Engines from Continuations

R. Kent Dybvig and Robert Hieb

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington IN 47405
USA

July 21, 1988

Abstract

Engines provide the means for a computation to be run for a limited period of time, interrupted
if it does not complete in that time, and later restarted from the point of interruption. Previous
work on engines demonstrated that engines can be implemented by defining a new interpreter to
support them. This article demonstrates that engines may be defined in terms of continuations and
timer interrupts and thereby incorporated into an existing language implementation. The article
extends the engine mechanism to solve several problems with nestable engines, and demonstrates

that the extended mechanism can be implemented in terms of continuations as well.

Engines Continuations Timed Preemption

This material is based on work supported by the National Science Foundation under grant number CCR-8803432

and by Sandia National Laboratories under contract number 06-06211.

1. Introduction

Programming languages typically do not provide any means for a computation to be run for a
limited period of time, interrupted if it does not complete in that time, and later restarted from the
point of interruption. The means to interrupt and restart programs running as processes is provided
by most operating systems, but this ability usually does not extend to the subprogram level. The
engine mechanism introduced by Haynes and Friedman provides this ability in a clean and concise
manner [5, 6, 2]. Haynes and Friedman described how unnestable engines (where only one engine
can be active at a time) can be implemented by providing a new interpreter that supports engines.
They also described a nestable engine mechanism that can be implemented in terms of unnestable
engines.

In this article we demonstrate that engines can be implemented in terms of first-class contin-
uations and timer interrupts and thereby incorporated into an existing language implementation.
Consequently, it is not necessary to write a new interpreter or compiler to support engines as long
as the host language supports first-class continuations and timer interrupts. We also show that the
timer interrupt mechanism need not be primitive in the language if provisions for syntactic exten-
sions exist. We further demonstrate that nestable engines as described by Haynes and Friedman
can be implemented in a similar manner. We point out some of the problems inherent in their
model and present an extended nestable engine mechanism, along with its implementation, that
solves these problems.

The algorithms and examples presented in this paper are coded in Scheme. Section 2 contains
a brief discussion of the features of Scheme which are essential to our presentation. This is followed,
in Section 3, by a review of the engine mechanism and some examples of its use. In Section 4, we
show how to construct a timer interrupt mechanism in Scheme and demonstrate how engines may
be constructed from continuations with timer interrupts. We proceed with a discussion of nestable
engines in Section 5 and follow this with our proposal for a new nestable engine mechanism and
its implementation in Section 6. In Section 7, we conclude with a few remarks about the benefits

of our method for implementing engines and some suggestions for further study.

2. Scheme

The algorithms and examples presented in this paper are coded in Scheme, a lexically-scoped
dialect of Lisp that supports first-class continuations [10]. Two features of Scheme aside from
continuations play an important role in this article: first-class procedures and proper treatment of
tail recursion. In this section we describe first-class procedures, proper treatment of tail recursion,

and continuations briefly. More detail on these subjects can be found in [2].

2

In Scheme, procedures are created by evaluation of lambda expressions. For example, the
expression (lambda () x) evaluates to an identity procedure. A procedure created from a lambda
expression may be applied directly; the expression ((lambda (z) z) 0) evaluates to 0. Procedures
may be assigned to top-level variables using the define syntactic form. For example, the following

definition binds the variable identity to the identity procedure:

(define identity
(lambda (z) z))

After this definition, the expression (identity 0) also evaluates to 0.

Furthermore, it is possible to pass procedures as arguments to other procedures, return them
as results, or store them indefinitely before applying them. In fact, procedures are treated like
any other data object, which is why Scheme procedures are said to be first-class. What makes the
first-class status of procedures interesting and useful is that when a procedure is applied, its body
is evaluated in the lexical environment in effect when the procedure was created. In essence, a
procedure created from a lambda expression “remembers” the lexical bindings visible where the
lambda expression appears in the code.

For example, we can define a procedure that creates a unary operator from a binary operator

and one operand:

(define binary->unary
(lambda (operator operandy)
(lambda (operands)
(operator operandy operands))))

This procedure, which we have named binary->unary, expects a procedure of two arguments (the
binary operator) and a value (the first operand) as its arguments, and it returns a procedure of
one argument as its value. When the procedure returned by binary->unary is applied to a value
(the second operand), it applies the binary operator to the two operands to obtain its value.
Unary minus may now be defined as (binary->unary — 0), and the 1+ procedure may be defined
as (binary->unary + 1).

It is important to realize that the locations of the visible lexical bindings are retained by a
procedure, not merely the values. This matters only if a side-effect to one of the lexically visible
variables occurs. For example, the following code segment creates two procedures within the lexical
scope of the variable z. The procedure get-x returns the current value of x, while the procedure

put-x! gives x a new value.

(define get-z)
(define put-z!)
(let ([0])
(set! get-z
(lambda ()
z))

(set! put-z!
(lambda (v)
(set! zv))))

The define expressions appearing outside of the let establish top-level bindings for the variables
get-r and put-z!; these variables are given values, using set!, inside the let. Because get-x and
put-z! are defined within the let for x, they can communicate through z. And since nothing else
appears within the let expression, only get-r and put-x! can reference or assign z. Thus, we have
created two procedures that share a private local variable. First-class procedures, then, are useful
for writing modular code, and they may be used to program in an object-oriented style.

