JOURNAL OF COMBINATORIAL THEORY (B) 22, 91-96(1977)

Circuit Preserving Edge Maps

JON HENRY SANDERS

jon_sanders@partech.com

AND

DAVID SANDERS

davidhs and ers@earthlink.net

communicated by A.J. Hoffman

Received March 12, 1975

It is proved than any one-to-one edge map f from a 3-connected graph G onto a graph G',G and G' possibly infinite, satisfying f(C) is a circuit in G' whenever C is a circuit in G is induced by a vertex isomorphism. This generalizes a result of Whitney which hypothesizes f(C) is a circuit in G' if and only if C is a circuit in G.

1. INTRODUCTION

In 1932, Whitney proved [3] that every circuit isomorphism (one-to-one onto edge map f such that C is a circuit if and only if f(C) is a circuit) between two 3-connected graphs is induced by a vertex isomorphism. The following year Whitney observed [4] that this result could be strengthened by hypothesizing the 3-connectivity of only one of the graphs. It is necessary to also assume the other graph has no isolated vertices. In 1966, Jung pointed out[1] that Whitney's result also holds for infinite graphs.

In this paper, we further generalize Whitney's result by proving that any circuit injection f (a one-to-one edge map such that if C is a circuit then f(C) is a circuit) from a 3-connected graph G onto a graph G' is induced by a vertex isomorphism. Throughout we will understand the terminology that f is a circuit injection from G onto G' to preclude the possibility of G' having isolated vertices. The term graph refers to undirected graphs, finite or infinite, without loops or multiple edges.

We note that a circuit injection $f: G \to G'$ where G is 2-connected is not necessarily a vertex or circuit isomorphism no matter what connectivity n is assumed for G' as illustrated by the following example. For any prime p > 2let G be the graph consisting of p paths $P_i, i \in Z_p$ (where Z_p is the integers modulo p), each path having the same two endpoints but otherwise mutually disjoint, and each P_i consisting of p edges $e_{i\cdot j}, j \in Z_p$. Let G' be the complete bipartite graph on the vertex sets $\{b_i : i \in Z_p\}$ and $\{c_i : i \in Z_p\}$; and define the edge map $f: G \to G'$ by $f(e_{i\cdot j}) = (b_j, c_{i+j})$ where $i \in Z_p, j \in Z_p$. Then G is 2-connected, G' is p-connected and it can be checked that f(C) is a circuit whenever C is a circuit.

2. THEOREMS AND PROOFS

Our principal result is Theorem 6 whose Proof consists of the application of Theorems 1 through 5.

THEOREM 1 Let G and G' be graphs without isolated vertices, G without isolated edges, and $g: G \to G'$ is a one-to-one map of the edges of G onto the edges of G' such that for each vertex v of G the star subgraph S(v) is mapped by g onto the star subgraph S(v') for some vertex v' of G'. Then g is induced by a vertex isomorphism λ .

Proof. For each vertex v of G let $\lambda(v) = v'$ be a vertex such that g(S(v)) = S(v'). It can be verified that v' is then uniquely determined, but this is not necessary. To see that λ is one-to-one note that if $\lambda(u) = \lambda(v)$ then $S(\lambda(u)) = S(\lambda(v))$, thus g(S(u)) = g(S(v)), which implies S(u) = S(v), which implies u = v, edge(u, v) is isolated, or u and v are isolated vertices. To see that λ is onto, given any vertex w of G' let e be an edge incident to w and then using the definition of λ and that λ is one-to-one it is seen that λ must map one of the vertices of $g^{-1}(e)$ into w. To see that λ induces g, we observe that there exists an edge $(\lambda(u), \lambda(v))$ in G' if and only if $S(\lambda(u)) \cap S(\lambda(v)) \neq \phi$ if and only if $g^{-1}(S(\lambda(u))) \cap g^{-1}(S(\lambda(v))) \neq \phi$ if and only if $S(u) \cap S(v) \neq \phi$ if and only if there exists an edge (u, v) in G.

LEMMA 1 Let a, b, c be three distinct vertices of a 2-connected graph G. Then there exists a circuit C containing a and b and a path P(c,t) where t is a vertex on C different from a and b and no other vertex of P(c,t) is on C. We allow the possibility c = t and $P(c,t) = \phi$.

