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In Chapter 1 of this article we prove the following. Let f : G→ G′ be a

circuit surjection, i.e., a mapping of the edge set of G onto the edge set of G′

which maps circuits of G onto circuits of G′, where G,G′ are graphs without

loops or multiple edges and G′ has no isolated vertices. We show that if G is

assumed finite and 3-connected, then f is induced by a vertex isomorphism.

If G is assumed 3-connected but not necessarily finite and G′ is assumed to

not be a circuit, then f is induced by a vertex isomorphism. Examples of

circuit surjections f : G → G′ where G′ is a circuit and G is an infinite

graph of arbitrarily large connectivity are given. In general if we assume G

two-connected and G′ not a circuit then any circuit surjection f : G → G′

may be written as the composite of three maps, f(G) = q(h(k(G))), where k

is a 1− 1 onto edge map which preserves circuits in both directions (the“2-

isomorphism” of Whitney(Amer. J. Math. 55(1993), 245-254 ) when G is

finite), h is an onto edge circuit injection (a 1-1 circuit surjection). Let

f : G → M be a 1-1 onto mapping of the edges of G onto the cells of M
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which takes circuits of G onto circuits of M where G is a graph with no

isolated vertices, M a matroid. If there exists a circuit C of M which is

not the image of a circuit in G, we call f nontrivial, otherwise trivial. In

Chapter 2 we show the following. Let G be a graph of even order. Then

the statement “ no nontrivial map f : g → M exists, where M is a binary

matroid,” is equivalent to “G is Hamiltonian.” If G is a graph of odd order,

then the statement “no nontrivial map f : G → M exists, where M is a

binary matroid” is equivalent to “G is almost Hamiltonian”, where we define

a graph G of order n to be almost Hamiltonian if every subset of vertices of

order n− 1 is contained in some circuit of G.

INTRODUCTION AND PRELIMINARY DEFINITIONS

The results obtained in this paper grew from an attempt to generalize

the main theorem of [1]. There it was shown that any circuit injection (a

1-1 onto edge map f such that if C is a circuit then f(C) is a circuit from a

3-connected (not necessarily finite)) graph G onto a graph G′ is induced by

a vertex isomorphism, where G′ is assumed to not have any isolated vertices.

In the present article we examine the situation when the 1-1 condition is

dropped (Chapter 1). An interesting result then is that the theorem remains

true for finite (3-connected ) graphs G but not for infinite G.

In Chapter 2 we retain the 1-1 condition but allow the image of f to be

first an arbitrary matroid and second a binary matroid.

Throughout this paper we will assume that graphs are undirected without

loops or multiple edges and not necessarily finite unless otherwise stated. We

will denote the set of edges of a graph G by E(G) and the set of vertices
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of G by V (G). We will also use the notation G = (V,E) to indicate V =

V (G), E = E(G) when G is a graph. The graph G : A will be the graph with

edge set A and vertex set V (G). The abuse of language of referring to a set

of edges S as a graph (usually a subgraph of a given graph) will be tolerated

where it is understood that the set of vertices of such a graph is simply the

set of all vertices adjacent to any edge of S.

A subgraph P of a graph G is a suspended chain of G if |V | ≥ 3, |V | finite

and there exists two distinct vertices v1, v2 ∈ V , the endpoints of P such that

degP v1 = 1, degP v2 = 1, and degP v = degG v = 2 for v ∈ V, v 6= v1, v2,

where V = V (P ). We shall also refer to the set of edges of P as a suspended

chain. The notation C (v) will be used to indicated the set of edges adjacent

to the vertex v in a given graph.

A circuit surjection f of G onto G′, denoted by f : G → G′, is an onto

map of the edge set of G onto the edge set of G′ such that if C is a circuit of G

then f(C) is a circuit of G′. We also understand the terminology f : G→ G′

is a circuit surjrction to preclude the possibility of G′ having isolated vertices.
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Chapter 1

1. CIRCUIT SURJECTIONS ONTO GRAPHS

Lemma 1.1 Let f : G → G′ be circuit surjection where G is 2-connected

and G′ is not a circuit. Let e be an edge of G′. Then if C is circuit of G

such that C contains at least one element of f−1(e) then C contains every

element of f−1(e).