Proper treatment of tail recursion allows iteration to be expressed as recursion, thereby elim-
inating the need to use special looping constructs to perform iteration. Recursion is the direct or
indirect invocation of a procedure by itself. Tail recursion occurs when the recursive call appears
in a context where there is nothing left to do, i.e., the result of the recursive call is returned as the
result of the caller.

The following two definitions for length both compute the length of a list; the first version is
not tail-recursive while the second version is tail-recursive:

(define length,
(lambda (Is)
(if (null? Is)
0
(+ (lengthy (cdr 15)) 1))))

(define lengths
(lambda (Is n)
(if (null? Is)
(lengths (cdrls) (+ n1)))))

In the latter version, a second argument is needed to count the elements in the list as it is traversed,
so we might define length to be (lambda (is) (lengths Is 0)). In the definition for length;, the
recursive call appears as an argument to + and must be evaluated before + is applied. In the
definition for lengths, the recursive call appears where there is nothing left to do but return and is
therefore a tail-recursive call.

Handling tail recursion properly means that tail-recursive calls cannot build up a stack of
activation records, as is typically done for recursive calls. In the case of directly tail-recursive

procedures, the code generated by a good compiler is equivalent to the corresponding code for

4

iterative constructs such as while loops provided by many languages. One important benefit of the
treatment of tail-recursion as iteration is that assignments are not needed to update the induction
variables of a loop defined in terms of tail recursion, so it is possible for a program to cycle
an indefinite number of times before terminating without performing any side-effects. We take
advantage of the proper treatment of tail recursion in code given in this paper, and we also show
how proper treatment of tail recursion is maintained by our implementation of engines.

A continuation is an abstract entity that represents the remainder of a computation from a
given point. In Scheme, continuations are made available as procedure objects via the procedure
call/cc. The argument to call/cc is itself a procedure of one argument, to which the continuation
is passed. When a continuation created by call/cc is applied to a value, it returns control of the
program back to the point where the call/cc occurred, as if the value of the application of call/cc
were the value passed to the continuation. Thus, call/cc may be used for nonlocal exits, as in the

following procedure that computes the product of the elements of a list:

(define product
(lambda (Is)
(call/cc
(lambda (quit)
(letrec ([f (lambda (Is)
(if (null? Is)
1
(if (= (car ls) 0)
(quit 0)
(s (car Is) (f (cdr 15))))))])
(f15))))))

The continuation bound to quit is used to exit immediately from product, without completing the
loop and before performing any multiplications, if a zero element is found. If a zero element is not
found, the multiplications are performed and the result is returned normally.

Because continuations in Scheme are procedures, they are first-class data objects. This means
that a continuation may be applied when the code that created it is not active, ¢.e., when the pro-
gram has dynamically returned from the corresponding call/cc application. In this case, applying
the continuation still returns control to the point where the call/cc occurred, and processing contin-
ues as if the program had never returned from that point. This feature may be used to implement
a number of interesting control structures, including non-blind backtracking [11, 4], coroutines [8],

and engines.

3. Unnestable Engines

An engine is an object embodying a particular computation. The progress made by the computa-

tion is determined by the amount of fuel provided to the engine. The engine mechanism proposed

5

by Haynes and Friedman requires two global procedures: make-engine and engine-return. The pro-
cedure make-engine creates an engine from a procedure of no arguments. This procedure specifies
the computation to be performed by the engine. An engine is a procedure of three arguments:
e ticks: a positive integer that specifies the amount of “fuel” the engine will be allowed to
consume,
e return: a procedure that specifies what to do if the engine returns before the fuel is consumed,
and
e cxpire: a procedure that specifies what to do if the fuel “runs out” before the engine compu-
tation returns.
The return argument is passed a value and the ticks remaining if the engine computation returns;
the expire argument is passed a new engine capable of continuing the engine’s computation if the
fuel is consumed before the engine computation returns.

An engine computation can return only by invoking the procedure engine-return. The pro-
cedure engine-return takes one argument; this argument is passed as the first argument to the
return procedure. The second argument to the return procedure is the number of ticks remaining
when engine-return is invoked. It is an error for the procedure originally passed to make-engine to
return directly, i.e., without calling engine-return. This is not a particularly meaningful restriction,
since it is straightforward to define the procedure make-simple-engine, which creates an engine that
implicitly calls engine-return when the computation has finished:

(define make-simple-engine

(lambda (proc)
(make-engine (lambda () (engine-return (proc))))))

A tick of fuel refers to no particular unit of computation; however, Haynes and Friedman
placed the following constraints on the amount of computation associated with a tick: “(1) a
larger tick count is associated with a larger expected amount of computation (in a statistical
sense) and (2) unbounded real time is associated with an unbounded number of ticks (any looping
computation must consume ticks)” [6]. It is possible within these constraints for an implementation
to associate a different amount of computation at different times with the same number of ticks;
hence, computations involving engines may be nondeterministic. Counting procedure calls is a
straightforward way to provide a tick counter in Scheme, since procedure calls provide the basis for
all Scheme control structures.

