THE UNIVERSITY OF

WARWICK

Original citation:

Dain, J. A. (1992) A practical minimum distance method for syntax error handling.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-215

Permanent WRAP url:
http://wrap.warwick.ac.uk/60904

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60904
mailto:publications@warwick.ac.uk

A Practical Minimum Distance Method
for Syntax Error Handling

J. A. Dain

Department of Computer Science
University of Warwick
Coventry, CV4 7TAL

Summary

This paper presents a method for recovering from syntax errors encountered during parsing.
The method provides a form of minimum distance repair, has linear time complexity, and
i1s completely automatic. It is incorporated into the LR parser-generator yacc in such a
way that a compiler writer can generate a parser with error recovery without providing
any additional information to yace. Error messages phrased in terms of source input are
generated automatically. A formal method is presented for evaluating the performance of
error recovery methods, based on global minimum-distance error correction. The minimum-
distance error recovery method achieves a theoretically best performance on 80% of Pascal
programs in the Ripley-Druseikis collection. Comparisons of performance with other error
recovery methods are given.

Introduction

Language translators such as compilers and interpreters are an essential component of ev-
ery software development system, and indeed every software system in which some sort
of dialogue is conducted between user and computer, such as a spreadsheet or a database
package. A language translator includes a syntax analyser which must make provision for
errors in its input, otherwise the translator will not be robust. Classic recommendations
for “what the compiler should tell the user” were made by Horning! in 1974. The prob-
lem of syntax error handling has received considerable attention over the last two decades,
including various surveys.2*?* Yet the “perfect” syntax error handling scheme has not ap-
peared. Such a scheme would combine the ability to construct a perfect repair for incorrect
input with the linear time complexity of efficient parsers for the deterministic context-free
languages.

What would constitute a perfect repair? Minimum or Hamming distance is convention-
ally used as a formal model which approximates the user’s concept of syntax errors, as it

56 Given a set

measures the shortest way to transform erroneous input into correct input.>
of edit operations, typically insertion, deletion or replacement of a single symbol, the min-
imum distance between two strings is the minimum number of edit operations required to
transform one string into the other. In the context of parsing, the target string is a sentence
of the context-free language, into which the syntactically incorrect input string must be
transformed. So a perfect repair is a sentence nearest to the actual input, in the sense that
there is no sentence whose minimum distance from the input is smaller. Algorithms for
global correction, which aim to construct such repairs, exist®”®%10 but are typically based
on Earley’s algorithm!! for general context-free parsing and are not practical, requiring
O(n?) time and O(n?) space.

This paper presents a method for syntax error recovery which aims to provide a form
of minimum distance repair, has linear time complexity, and can be incorporated into an
LR parser-generator. The method is described in detail and it is shown how error messages
can be generated automatically. Finally a method for performance evaluation based on
minimum distance is presented and used to evaluate several error recovery schemes.

Minimum Distance Recovery

The recovery method presented here will be invoked by a parser for a context-free language
(CFL) L at the point at which the parser detects an error in its input. It will repair the
input, returning control to the parser in a configuration in which the remaining input can
be parsed. An LL or LR parser possesses the correct prefix property, so when such a parser
detects an error, the input parsed is a prefix of some sentence of the language, and hence
there exists at least one suffix or continuation string whose concatenation to the parsed
input forms a sentence of L. The idea behind the method is to generate a set of prefixes
of continuation strings for the input already parsed, and to choose from it a string whose
minimum distance from a prefix of the remaining input string is minimum over the set.
This string is used to replace part of the input.

Definitions

Definitions are given for a sequence of edit operations from one string to another, and the
resulting minimum distance measure, following Wagner and Fischer.'? The concept of the

13 s useful for

parser-defined error in a string with respect to a CFL L, due to Peterson,
modelling the point at which a prefix of the string ceases to form a prefix of L. The set of
continuation strings for any prefix of L is also defined.

Let ¥ be a finite alphabet of symbols. «a,b denote symbols in X, u,v denote strings

over &, and € denotes the empty string. Let A be the set of edit operations {(a,b)|a,b €

Y U{e}, (a,b) # (e,€)}.

Definition 1 For strings u,v in ¥*, u — v via ¢ — b if (a,b) € A and there are strings
w,x in B* such that v = wax and v = wbx.

