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It is proved than any one-to-one edge map f from a 3-connected graph
G onto a graph G',G anf G’ possibly infinite, satisfying f(C') is a circuit in
G’ whenever C' is a circuit in G is induced by a vertex isomorphism. This
generalizes a result of Whitney which hypothesizes f(C) is a circuit in G’ if
and only if C' is a circuit in G.
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1. INTRODUCTION

In 1932, Whitney proved [3] that every circuit isomorphism (one-to-one
onto edge map f such that C is a circuit if and only if f(C) is a circuit)
between two 3-connected graphs is induced by a vertex isomorphism. The
following year Whitney observed [4] that this result could be strengthened by
hypothesizing the 3-connectivity of only one of the graphs. It is necessary to
also assume the other graph has no isolated vertices. In 1966, Jung pointed
out[1] that Whitney’s result also holds for infinite graphs.

In this paper, we further generalize Whitney’s result by proving that any
circuit injection f (a one-to-one edge map such that if C' is a circuit then
f(C) is a circuit) from a 3-connected graph G onto a graph G’ is induced
by a vertex isomorphism. Throughout we will understand the terminology
that f is a circuit injection from G onto G’ to preclude the possibility of G’
having isolated vertices. The term graph refers to undirected graphs, finite
or infinite , without loops or multiple edges.

We note that a circuit injection f : G — G’ where G is 2-connected is not
necessarily a vertex or circuit isomorphism no matter what connectivity n is
assumed for G’ as illustrated by the following example. For any prime p > 2
let G be the graph consisting of p paths P;,i € Z,(where Z, is the integers
modulo p), each path having the same two endpoints but otherwise mutually
disjoint, and each P; consisting of p edges e;.;,j € Z,. Let G’ be the complete
bipartite graph on the vertex sets{b; : i € Z,} and {¢; : i € Z,}; and define
the edge map f : G — G’ by f(e;;) = (b;,citj) where i € Z,,,j € Z, . Then
G is 2-connected, G’ is p-connected and it can be checked that f(C) is a
circuit whenever C' is a circuit.



2. THEOREMS AND PROOFS

Our principal result is Theorem 6 whose Proof consists of the application
of Theorems 1 through 5.

THEOREM 1 Let G and G’ be graphs without isolated vertices, G without
isolated edges, and g : G — G’ is a one-to-one map of the edges of G onto
the edges of G' such that for each vertex v of G the star subgraph S(v) is
mapped by g onto the star subgrapgh S(v') for some vertex v' of G'. Then g
1s induced by a vertex isomorphism .

Proof. For each vertex v of G let A\(v) = v’ be a vertex such that ¢g(S(v)) =
S(v"). It can be verified that ¢’ is then uniquely determined, but this is
not necessary. To see that A is one-to-one note that if A(u) = A(v) then
S(A(u)) = S(A(v)), thus ¢g(S(u)) = ¢g(S(v)), which implies S(u) = S(v),
which implies u = v, edge(u, v) is isolated, or w and v are isolated vertices.
To see that A is onto, given any vertex w of G’ let e be an edge incident
to w and then using the definition of A\ and that A is one-to-one it is seen
that A must map one of the vertices of g~!(e) into w. To see that X induces
g, we observe that there exists an edge (A(u),A(v)) in G’ if and only if
S(A(u)) NS(A(v)) # ¢ if and only if g7 (S(A(u)) N S(A(v))) # ¢ if and only
if g71(S(A\(u)))Ng=(S(A(v))) # ¢ if and only if S(u) NS(v) # ¢ if and only
if there exists an edge (u,v) in G.
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LEMMA 1 Let a,b,c be three distinct vertices of a 2-connected graph G.
Then there exists a circuit C' containing a and b and a path P(c,t) where t

is a vertex on C different from a and b and no other vertex of P(c,t) is on
C. We allow the possibility c =t and P(c,t) = ¢.

Proof. Take any circuit containing a and b. if ¢ is on C' then we have the
case with P(c,t) = ¢. If ¢ is not on C' choose any vertex v of C,v # a,v # b
and let C1 = Py(c,v) U Py(c,v) be a circuit through ¢ and v. Let ¢; and
ty be the first vertices of Pj(c,v) respectively Py(c,v) which lie on C. If
{t1,t2} = {a, b} then C] is a circuit containing a, b, c and again we have the
case with P(c,t) = ¢. Otherwise at least one of the ¢; is different from a and
b and the corresponding FP;(c,t;) with C are desired path and circuit.



LEMMA 2 Let f be a circuit injection from G onto G', G 3-connected, and
S(v) a star subgraph of G. Then f(S(v)) is either a star subgraph of G' or
an independent (i.e., pairwise nonadjacent) set of edges.