Proof. Take any circuit containing a and b. if c is on C then we have the case with $P(c,t) = \phi$. If c is not on C choose any vertex v of $C, v \neq a, v \neq b$ and let $C_1 = P_1(c,v) \cup P_2(c,v)$ be a circuit through c and v. Let t_1 and t_2 be the first vertices of $P_1(c,v)$ respectively $P_2(c,v)$ which lie on C. If $\{t_1, t_2\} = \{a, b\}$ then C_1 is a circuit containing a, b, c and again we have the case with $P(c,t) = \phi$. Otherwise at least one of the t_i is different from a and b and the corresponding $P_i(c, t_i)$ with C are desired path and circuit.

LEMMA 2 Let f be a circuit injection from G onto G', G 3-connected, and S(v) a star subgraph of G. Then f(S(v)) is either a star subgraph of G' or an independent (i.e., pairwise nonadjacent) set of edges.

Proof. If f(S(v)) is not an independent set of edges then there are two edges $e_1 = (a_1, v)$ and a_2, v of S(v) with $f(e_1)$ and $f(e_2)$ adjacent in G' at some vertex w. Suppose some other edge $e_3 = (a_3, v)$ of S(v) does not have its image $f(e_3)$ incident to w. Since G - v is 2-connected, by Lemma 1 there is a circuit $C = P_1(a_1, a_3) \cup P_2(a_1, a_3)$ and a path $P(a_2, t)$ with no vertex on Cexcept t. $C_1 = P_1 \cup \{e_1, e_3\}$ is a circuit in G so $f(C_1) = f(P_1) \cup \{f(e_1), f(e_3)\}$ is a circuit in G'. By hypothesis $f(C_1)$ passes through w and $f(e_2)$ does not. So some edge $f(p_1)$ of $f(P_1)$ must be incident to w. Similarly some edge $f(P_1)$ of $f(p_2)$ must be incident to w. We derive a contadiction to $f(p_1), f(p_2), f(e_2)$ each incident to w by finding a circuit in G containing p_1, p_2 , and e_2 . Since tlies on C, we have t on P_1 or P_2 . Suppose without loss of generality t lies on P_1 so that we may write $P_1(a_1, a_3) = P_1(a_1, t) \cup P_1(t, a_3)$. If p_1 is on $P_2(a_1, t)$ then the circuit $P_1(a_1, t) \cup P(a_2, t) \cup \{e_2, e_3\} \cup P_2(a_1, a_3)$ contains p_1, p_2 and e_2 . If p_1 is on $P_1(t, a_3)$, then the desired circuit is $P_1(t, a_3) \cup P(a_2, t) \cup \{e_1, e_2\} \cup P_2(a_1, a_3)$.

Thus we have shown that if f(S(v)) is not an independent set of edges f(S(v)) is a subset of a star subgraph S(w) of G'. To finish the proof suppose there were some edge $f(e_4)$ at w with $e_4 \notin S(v)$. Pick any edge e of S(v) and a circuit C' in G containing e and e_4 . C' must contain another edge e' of S(v) but then we have the contradiction that f(C') cannot be a circuit because $f(e) \cdot f(e')$, and $f(e_4)$ are each incident at w.

THEOREM 2 Let f be a circuit injection from G' onto G 3-connected, and S(w) a star subgraph of G_i . Then $f^{-1}(S(w))$ is either a star subgraph of G or an independent set of edges.

Proof. If $f^{-1}(S(w))$ is not an independent set of edges, then there exist e_1 and $e_2 \in f^{-1}(S(w))$ such that e_1 and e_2 have common vertex v. By lemma 2, f(S(v)) is either an independent set or a star subgraph of G'. The former case is ruled out since $f(e_1)$ and $f(e_2)$ are adjacent at w. Thus f(S(v)) = S(w') for some vertex w' of G'. But since $\{f(e_1), f(e_2)\} \subset S(w) \cap S(w')$ we have w = w'. Thus f(S(v)) = S(w), hence $f^{-1}(S(w)) = S(v)$.

THEOREM 3 Let f be a circuit injection from G onto G', G 2-connected, and S = S(v) a star subgraph of G'. Then $G = G_1 \cup G_2 \cup f^{-1}(S)$, where G_1 and G_2 are connected components of $G - f^{-1}(S)$. (with $G - f^{-1}(S)$) denoting the subgraph of G containing the same vertices as G but only those edges of G not in $f^{-1}(S)$ and where each edge of $f^{-1}(S)$ has one vertex in G_1 and one vertex in G_2 .

