: If we denote the Vertlces of KX, by x;,x3,.., X, and
V15 Yo s Yo, the decomposition is given by the following r 2k-circuits:
(xl s Vit s X2 9 Vori seees Xi s Vidg seees Xio s Vieti» xl) fOl‘j = Oa 1:--'9 r—1 (the
numbers which appear are to be taken modulo r.)

Step 2. K, can be decomposed into 2k-circuits for all # > k: This
has been proven for k < r < 2k — 1. The arcs of K, can be partitioned
into the arcs of ¢ graphs isomorphic to K", and the arcs of a graph iso-
morphic to K;f, , and so by Step 1 the arcs of K¥,, can be partitioned into
2k-circuits.

Step 3. K}, can be decomposed into 2k-circuits for n > k: This
results from the partition of the arcs of K , into the arcs of m/k graphs
isomorphic to K, and by Step 2.

Remark. Necessary conditions in order to decompose K., into
2k-circuits are that m >k, n > k and that the number of arcs, 2mn,
is a multiple of 2k. Thus we pose the following conjecture (which holds
by Theorem 4 in case k is prime).

Conjecture 1. K5, can be decomposed into 2k-circuits if and only if
m =k, n > k and k divides the product mn.

5. DECOMPOSITION OF K5, AND KX INTO k-CiRCuITS (kK EVEN)

If the undirected complete graph, K,, can be decomposed into
(undirected) k-cycles, then necessarily n is odd and k divides n(n — 1)/2.
Kotzig and Rosa have shown that (%) if n > k is odd and either n = 0



(mod k) or ¥(n — 1) = 0 (mod k), then K, can be decomposed into
k-cycles (k = 3). More specifically, Kotzig [10] showed (%) for k = 0
(mod 4), while Rosa showed (x) for odd k in [12] and for k = 2 (mod 4)
in [13]. The methods employed in this section can also be used to show
(*) when k is even.

THEOREM 5. If k is even, K}, can be decomposed into k-circuits.

Proof. The theorem is true for ¢ = 1 (Theorem 3). Suppose the
theorem holds for ¢, then by Lemma 3 applied to K1, K¥, and

K (decomposable by Theorem 4) we deduce that K 154 is decom-
posable into k-circuits; and so the theorem holds by induction.

The following proposition is a particular case of a theorem found
independently by Hartnell and Milgram [9].

PROPOSITION 3. Let k be an even positive integer. If p > k is a prime,
K,* can be decomposed into k-circuits if and only if p(p — 1) = 0 (mod k).

Proof. The necessary condition is Proposition 1. If p(p — 1) = 0
(mod k), since k is even, k divides p — 1 (the case p = 2 is trivial). Thus
P = gk -~ 1 and the condition is sufficient by Theorem 5.

THEOREM 6. If k is even and if K,* is decomposable into k-circuits,
then K, can be decomposed into k-circuits.

Proof. By hypothesis the theorem holds for ¢ = 1. Suppose the
theorem is true for g, then by Lemma 2 with m = gk and n = k, K
can be decomposed into k-circuits and the theorem follows by induction.

Theorem 6 can also be proved with Theorem 5 and Lemma 3 as we
see in the following generalization.

THEOREM 7. If'k is even and if K} * is decomposable into k -circuits, then
Koy s can be decomposed into k- circuits.

Proof. We apply Lemma 3 with m = gk and n = n, — 1; K s
decomposable by hypothesis, K*., by Theorem 5 and KX awmg—1 by
Theorem 4. |

Theorem 7 will be useful in proving Conjecture 2 in the case where k
is even.

Conjecture 2. K,* (n = k) can be decomposed into k-circuits if and
only if n(n — 1) = 0 (mod k), except for n =6 = 2k, n = 4 = k, and
=0 = k.



To prove that this conjecture holds for all values of n > ny(k), in the
case where k is even, it will suffice to prove that K,* is decomposable
- into k-circuits for all » such that n(n — 1) = 0 (mod k) withn, < n <
ny 4 k. We shall see applications in the cases k = 4, 6, 8, 16.

6. DECOMPOSITION OF K5 INTO k-CIRCUITS (k EVEN).

Since K* is decomposable into k-circuits for k = 8, 10, 12, 14, 16,
18, 22, 40, 56 and 58, K is decomposable into k-circuits for those
values of k by Theorem 6. We shall prove in Lemmas 4 and 5 that K3}, is
decomposable into k-circuits for k = 4 and 6 (values for which K, * is
not decomposable into k-circuits.)

Remark. By Theorem 7, if K3, were decomposable into k-circuits
then K} (g = 2) would be decomposable into k-circuits, and in the case
k = 27 the decomposition of K,* would be solved (except for n = k)
because in the case k = 27 the condition n(n — 1) = 0 (mod k) reduces
torn = O0or 1 (mod k).