Proof. First, we note that G′ is 2-connected since if e1, e2 are two dis-

tinct edges of G′ then f(C) is a circuit which contains e1 and e2 where C is

any circuit of G which contains h1, h2 such that h1 ∈ f−1(e1), h2 ∈ f−1(e2).

Let v1, v2 be the vertices adjacent to e. Let P (v1, v
′) be a path in G′ of

minimal length such that v′ is a vertex of degree greater than 2. Define

S = C (v′)− {h} if v′ 6= v1, S = C (v′)− {e} if v′ = v1, where h is the edge

in P (v1, v
′) adjacent to v′.

FACT 1. Any circuit of G′ which contains e must contain one and only

one element of S.

Let aα, α ∈ I be the elements of S and let A = f−1(e), Aα = f−1(aα), α ∈

I. Then Fact 1 implies
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FACT 2. If C ∩A 6= Ø for C a circuit of G then C ∩Aα 6= Ø is true for

one and only α ∈ I.

Let C0 be a circuit which contains an edge of A. We will show that the

assumption C0 6⊃ A leads to a contradiction of Fact2. Denote by B the

unique set Aα0, α0 ∈ I such that C0 ∩ Aα0 6= Ø. Let D = Aα1, α1 6= α0

(since |I| = |S| ≥ 2, this is possible) and let d ∈ D. Since G is 2-connected

and d /∈ C0 there is a path P3(q0, q1), d ∈ P3(q0, q1) where q0, q1 are distinct

vertices of C0 and P3(q0, q1) is edge disjoint from C0. Denote by P1(q0, q1)

and P2(q0, q1) the two paths such that C0 = P1(q0, q1) ∪ P2(q0, q1). Now

Pi ∩ A 6= Ø and Pi ∩ B 6= Ø is not possible, i = 1 or 2, since then P3 ∪ Pi
would be a circuit which violates Fact 2. Thus Pi ∩A 6= Ø(Pi ∩B = Ø), and

Pj ∩ B 6= Ø(Pj ∩ A = Ø) where either i = 1, j = 2, or j = 1, i = 2, say, the

former (Fig. 1).

Suppose now there exists an edge k ∈ A, k /∈ C0. Now k ∈ P3 is im-

possible since if that were the case then P3 ∪ P2 would be a circuit which

violates Fact 2. Thus k is edge disjoint from G′′, where G′′ is the subgraph

of G consisting of P3 ∪ P1 ∪ P2. Since G is 2-connected there exists a path

P4(t0, t1) in G such that k ∈ P4(t0, t1), t0, t1 are distinct vertices of G′′ and

P4(t0, t1) is edge disjoint from G′′. We now show that no matter where t0, t1

fall on G′′ a contradiction to Fact 2 arises. For if G′′ has a t0 − t1 path P5

disjoint from B ∪ D, then P4 ∪ P5 is a circuit intersecting A and hence P4

intersects some Aα. Since P4 can be extended to a circuit intersecting B

(resp. D) this contradicts Fact 2. If G′′ has no such path P5, then it has a

t0 − t1 path intersecting both B and D and that path union P4 contradicts
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Fact 2.

Theorem 1.1 Let f : G→ H be a circuit surjection, where G is 2-connected

and H is not a circuit. Then f is the composite of three maps f(G) =

g(h(k(G))), where k is a 1-1 onto edge map which preserves circuits in both

directions (a “2-isomorphism” of [8] when G is finite), h is an onto edge

map obtained by replacing suspended chains by single edges (which preserves

circuits in both directions) and q is a circuit injection.
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We note that the theorem implies that f−1(e) is a finite set for each edge

of H and thus H must be infinite if G is infinite.

Theorem 1.1 follows from the fact that (by Lemma 1.1) for any e ∈ H,

any two edges of f−1(e) form a minimal cut set (cocycle) It is apparent that

f−1(e) can thus be transformed into a suspended chain by a sequence of

2-switchings. This establishes Theorem 1.1 for finite G. Theorem 1.1 also

holds for infinite G by the same method used in Theorem 4.1 of [3] (where

Whitney’s 2-isomorphism theorem [8] is extended to the infinite case).

Theorem 1.2 Let f : G→ G′ be a circuit surjection, where G is finite and

3-connected. Then f is induced by a vertex isomorphism.

