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Which Trees Are Link Graphs? 
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The link of a vertex v  of a graph G is the subgraph induced by all vertices adja- 
cent to U. If  all the links of G are isomorphic to L, then G has constant link and L 
is called a link graph. We investigate the trees of order p < 9 to see which are link 
graphs. Group theoretic methods are used to obtain constructions of graphs G with 
constant link L for certain trees L. Necessary conditions are derived for the ex- 
istence of a graph having a given graph L as its constant link. These conditions 
show that many trees are not link graphs. An example is given to show that a con- 
nected graph with constant link need not be point symmetric. 

LINK GRAPHS 

We consider only finite graphs and follow the terminology of [4]. The link 
of a vertex u of a graph G, denoted by link@, G), is the subgraph induced by 
the points adjacent to u, as in [ 11. Zykov [6] posed what has become a well 
known open problem in graph theory which appears to be intractable, 

G = Cs' 

FIG. 1. A graph G with constant link L. 
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namely, for what graphs H is there a graph G such that all links in G are 
isomorphic to H? 

If a graph L is isomorphic to every link in G, then we call t the link 
graph of G, we write L + G, and we say that G has constant link L (Fig. 1) 
and that L is a link graph. We sometimes denote link(0, G) by link v for 
brevity while the link of v in a proper subgraph H of G will always be 
denoted by link(v, H). The degree of v in a subgraph H of G is written 
deg(v, H). 

Brown and Connelly [ 1 ] obtained solutions to Zykov’s problem for 
certain classes of graphs, namely, linear forests, starlike trees, and cycles 
(Fig. 2). By definition, in a linear forest each component is a path. 

I I 
FIG. 2. A linear forest F and a starlike tree T, both of which are link graphs. 

THEOREM A. Let L be a linear forest, where ni of the paths have length 
i. Then L is a link graph if and only ij’ 

a3 

i=4 

A tree T is starlike if it is homeomorphic to a star. The branches of T at 
its central point are its arms. 

THEOREM B. Let L be starlike with ni arms of length i. Then L is a link 
graph if and only if 

n&n,+ 5 (i-3)ni, 
i=4 
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and 

2n, < 2n, + 3n, + $J (i - 3)ni. 

THEOREM C. All cycles are link graphs. 
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FIG. 3. The smallest graph whose link graph is C, 

Similar results are known for unions of stars and for unions of paths and 
cycles; see Hell [5 1. 

1. NECESSARY CONDITIONS FOR LINK GRAPHS 

The theorems proved in this section give conditions on the degrees of adja- 
cent vertices of L which must be satisfied if L is to be a link graph. 

We begin by observing that if v and w  are adjacent vertices of a graph G, 
then link(u, link(w, G)) = link(w, link(u, G)). Indeed the two expressions 
define the same graph, namely, the subgraph induced by the set of points ad- 
jacent to both v and w, which is of course the intersection of their links. 

For many graphs L, the following result allows us to prove, by mere in- 
spection of L, that it is not a link graph. We define G(n) to be the set of ver- 
tices of degree n in G. 

THEOREM 1. If L is a link graph with L(n) # 0, and B is a set of 
positive integers such that 
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n < ,Trin) 1 w  E link(v, L): deg(w, ~5) E B 1 

+ (,~ax, 1 w  E link(v, L): deg(w, L) E I?(, 

then there is an edge of L joining two points whose degrees are in B. 

Proof: Let L -+ G. Also, let u E V(G) with v a point of degree n in 
link(u) Y L at which the maximum in the statement of the theorem occurs. 
Since deg(u, link v) = n, our assumption tells us that 

n < I w  E link(u, link(v, G)): deg(w, link v) E B I 

+ I w  E link(v, link(u, G)): deg(w, link U) E B I. 
(1) 

But link(v, link(u, G)) = link(u, link(v, G)), and this subgraph has just n 
points. Hence the two sets counted in (1) must have a common point w. 

n=3 B= {l} 

n=2 B= (1) 

n=3 B = (2) 

n=3 B = {1,2} 

FIG. 4. Four trees which are not link graphs by Corollary la. 
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Shifting our attention to link w, we see that 

and 
deg(u, link w) = deg(w, link U) E B 

deg(v, link w) = deg(w, link v) E B. 

Thus u and v are adjacent points of link w  whose degrees in link w  belong to 
the set B. 1 

COROLLARY la. If L is a graph with L(n) # 0 and B is a set of positive 
integers such that 

(i) For all v E L(n), 1 w E link(v, L): deg(w, L) E B 1 > n/2, 
(ii) No two vertices with degrees in B are adjacent, 

then L is not a link graph. 1 

The corollary may be applied to the four trees in Fig. 4 to show that they 
cannot be link graphs. 

