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It is proved than any one-to-one edge map f from a 3-connected graph
G onto a graph G′,G anf G′ possibly infinite, satisfying f(C) is a circuit in
G′ whenever C is a circuit in G is induced by a vertex isomorphism. This
generalizes a result of Whitney which hypothesizes f(C) is a circuit in G′ if
and only if C is a circuit in G.
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1. INTRODUCTION

In 1932, Whitney proved [3] that every circuit isomorphism (one-to-one
onto edge map f such that C is a circuit if and only if f(C) is a circuit)
between two 3-connected graphs is induced by a vertex isomorphism. The
following year Whitney observed [4] that this result could be strengthened by
hypothesizing the 3-connectivity of only one of the graphs. It is necessary to
also assume the other graph has no isolated vertices. In 1966, Jung pointed
out[1] that Whitney’s result also holds for infinite graphs.

In this paper, we further generalize Whitney’s result by proving that any
circuit injection f (a one-to-one edge map such that if C is a circuit then
f(C) is a circuit) from a 3-connected graph G onto a graph G′ is induced
by a vertex isomorphism. Throughout we will understand the terminology
that f is a circuit injection from G onto G′ to preclude the possibility of G′

having isolated vertices. The term graph refers to undirected graphs, finite
or infinite , without loops or multiple edges.

We note that a circuit injection f : G → G′ where G is 2-connected is not
necessarily a vertex or circuit isomorphism no matter what connectivity n is
assumed for G′ as illustrated by the following example. For any prime p > 2
let G be the graph consisting of p paths Pi, i ∈ Zp(where Zp is the integers
modulo p), each path having the same two endpoints but otherwise mutually
disjoint, and each Pi consisting of p edges ei·j,j ∈ Zp. Let G

′ be the complete
bipartite graph on the vertex sets{bi : i ∈ Zp} and {ci : i ∈ Zp}; and define
the edge map f : G → G′ by f(ei·j) = (bj , ci+j) where i ∈ Zp, j ∈ Zp . Then
G is 2-connected, G′ is p-connected and it can be checked that f(C) is a
circuit whenever C is a circuit.
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2. THEOREMS AND PROOFS

Our principal result is Theorem 6 whose Proof consists of the application
of Theorems 1 through 5.

THEOREM 1 Let G and G′ be graphs without isolated vertices, G without
isolated edges, and g : G → G′ is a one-to-one map of the edges of G onto
the edges of G′ such that for each vertex v of G the star subgraph S(v) is
mapped by g onto the star subgrapgh S(v′) for some vertex v′ of G′. Then g
is induced by a vertex isomorphism λ.

Proof. For each vertex v of G let λ(v) = v′ be a vertex such that g(S(v)) =
S(v′). It can be verified that v′ is then uniquely determined, but this is
not necessary. To see that λ is one-to-one note that if λ(u) = λ(v) then
S(λ(u)) = S(λ(v)), thus g(S(u)) = g(S(v)), which implies S(u) = S(v),
which implies u = v, edge(u, v) is isolated, or u and v are isolated vertices.
To see that λ is onto, given any vertex w of G′ let e be an edge incident
to w and then using the definition of λ and that λ is one-to-one it is seen
that λ must map one of the vertices of g−1(e) into w. To see that λ induces
g, we observe that there exists an edge (λ(u), λ(v)) in G′ if and only if
S(λ(u)) ∩ S(λ(v)) 6= φ if and only if g−1(S(λ(u)) ∩ S(λ(v))) 6= φ if and only
if g−1(S(λ(u)))∩ g−1(S(λ(v))) 6= φ if and only if S(u)∩S(v) 6= φ if and only
if there exists an edge (u, v) in G.

LEMMA 1 Let a, b, c be three distinct vertices of a 2-connected graph G.
Then there exists a circuit C containing a and b and a path P (c, t) where t
is a vertex on C different from a and b and no other vertex of P (c, t) is on
C. We allow the possibility c = t and P (c, t) = φ.