Proof. We will show that G′ cannot be a circuit. For assume G′ is a

k-circuit, k ≥ 3. Write G = (V,E) and |V | = n. Now f−1(G′−{e}) contains

no circuit and thus |f−1(G′ − {ei})| < n, i = 1, . . . , k, where e1, . . . , ek are

the edges of G′. But each of G, i.e., each element of E occurs in exactly k−1

of the k sets f−1(G′−{ei}, i = 1), . . . , k, and E =
⋃

i=1,...,k

f−1(G′−{ei}). Thus

(k− 1)|E| < kn, or |E| < (k/(k− 1))n, and thus |E| < 3
2
n. But |E| ≥ 3

2
n for

any (finite) graph each vertex of which is of degree three or greater and thus

for any 3-connected finite graph,⇒⇐. Thus G′ cannot be a circuit. Theorem

1.1 thus implies that f is 1-1 so the result follows from [1].

Theorem 1.3 Let f : G→ G′ be a circuit surjection, where G is 3-connected,

not necessarily finite and G′ is not a circuit. Then f is induced by a vertex

isomorphism.

Proof. Theorem 1.1 implies that f must be a 1-1 map so the result

follows from [1].
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Construction

An n-connected graph which has a circuit surjection onto a 3-circuit may

be obtained from a sequence of disjoint 2-way infinite paths P1, P2, . . . , such

that each vertex of Pi is “connected” to Pi+1 by a tree as indicated in Fig. 2

for n = 4. (The mapping which takes each edge labeled i onto ei, i = 1, 2, 3,

defines the circuit surjection onto the 3-circuit with edges e1, e2, and e3)
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Chapter 2

2. CIRCUIT INJECTIONS ONTO MATROIDS

Terminology and Notation

A matroid M is an ordered pair of sets {S,C }, where S 6= Ø,C ⊆ 2S,

which satisfies the following two axioms. Axiom I. A,B ∈ C , A ⊆ B implies

A = B. Axiom II. A,B ∈ C , a ∈ A∩B, b ∈ (A∪B)− (A∩B) implies there
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exists D ∈ C such that D ⊆ A ∪B, a /∈ D, b ∈ D. The elements of S are

called the cells of M , the elements of C are called the circuits of M.

The matroid associated with a graph GM , is the matroid whose cells are

the edges of G and whose circuits are the circuits of G.

Let M = {S,C },M ′ = {S ′,C ′} be matroids, and let f : S → S ′ be a
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1-1 onto map such that f(A) ∈ C ′ whenever A ∈ C . Such an f is called a

circuit injection of M onto M ′ denoted by f : M →M ′. The circuit injection

injection f is called nontrivial if there exists B ∈ C ′ such that B 6= f(A) for

all A ∈ C .

We can assume without loss of generality that S = S ′, f is the identity

map and C ⊆ C ′ for a circuit injection f . Then f is nontrivial if C is

properly contained in C ′.

We denote by A⊕B the mod 2 addition of set A and B which is defined

to be the set (A ∪B)− (a ∩B).

A matroid (S,C ) is a binary matroid if for all A,B ∈ C , A⊕ B =
k⋃
i=1

Ci

for Ci ∈ C , i = 1, . . . , k, Ci ∩ Cj = Ø, i 6= j, 1 ≤ i, j ≤ k. Given a set S

and an arbitrary set C ⊆ 2S we denote by < C > the collection of all sets A

such that there exists k ≥ 1, C1, . . . , Ck ∈ C and A = C1 ⊕ · · · ⊕ Ck.

We denote by < C >min the minimal elements of < C >, i.e., the

elements A ∈< C > such that B ∈< C >,B ⊆ A ⇒ B = A. A useful

theorem of matroid theory [5, Sects. 1 and 5.3] is that {S,< C >min} is a

binary matroid for arbitrary C ⊆ 2S.

We denote the rank of a matroid by r(M). If A ∈ C exists such that

|A| = r(M) + 1 we call A a Hamiltonian circuit of M , and we call M

Hamiltonian.

Condition for Trivial/Nontrivial Circuit Injections

We would like to establish conditions on a graph G such that all circuit

injections f : GM → N are trivial, where N is first assumed to be an arbitrary
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matroid and second assumed to be a binary matroid. (We note that if N

is assumed to be a graphic matroid, i.e., N = G′M for some graph G′ then

the theorem of [1] implies that G 3-connected is a condition when ensures no

nontrivial circuit injection exists).

Since the addition of an isolated vertex to a graph G has no effect on

GM we assume (without loss of generality) that G has no isolated vertices

throughout this section to simplify the statements of the theorems.