LEMMA 4. Kg* is decomposable into 4-circuits.

Proof. The decomposition is given by the following 4-circuits:
1,2,3,4,1),(1,4,3,2,1),5,6,7,8,5),(5,8,7,6,5), (1,3,7,5, 1),
2,4,8,6,2),(1,6,8,3,1),(5,7,4,2,5), (1, 52,6, 1), (3, 8,4, 7, 3),
1,7,2,8,1),(,8,2,7,1),(3,5,4, 6, 3),and (3, 6, 4, 5, 3).

LEMMA 5. K% is decomposable into -6-circuits.

Proof. The decomposition is given by the following 22 6-circuits:
4 6-circuits of the complete graph on {1, 2, 3, 4, 5, 6}: (1, 2, 6, 3, 5, 4, 1),
(1,4,5,3,6,2,1),(1,3,2,4,6, 5, 1), (1, 5, 6, 4, 2, 3, 1); 4 6-circuits of
the complete graph on {7, 8, 9, 10, 11, 12}: (7, 8, 12, 9, 11, 10, 7), (7, 10, 11,
9,12,8,7),(7,9,8,10, 12,11, 7), (7, 11, 12, 10, 8, 9, 7); 6 6-circuits using
the remaining arcs of these complete graphs: (1, 6, 7, 12, 2, 11, 1), (2, 5, 8,
11, 3,10, 2),(3,2,9,10, 1, 12, 3), (6, 1, 10,9, 5, 7, 6), (5, 2, 12, 7, 4, 8, 5),
(4, 3, 11, 8, 6, 9, 4); the 6 6-circuits of K o2 75,0y a0d K5 5.65,110,11.12) 5
and 2 6-circuits using the remaining arcs: (1, 11, 2, 10, 3, 12, 1), (6, 8, 4, 7,
509, 6). o

Remark. The first author [3] has shown that K;* cannot be decom-
posed into 3-circuits. In [5], it is shown that K5 can be decomposed into k
circuits for all & > 3.



Tueorem 8. K, * is decomposable into 4-circuits if and only if
nn — 1) = 0 (mod 4) and n > 4.

Proof. The equation n(n — 1) = 0 (mod 4) reduces to n =0 or 1
(mod 4).. K,* is not decomposable; K;* (by Theorem 3) and Kg* (by
Lemma 4) are decomposable and thus the theorem follows from
Theorem 7.

Remark. This theorem has been proved independently by Schonheim
[14].

LEMMA 6. Ky* and K} are decomposable into 6-circuits.

Proof. The decomposition of Ky* is given by the following 12 6-circuits:
4 6-circuits of the complete graph on {1, 2, 3, 4, 5, 6}: (1,2, 6, 3, 5, 4, 1),
(1,4,5,3,6,2,1),(1, 3,2,4,6,5,1), (1, 5, 6,4, 2, 3, 1); and (1, 6, 7, 8,
2,9,1),(2,58,9,3,7,2),(3,4,9,7,1,8,3),(6,1,7,9, 4, 8, 6), (5, 2, 8,
7,6,9,5),4,3,9,38,574),(1,9,2,7,3,8,1),(6,8,4,7, 5,9, 6). The
decomposition of K% is given by the following 15 6-circuits: 6 6-circuits
of the complete graph on {0, 1, 2, 3, 4, 5, 6} (see Theorem 3): (6,0, 5, 1,
4, 2, 6) 6,1,0,2,5,3,6),(6,2,1,3,0,4,6),(,3,2,4, 1, 5, 6), (6, 4, 3,
5,2,0,6),(6,5,4,0,3,1,6); and (0, 1,7, 8,2,9, 0), (2,3,8,9, 4, 7, 2),
4,5,9,7,0,8,4),(1,2,7,9,5,8,1),(3,4,8,7,1,9,3), (5,0, 9, 8, 3, 7, 5),
6,7,4,9,2,8,6),(6,8,5,7,3,9,6),(6,9, 1, 8,0, 7, 6).

THEOREM 9. K, * is decomposable into 6-circuits if and only if
n(n — 1) =0 (mod 6) and n > 6.

Proof. The equation n(n — 1) = 0 (mod 6) reduces to n = 0, 1, 3, 4
(mod 6). K* is not decomposable; K,* (by Theorem 3), Ky* and K
(by Lemma 6) and K75 (by Lemma 5) are decomposable into 6-circuits
and thus the theorem follows from Theorem 7.

THEOREM 10. K, * (n = 8) is decomposable into 8 circuits if and only
if n(n — 1) = 0 (mod 8).