Hell [ 51 independently found the special case of Corollary la for which B 
is a singleton. 

For the two trees in Fig. 5, the full strength of the theorem is needed rather 
than just the special case in the corollary. 

To simplify the statement of the next theorem we introduce the following 
definitions. Let v and w  be adjacent points in a graph G. We call the number 
of points adjacent to both v and w, 

n = ]link(v, link(w, G))I = ) link(w, link@, G))J, 

)-(- n=3 B={2} 

n=4 B= (1) 

FIG. 5. An application of Theorem 1. 
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the relative degree of v and w, and we denote this number by a(v, w). 
Furthermore, we say an edge (v, w) is “marked n” if a(v, w) = n. For each 
v E V(G), let e,(v) be the number of edges in link v marked i, and let @i be 
the average, 

i!i = -$q- C e,(v). 
u 

Finally, let pi(L) = IL(i)1 be the number of points in a graph L having degree 
i in L. 

Note that a(v, w) is the degree of v in link w, and is also the degree of w  in 
link v. 

THEOREM 2. If L + G, then for all i, 

2ei = ipi( 

Proof. Fix an arbitrary i. We will express in two ways the number of or- 
dered triples of points (u, v, w) forming a triangle where edge (u, v) is 
marked i. Call this number k. 

For the first count, we focus on w. Each edge marked i in link w  serves as 
the first edge of two such ordered triangles. This shows that 

k = 2x e,(w) = 2p(G)e’,. 
WE V(G) 

For the second count, we focus on u. Any of the pi(L) edges from u to a 
point v of degree i in link u can serve as the first edge of a triangle. Then any 
one of the i edges in link u incident to v can serve as the second edge (v, w). 
The triangle is then completely determined. Thus the number of triangles is 
also 

k = p(G) pi(L 

Equating the two expressions for k, we get ipi = 2e’i. I 

In order to apply Theorem 2 effectively, we need more information about 
the relative degrees of adjacent vertices. The following theorem supplies such 
information; in conjunction with Theorem 2, it will be used to show that cer- 
tain graphs L satisfying the necessary conditions in Theorem 1 are 
nevertheless not link graphs. 

THEOREM 3. Let L -+ G and v (5 V(G). For any s E link v there exists a 
t E L such that deg(t, L) = deg(s, link v) and such that the numbers used to 
mark the lines of link v incident with s are the same (including multiplicity) 
as the numbers deg(u, L) for the points u adjacent to t in L. 
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ProoJ Let d = a(s, v), and let 6 be an isomorphism from link s to L. The 
t required by the proposition will be 6(v). Its degree in L is 
deg(6(v), L) = deg(v, link s) = d as desired. The degrees of the vertices of L 
adjacent to t are the same as the degrees of the vertices of link s adjacent to 
v (because the isomorphism 6: L + link s sends v to t). The latter degrees are, 
by definition, the marks on the edges of link v incident on S. 1 

In a cubic tree, the degree of each point is 1 or 3. 

Frq. 6. A cubic tree with its edge markings. 

COROLLARY 3. The cubic tree with eight points is not a link graph. 

ProoJ Let T (as in Fig. 6) be the unique cubic tree of order 8, and 
assume T-+ G. Choose v E V(G) and consider T = link v. Every edge of T 
must be marked 1 or 3 since in the link of any point in G, all points have 
degree. 1 or 3. In addition, the theorem implies that all edges of T incident to 
endpoints must be marked 3. 

Again by the theorem, each vertex of degree 3 in T must be incident to at 
least one edge marked 1. Thus the edges of T must be marked as in Fig. 6. 
This being the case for all link v, v E G, it follows that Fr = 2. By Theorem 2, 
4 = 2?, = 1 . p,(L) = 5, a contradiction. 1 

Note that Theorem 2 depends crucially on the fact that graphs are by 
definition finite. If infinite graphs are admitted, then the cubic tree of Fig. 6 
can be shown to be a link graph. 

FIG. 7. A tree which is not a link graph. 
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---H-i-k-t-L 

-x----A----+ 
r I 

-t- -T---Ir--- 

--76--F E----E-- 

FIG. 8. Non-link trees with fewer than 10 points, (a) Non-links by the Brown-Connelly 
theorems, (b) non-links by Theorem 1, (c) other non-links. 



WHICH TREES ARE LINK GRAPHS? 285 

FIG. S-Continued. 
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The next example of a negative finding is the most complicated one we 
have obtained yet. The proof that it is not a link graph uses Theorems 2 and 
3 and an additional ad hoc argument. 

THEOREM 4. The tree T of Fig. I is not a link graph. 