Proof. If f(S(v)) is not an independent set of edges then there are two
edges e; = (a1,v) and ag,v of S(v) with f(e;) and f(es) adjacent in G” at
some vertex w. Suppose some other edge e3 = (a3, v) of S(v) does not have
its image f(e3) incident to w. Since G — v is 2-connected, by Lemma 1 there
is a circuit C' = P (a1, a3)UPs(a1, a3) and a path P(ag, t) with no vertex on C'
except t. Cy = PyU{ey, ez} is a circuit in G so f(Cy) = f(P1)U{f(e1), f(es)}
is a circuit in G’. By hypothesis f(C}) passes through w and f(es) does not.
So some edge f(p;) of f(P;) must be incident to w. Similarly some edge f(P;)
of f(p2) must be incident to w. We derive a contadiction to f(p1), f(p2), f(e2)
each incident to w by finding a circuit in G containing pq, po, and es. Since t
lies on C', we have t on P; or P,. Suppose without loss of generality ¢ lies on
Py so that we may write Pi(aq,a3) = Pi(a1,t) U Pi(t,a3). If p; is on Py(aq,t)
then the circuit P (ay,t)UP(az, t)U{es, e3}UPs(aq, az) contains py, ps and es.
If py is on Pi(t, as3), then the desired circuit is P (¢, a3) U P(ag, t) U{e1,ea} U
P2(a1, CL3).

Thus we have shown that if f(S(v)) is not an independent set of edges
f(S(v)) is a subset of a star subgraph S(w) of G’. To finish the proof suppose
there were some edge f(ey) at w with e4 ¢ S(v). Pick any edge e of S(v) and
a circuit C” in G contaning e and e4. C’ must contain another edge €’ of S(v)
but then we have the contradiction that f(C”) cannot be a circuit because
f(e)- f(e'), and f(es) are each incident at w.

THEOREM 2 Let f be a circuit injection from G’ onto G 3-connected, and
S(w) a star subgraph of G,. Then f~1(S(w)) is either a star subgraph of G
or an independent set of edges.

Proof.  If f~'(S(w)) is not an independent set of edges, then there exist
e; and ey € f71(S(w)) such that e; and e; have common vertex v. By lemma
2, f(S(v)) is either an independent set or a star subgraph of G’.The former
case is ruled out since f(e;) and f(eq) are adjacent at w. Thus f(S(v)) =
S(w') for some vertex w’ of G'. But since {f(e1), f(e2)} C S(w) N S(w') we
have w = w'. Thus f(S(v)) = S(w), hence f~1(S(w)) = S(v).

THEOREM 3 Let f be a circuit injection from G onto G', G 2-connected,
and S = S(v) a star subgraph of G'. Then G = G1 UGy U f~1(S), where G,
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and Gy are connected components of G— f~1(S). (with G— f~1(S)) denoting
the subgraph of G containing the same vertices as G but only those edges of
G not in f71(S) and where each edge of f~(S) has one vertex in Gy and
one vertex in Go.

Proof.  Let G, a € I be the connected components of G— f~1(5). Each
edge e = (a,b) € f~1(S) cannot have both vertices a, b in the same connected
component G, for otherwise there would exist a path P(a,b) C G, , a circuit
C = {e}UP(a,b) and therefore a circuit f(C') containing only one edge f(e)
of S(v), an impossibility. It remains only to show |I| = 2. From the preceding,
|| > 1, so assume |I| > 3. Take any three connected components Gy, Ga, G3
of G — f~1(S). If there were edges €15 = (a1, as).ea3 = (ba, bs), €31 = (c3,¢;) of
f7X(S) joining G to Go, G5 to G, G to G , respectively, there would be a
circuit C in G consisting of {e12, €23, €31} and paths P(cy, a1) in Gy, P(as, by)
in Go, and P(bs, c3) in G3. Then we have the contradiction that there is a
circuit f(C}) in G’ containing three edges f(e12), f(e23), and f(es1) of S(v).
So at least two of the components, say G; and (G5, are not joined by any
edge of f~1(S). Choose a vertex v; in G and a vertex v, in Gy. Since G is 2-
connected there is a circuit Cs in GG containing v; and vy, Cs consisting of two
paths P;(vq,v2) and Py (v1, v2) having only v, and v in common. Because no
edge of f71(9) joins G and Gy, P, and P, each contain two edges of f~1(S).
But then we have the contradiction that f(Cy) contains four or more edges
of S(v). This |I| = 2 and the Proof is complete.

DEFINITION 1 Let G be a graph consisting of two vertex disjoint circuits
A and B, two edges e; = (a1,b1),es = (a2,be) and a path P(as,bs) vertex
disjoint except for as and bs from A and B, where aq,as,as are distinct
vertices of A and by, by, by are distinct vertices of B. Let ez be an arbitrary
edge of P(as,bs). We say G is a graph of type X with connectors ey, ez, and
€3.

THEOREM 4 Let G be 3-connected and let A = {ey, e, ,e,} be a set
of independent edges of G such that G - A has two connected components
Gy and Gy and each edge of A has one vertex in G and one vertex in Go.
Then either G has a subgraph of type X with three connectors from A or
there exists a circuit containing at least four distinct edge in A.