Proof. The equation n(n — 1) = 0 (mod 8) reduces to #n = 0 or 1
(mod 8). Ky* (see Section 1) and K,* (by Theorem 3) are decomposable
into 8-circuits and thus the theorem follows from Theorem 7.

THeEOREM 11. K, * (n = 16) is decomposable into 16-circuits if and
only if n(n — 1) = 0 (mod 16).



Proof. As in Theorem 10, it is only necessary to decompose K§
into 16-circuits. The computer took 12.376 seconds to produce the following
~list: (1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 1), (1, 16, 15, 14, 13,
12, 11, 10,9, 8,7,6, 5,4, 3,2, 1), (1, 4,7, 10, 13, 16, 3,6, 9, 12, 15, 2, 5,
8, 11,14, 1), (1,14, 11,8, 5, 2, 15,12, 9, 6, 3, 16, 13, 10, 7, 4, 1), (1, 6, 11,
16, 5, 10, 15, 4,9, 14, 3, 8,13, 2,7, 12, 1), (1, 12, 7, 2, 13, 8, 3, 14, 9, 4,
15, 10, 5, 16, 11, 6, 1), (1, 3, 5,7, 9, 2, 4, 6, 10, 12, 14, 16, 8, 15, 11, 13),
(1, 15, 3,7,5,9, 11, 2, 6, 13, 4, 8, 12, 16, 14, 10, 1), (1, 5, 3, 9, 7, 11, 4,
13, 15, 6, 2, 16, 10, 14, 12, 8, 1), (1, 13, 3, 10, 2, 8, 4, 11, 5, 12, 6, 14, 7,
16,9, 15,1),(,7,3,11,9,13,6, 15, 8, 2, 10, 16, 12,4, 14, 5, 1), (1, 11, 3,
12, 2,14, 4, 10, 6, 8, 16, 7, 13, 5, 15,9, 1), (1, 8, 10, 4, 16, 2,9, 3, 15, 13,
7,14, 6, 12, 5, 11, 1), (1, 10, 8, 14, 2, 11, 7, 15, 5, 13, 9, 16, 6, 4, 12, 3, 1),
(1,9,5,14,8,6,16,4,2, 12, 10, 3, 13, 11, 15,7, 1).

Remark. 1In [5], it is shown that K,* (n > k) is decomposable into
k-circuits if and only if n(n — 1) = 0 (mod k) for k = 10, 12, and 14.
In [4], this is shown for k£ = 5.
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Erratum :
p. 150, step 2 of the proof of theorem 4 : add : "let n = q k + r with
k<r <2k -1.
p. 152 : line -7, replace in the circuit (352,9,10,1512,3)8 2 by 4
p. 152 : note that the last remark implies that the results of the remark
before lemma 4 are true.
References [4] appeared in Recent Advances in Graph Theory, Akademia Pragu
1975, 57-68 ; [5] appeared in Proc. Journées franco-belges sur le
graphes et hypergraphes, Cahiers du CERO, Bruxelles, 17, 1975,
125-135 [15] is : D. Sotteau : Decomposition of Kﬁ into odd circu
Discrete math. 15, 1976, 185-192.

Note added in proof : Since the writ4 ng of this paper, Conjecture | has b

proved by D. Sotteau (to appear) ; -. Conjecture 2 has been prov
(in a more general setting) for n large enough, that is, n > no(k) by R.M.
Wilson, "Decomposition of complete graphs into subgraphs isomorphic to a
given graph", Proc. 5th British Combinatorial Conference, Aberdeen 1975,
Utilitas Math., Congressus Numerantium XV, 647-659. In [15] D. Sotteau
has proved that Kﬁ is decomposable into k-circuits for k = pa, p an odd
prime. A sequencing of the non-abelian group of order 27 and thus a
decomposition of K?S into Hamiltonian circuits has been obtained by A.D.
Keedwell, "Some problems concerning complete Latin squares, Proc. of the
British Combinatorial Conference 1973, London Math. Soc. Lecture Notes 13,
1974, 89-96. Other results and a survey on graph decompositions appeared
~in J.C. Bermond and D. Sotteau, "Graph decompositions and G-designs", Proc

5th British combinatorial Conference, Aberdeen 1975, Utilitas Math.,
Congressius Numerantium XV, 53-72. ?inally many new cases of Conjecture 2
have been solved by J.C. Bermond, C. Huang and D. Sotteau ''Balanced

cycle and circuit designs : even case' to appear and by J.C. Bermond

and D. Sotteau "cycle and circuit designs odd case" to appear in Proc.

Coll. Oberhof, April 1977.

*
2m
decomposed into hamiltonian circuits for 2m > 8. (to appear in J.

Note added (5/77) : T. Tillson has recently proved that K can be

Combinatorial Theory).