Sketch ofprooJ: Suppose T -+ G. Let v E V(G) and, for ease of reference, 
identify link v with T. Theorem 3, applied to the vertices a, b and c of link v, 
shows that the edges incident with b must be marked as in Fig. 7 (possibly 
after interchanging a and c). Applied to the vertices of degree 2 in link v, the 
same theorem shows that at least two edges in the path from d to i are 
marked 2. In fact, exactly two of them are marked 2 and edge de is not 
marked 2, because Theorem 2 says Z2 = 3. Therefore, de is marked 3 and the 
path di is marked 1223, 1212, 1232, 2123, or 2323, by Theorem 3. For each 
vertex x of G, let y(x) be the unique vertex of degree two in link x both of 
whose neighbors in link x also have degree two (so y(v) = g). By counting in 
two ways the set of pairs (x, y(x)), we find that the path di must be marked 
1223 in every link and that every vertex of G is y(x) for exactly one X. But, 
knowing that the edges of every link are marked as in Figure 7, we easily see 
that g = y(f) = y(v), a contradiction. g 

The methods of this section, together with the Brown-Connelly theorems 
quoted earlier suffice to prove that none of the trees in Fig. 8 above are link 
graphs. The figure is divided into three parts. Trees in the first part are not 
link graphs by the Brown-Connelly Theorem B cited above. Trees in the 
second part are not link graphs by Theorem 1. Trees in the third part are not 
link graphs by Theorems 2 and 3 together with ad hoc arguments similar to 
(but generally easier than) the proof of Theorem 4. 

The remaining trees with nine or fewer vertices are shown in Fig. 9. In the 
next section we shall see that all of these trees are link graphs. 

2. CONSTRUCTION OF GRAPHS WITH PRESCRIBED LINK 

In this section we present a group-theoretic method for determining a 
graph G with constant link L. 

Recall that a permutation group H is said to be sharply transitive on a set 
S if H is transitive on S and each permutation in H is uniquely determined 
by its action on any single element of S. 

Let H be a group and Z a generating subset closed under inverses and not 
containing the identity. The Cayley graph [H; Z] is defined to be that graph 
whose vertex set is H, with u and v adjacent when u-‘v E Z. (This is the un- 
derlying graph of the symmetric digraph defined in [4, Chap. 141.) Clearly, 
H is a sharply transitive group of automorphisms of [H; Z] by left transla- 
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* 
. : ; - - . I ---l-- 

. 

A-J----- 
1 

l-fl-i-K-l--!-K 

FIG. 9. Link trees with fewer than 10 points. (a) Links by the Brown-Connelly theorems, 
(b) other links. 

tion. Hence, [H; Z] is a graph of constant link. As Z generates H, it follows 
that [H, Z] is connected. 

Conversely, if H is a sharply transitive group of automorphisms of a con- 
nected graph G, then there is a generating subset Z of H, as above, such that 
[H; Z] is isomorphic to G. Indeed, for any vertex v of G, one can take 
Z = {h E H: h(v) E link(v, G)). 
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The idea of our constructive method will be to find a group H and subset 
2 with the property that [H; Z] will have a given L as link graph. In 
practice, we begin with L and assume that L + G for some G on which a 
group H acts in a sharply transitive way. The methods of the preceding 
section often provide enough information about H (and 2) to suggest a 
reasonable H to try. 

As an example, we will use this method to find a graph G having P, as 
link graph. Such graphs are already known [ 11, and one is shown in Fig. 1. 
However we use this relatively simple example to show the method un- 
obscured by the complications that arise when it is applied to larger links. 

Suppose then that P, + G and that the group H acts sharply transitively 
on G. By Theorem 3, we see easily that, for any fixed u E V(G), the marking 
of the edges of (v, link V) must be as shown in Fig. 10. 

FIG. 10. Edge marking within a graph having P, as constant link. 

Let A, B, C, 1) be the unique automorphisms in H sending u to a, 6, c, d, 
respectively. Using repeatedly the fact that these automorphisms preserve ad- 
jacency and relative degrees, we compute some relations between them. 
There are two cases, depending on whether B-‘(v) is b or c. If it is b, then 
B* = 1, BC = A, C* = 1, and CB = D. (All of these equations are obtained 
by observing that both sides send u to the same vertex and then invoking the 
assumed sharp transitivity of H.) It is, therefore, natural to take for H a 
group generated by elements B, C with B* = C* = 1 and to take for 2 the set 
{A, B, C, D) = {BC, B, C, CB}. Further relations must be imposed on the 
generators B and C to make the group H and, therefore, the graph [H; Z] 
finite. 