Passing an engine a single tick ensures the finest granularity and the fairest distribution of
processing time. It may be desirable to provide a larger number of ticks (for efficiency) or to provide
a random number of ticks in each instance. The latter allows nondeterministic behavior even in a
system where ticks are discrete units of computation.

One common use for engines is to implement a multitasking operating system scheduler.

The kernel protection is provided by Scheme’s lexical scoping and first-class procedures, following

6

(define kernel)
(letrec
([ready-queue (queue)]
[start
(lambda (proc)
(enqueue (make-engine (lambda () (proc trap)))
[ready-queue))]
restart
(lambda (k v)
(enqueue (make-engine (lambda () (k v)))
ready-queue))]
[trap
(lambda (msg arg)
(call/cc
(lambda (k)
(engine-return
(lambda ()
(case msg
[uninterruptible (restart k (arg))]
[start-process (start arg)
(restart k #1)]
[stop-process #1]))))))]
[dispatch
(lambda ()
(if (empty-queue? ready-queue)
“finished
((dequeue ready-queue)
(time-slice)
(lambda (trap-handler ticks)
(trap-handler)
(dispatch))
(lambda (engine)
(enqueue engine ready-queue)
(dispatch)))))])
(set! kernel
(lambda (proc)
(start proc)

(dispatch))))

Figure 1. An operating system built with engines.

Wand [12], and processes are represented by engines. A process running in an engine that requires
uninterruptible access to kernel services passes a request to engine-return; the kernel acts on the
request—with no engine running, and hence without interruption. A process that must be resumed
after the request is serviced must arrange to obtain its continuation, which can then be made

into an engine and later restarted. The simple operating system kernel in Figure 1 illustrates this

7

mechanism. This operating system maintains a queue! of ready processes (engines) that it cycles
through in a round-robin fashion, giving processor time to each process in turn. The system kernel
provides three services: start-process, stop-process, and uninterruptible. Each process receives a
trap argument that it must invoke with a message and an argument in order to take advantage of
these services. The trap procedure obtains the current continuation before invoking engine-return
to return from the engine. The procedure returned from the engine looks at the message and
performs the requested service.

The procedure time-slice determines the number of ticks given to a process each time it runs.
Depending upon the desired effect, time-slice may return the same number of ticks each time it is
called, or it may generate a random number of ticks. For example, the following version of time-slice

returns a positive integer less than or equal to 100:

(define time-slice
(lambda ()
(+ (random 100) 1)))

In the case of uninterruptible and start-process, the continuation of the trap is made into a
new engine so that the process requesting the service can continue. The following code illustrates

the use of the operating system and the services it provides:

(define amoeba
(lambda (generation)
(lambda (trap)
(trap uninterruptible (lambda () (write generation) (newline)))
(if (= (random 2) 0)
(trap ’stop-process #f)
(let ([split-amoeba (amoeba (4 generation 1))])
(trap ’start-process split-amoeba)
(split-amoeba trap))))))

(kernel (amoeba 0))

An “amoeba’” is a process controlled by kernel. Each amoeba has a one in two chance of surviving
and reproducing. The first amoeba is assigned “generation” 0 by the call to kernel. If it survives,
it will be promoted to generation 1 and “split” to create two new amoebas, which in turn may
each create two more amoebas assigned generation 2, and so on. Each amoeba first prints its
generation number, using uninterruptible to ensure that the number and the ensuing newline are
printed together. The numbers may or may not be printed in the sequence 0, 1, 1, etc., depending

on the choice of time-slice in the kernel.

L 'We assume the basic queue manipulation procedures queue, which builds an empty queue,
empty-queue?, which tests whether a queue is empty, enqueue, which adds an object to the queue,
and dequeue, which removes and returns the next object from the queue. We assume that queue
operations are performed in the normal first-in, first-out order.

8

4. Engines from Continuations

We now turn to an implementation of engines in terms of first-class continuations. The imple-
mentation provides a realistic demonstration of the power of first-class continuations as well as
demonstrating that engines need not be provided as primitive in a language that supports first-
class continuations.

Any multitasking primitive must have the ability to do two things: (1) preempt a running
process after a given amount of computation, and (2) obtain the control state of the process so that
it can be later resumed. The first ability is provided by a primitive timer interrupt mechanism in
some Lisp and Scheme systems; we show here how to construct a timer interrupt mechanism if one
is not available. First-class continuations give us the second ability.

Our timer system defines the procedures start-timer, stop-timer, and decrement-timer, which
can be described operationally as follows:

o (start-timer ticks handler): start-timer initializes the timer to ticks ticks and installs handler
as the procedure to be invoked (without arguments) when the timer expires.

o (stop-timer): stop-timer resets the timer and returns the number of ticks remaining.

o (decrement-timer): If the timer is on (timer is nonzero) decrement-timer decrements the timer
by one tick. If the timer has reached zero, decrement-timer invokes the saved handler. If the
timer is not on, or if the timer has not reached zero, decrement-timer simply returns.