Proof. Take any circuit containing a and b. if c is on C then we have the
case with P (c, t) = φ. If c is not on C choose any vertex v of C, v 6= a, v 6= b
and let C1 = P1(c, v) ∪ P2(c, v) be a circuit through c and v. Let t1 and
t2 be the first vertices of P1(c, v) respectively P2(c, v) which lie on C. If
{t1, t2} = {a, b} then C1 is a circuit containing a, b, c and again we have the
case with P (c, t) = φ. Otherwise at least one of the ti is different from a and
b and the corresponding Pi(c, ti) with C are desired path and circuit.
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LEMMA 2 Let f be a circuit injection from G onto G′, G 3-connected, and
S(v) a star subgraph of G. Then f(S(v)) is either a star subgraph of G′ or
an independent (i.e., pairwise nonadjacent) set of edges.

Proof. If f(S(v)) is not an independent set of edges then there are two
edges e1 = (a1, v) and a2, v of S(v) with f(e1) and f(e2) adjacent in G′ at
some vertex w. Suppose some other edge e3 = (a3, v) of S(v) does not have
its image f(e3) incident to w. Since G− v is 2-connected, by Lemma 1 there
is a circuit C = P1(a1, a3)∪P2(a1, a3) and a path P (a2, t) with no vertex on C
except t. C1 = P1∪{e1, e3} is a circuit in G so f(C1) = f(P1)∪{f(e1), f(e3)}
is a circuit in G′. By hypothesis f(C1) passes through w and f(e2) does not.
So some edge f(p1) of f(P1) must be incident to w. Similarly some edge f(P1)
of f(p2) must be incident to w. We derive a contadiction to f(p1), f(p2), f(e2)
each incident to w by finding a circuit in G containing p1, p2, and e2. Since t
lies on C, we have t on P1 or P2. Suppose without loss of generality t lies on
P1 so that we may write P1(a1, a3) = P1(a1, t)∪P1(t, a3). If p1 is on P2(a1, t)
then the circuit P1(a1, t)∪P (a2, t)∪{e2, e3}∪P2(a1, a3) contains p1, p2 and e2.
If p1 is on P1(t, a3), then the desired circuit is P1(t, a3)∪P (a2, t)∪ {e1, e2} ∪
P2(a1, a3).

Thus we have shown that if f(S(v)) is not an independent set of edges
f(S(v)) is a subset of a star subgraph S(w) of G′. To finish the proof suppose
there were some edge f(e4) at w with e4 /∈ S(v). Pick any edge e of S(v) and
a circuit C ′ in G contaning e and e4. C

′ must contain another edge e′ of S(v)
but then we have the contradiction that f(C ′) cannot be a circuit because
f(e) · f(e′), and f(e4) are each incident at w.

THEOREM 2 Let f be a circuit injection from G′ onto G 3-connected, and
S(w) a star subgraph of G′. Then f−1(S(w)) is either a star subgraph of G
or an independent set of edges.

Proof. If f−1(S(w)) is not an independent set of edges, then there exist
e1 and e2 ∈ f−1(S(w)) such that e1 and e2 have common vertex v. By lemma
2, f(S(v)) is either an independent set or a star subgraph of G′.The former
case is ruled out since f(e1) and f(e2) are adjacent at w. Thus f(S(v)) =
S(w′) for some vertex w′ of G′. But since {f(e1), f(e2)} ⊂ S(w) ∩ S(w′) we
have w = w′. Thus f(S(v)) = S(w), hence f−1(S(w)) = S(v).

THEOREM 3 Let f be a circuit injection from G onto G′, G 2-connected,
and S = S(v) a star subgraph of G′. Then G = G1 ∪G2 ∪ f−1(S), where G1

4



and G2 are connected components of G−f−1(S). (with G−f−1(S)) denoting
the subgraph of G containing the same vertices as G but only those edges of
G not in f−1(S) and where each edge of f−1(S) has one vertex in G1 and
one vertex in G2.

