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A short proof of Edmonds' matching polyhedron theorem and the total dual 
integrality of the associated system of linear inequalities, proved first by W. H. 
Cunningham and A. B. Marsh (Math. Programming Stud. 8 (1978), 50-72), is 
given. 

1. THE MATCHING POLYHEDRON 

Let G = ( V, E) be an undirected graph, with I VI even, and let P be the 
associated perfect matching polytope, i.e., P is the convex hull of the 
incidence vectors (in {O, 1 }E) of perfect matchings in G. In this paper we 
give a short proof of Edmonds' matching polyhedron theorem [ 3 ], which 
states that P is equal to the set of vectors x in IRE satisfying 

(i) 

(ii) 

(iii) 

x(e) ~ 0 

x(8(v)) = 1 

x(8(V')) ~ 1 

(e E £), 

(v E V), 

(V' <;; V, IV' I odd). 

(1) 

(Here 8(V') is the set of edges of G intersecting V' in exactly one point, 
b(v) := J({v}), and x(E') := LeeE' x(e) for E' ~E.) 

Let P' be the set of vectors in IRE satisfying (1). As the incidence vector of 
any perfect matching satisfies ( 1 ), it follows that P ~ P'-the content of 
Edmonds' theorem is the converse inclusion; equivalently, that the polytope 
defined by ( 1) has integer vertices only. (For other proofs, see Lovasz [ 5] 
and Seymour [8]. For applications, see Naddef and Pulleyblank [6].) 

EDMONDS' MATCHING POLYHEDRON THEOREM. The perfect matching 
polytope is determined by the inequalities ( 1 ). 
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Proof Let G be a smallest graph with P' r:t. P (that is, I VI + J E J is 
minimal), and let x be a vertex of P' not contained in P. Then 0 < x(e) < 1 
for all e in £-otherwise, we could delete e from G to obtain a smaller coun­
terexample. Moreover, IEJ > J VJ-otherwise, either G is disconnected (in 
which case one of the components of G will be a smaller counterexample), or 
G has a point v of degree one (in which case the edge e incident with v has 
x(e) = 1 ), or G is an even circuit (for which the theorem trivially holds). 

Since x is a vertex, there are I E J independent constraints among ( 1) 
satisfied by x with equality, and hence there is a V' 5; V with J V' J odd, 
J V' J ~ 3, J V\V' J ~ 3, and x(o(V')) = 1. Let G1 and G2 arise from G by 
contracting V' and V\V', respectively, and let x 1 and x 2 be the 
corresponding projections of x onto the edge sets of G 1 and G2 , respectively. 
Since x 1 and x 2 satisfy inequalities ( 1) for the smaller graphs G 1 and G 2 , 

respectively, it follows that x 1 and x 2 can be decomposed as convex 
combinations of perfect matchings in G1 and G2 , respectively. These decom­
positions can be easily glued together to form a decomposition of x as a 
convex combination of perfect matchings, contradicting our assumption. 
(This glueing can be done, e.g., as follows: By the rationality of x (as it is a 
vertex of P'), there exists a natural number K such that, for i = 1, 2, Kx1 is 
the sum of the incidence vectors of the perfect matchings F~ , .. ., Fi of G 1 

(possibly with repetitions). Since, for each e in o( V' ), e is contained in Kx( e) 
of the FJ as well as in Kx( e) of the FJ, we may assume that FJ n FJ =I= 0, for 
j = 1, ... , K. It follows that Kx is the sum of the incidence vectors of the 
perfect matchings F~ U Fi, ... ,F~ U Fi of G, and hence that x itself is a 
convex combination of perfect matchings in G.) I 

By a standard construction we now derive Edmonds' characterization of 
the matching polytope, i.e., of the convex hull of (not-necessarily perfect) 
matchings. Again, G = (V, E) is an undirected graph, but now J VJ may be 
odd. Edmonds showed that the matching polytope is determined by the ine­
qualities 

(i) 

(ii) 

(iii) 

x(e) ~ 0 

x(o(v)) :(I 

x((V')) :(HI V'J - 1) 

(e EE), 

(v E V), 

(V' 5; V, J V' I odd). 

(2) 

(Here ( V') denotes the set of edges contained in V'.) Again it is clear that 
each vector in the matching polytope satisfies (2 ), as the incidence vector of 
each matching satisfies (2 ). 

COROLLARY. The matching polytope is determined by (2). 

Proof Let x E IRE satisfy (2). Let G = (V*, E*) be a disjoint copy of G, 
where the copy of vertex v will be denoted by v *, and the copy of edge e 
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(= {v, w}) will be denoted by e* (= {v*, w*}). Let G be the graph with 

vertex set VU V* and with edge set EU E* U { { v, v * f Iv E Vf. Define 
x(e)=i(e*)=x(e) fore in E, and i({v,v*}):=l-x(6(v)), for v in V. 
Now condition (1) is easily derived for x with respect to G. (i) and (ii) are 
trivial. To prove (iii) we have to show, for V1 , V2 s; V with I V 1 I + I V2 I odd, 
that x(6(V1 u Vf)):;;:: 1. Indeed, we may assume, without loss of generality, 

that I V1 \V2 I is odd. Hence 

x(bCV1 u vi)) = x(6CV1\Vz)) + x(o(vt\vrn:;;:: x(6CV1\V2)) 

= 1V1\V2 \- 2x((V1\V2)):;;:: 1, 

by (2 )(iii). 