Definition 2 v — v via E if E is a finite sequence of edit operations ey ...e, and there
are Strings wy, ..., wy_1 n X° such that uw — wy ma e, w; — w;gy via e; forv=1,...n—2,
and Wp_1 — v ViQ €,.

Definition 3 The minimum distance d(u,v) between two strings u,v is given by
d(u,v) =min{n | u — v via E for some sequence of edit operations E = e1...e,}.

Definition 4 The set of prefixes Pre(L) of a language L over ¥* is given by
Pre(L)={u € X* | uv € L for some v € ¥*}.

Definition 5 The parser-defined error for a string u with respect to a CFL L, where u & L,
is after the string x at the symbol a where u = xay, v € Pre(L) and xa ¢ Pre(L).

Definition 6 The set of continuation strings Cont(u) for a prefiv v of a CFL L is given
by Cont(u) = {w € ¥* | uw € L}.

Outline of the method

Our goal is to find a practical method for error recovery using minimum distance as a
criterion for choosing a repair. The method will be invoked when the parser detects an
error in the input, that is, for a correct-prefix parser, at the parser-defined error. Ideally
the repair would be the continuation string whose minimum distance from the remaining
input is minimum over the set of all continuation strings, but this is impractical. In order
to devise a practical method, we place a limit on the number of possible repair strings
by generating prefixes of continuation strings, these prefixes being of length up to a fixed
number o. The prefixes are measured against a fixed number 7 of remaining input symbols,
to find the best match. The chosen prefix is then used to replace a prefix of the remaining
input. The method does not guarantee to find a repair leading to a sentence of the language,
only that a number of the remaining input symbols will be accepted by the parser.

Two problems to be solved are which continuation string prefix to choose, and how
much of the remaining input to replace. It is desirable to obtain the closest possible match
between continuation string prefix and remaining input, but not necessarily by replacing all
the input symbols used in the minimum distance measure. The closest match is obtained

by choosing the continuation string with smallest minimum distance from some prefiz of
the fixed amount of input.

The minimum distance method can now be outlined as follows.

1. Let the input string be represented by uv where the parser-defined error is after v and
v=v...v, forv,€eX e =1,... n.

2. Let R={w |uw € L, |w| < o} U{w | uw € Pre(L), |w| = o}, where o is a fixed integer.
3. Choose = in R and m, 1 < m < 7, such that d(vy...vn,2) < d(v1...v;,y) for all
J,1 <5 <r7,and all y in R, where 7 is a fixed integer.

4. The repaired string is uzv,11 - . . Uy.

The method due to Wagner and Fischer'? is used to compute the minimum distance
d(u,v) between two strings v = uy ... un, and v = v1...v,, obtaining an m X n matrix M
in which M|z,] gives the minimum distance between uy ... u; and vy ...v;. The algorithm
given by Wagner and Fischer actually computes least cost. It is simplified to compute
minimum distance, by letting all edit costs take the value 1.

As an example grammar we use a small language for simple arithmetic expressions
generated by the grammar

G:({EvTvF}v{idv—l_v*v(7)}7P7E) (]—)
where P contains the productions

E—-T
EFE—-FE+T
T— F
T T« F
F —d

AN

Consider the input string ¢d * (id id id) + id + id. Taking 7 to be 6 and o to be 3, the
next 7 input symbols after detection of error at the fifth input symbol are id id) + id +.
We compare just two of the possible continuation strings, + id 4+ and + ¢d). Table I shows
the minimum distance matrices for the actual input string ¢d ¢d) + id 4+ and the two
continuation strings + ¢d + and + «d).

Although the minimum distance between id i¢d) + i¢d + and + id 4 is 3, less than the
distance of 4 between id ¢d) + id 4+ and + ¢d), the latter string is a better repair because it
has a distance of 1 from the prefix ¢d id) of the remaining input, indicated by the smallest
entry in the last rows of the two matrices. The string + ¢d) is therefore chosen to replace
the prefix ¢d id) of the remaining input, giving a repaired string ¢d * (od + id) + od + id.

No practical method can guarantee to find a minimum-distance error correction, as
there may be an arbitrary number of input symbols to inspect before the correct choice
of repair can be made. On the other hand, increasing the amount of lookahead on the
input, or the length of continuation strings to be generated, should improve the chance
of making the correct choice of repair. Both these tactics supply more information to be
used in making that choice. Increasing the number of input symbols to be inspected means
that for some inputs, enough symbols will be seen to make the best choice. Increasing the
length of continuation strings means that repairs which diverge from the actual input can

be discarded.