Let $G_{\alpha}, \alpha \in I$ be the connected components of $G - f^{-1}(S)$. Each Proof. edge $e = (a, b) \in f^{-1}(S)$ cannot have both vertices a, b in the same connected component G_{α} , for otherwise there would exist a path $P(a, b) \subset G_{\alpha}$, a circuit $C = \{e\} \cup P(a, b)$ and therefore a circuit f(C) containing only one edge f(e)of S(v), an impossibility. It remains only to show |I| = 2. From the preceding, |I| > 1, so assume $|I| \ge 3$. Take any three connected components G_1, G_2, G_3 of $G - f^{-1}(S)$. If there were edges $e_{12} = (a_1, a_2) \cdot e_{23} = (b_2, b_3), e_{31} = (c_3, c_1)$ of $f^{-1}(S)$ joining G_1 to G_2 , G_2 to G_3 , G_3 to G_1 , respectively, there would be a circuit C_1 in G consisting of $\{e_{12}, e_{23}, e_{31}\}$ and paths $P(c_1, a_1)$ in $G_1, P(a_2, b_2)$ in G_2 , and $P(b_3, c_3)$ in G_3 . Then we have the contradiction that there is a circuit $f(C_1)$ in G' containing three edges $f(e_{12}), f(e_{23})$, and $f(e_{31})$ of S(v). So at least two of the components, say G_1 and G_2 , are not joined by any edge of $f^{-1}(S)$. Choose a vertex v_1 in G_1 and a vertex v_2 in G_2 . Since G is 2connected there is a circuit C_2 in G containing v_1 and v_2 , C_2 consisting of two paths $P_1(v_1, v_2)$ and $P_2(v_1, v_2)$ having only v_1 and v_2 in common. Because no edge of $f^{-1}(S)$ joins G_1 and G_2 , P_1 and P_2 each contain two edges of $f^{-1}(S)$. But then we have the contradiction that $f(C_2)$ contains four or more edges of S(v). This |I| = 2 and the Proof is complete.

DEFINITION 1 Let G be a graph consisting of two vertex disjoint circuits A and B, two edges $e_1 = (a_1, b_1), e_2 = (a_2, b_2)$ and a path $P(a_3, b_3)$ vertex disjoint except for a_3 and b_3 from A and B, where a_1, a_2, a_3 are distinct vertices of A and b_1, b_2, b_3 are distinct vertices of B. Let e_3 be an arbitrary edge of $P(a_3, b_3)$. We say G is a graph of type X with connectors e_1, e_2 , and e_3 .

THEOREM 4 Let G be 3-connected and let $A = \{e_1, e_2, \dots, e_n\}$ be a set of independent edges of G such that G - A has two connected components G_1 and G_2 and each edge of A has one vertex in G_1 and one vertex in G_2 . Then either G has a subgraph of type X with three connectors from A or there exists a circuit containing at least four distinct edge in A.

Proof. We consider two cases.

Case 1. G_1 and G_2 are both 2-connected. By the 3-connectivity of G there must be at least three edges in A, $e_1 = (a_1, b_1)$, $e_2 = (a_2, b_2)$, and $e_3 = (a_3, b_3)$ with the a's distinct and in G_1 , the b's distinct and in G_2 . By Lemma 1 there exist a circuit C_1 containing a_1 and a_2 and a path $P_1(a_3, t)$ having no vertex in common with C_1 except t which is different from a_1, a_2 . Similarly, there is a circuit C_2 containing b_1 and b_2 and a path $P_2(b_3, t')$ vertex disjoint from C_2 except for $t' \neq b_1, b_2$. Then $C_1, C_2, \{e_1, e_2\}$, and $P_1(a_3, t) \cup \{e_3\} \cup P_2(b_3, t')$ constitute a subgraph of type X with connectors e_1, e_2 and e_3 .

Case 2. G_1 and G_2 are not both 2-connected. Then at least one of G_1 and G_2 , say G_1 has a cutpoint v. Choose vertices a and b in different components of $G_1 - v$. By the 3-connectivity of G there are two paths $P_1(a, b)$ and $P_2(a, b)$ in G- v having only a and b in common, and each of these paths must have at least two edges of A. This gives a circuit containing at least four distinct edges of A.

THEOREM 5 If G is a graph of type X with connectors $e_1, e_2, e_3 \in P(a_3, b_3)$ and f is a circuit injection from G onto G', then $f(e_1)$ and $f(e_2)$ do not have a common vertex.