Remark. The fact that if M is a Hamiltonian matroid (or in particular

GM , where G is a Hamiltonian graph) then the only circuit injections f :

M →M ′ are trivial, where M ′ is an arbitrary matroid follows from the fact

that r(M ′) = r(M) in this case. The converse is also easily established as

follows.

Theorem 2.1 If G is a non-Hamiltonian matroid (or in particular the ma-

troid associated with a graph without Hamiltonian circuits) there exists a

nontrivial circuit injection f : G→M , where M is a (not in general binary)

matroid.

Proof. Let the cells of M be the edges of G; let the circuits of M be

C ∪L , where C is the set of circuits of G and L is the set of all bases of G,

and let f be the identity map. Then f is a nontrivial circuit injection (the

matroid M is the so-called truncation of G see [7]).

Remark. Since matroids of arbitrarily large connectivity exist without
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Hamiltonian circuits (the duals of complete graphs are one example 1) there

is no general matroid analogue to the result of [1]. We note that M is never

a binary matroid in the construction of Theorem 2.1.

A more interesting result is obtained when we restrict M to be an arbi-

trary matroid, G a graphic matroid.

DEFINITION. Let the order of a graph G be n. We say G is almost

Hamiltonian if every subset of n− 1 vertices is contained in a circuit.

Theorem 2.2 Let the order of G be even. Then “no nontrivial circuit injec-

tion f exists, f : GM → B, where B is binary” is true iff G is Hamiltonian.

Let the order of G be odd. Then “no nontrivial circuit injection f : GM → B

exists where B is binary” is true iff G is almost Hamiltonian.

We abbreviate “no nontrivial circuit injection f : GM → B exists, where B

is binary” by saying “G has no nontrivial map.” To prove the theorem we

need the following

Lemma 2.1 G has no nontrivial map implies “if v1, . . . , vn are vertices of

odd degree in S, for any subgraph S of G, then there exists a circuit C of G

such that v1, . . . , vn are vertices of C.”

Proof. Let C be the set of circuits of G, S a subset of edges of G.

Let C ′ =< C ∪ {S} >min. Then f : {E,C } → {E,C ′}, where f is the

1We take the definition of connectivity for matroids from [4, 6]. A property of this

definition is that the connectivity of a matroid equals the connectivity of its dual and also

the connectivity of the matroid Gn
M associated with the complete graph on n vertices Gn

approaches ∞ as n → ∞. Thus the duals of the complete graphs have arbitrarily large

connectivity.
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identity map, will be a circuit injection unless C 6⊆ C ′, i.e., unless there

exists A ∈< C ∪ {S} >min, C ∈ C and A is properly contained in C, i.e.,

unless

S ⊕ C1 ⊕ · · · ⊕ Ck ⊂ C for Ci ∈ C , i = 1, . . . , k. (2.1)

Now if S has a vertex v of odd degree in S then C 6=< C ∪ {S} >min so f

will be a nontrivial circuit injection unless (2.1) holds. But v of odd degree

in S implies v will be of odd degree in S ⊕C1⊕ · · · ⊕Ck and thus v must be

contained in C. (If vertex q is of even degree in S then all edges adjacent to

it could cancel in S ⊕ C1 ⊕ · · · ⊕ Ck and thus q /∈ C is possible).

Corollary 2.1 G has no nontrivial map implies G is 2-connected.

Proof. We show given q1 6= q2, vertices of G, there exist C ∈ C with

q1, q2 vertices of C. First assume there exists the edge e = (q1, q2) in G. Then

taking S = {e} in the hypothesis of Lemma 2.3 yields C. Otherwise choose

an edge a adjacent to q1 and an edge b adjacent to q2 (since G has no isolated

vertices this is possible) and put S = {a, b} to get C.

We prove the implications of Theorem 2.2 separately in the following two

lemmas.

Lemma 2.2 |G| = 2N and G has no nontrivial map ⇒ G is Hamiltonian;

|G| = 2N + 1 and G has no nontrivial map ⇒ G is almost Hamiltonian.

Proof. Let C be a circuit of G and let G have no nontrivial map, |G|

odd or even.