Proof. Let Gα, α ∈ I be the connected components of G−f−1(S). Each
edge e = (a, b) ∈ f−1(S) cannot have both vertices a, b in the same connected
component Gα, for otherwise there would exist a path P (a, b) ⊂ Gα , a circuit
C = {e}∪P (a, b) and therefore a circuit f(C) containing only one edge f(e)
of S(v), an impossibility. It remains only to show |I| = 2. From the preceding,
|I| > 1, so assume |I| ≥ 3. Take any three connected components G1, G2, G3

of G−f−1(S). If there were edges e12 = (a1, a2).e23 = (b2, b3), e31 = (c3, c1) of
f−1(S) joining G1 to G2, G2 to G3, G3 to G1 , respectively, there would be a
circuit C1 in G consisting of {e12, e23, e31} and paths P (c1, a1) in G1, P (a2, b2)
in G2, and P (b3, c3) in G3. Then we have the contradiction that there is a
circuit f(C1) in G′ containing three edges f(e12), f(e23), and f(e31) of S(v).
So at least two of the components, say G1 and G2, are not joined by any
edge of f−1(S). Choose a vertex v1 in G1 and a vertex v2 in G2. Since G is 2-
connected there is a circuit C2 in G containing v1 and v2, C2 consisting of two
paths P1(v1, v2) and P2(v1, v2) having only v1 and v2 in common. Because no
edge of f−1(S) joins G1 and G2, P1 and P2 each contain two edges of f−1(S).
But then we have the contradiction that f(C2) contains four or more edges
of S(v). This |I| = 2 and the Proof is complete.

DEFINITION 1 Let G be a graph consisting of two vertex disjoint circuits
A and B, two edges e1 = (a1, b1), e2 = (a2, b2) and a path P (a3, b3) vertex
disjoint except for a3 and b3 from A and B, where a1, a2, a3 are distinct
vertices of A and b1, b2, b3 are distinct vertices of B. Let e3 be an arbitrary
edge of P (a3, b3). We say G is a graph of type X with connectors e1, e2, and
e3.

THEOREM 4 Let G be 3-connected and let A = {e1, e2, · · · , en} be a set
of independent edges of G such that G - A has two connected components
G1 and G2 and each edge of A has one vertex in G1 and one vertex in G2.
Then either G has a subgraph of type X with three connectors from A or
there exists a circuit containing at least four distinct edge in A.

Proof. We consider two cases.
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Case 1. G1 and G2 are both 2-connected. By the 3-connectivity of G there
must be at least three edges in A, e1 = (a1, b1), e2 = (a2, b2), and e3 = (a3, b3)
with the a′s distinct and in G1, the b

′s distinct and in G2. By Lemma 1 there
exist a circuit C1 containing a1 and a2 and a path P1(a3, t) having no vertex
in common with C1 except t which is different from a1, a2. Similarly, there
is a circuit C2 containing b1 and b2 and a path P2(b3, t

′) vertex disjoint from
C2 except for t

′ 6= b1, b2. Then C1, C2, {e1, e2}, and P1(a3, t)∪{e3}∪P2(b3, t
′)

constitute a subgraph of type X with connectors e1, e2 and e3.

Case 2. G1 and G2 are not both 2-connected. Then at least one of G1

and G2, say G1 has a cutpoint v. Choose vertices a and b in different com-
ponents of G1 − v. By the 3-connectivity of G there are two paths P1(a, b)
and P2(a, b) in G- v having only a and b in common, and each of these paths
must have at least two edges of A. This gives a circuit containing at least
four distinct edges of A.

THEOREM 5 If G is a graph of type X with connectors e1, e2, e3 ∈ P (a3, b3)
and f is a circuit injection from G onto G′, then f(e1) and f(e2) do not have
a common vertex.