Minimum Distance Recovery for LR Parsers

The problem of generating continuation strings is solved with the use of the LR parse
tables. For any state of an LR parser, the tables indicate which input symbols give rise
to a legal move, either shift, reduce or accept. The concept of a recovery configuration is
used to model the successive concatenation of such legal symbols to a continuation string.
A recovery configuration consists of an LR parser stack of states and a continuation string,
analogous with a conventional configuration of a stack of states and unexpended input. An
initial recovery configuration consists of the parser stack at the point of detection of error
and the empty string. Successive recovery configurations are formed from each legal (shift,
reduce or accept) move. A shift move gives rise to a recovery configuration consisting of the
stack with the shift state pushed on and the shift symbol concatenated to the end of the
continuation string. A reduce move gives rise to a configuration consisting of the reduced
stack and the (previous) continuation string. An accept move on the input endmarker
symbol § does not give rise to further configurations, but indicates that the continuation
string is a suffix of the consumed input, i.e. the consumed input concatenated with the
continuation string forms a sentence of the language.

Some notation for LR parsers is required. Each state ¢ in the set of states @) of an
LR(1) parsing machine is constructed from a set of LR(1) items of the form [A — « - 3, d]
where A — «f is a production of a context-free grammar G = (N,X, P, S) and « in
Y i1s a terminal of the grammar. A configuration of an LR parser is represented by an
instantaneous description (ID) [go . .. ¢m, ;. . . a;4k], Where qo . . . ¢ is the sequence of states
on the parsing stack with ¢, at the top, and «a; ... a4 is the unexpended input. Moves of
an LR(1) parser are given by the ACTION and GOTO transition functions
ACTION: @ x YU {$} — {SHIFT} x@ U {REDUCE} xP U {ACCEPT} U {ERROR}
GOTO: @ x N —Q
The relation move in one step on parser configurations, denoted by the symbol I, is defined
as follows.

If ACTION(gm,a;) = (SHIFT, ¢), then [go. .. qm, ;... ajs6] F [qo- - @m@, g1 - - itk
If ACTION(gm,a;) = (REDUCE, A — «),|a| = n, and GOTO(¢m-n, A) = ¢, then
[0 Gm, 5. ajvk] F o Gmong, aj...aj4k]

A recovery configuration of an LR(1) parser is represented by an ID (g . .. ¢, u), where
Go - - - ¢m 1s the sequence of states on the parsing stack with ¢, at the top, and v in X%
represents the continuation string. (Angle brackets (and) are used in place of [and
] in order to distinguish IDs representing recovery configurations from IDs representing
conventional configurations.) The relation move in one step on recovery configurations,
denoted by the symbol F, is defined analogously to - on conventional configurations, as
follows.

If ACTION(gm,a) = (SHIFT, ¢),a € &, then (qo...qm,u) F {(qo ... ¢myq, ua).
If ACTION(gm,a) = (REDUCE, A — «), |a| = n, and GOTO(¢n—n, A) = ¢, then
<qo - m, u> a <q0 -+ - dm-n{q, u>

Let * denote the reflexive and transitive closure of . Let the configuration of the
parser at the point of detection of error be given by the ID [¢o. .. ¢m,a;...aj1k]. Then the
set ©, of continuation strings of length up to o symbols is given by
0, = {bi---bi+o'—1 | b]‘ € Z,<q0...q,€> = <q0...qn,b,’...b,’+0_1>} U {bsz—k | b]‘ € Z,O <
k<o—1,(qo- qm €) F* {qo.. qn bi... bisx) and ACTION(g,,$) = ACCEPT}.

The set O, of continuation strings of length up to o symbols is generated and the
continuation string x whose minimum distance from a prefix of a fixed number 7 of the
unexpended input symbols is minimum over the set is chosen as the repair and used to
replace the input prefix. The repair = in O, satisfies the following.

Let 6 =d(x,a;...a;4) = min{d(z,a;...a;4;) |t =0,...,7 — 1}.
Then 6 < d(y,a;...a;4;) for all y in Oy, ¢ =0,...,7 — 1.
Recovery returns control to the parser in the configuration [qo . .. ¢m, 2@ 1141 - - - @1k

Figure 1 gives the scheme developed as a procedure Recover in pseudo-Pascal for use by
an LR parser. Generation of the set of continuation strings is by the recursive procedure
GenerateRepairs. RepairString records the best continuation string so far, that is the
string of required length ¢ whose minimum distance from a prefix of the up-coming input
1s smallest of all continuation strings generated so far. It is not necessary to store the entire
set of continuation strings as the method is only interested in the one nearest to the actual
input. RepairDistance records the best minimum distance so far and RepairLength records
the length of the prefix of input to be replaced by the best continuation string.