The following code implements the timer system:

(define start-timer)
(define stop-timer)
(define decrement-timer)
(let ([clock O] [handler #f])
(set! start-timer
(lambda (ticks new-handler)
(set! handler new-handler)
(set! clock ticks)))
(set! stop-timer
(lambda ()
(let ([time-left clock])
(set! clock 0)
time-left)))
(set! decrement-timer
(lambda ()
(when (> clock 0)
(set! clock (— clock 1))
(when (= clock 0) (handler))))))

Using the timer system requires inserting calls to decrement-timer in appropriate places.
Consuming a timer tick on entry to a procedure usually provides a sufficient level of granularity

(in Scheme, procedure calls are required for all iteration and recursion). This can be accomplished

9

by using extend-syntax [9, 2] to supply timed-lambda, a version of lambda that automatically

invokes decrement-timer before executing the expressions in its body:

(extend-syntax (timed-lambda)
[(timed-lambda parameters exp ...)
(lambda parameters (decrement-timer) exp ...)])

In some systems it is possible to redefine lambda itself to be timed-lambda; the timer mechanism
would thus be invisible to the programmer [3, 1]. In our examples we will assume that lambda
implicitly decrements the timer. Using syntactic transformations to implement the timer means
that independently compiled code, including system code for built-in library procedures, will not
decrement the timer. A built-in mechanism that would not suffer from this deficiency can be
modeled after the syntactic mechanism. A single instruction (increment with trap on overflow)
suffices on some machines.

It may also be useful to provide other “timed” special forms. For testing operating systems
or synchronization primitives, it is useful to have assignments consume ticks so that we do not

inadvertently provide a safe test-and-set operation:

(extend-syntax (timed-set!)
[(timed-set! id exp)

(let ([v exp])
(decrement-timer)

(set! id v))])

We now turn to the implementation of unnestable engines in terms of continuations and
the timer interrupt mechanism. We use call/cc in two places in the engine implementation: (1)
to obtain the continuation of the computation that invokes the engine so that we can return to
that continuation when the engine computation returns or the timer expires, and (2) to obtain
the continuation of the engine computation when the timer expires so that we can return to this
computation if the newly created engine is subsequently run.

The code for the engine system, shown in Figure 2, defines the procedures make-engine and
engine-return. The state of the engine system is contained in three variables local to the engine
system, active?, do-return, and do-expire. The active? variable is a flag used to catch attempts to
invoke an engine from within an engine, i.e., an attempt to nest engines, and to catch attempts
to invoke engine-return when no engine is running. It is set to true when an engine is running
and to false otherwise. When an engine is started, the engine assigns to do-return and do-expire
procedures that, when invoked, return to the continuation of the engine’s caller to invoke the return
or expire procedures. The engine starts (or restarts) the computation by invoking the procedure
passed as an argument to make-engine with the specified number of ticks. The ticks and the private
procedure timer-handler are then used to start the timer.

Suppose that the timer expires before the engine returns. The procedure timer-handler is then

invoked. It initiates a call to start-timer, but obtains the ticks by calling call/cc with do-expire.

10

(define make-engine)
(define engine-return)
(let ([active? #£] [do-return #£] [do-expire #1])
(letrec
([timer-handler
(lambda ()
(start-timer (call/cc do-expire) timer-handler))]
[new-engine
(lambda (resume)
(lambda (ticks return expire)
(if active?
(error ’engine “attempt to nest engines”)
(set! active? #t))
((call/cc
(lambda (escape)
(set! do-return
(lambda (value ticks)
(set! active? #f)
(escape (lambda () (return value ticks)))))
(set! do-expire
(lambda (resume)
(set! active? #f)
(escape (lambda () (expire (new-engine resume))))))
(resume ticks))))))])
(set! make-engine
(lambda (proc)
(new-engine
(lambda (ticks)
(start-timer ticks timer-handler)
(proc)
(error ’engine “invalid completion”))))))
(set! engine-return
(lambda (value)
(if active?
(let ([ticks (stop-timer)])
(do-return value ticks))
(error ’engine-return “no engine running”)))))

Figure 2. FEngines implemented with continuations.

Consequently, do-expire is called with a continuation that, if invoked, will restart the timer and
continue the interrupted computation. The do-expire procedure creates a new engine from this

continuation and arranges for the engine’s expire procedure to be invoked with the new engine in

the correct continuation.

If, on the other hand, the engine returns (via engine-return) before the timer expires,

engine-return stops the timer and passes the value and the ticks remaining to do-return; do-return

11

arranges for the engine’s return procedure to be invoked with the value and ticks in the correct
continuation.

There are three subtle aspects to this code. The first concerns the method used to start the
timer when an engine is invoked. The code would apparently be simplified by letting new-engine
start the timer before it resumes (or initiates) the engine computation, instead of passing the ticks
to the computation and letting it start the timer. However, starting the timer within the process
means that ticks will not be consumed prematurely. If the engine system itself consumes fuel, then
an engine provided with a small amount of fuel may not progress toward completion. (It may, in
fact, make “negative progress.” That is, an engine run with a small amount of fuel may produce a
new engine that requires an even larger amount of fuel to finish the computation—something we
discovered the hard way.) If the software timer described above is used, this problem can also be
avoided by compiling the engine-making code using the untimed version of lambda.