Proof. For any edge, path, or circuit P of G let P' = f(P). Suppose $f(e_1)$ and $f(e_2)$ have a common vertex so we may write $e'_1 = (v_1, v_0)$ and $e'_2 = (v_2, v_0)$. In the notation of Definition 1 we may also write A = $P(a_1, a_2) \cup P(a_2, a_3) \cup P(a_3, a_1)$ and $B = P(b_1, b_2) \cup P(b_2, b_3) \cup P(b_3, b_1)$. Since $\{e_1, e_2\} \cup P(a_1, a_2) \cup P(b_1, b_2)$ is a circuit in $G, \{e'_1, e'_2\} \cup P'(a_1, a_2) \cup P'(b_1, b_2)$ is a circuit in G'. Thus the edges of $P'(a_1, a_2) \cup P'(b_1, b_2)$ form a path $P(v_1, v_2)$. Let $v \neq v_1, v_2$ be a vertex in G' where an edge e'_0 of $P'(a_1, a_2)$ and an edge of $P'(b_1, b_2)$ meet. A' is a circuit containing $P'(a_1, a_2)$ and disjoint from $P'(b_1, b_2)$. Let e' be an edge of A' at $v, e' \neq e'_0$. We have $e' \notin P'(a_1, a_2)$ since otherwise there would be two edges of $P'(a_1, a_2)$ and an edge of $P'(b_1, b_2)$ incident at v contradicting $P'(a_1, a_2) \cup P'(b_1, b_2)$ is a path. Also, $e' \notin P'(a_2, a_3)$ since otherwise v is a vertex of degree at least 3 in the subgraph $P'(a_1, a_2) \cup P'(a_2, a_3) \cup P'(b_1, b_2)$ which is contained in the circuit $P'(a_1, a_2) \cup P'(a_2, a_3) \cup P'(a_3, b_3) \cup P'(b_2, b_3) \cup P'(b_1, b_2) \cup \{e_1\}.$ Similarly, $e^1 \notin P'(a_3, a_1)$ since otherwise v has degree at least 3 in the subgraph $P'(a_1, a_2) \cup P'(b_1, b_2) \cup P'(a_3, a_1)$ which is contained in the circuit $P'(a_1, a_2) \cup P'(a_3, a_1) \cup P'(a_3, b_3) \cup P'(b_3, b_1) \cup P'(b_1, b_2) \cup \{e_1\}$. Thus we have a condition to $e' \in A' = P'(a_1, a_2) \cup P'(a_2, a_3) \cup P'(a_3, a_1)$ and the Proof is complete.

THEOREM 6 If f is a circuit injection from G onto G' where G is 3-connected, then f is induced by a vertex isomorphism.

We prove f is induced by a vertex isomorphism by applying Theo-Proof. rem 1 to f^{-1} to show it is induced by a vertex isomorphism. Note Theorem 1 can apply to f^{-1} since G' has no isolated veertices by the assumption that f is onto, and no isolated edges by the fact that any two edges e_1 and e_2 of G' must lie on some circuit f(C) where C is a circuit containing $f^{-1}(e_1)$ and $f^{-1}(e_2)$. To complete the Proof we must show for any star subgraph S(v) of G' that $f^{-1}(S(v))$ is also a star subgraph. Theorems 2 and 3 tell us the only other possibility for $f^{-1}(S(v))$ is that it is a set of independent edges of G such that $G - f^{-1}(S(v))$ consists of two connected components G_1 and G_2 with each edge of $f^{-1}(S(v))$ having one vertex in G_1 and one vertex in G_2 . But in this event Theorem 4 asserts that either three edges of $f^{-1}(S(v))$ are connectors in a subgraph of G of type X or at least four edges of $f^{-1}(S(v))$ lie on some circuit C' in G. The first situation is ruled out by Theorem 5. The second case is also impossible since it implies $|f(C') \cap S(v)| \ge 4$ and the theorem is proved.

3. GENERALIZATIONS

Possible generalization of Theorem 6 could be attempted by dropping the hypothesis that f is one-to-one. An interesting result of dropping this hypothesis is that the theorem remains true for finite 3-connected graphs, but not for infinite graphs of arbitrarily large connectivity.

Further generalization could follow the route of assuming G' is not necessarily a graph but a (binary) matroid. Using Tutte's definition of 3-connected for matroids [2], G could also be assumed to be a matriod. The existence of these generalizations will be explored in a following paper.

ACKNOWLEDGMENT

We express our thanks to the referee for pointing out a simplification in the Proof of Theorem 4 which eliminates the need to treat infinite graphs separately.

REFERENCES

- H. A. JUNG, Zu einem Isomorphiesatz von H. Whitney f
 ür Graphen, Math. Ann. 164 (1966), 270-271
- W.T. TUTTE, Connectivity in matroids, Canad. J. Math. 18 (1966), 1301-1324
- H. WHITNEY, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168
- H. WHITNEY, 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245-254.