Examples

As an example we use the string id * (¢d ¢d ¢d) + id + id used previously. The
error message issued by the implementation of the Minimum Distance Recovery Method
described below is

Line 1: syntax error
id * (id id id) + id + id
—————————— replace ’id’ with ’+’

We show how this recovery action is synthesized by displaying the continuation strings
generated and their minimum distances from the remaining input.

An LALR(1) parse table with default reductions (replacing error entries with reductions)
for this grammar is shown in Table II. Blank entries in the ACTION section of the table
are ERROR entries. Blank entries in the GOTO section are never consulted (don’t care
entries).

The parser detects an error when it is in configuration [02758,¢d id) + id + id $].
Generation of repairs commences with recovery configuration (02758, ¢€). Table III shows
recovery configurations for generation of continuation strings of length 3. The left-hand
column contains a configuration number which indicates how the configuration is generated,
e.g. configuration (1.2) gives rise to configurations (1.2.1) and (1.2.2).

Table IV shows each continuation string generated together with the last row of its
minimum distance matrix from the remaining input string ¢d i¢d) + id +. The smallest
entry in this table is minimum distance 1 between the continuation string + ¢d) and the
input prefix ¢d id), obtained by replacing the parser-defined error symbol i¢d by +. Control
is returned to the parser with configuration [02758,+ «¢d) + d + id §].

Termination and Complexity

Termination of the parser with error recovery is assured because the error recovery proce-
dure leaves the parser in a configuration in which the upcoming input consists of a repair

string that will be consumed followed by a proper suffix of the original remaining input.
The recovery algorithm has complexity O(n), because the recursive procedure GenerateRe-
pairs contains a modified version of the LR parsing algorithm which can be invoked up to
a constant number (|X]) of times for each activation of GenerateRepairs.

Error Messages

We now show how the automatic generation of error messages can be achieved. We wish
to supply the user with information about symbols which are in error and symbols which
are legal alternatives. The first kind of information is supplied by a message indicating the
parser-defined error symbol, of the form

Line 32, syntax error detected:
while a[1 do begin

The second kind of information could be supplied by a list of all admissible symbols at the
point of detection of error. Such a list might be very long and we consider it more efficient
and informative to the user to tell him or her exactly which symbols are chosen by the
recovery method as the legal alternatives. This information can be supplied by a message
of the form

>]? inserted before ’do’

or
missing ’]°

or one of the form

Line 32 replaced by ’while al[1] do begin’

The first form of message describes the action taken by the recovery method. The
second form gives the same information as the first, but is phrased in terms of what the
user has done rather than the recovery taken. The third message describes the action
taken but gives the whole line rather than single symbol information. The second form
of message may be more helpful to a beginning user, and less “egotistic”;!*1® but if the
recovery method has chosen the wrong repair, the message will be confusing to a beginner
and annoying to a knowledgeable user.

Another approach to providing information about legal alternatives is that taken by
Sippu and Soisalon-Soininen,'® whose method generates messages of the form

A symbol which could follow an expression has been inserted.

A message giving information about which symbols are in error can be emitted before
the recovery method is invoked. A message giving information about which correct symbols
have been chosen can be synthesized by the recovery method from the actions taken while
recovery is performed, taking one of the forms

insert ’]’
delete ’do’
replace ’]’ with ’+’

The input to a parser usually consists of values representing lexical tokens supplied by a
lexical analyser which processes the source input. Thus a parser has to construct messages
from internal values representing the symbols of the CFG. An earlier approach!” was to use
the names given in the input specifications to yacc corresponding to those values, giving
messages of the kind

LEFTBRACKET inserted before DO

However, the example messages above are phrased chiefly in terms of source input,
which is clearer for the user who may not be familiar with the names of the grammar
specification. In order to achieve this it is necessary for the message-generator to have
information about source representations for the vocabulary symbols. The approach we
have used is to associate with each token produced by the lexical analyser a string of
characters forming the source input consumed by the lexical analyser to produce that
token. With this interface the parser typically receives from the lexical analyser a triple
consisting of a token value, a semantic value, and a source string.