Second, it appears that the body of engine-return could be written without the let, i.e.,
(do-return value (stop-timer)). This would be incorrect, since if the subexpressions of this applica-
tion were evaluated in a left-to-right fashion, the value of do-return would be obtained while the
timer is running. If the timer were to expire just after the value of do-return is obtained, when the
resulting engine runs the result would not be passed to the correct return procedure and continua-
tion. The solution is to never manipulate the variables that contain the state of the engine while
the timer is running. Thus the timer must be stopped before the variable do-return is accessed.

The third subtlety concerns the procedures created by do-return and do-expire and subse-
quently applied by the continuation of the call/cc application. It may appear that do-return could
first invoke the engine’s return procedure, then pass the result to the continuation (and similarly

for do-expire) as follows:
(escape (return value ticks))

However, this would result in improper treatment of tail recursion. The problem is that the
current continuation will not be replaced with the continuation stored in escape until the call
to the return procedure completes. Consequently, both the continuation of the running engine and
the continuation of the engine invocation can be retained for an indefinite period of time, when in
fact the actual engine invocation may appear to be tail recursive. This is especially inappropriate
because the engine interface encourages use of continuation-passing style and hence tail recursion.
The operating system code in Figure 1 provides a good example of this, since the procedure dispatch
invokes engines tail-recursively. Since the return and expire procedures it provides the engine contain
tail-recursive calls to dispatch, it is crucial that the engine invocation itself be implemented tail-
recursively. We do so by arranging for do-return and do-expire to escape from the continuation

of the running engine before invoking the return or expire procedures. Since the continuation of

12

the engine invocation is a procedure application, passing it a procedure of no arguments results in

application of the procedure in the continuation of the engine invocation.

5. Nestable Engines

Engines can be used to simulate parallel evaluation of subexpressions, e.g., in the implementation of
parallel-or. The parallel-or syntactic form alternates processing time among its subexpressions
and returns the value of the first expression to complete with a true (that is, in Scheme, any non-
false) value. This is analogous to the Scheme or syntactic form, which processes its arguments in

sequence rather than in parallel. parallel-or can be defined with engines as follows:

(extend-syntax (parallel-or)
[(parallel-or e ...)
(first-true (lambda () e) ...)])

(define first-true
(lambda proc-list
(letrec ([engines (queue)]
[run (lambda ()
(and (not (empty-queue? engines))
((dequeue engines)
1
(lambda (v t) (or v (run)))
(lambda (e) (enqueue e engines) (run)))))])
(for-each (lambda (proc) (enqueue (make-simple-engine proc) engines))
proc-list)
(run))))
The syntactic definition for parallel-or expands into a call to first-true with each expression re-
placed by a lambda expression with no arguments and the expression as its body, effectively delay-
ing its evaluation. The procedure first-true creates a queue of engines (using make-simple-engine)
from the procedures it receives as arguments. It then loops, each time providing the first engine
on the queue with a single tick of fuel. If the engine returns before the ticks expire and the value
returned is true, this value is returned; otherwise the loop continues with the remaining engines.
If the ticks expire before the engine returns, then the new engine is placed into the queue and the
loop continues. The loop exits when one of the engines returns a true value or when the queue
becomes empty, in which case the value returned is false.

Breadth-first tree searches are particularly easy to implement using parallel-or. However,
breadth-first tree searches require nesting of parallel-or expressions; therefore it is important to
be able to nest the engines upon which parallel-or is built.

Haynes and Friedman described an approach to nesting engines they termed fair nesting, in

which each tick charged to an engine is charged as well to each of its ancestors. This is fair in

the sense that an engine must subdivide its time among its offspring. In their description, they

13

(define make-engine)
(define engine-return)
(letrec
([new-engine
(lambda (resume)
(lambda (ticks return expire)
((call/cc (lambda (escape)
(run resume
(stop-timer)
ticks
(lambda (value ticks)
(escape (lambda () (return value ticks))))
(lambda (engine)
(escape (lambda () (expire engine))))))))))]
[run
(lambda (resume parent child return expire)

(let ([ticks (if (and (active?) (< parent child)) parent child)])
(push (— parent ticks) (— child ticks) return expire)
(resume ticks)))]

[go
(lambda (ticks)
(when (active?)
(if (= ticks 0)
(timer-handler)
(start-timer ticks timer-handler))))]
[do-return
(lambda (value ticks)
(pop (lambda (parent child return expire)
(go (+ parent ticks))
(return value (4 child ticks)))))]
[do-expire #£]) ;EATME
#f) EATME

Figure 3a. A nestable engine implementation (continued in Figure 3b).

assume that the procedure engine-return returns from the most recently activated engine. They
demonstrated that fair nesting can be implemented in terms of unnestable engines, by introducing

a stack of pending computations. It is possible to use similar techniques to implement fair nesting

Figures 3a and 3b contain an implementation of nestable engines in Scheme. The interface for
this version of nestable engines is identical to that of unnestable engines. Its implementation, how-
ever, is considerably more complex. It is convenient to introduce some terminology to distinguish
the various engines that may be simultaneously active. Engines running at the point an engine is
started are that engine’s ancestors. Engines started while an engine is running are that engine’s

descendents. The most immediate ancestor is an engine’s parent; the most immediate descendent

14

is its child.