Proof. For any edge, path, or circuit P of G let P ′ = f(P ). Suppose
f(e1) and f(e2) have a common vertex so we may write e′1 = (v1, v0) and
e′2 = (v2, v0). In the notation of Definition 1 we may also write A =
P (a1, a2)∪P (a2, a3)∪P (a3, a1) and B = P (b1, b2)∪P (b2, b3)∪P (b3, b1). Since
{e1, e2}∪P (a1, a2)∪P (b1, b2) is a circuit in G, {e′1, e

′

2}∪P ′(a1, a2)∪P ′(b1, b2)
is a circuit in G′. Thus the edges of P ′(a1, a2) ∪ P ′(b1, b2) form a path
P (v1, v2). Let v 6= v1, v2 be a vertex in G′ where an edge e′0 of P ′(a1, a2)
and an edge of P ′(b1, b2) meet. A′ is a circuit containing P ′(a1, a2) and
disjoint from P ′(b1, b2). Let e′ be an edge of A′ at v, e′ 6= e′0. We have
e′ /∈ P ′(a1, a2) since otherwise there would be two edges of P ′(a1, a2) and
an edge of P ′(b1, b2) incident at v contradicting P ′(a1, a2) ∪ P ′(b1, b2) is a
path. Also, e′ /∈ P ′(a2, a3) since otherwise v is a vertex of degree at least
3 in the subgraph P ′(a1, a2) ∪ P ′(a2, a3) ∪ P ′(b1, b2) which is contained in
the circuit P ′(a1, a2) ∪ P ′(a2, a3) ∪ P ′(a3, b3) ∪ P ′(b2, b3) ∪ P ′(b1, b2) ∪ {e1}.
Similarly, e1 /∈ P ′(a3, a1) since otherwise v has degree at least 3 in the sub-
graph P ′(a1, a2) ∪ P ′(b1, b2) ∪ P ′(a3, a1) which is contained in the circuit
P ′(a1, a2)∪P ′(a3, a1)∪P ′(a3, b3)∪P ′(b3, b1)∪P ′(b1, b2)∪{e1}. Thus we have
a condition to e′ ∈ A′ = P ′(a1, a2) ∪ P ′(a2, a3) ∪ P ′(a3, a1) and the Proof is
complete.
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THEOREM 6 If f is a circuit injection from G onto G′ where G is 3-
connected, then f is induced by a vertex isomorphism.

Proof. We prove f is induced by a vertex isomorphism by applying Theo-
rem 1 to f−1 to show it is induced by a vertex isomorphism. Note Theorem
1 can apply to f−1 since G′ has no isolated veertices by the assumption that
f is onto, and no isolated edges by the fact that any two edges e1 and e2 of
G′ must lie on some circuit f(C) where C is a circuit containing f−1(e1) and
f−1(e2). To complete the Proof we must show for any star subgraph S(v) of
G′ that f−1(S(v)) is also a star subgraph. Theorems 2 and 3 tell us the only
other possibility for f−1(S(v)) is that it is a set of independent edges of G
such that G − f−1(S(v)) consists of two connected components G1 and G2

with each edge of f−1(S(v)) having one vertex in G1 and one vertex in G2.
But in this event Theorem 4 asserts that either three edges of f−1(S(v)) are
connectors in a subgraph of G of type X or atleast four edges of f−1(S(v))
lie on some circuit C ′ in G. The first situation is ruled out by Theorem 5.
The second case is also impossible since it implies |f(C ′)∩S(v)| ≥ 4 and the
theorem is proved.
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3. GENERALIZATIONS

Possible generalization of Theorem 6 could be attempted by dropping the
hypothesis that f is one-to-one. An interesting result of dropping this hy-
pothesis is that the theorem remains true for finite 3-connected graphs, but
not for infinite graphs of arbitrarily large connectivity.

Further generalization could follow the route of assuming G′ is not neces-
sarily a graph but a (binary) matroid. Using Tutte’s definition of 3-connected
for matroids [2], G could also be assumed to be a matriod. The existence of
these generalizations will be explored in a following paper.
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