This mechanism means that in error recovery, a repair involving actual input symbols
(tokens) can have an associated synthesized message which is expressed in terms of source
characters. A repair may also involve insertion of tokens. A representation of an inserted
token as a string of source characters can be constructed by a lexical-analyzer generator
from the regular expression used to define that token in the specification.

As examples of error messages, we show two Pascal programs from the Ripley collection
of student programs,'® together with the diagnostic output from the Minimum Distance
Recovery Method and from the Berkeley Pascal compiler, whose recovery is based on the
work of Graham, Haley and Joy.!? Only the diagnostics which relate to syntax errors are
shown for the Berkeley compiler; diagnostics relating to errors not described by the context-
free syntax, such as type errors, declarations out of place or undefined variables, are not
shown.

The first program contains a simple error: a semicolon is missing from the end of line 2.

1 program p(input, output); begin

2 repeat writeln(’ input is:’, number)

3 if number > 1

4 then x := 1 until x = 1 end.

The diagnostic output from the parser with the Minimum Distance Recovery Method 1is:

Line 3: syntax error
if number > 1

The diagnostic output from the Berkeley Pascal compiler is:

3 if number > 1
e ———————————————="—— Inserted ’;°

The second program contains a more complex error: the formal parameter list does not
include the type of the parameter.

1 program p(input,output);
2 procedure factorial (a);
3 var q:integer; begin x:=1 end; begin end.

The diagnostic output from the parser with the Minimum Distance Recovery Method 1is:

Line 2: syntax error

procedure factorial (a);
—————————————————————— " insert ’:’
——————————————————————— " insert ’identifier’

The diagnostic output from the Berkeley Pascal compiler is:

2 procedure factorial (a);
F---------------— “--- Expected ’:’
E-----------\-"t6---——- “—-- Inserted identifier

The first program, containing a simple error, gives rise to almost identical messages
generated by the two systems. The second program shows a very slight difference in ap-
proach; the Minimum Distance Recovery Method notes the action taken in recovery, and
the Berkeley compiler additionally notes an expected symbol. Preference between the two
is a matter of taste.

Evaluation of Recovery Methods

Criteria for Error Handling

Following Horning,! Rorich?® and Spenke et al,?! we set several criteria for error handling,
in the general areas of quality of performance, efficiency and ease of use. A good scheme
should: detect all errors in the input; parse all the input; repair simple errors and recover
from complex errors; generate good error messages; have practical requirements in time and
space; have no effect on the analysis of correct input; be capable of automatic generation;
be capable of incorporation into a practical parser-generator.

A parser incorporating the Minimum Distance Recovery Method detects all errors in
the input and parses all the input. The method repairs every simple error and recovers from
a complex error in the sense that it terminates and returns control to the parser. Using the
scheme described above to generate error messages ensures that all error messages tell the
user exactly which symbol lies at the point of detection of error, and the recovery action
taken. All messages are directed towards the user and expressed in terms which the user
understands.?? They meet the criteria of simplicity, honesty and reliability.!%?? They can be
criticized for detailing the action taken — expressing the compiler’s point of view — rather
than telling what the user has done. We have used this approach because the recovery
method cannot guarantee either to make a correct inference about the user’s intention or
to make a correct repair.

The Minimum Distance Recovery Method is practical in both time (O(n)) and space,
requiring only a minor amount of storage for string representations of the CFG terminal
symbols, in addition to the usual storage for LR parsers. It has been used in language
compilers which run with normal memory requirements and with acceptable response times
on various computers (DEC VAX/750, SUN 3 and SUN 4). There is no effect on the analysis
of correct input, as the recovery method is only invoked when the parser detects an error.
The parser proceeds exactly as normal on correct input, with no overheads.

The error handling scheme can be completely automatically generated: no additional
specifications are required of the user other than the CFG and semantic actions required
by the parser generator.

The scheme has been incorporated into the practical parser-generator yace. In practice,
with this parser-generator, fewer specifications are required than formerly, as the user no
longer has to supply error productions if error recovery is required.

Performance in Practice

It is essential to evaluate the performance in practice of an error recovery scheme which is in-
tended for practical use, and to use a representative collection of inputs for that evaluation.
The Minimum Distance Recovery Method was incorporated in the LR parser-generator yacc
by Holloway?* and Dain.?® The implementation was parameterized for the length o of con-
tinuation strings generated and the amount of lookahead 7 on the input. The interface
between the lexical analyzer and the parser was implemented for yacec and its companion
scanner-generator lez by Holloway.