When an engine is started, information about its invocation must be preserved, for the same
reasons as for the single engine case. The procedure new-engine (see Figure 3a) packages the return
and ezpire procedures into new procedures that will call the original procedures in the continuation
in which the engine was invoked. However, since the state of any currently running engines must
also be preserved, these escape procedures cannot be saved in private variables, as in the single
engine code. Instead, they are saved on a private stack along with timing information.

The task of saving the state and starting the engine is assigned to the procedure run. If no
engine is active or the number of ticks supplied to the new engine is smaller than the number of
ticks currently on the clock, then the timer is restarted with the ticks supplied to the new engine.
Otherwise, the timer is restarted with the ticks it had when interrupted. In either case, the residual
ticks for the parent engine and the child engine are saved as part of the current engine state before
the process is started.

When engine-return is called to stop an engine, it stops the timer and calls the procedure
do-return with the value it received and the ticks left on the clock. Since the protocol specifies that
engine-return always stops the most recently invoked engine, the appropriate return procedure,
along with the necessary timing information for it and its parent, is in the top frame of the engine
stack. engine-return restarts the timer with the number of ticks remaining for the parent engine
(the number of ticks returned from stop-timer plus the number of parent ticks saved in the stack
frame), and invokes the return procedure with the value and the current engine’s remaining ticks
(the number of ticks returned from stop-timer plus the number of child ticks saved in the stack
frame).

The situation is more complicated when an engine expires because it ran out of ticks, since
the engine with the fewest ticks is not necessarily the most recently started engine. The handler
(timer-handler—see Figure 3b) passed to start-timer when an engine is started calls do-expire with
the current continuation. do-expire must unwind the engine stack to find the engine whose ticks
have run out. If the engine is subsequently restarted, all of its descendent engines must also be
restarted. Thus, do-ezpire unwinds the engine stack by calling itself recursively with procedures
that can resume the interrupted engines with the saved engine parameters. These procedures can
be thought of as continuations that also include the current engine state. When do-expire finds a
stack frame in which zero ticks remain for the current engine, it restarts the timer with the number
of ticks remaining for the parent engine, makes the procedure passed to do-expire into an engine,
and passes it to the saved expire procedure.

Using this model for nestable engines, we can nest parallel-or expressions. Because
parallel-or never uses engine-return except to exit from the most recently activated engine, the

restriction that engine-return returns from the most recently activated engine is unimportant.

15

(letrec :EATME
([new-engine #f] ;EATME
[do-expire
(lambda (resume)
(pop (lambda (parent child return ezpire)
(if (> child 0)
(do-ezpire (lambda (ticks) (run resume ticks child return ezpire)))
(begin (go parent)
(ezpire (new-engine resume)))))))]
[timer-handler (lambda () (go (call/cc do-expire)))]
[stack ’()]
[push (lambda [(set! stack (cons [stack)))]
[pop
(lambda (handler)
(if (null? stack)
(error ’engine “attempt to return from inactive engine”)
(let ([top (car stack)])
(set! stack (cdr stack))

(apply handler top))))]

[active? (lambda () (not (null? stack)))])
(set! make-engine
(lambda (proc)
(new-engine
(lambda (ticks)
(go ticks)

(proc)
(error ’engine “invalid completion”)))))

set! engine-return
(g
(lambda (value)
(do-return value (stop-timer)))))

Figure 3b. A nestable engine implementation (continued from Figure 3a).

Furthermore, we can now recursively invoke the operating system of Figure 1 to model a
self-virtualizing operating system. Assuming that a process on one level uses only the services
provided by the operating system that directly controls it, the engine-return restriction is again
unimportant.

However, we cannot easily model a multilevel operating system in which processes at one level
can directly access services provided at levels below. All requests must be handled by the operating
system at the current level and, if necessary, passed on to the levels below. This is unfortunate,
but an even more serious problem is that other features implemented independently in terms of
engines (such as parallel-or) would interfere with the operating system implementation. A trap
from within a parallel-or expression would result in a return from the parallel-or engine, not

from the process engine in which it is running.

16

There are actually two reasons why the engine-return restriction must be imposed. The
first and most obvious reason is that engine-return is a single, globally-defined procedure, and
thus we must choose beforehand which engine to stop. The only sensible choice is for the global
engine-return to stop the most recently activated engine.

We can solve this problem by providing each engine computation with its own engine-return
procedure, but then we have a more subtle problem. If we use this procedure to implement operating
system kernel services, we must have some way to obtain the state of the computation requesting
the service. In the single-engine case this state is simply the current continuation. However, because
the state of the computation in the nested engine case may include the fact that other engines are
running, the current continuation is no longer sufficient. If we define the current continuation to
include the state of the engine system, we capture the entire stack of running engines (including
those below the engine in question); if it does not include the state of the engine system, we lose
information about other engines above the engine in question. Therefore, we cannot produce a new
engine from the current continuation to allow us to resume the computation unless we work from
within the engine system itself. In the next section we propose a modified engine interface that
allows engines to be nested in a more general fashion, avoiding the need to use continuations to

implement operating system kernel services.