Hence x is a convex combination of perfect matchings of G. By restriction 
to x and G it follows that x is a convex combination of matchings in G. I 

2. DUAL lNTEGRALITY 

The preceding corollary is equivalent to: the polytope defined by (2) has 
integer vertices only. In other words, for each "weight" function w EIRE, the 

linear program 

max wrx, 

subject to (2) 

has an integer optimal solution. The dual program is 

min2-: y(v)+ ,L z(V')!(IV'l-1) 
VEV V'EI"' 

subject to 

y(v):;;:: 0 

z(V'):;;:: 0 

L y(v)+ I z(V'):;;::w(e) 

ec:::V' 

(v E V), 

(V' E &), 

(e EE), 

(3) 

(4) 

where & denotes the collection of all subsets of V of odd size. Cunningham 
and Marsh [ 2] ( cf. Schrijver and Seymour [7]) showed that if w is integral, 
this dual program also has an integer optimal solution, that is, the system of 

inequalities (2) is totally dual integral (cf. Edmonds and Giles [4 ]). Note 
that if we take w= l, this implies the Tutte-Berge theorem (Tutte [9], Berge 
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[ 1 ]): the maximum size of a matching in G is equal to the minimum value of 
J VJ - HIV' I+ u(V')), where V' ranges over the subsets of V, and where 
u( V') denotes the number of odd-sized components of the subgraph induced 
by V'. 

THEOREM. If w is integral, then problem ( 4) has an integer optimal 
solution. 

Proof. We may assume that w is nonnegative. Suppose that G and 
w E I~ form a smallest counterexample, i.e., that ( 4) has no integer optimal 
solution and that I VJ + I EI + LeeE w(e) is as small as possible. Then 
w(e);;;,, 1 for all e in E, otherwise, we could delete e. Let Y be the collection 
of those matchings in G whose incidence vector achieves the maximum (3 ). 
Then for each vertex v there is a matching F in Y not covering v. Otherwise, 
we could decrease the weights of the edges incident with v by one, thus 
decreasing the maximum (3 ), and therefore also the minimum (4 ), by one. 
For this smaller weight function there is an integer optimal solution y, z for 
( 4 ). By increasing y( v) by one we obtain an integer optimal solution for w. 

Now let y, z be an optimal solution for (4) with Lv'et" z(V') J V' J · I V\V' I 
as small as possible. 

First, y = 0, since if y( v) > 0, by complementary slackness each F in .Y­
covers v. 

Secondly, if V', V" E ~ with z(V') > 0, z(V") > 0, and V' n V" i= 0, 
then V' <;; V" or V" <;; V'. For let v E V' n V", and take F in f not 
covering v. Then, by complementary slackness, HI V' J - 1) edges of F are 
contained in V', and HI V" I - 1) edges of F are contained in V". This 
directly implies that I V' n V" J and J V' U V" J are odd. Suppose now that 
V'\V" * 0 i= V"\V'. Let e = min{z(V'), z(V") }, and redefine z by 

z(V') := z(V')- e, 

z(V' n V") := z(V' n V") + e, 

z(V") := z(V") - e, 
(5) 

z(V' UV"):= z(V' UV")+ e, 

and let z be unchanged in the other components. One easily checks that the 
new y, z again is an optimal solution for ( 4 ), and moreover that 
Lv'er z(V') IV' I · I V\V' I is smaller than before, contradicting our 
assumption. 

Finally, z is integral, for suppose z(V') is not an integer, with V' Ero and 
I V' I as large as possible. Let V1 , ••• , Vk be the maximal elements (with respect 
to inclusion) of { V" E ~I z(V") > 0, V" c V' }. So V1 , ... , Vk are pairwise 
disjoint. Now let r be the fractional part of z( V'), and reset 

z(V') := z(V') - r, z(V;) := z(V;) + r (for i = 1, ... , k). (6) 
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One easily checks that y, z again is a feasible solution for ( 4) (using that w is 
integral), attaining a smaller criterion value, which contradicts that the 
original y, z is optimal. I 

We leave it to the reader to derive from this theorem that the dual of the 
linear program: max wTx subject to (1), has a half-integer optimal solution 
for each w in ze (the graph K 4 shows that there do not always exist integer 
optimal solutions). 
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Note added in proof Bill Cunningham (Bonn) informed the author that Jack Edmonds 
found a similar proof for the matching polyhedron theorem. An alternative short proof of both 
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results in combinatorial optimization, in "Mathematical Programming Bonn 1982: The State 
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