To choose the relations appropriately, note that [H; Z] is in any case a 
graph with constant link L = link 1 = Z with the adjacency relation 
u-‘u E 2. In order that this link be P, as desired, we must arrange the defin- 
ing relations of H so that the four elements BC, B, C, CB of Z are distinct 
and so that no unwanted adjacencies occur; for example (BC)-‘(CB) must 
not equal any member of Z lest the two endpoints of the path be adjacent. 
Straightforward calculation shows that what is required of H, beyond the 
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equations BZ = C* = 1, is that BC # CB and (CB)3 # 1. These conditions are 
satisfied by the dihedral groups of order 28. For example, we can take the 
group D, of symmetries of a square, where B is the reflection in a diagonal 
and C is the reflection in a line parallel to an edge. The resulting graph 
ID,, Z] is shown in Fig. 1. 

Had we chosen B-‘(u) = c rather than b, we would have obtained the rela- 
tions A = B*, C = B- ‘, D = Be*, so we could take H cyclic, generated by B, 
and Z = {B*, B, B-l,, Be*}. To prevent unwanted adjacencies in the link, we 
must take the order p of B to be at least 7. The resulting graph is Ci. If p is 
even, this is the same as what we got from the dihedral groups. If p = 7, we 
obtain the smallest possible graph with constant link P,, namely, Cf. 

The procedure for constructing a graph with constant link L is in general 
analogous to what we have done for Pd. One extracts from the results in Sec- 
tion 1 as much information as possible about the edge markings in the 
proposed link. If this does not lead to a contradiction, it imposes fairly 
strong constraints on the generators of a hypothetical group H and subset Z 
for which [H; Z] has the desired link. Finally, one imposes additional rela- 
tions on the generators to make H finite, but without producing unwanted 
identifications or adjacencies between elements of 2. 

In many cases, the existence of these “finitizing” relations is assured by 
the results in [3], which imply that, for any free product of finitely many 
cyclic groups, 

and any finite subset R G P such that 1 6? R, there exists a homomorphismf 
of P onto a finite group such that 1 4f(R). The theorem is applicable in the 
example above and in all examples to be given below; the provisional group 
generated by Z subject to the relations that give the desired adjacencies will 
have the required structure of a free product. In the example this provisional 
group was Z, * Z 2 in the first case and Z in the second. 

Figure 9 shows all the trees, with nine or fewer vertices, that are not 
prevented from being link graphs by the results in Section 1 and the 
Brown-Connelly theorems. The paths and stars in the first part of the figure 
are link graphs by Theorems A and B. For all but the last of the others, the 
group-theoretic method outlined above provided a Cayley graph with the 
desired link. Table I lists appropriate H and Z for each of these trees and ex- 
hibits link( 1, [H; Z]). The symbol “<a” in each H indicates additional rela- 
tions to make H finite, as discussed above; in each case, the result quoted 
from [3 ] provides such relations. For example, the finitizing relations in the 
first line of Table I can be taken to be B* = 1 and AB = B3A. The resulting 
graph [H, Z], which we believe to be the smallest graph with this link is 
shown in Fig. 11. 
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N 
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FIG. 11. A graph having as constant link the first tree in Table I. 

This graph can be efficiently described, following Frucht [2], as 
8(1,2) u 8(2,3). In this notation, 8(1,2) refers to a graph with eight 
vertices Vi (0 Q i < 7) with Vi adjacent to V~ when (i -jl is congruent to 1 or 
2 modulo 8; this is the outer part of Fig. 11. Similarly, 8(2, 3) describes the 
inner graph of 8 vertices wi (0 < i < 7). The 0, 1, 5 indicates that Vi is 
adjacent to Wj when j - i is congruent to 0, 1, or 5 modulo 8. 

Using Frucht’s notation, Fig. 12 exhibits a graph of order 48 whose link is 
the last tree in Fig. 9. 

W) 093-499 + 12(3) 

T 0.4.9 1 0,4,9 

12(3) 4 oV3,4V9 12(4) 

FIG. 12. The proof that the last tree in Fig. 9 is a link graph. 

582b/29/3-2 
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3. UNSOLVED PROBLEMS 

PROBLEM 1. We expect that as p --+ co, the probability that a tree T of 
order p is a link graph should approach 0 or 1. We conjecture that the 
answer is 0. 

PROBLEM 2. What is minp(G) such that there exists a connected graph 
G with constant link, but G is not point symmetric? 

We know that the last tree of Fig. 9 is not a link graph in any point- 
symmetric G. Furthermore the graph of order 16 in Fig. 13 has constant link 
I?3 but is not point symmetric. Hence the answer to Problem 2 is at most 16. 

FIG. 13. A graph of order 16 with constant link Kj that is not point symmetric. 
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