6. An Alternative Engine Interface

In order to nest engines while allowing a return from any running engine, our interface must
provide each engine computation with its own engine-return procedure. We therefore require that
the procedure passed to make-engine be a procedure of one argument; the argument supplied is
the procedure capable of returning from the computation.

Furthermore, because we would like to be able to return from an engine and yet restart that
engine’s computation from where it left off, we must provide the engine’s return procedure with
sufficient information to do so. We must also provide the engine’s handler with a means of sending
information back to the interrupted computation. These two goals are accomplished by including
a third argument to the return procedure passed to an engine, along with the usual value and ticks
arguments. This argument is a procedure of one argument, which when invoked with a value will
return a new engine capable of continuing the computation from where it was interrupted by the
call to its engine-return procedure. The value passed to this engine-making procedure is provided
to the continuation of the call to the engine-return procedure when the engine is subsequently run.

A potential ambiguity concerns which of two or more running engines that were created
from the same computation, and thus share the same engine-return procedure, is aborted if that
procedure is called. Our implementation returns control to the continuation of the most recently

activated engine.

17

(define kernel)
(letrec
([ready-queue (queue)]
[start
(lambda (proc)
(enqueue (make-engine (lambda (ret) (proc (trap ret))))
ready-queue))]
[restart
(lambda (engine-maker v)
(enqueue (engine-maker v) ready-queue))]
[trap
(lambda (engine-return)
(lambda (msg arg)
(engine-return
(lambda (engine-maker)
(case msg
[uninterruptible
(restart engine-maker (arg))]
[start-process
(start arg)
(restart engine-maker #f)]
[stop-process #4])))))]
[dispatch
(lambda ()
(if (empty-queue? ready-queue)
“finished
((dequeue ready-queue)
(time-slice)
(lambda (trap-handler ticks engine-maker)
(trap-handler engine-maker)
((dispatzh)) |
lambda (engine
(enqueue engine ready-queue)
(dispatch)))))])
(set! kernel
(lambda (proc)
(start proc)

(dispatch))))

Figure 4. The operating system modified to use the new engine interface.

The implementation of this new nestable-engine system (see Appendix A) is similar to the
implementation of nestable engines with a global engine-return. The information necessary to
control the currently active engines can still be kept on a stack. However, it is no longer sufficient
to return to the continuation of the engine most recently activated, which would be on the top of
the stack. Instead, a call to an engine-return procedure is much like the expiration of an engine;

the stack must be unwound until the appropriate level is found so that the proper continuation can

18

be resumed, and the unwound frames must be encapsulated in the engine-maker procedure passed
to the return procedure so that a new engine can be built. In order to determine which engine to
abort when an engine-return procedure is invoked, an identity field must be added to each frame
of the engine stack. Since engines are distinguished by their engine-return procedures, and since
in Scheme distinct procedures are distinct objects, the engine-return procedure itself is used to
determine which engine is being aborted. The only additional complication involves arranging to
pass the value provided to an engine-maker to the appropriate continuation when an engine created
by explicit return is invoked.

This new interface is more complicated to use when implementing simple tools such as
parallel-or, which do not require an explicit engine-return procedure. Fortunately, it is straight-
forward to define make-simple-engine (described in Section 2) in terms of the more complicated
interface:

(define make-simple-engine
(letrec ([simplify (lambda (engine)
(lambda (ticks return expire)
(engine ticks
(lambda (value ticks engine-maker)
(return value ticks))
(lambda (engine)

(expire (simplify engine))))))])
(lambda (proc)
(simplify (make-engine (lambda (ret) (ret (proc))))))))

Figure 4 contains a new version of the operating system kernel of Figure 1, suitably modified
to employ the new interface. Processes run by this kernel can themselves run operating system
kernels or parallel-or expressions, because the trap procedure passed to a process returns from a
specific engine rather than from the innermost. This additional ability comes at no cost in terms
of the complexity of the operating system kernel; the version of Figure 4 is in fact simpler because
it does not directly involve continuations and because the engine-maker provided by the engine

system simplifies the restart procedure.

7. Conclusion

We have demonstrated that both unnestable engines and nestable engines can be implemented on
top of any language that supports first-class continuations. We have also introduced a more general
engine interface that allows nestable engines to return from engines other than the most recently
activated engine. The general interface also allows the computation, including any suspended
engines, to be restarted from the point of return. This makes possible the direct implementation
of a wide range of operating system models and the meaningful composition of language features

implemented in terms of engines.

19

With the more general interface, it is no longer necessary or desirable to use continuations to
provide access to operating system services. This makes engines more useful in languages that lack
first-class continuations (assuming engines are provided primitively), and it saves the programmer
from the complexity inherent in mixing continuations and engines.

We have shown how to build a timer interrupt mechanism on top of Scheme that provides
full programmer control over when the timer runs. It should also be possible to use the timer
interrupt mechanisms built into some implementations of Lisp and Scheme. It is possible to provide
functionality identical to timed-lambda with as few as one or two instructions generated at the
front of each procedure body.