FACT 1. If C is even and there exist two distinct vertices v1, v2 of G

not on C then C is not of maximal order.
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Proof of Fact 1. Let q1, q2 be two distinct vertices of C. Then by

Menger’s Theorem (since G is 2-connected ) there exists a pair of vertex

disjoint paths P (v1, q1), P (v2, q2) or P (v1, q2), P (v2, q1). In either case there

exists a pair of distinct vertices v′1, v
′
2 not on C such that (v′1, q1), (v

′
2, q2) are

edges of G. If q1, q2 are separated by an odd (even) number of edges in C

there exists a subgraph of G having |C| + 2 odd vertices as in Fig. 3(A)

(3(B)) and thus C is not maximal by Lemma 2.1.
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FACT 2. If |C| is odd and there exists a vertex v1 ∈ G not on C then

C is not maximal.
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Proof of Fact 2. By the connectivity of G we have (v1, q) is an edge for

some vertex q on C. We construct a subgraph having |C|+ 1 odd vertices as

in Fig. 4 and apply Lemma 2.1.

If |G| = 2N , Facts 1 and 2 imply that a circuit of maximal length is

a Hamiltonian circuit. If |G| = 2N + 1, Facts 1 and 2 imply either G is

Hamiltonian (in which case it is also almost Hamiltonian) or a maximal

circuit is of length 2N . Let C be a circuit of length 2N, v the vertex of G not

on C, q a vertex on C such that (v, q) is an edge. We can find a subgraph of

G all vertices of which are of odd degree containing v and all other vertices

of C other than an arbitrary vertex v′ of C as in Fig. 5. Thus G is almost

Hamiltonian by Lemma 2.1.

Lemma 2.3 Let G be an almost Hamiltonian graph, |G| = 2N + 1. Then G

has no nontrivial map. Let G be a Hamiltonian graph, |G| = 2N . Then G

has no nontrivial map.

Proof. Case 1. |G| = 2N + 1. Suppose otherwise, i.e., let f : (E,C )→

(E,C ′) be a nontrivial circuit injection, where E are the edges of G,C are

the circuits of G, and C ′ properly contains C . Let C be a circuit of G,
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|C| = 2N, q a vertex of G not on C, e′ an edge of G adjacent to q and

some vertex v of C, and e an edge of C adjacent to v.

Then P = (C−{e})∪{e′} is a Hamiltonian path of G (i.e., a path which

contains every vertex) and P is a dependent set of {E,C ′}(since otherwise

r(E,C ) = r(E,C ′) = 2N and f must be trivial). Let T ∈ C ′, T /∈ C , T ⊆ P.

Now T has at most 2N odd vertices, v1, . . . , vs, since the sum of the degrees

of all the vertices of T is even and T has at most 2N+1 vertices. Let C ′ be a

circuit of G which contains v1, . . . , vs. Let T ⊆ T be the set of edges of T not

contained in C ′. Then T ′ ⊆ P is the union of vertex disjoint paths P1, . . . , Pk

and the endpoints bi, ei of Pi are on C ′.Let C ′i be one of the two paths in C ′

with endpoints bi, ei of Pi are on C ′. Let C ′i be one of the two paths in C ′

with endpoints bi, ei and define k circuits of G by Ci = C ′i ∪ Pi, i = 1, . . . , k.

Then T ⊕ Ci ⊕ · · · ⊕ Ck ⊆ C ′ contradicting the definition of T .

Case 2. |G| = 2N . If G is Hamiltonian of arbitrary order then G has

no nontrivial map as noted in an earlier remark.
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Lemmas 2.2 and 2.3 establish Theorem 2.2. The existence of almost

Hamiltonian graphs of odd order which are not Hamiltonian is shown in [2].

Thus there are graphs which are not Hamiltonian for which no nontrivial

map exists.

Remark. The duals of the matroids of complete graphs of order 5 or

more provide a counter example to the assertion that an n exists such that

if a binary matroid M has a connectivity n no nontrivial map f : M → M ′

exists, where M ′ is a binary matroid. For if Gn is the complete graph of n

vertices let M ′
n =< Bn ∪ {En} >min, where En = E(Gn) and Bn is the set of

bonds of Gn. Then f : Mn → M ′
n, where Mn is the dual of Gn, and f is the

identity map, is a nontrivial map, since a⊕En 6⊂ b for a, b ∈ Bn when n ≥ 5

and a1 ⊕ · · · ⊕ ak where ai ∈ Bn, 1 ≤ i ≤ k.
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