Proof. 'We consider two cases.



Case 1. G and G5 are both 2-connected. By the 3-connectivity of G there
must be at least three edges in A, e; = (a1, b1), e = (az, by), and e3 = (as, bs)
with the a’s distinct and in G4, the Vs distinct and in G5. By Lemma 1 there
exist a circuit C containing a; and ay and a path Pj(as,t) having no vertex
in common with C4 except t which is different from aq, as. Similarly, there
is a circuit Cy containing b; and by and a path Py (b3, t’) vertex disjoint from
Cy except for t' # by, by. Then Cy, Oy, {e1, e}, and Py(as, t) U{es} U Py(bs, t')
constitute a subgraph of type X with connectors e, e; and es.

Case 2. G and G4 are not both 2-connected. Then at least one of G
and G5, say GG1 has a cutpoint v. Choose vertices a and b in different com-
ponents of G; — v. By the 3-connectivity of G there are two paths P;(a,b)
and Py(a,b) in G- v having only a and b in common, and each of these paths
must have at least two edges of A. This gives a circuit containing at least
four distinct edges of A.

THEOREM 5 IfG is a graph of type X with connectors ey, e, e3 € P(as, bs)
and f is a circuit injection from G onto G', then f(e1) and f(es) do not have
a common vertezx.

Proof. For any edge, path, or circuit P of G let P’ = f(P). Suppose
f(e1) and f(es) have a common vertex so we may write €} = (v1,v) and
e, = (vg,v9). In the notation of Definition 1 we may also write A =
P(al,ag)UP(ag,ag)UP(ag,al) and B = P(bl, bg)UP(bQ,bg)UP(bg,bl). Since
{61, 62} UP(al, CLQ) UP(bl, bg) is a circuit in G, {6’1, 6,2} UP’(al, CLQ) UP/(bl, bg)
is a circuit in G’. Thus the edges of P'(ay,a2) U P'(by,by) form a path
P(vy,vq). Let v # vy,v9 be a vertex in G’ where an edge e} of P'(a,az)
and an edge of P'(by,by) meet. A’ is a circuit containing P’(aj,as) and
disjoint from P’(by,by). Let € be an edge of A" at v, ¢ # e). We have
e’ ¢ P'(ay,ay) since otherwise there would be two edges of P’(aj,as) and
an edge of P’'(by,by) incident at v contradicting P’(ay,as) U P'(by,be) is a
path. Also, ¢ ¢ P'(ag,a3) since otherwise v is a vertex of degree at least
3 in the subgraph P’(ai,as) U P'(ag, a3) U P'(by,be) which is contained in
the circuit P’(al,ag) U Pl(ag,&g) U Pl(a,g, bg) U P/(bg, bg) U Pl(bl,bg) U {61}.
Similarly, e* ¢ P’(as,a;) since otherwise v has degree at least 3 in the sub-
graph P’(ay,as) U P'(by,be) U P'(as,a;) which is contained in the circuit
P’(al, a2) UP’(CLg, al) UP’(CLg, bg) UP/(bg, bl) UP/(bl, bg) U {61}. Thus we have
a condition to ¢ € A" = P'(ay,a2) U P'(as,a3) U P'(as,a;) and the Proof is
complete.



THEOREM 6 If f is a circuit injection from G onto G' where G is 3-
connected, then f is induced by a vertex isomorphism.

Proof. ~ We prove f is induced by a vertex isomorphism by applying Theo-
rem 1 to f~! to show it is induced by a vertex isomorphism. Note Theorem
1 can apply to f~! since G’ has no isolated veertices by the assumption that
f is onto, and no isolated edges by the fact that any two edges e; and ey of
G’ must lie on some circuit f(C') where C is a circuit containing f~'(e;) and
f1(e2). To complete the Proof we must show for any star subgraph S(v) of
G’ that f~!(S(v)) is also a star subgraph. Theorems 2 and 3 tell us the only
other possibility for f~'(S(v)) is that it is a set of independent edges of G
such that G — f~1(S(v)) consists of two connected components G; and G,
with each edge of f~!(S(v)) having one vertex in G; and one vertex in Gs.
But in this event Theorem 4 asserts that either three edges of f~1(S(v)) are
connectors in a subgraph of G of type X or atleast four edges of f~'(S(v))
lie on some circuit C” in G. The first situation is ruled out by Theorem 5.
The second case is also impossible since it implies | f(C’) N S(v)| > 4 and the
theorem is proved.



3. GENERALIZATIONS

Possible generalization of Theorem 6 could be attempted by dropping the
hypothesis that f is one-to-one. An interesting result of dropping this hy-
pothesis is that the theorem remains true for finite 3-connected graphs, but
not for infinite graphs of arbitrarily large connectivity.

Further generalization could follow the route of assuming G’ is not neces-
sarily a graph but a (binary) matroid. Using Tutte’s definition of 3-connected
for matroids [2], G could also be assumed to be a matriod. The existence of
these generalizations will be explored in a following paper.
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