The relationship between continuations and engines deserves further study. Should contin-
uations include the state of the engine system, so that invoking a continuation made outside of
an engine suspends the engine, and invoking a continuation made inside of an engine restarts the
engine? For some applications this may be desirable, for others it may not be.

It would also be useful to study the use of fluid (dynamic) binding in the context of engines
and in the context of combined engines and continuations. A protection mechanism for engines
similar to dynamic-wind [7] for continuations would be straightforward to implement, and with this

would come the ability to support fluid binding for engines.

Acknowledgements: The authors wish to thank Dan Friedman, Chris Haynes, and an anonymous
reviewer for their comments on early versions of this article. The Scheme code presented in this

article was formatted by Carl Bruggeman’s “Scheme Texer.”

References

[1] Alan Bawden and Jonathan Rees, “Syntactic Closures,” Proceedings of the 1988 ACM Confer-
ence on Lisp and Functional Programming, July 1988, 86—95.

[2] R. Kent Dybvig, The Scheme Programming Language, Prentice Hall, 1987.

[3] R. Kent Dybvig, Daniel P. Friedman, and Christopher T. Haynes. “Expansion-Passing Style: A
General Macro Mechanism,” Lisp and Symbolic Computation 1, 1, June 1988, 53-75.

[4] Daniel P. Friedman, Christopher T. Haynes, and Eugene E. Kohlbecker, “Programming with
Continuations,” in Program Transformation and Programming Environments, ed. P. Pepper,
Springer-Verlag, 1984, 263-274.

[5] Christopher T. Haynes and Daniel P. Friedman, “Engines Build Process Abstractions,” Con-
ference Record of the 1984 ACM Symposium on Lisp and Functional Programming, August 1984,
18-24.

[6] Christopher T. Haynes and Daniel P. Friedman, “Abstracting Timed Preemption with Engines,”
Journal of Computer Languages 12, 2, 1987, 109-121.

[7] Christopher T. Haynes and Daniel P. Friedman, “Embedding Continuations in Procedural Ob-
jects,” ACM Transactions on Programming Languages and Systems 9, 4, October 1987, 582-598.

20

[8] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand, “Obtaining Coroutines with
Continuations,” Journal of Computer Languages 11, 3/4, 1986, 143-153.

[9] Eugene E. Kohlbecker, Syntactic Extensions in the Programming Language Lisp, Ph.D. Thesis,
Indiana University, 1986.

[10] Jonathan A. Rees and William Clinger, eds., “The Revised® Report on the Algorithmic Lan-
guage Scheme,” SIGPLAN Notices 21, 12, December 1986.

[11] Gerald J. Sussman and Guy L. Steele Jr., “Scheme: An Interpreter for Extended Lambda
Calculus,” MIT Artificial Intelligence Memo 349, December 1975.

[12] Mitchell Wand, “Continuation-Based Multiprocessing,” Conference Record of the 1980 LISP
Conference, August 1980, 19-28.

21

Appendix A: Nested engines with lexical return procedures.

(define make-engine)

(letrec
([new-engine
(lambda (proc id)
(lambda (ticks return expire)
((call/cc
(lambda (k)
(run proc
(stop-timer)
ticks
(lambda (value ticks engine-maker)
(k (lambda () (return value ticks engine-maker))))
(lambda (engine)
(k (lambda () (expire engine))))
i)

[run
(lambda (resume parent child return expire id)
(let ([ticks (if (and (active?) (< parent child)) parent child)])
(push (— parent ticks) (— child ticks) return expire id)
(resume ticks)))]

g0
(lambda (ticks)
(when (active?)
(if (= ticks 0)
(timer-handler)
(start-timer ticks timer-handler))))]

[do-return
(lambda (proc value ticks idy)
(pop (lambda (parent child return expire ids)
(lf (eq7 Zdl ldg)
(begin (go (4 parent ticks))
(return value
(+ child ticks)
(lambda (value) (new-engine (proc value) idy))))
(do-return
(lambda (value)
(lambda (new-ticks)
(run (proc value) new-ticks (+ child ticks) return expire ids)))
value
(+ parent ticks)

id1)))))]

22

[do-expire
(lambda (resume)
(pop (lambda (parent child return ezpire id)
(if (> child 0)
(do-ezxpire (lambda (ticks) (run resume ticks child return expire id)))
(begin (go parent)
(expire (new-engine resume id)))))))]

[timer-handler (lambda () (go (call/cc do-expire)))]
[stack ()]

[push (lambda [(set! stack (cons [stack)))]

[

pop
(lambda (handler)
(if (null? stack)
(error ’engine “attempt to return from inactive engine”)
(let ([top (car stack)])
(set! stack (cdr stack))

(apply handler top))))]
[active? (lambda () (not (null? stack)))])

(set! make-engine
(lambda (proc)
(letrec ([engine-return
(lambda (value)
(call/cc
(lambda (k)
(do-return (lambda (value)
(lambda (ticks)
(go ticks)
(k value)))
value
(stop-timer)
engine-return))))])
(new-engine (lambda (ticks)
(go ticks)
(proc engine-return)
(error ’engine “invalid completion”))
engine-return)))))

23