Although the parser-generator incorporating the Minimum Distance Recovery Method
can be used to build parsers with error recovery for any language which can be described
by a yacc specification (any context-free language), we have concentrated performance
evaluation on the programming languages Pascal and C. There are two reasons for this
choice. Firstly, the primary aim of our work is to improve error recovery in programiming
language compilers, and Pascal and C are programming languages in very widespread
use. Secondly, many authors have used the Ripley database!® of student Pascal programs
to evaluate performance, so comparisons of our scheme with others will be possible for
Pascal. In addition to Pascal and C, we have constructed parsers for various other languages
including C++2% and awk.2?

Parsers for C and Pascal were constructed using the implementation of the parser-
generator yacc incorporating the Minimum Distance Recovery Method with the following
pairs of values for o, the length of strings generated, and 7, the amount of lookahead on
the input: 4 and 8, 5 and 10, 6 and 12, 7 and 14. The grammar used for C was the ANSI
C draft grammar. The grammar used for Pascal was the grammar of the Berkeley Pascal
compiler.

The Ripley database of student Pascal programs was used as inputs for the Pascal
parsers. The database consists of a reduced sample of original input programs, shortened
and altered (presumably to keep the size of the database small). Associated with some of
the errors is a weight that indicates how many times the particular kind of error occurred
in the original sample. 121 of the Ripley programs contain one or more syntax errors
according to the grammar we used. (The remaining few programs contain errors such as
declarations in incorrect order which are not described by the grammar.) A collection of

all C programs submitted to the C compiler on the University of Warwick Department of
Computer Science VAX/75 over three separate 24 hour periods during October 1985 was
made. At that time in the University calendar, there were many undergraduate students
starting to learn the C language, so there were many short, erroneous programs submitted.
All programs containing syntax errors and less than 100 lines long were used as inputs,
making a total of 112 such programs altogether.

A Formal Method for Performance Evaluation

The aim of our new method for performance evaluation is to provide an objective measure
for evaluation that uses formal definitions of errors. The method measures, for each in-
put program, the number of minimum-distance errors and the number of edit operations
performed by the error recovery scheme. The number of minimum-distance errors in a pro-
gram is given by the global minimum-distance error correction according to the model of
Aho and Peterson,® determined by inspection of the input. The number of edit operations
performed by the recovery method is determined by running the parser with error recovery
on the input and inspecting the resulting error messages, which detail the edit operations
made. A comparison can then be made between the number of minimum-distance errors,
the ideal, with the number of edit operations, the actual performance. Each input pro-
gram is associated with an entry in a matrix showing numbers of minimum-distance errors
against numbers of edit operations. For a given recovery method incorporated in a parser
for a language, a table is drawn up for a set of input programs in the language, showing
the total numbers of programs corresponding to each position in the matrix.

Tables were drawn up for both collections of programs, the Ripley set of Pascal programs
(weighted and unweighted) and our set of C programs, for the Minimum Distance Recovery
Method with the various values for o and 7. Results are not available for the set of
C programs with ¢ of 6 and 7, as error recovery took too long to complete with these
parameters.

In order to use the formal evaluation method to make comparisons with another recovery
scheme, tables were also drawn up for a method implemented in the parser-generator yacc
referred to here as the Two Stage Recovery Method.!” This method consists of two stages,
a local recovery followed if necessary by a phrase-level recovery. Local recovery consists
of a single edit operation (replace, delete or insert) on the input at the point of error.
This repair is tested by attempting a forward move of the parser on the repaired input. If
the repair permits the parser to consume a further fixed number p of input symbols, the
repair is deemed to be successful and control is returned to the parser, with the repaired
input. If the forward move of the parser fails before p symbols are consumed, then the
second stage takes place. In this stage, the parser is returned to the configuration in which
it determined an error, and the set of LR items for the current state is used to guide a
phrase-level recovery. The last item in the kernel of the set of items is chosen to provide a
goal non-terminal. If its first component is given by [A — Xj... X, - X;uy1 ... X3, then
m states are popped from the stack and the GOTO state for the new top of stack state
and non-terminal A is pushed. Finally, the parser is put in a configuration in which either
it can shift the next input symbol or there is no more input, by repeatedly either making
a legal reduce move or deleting the next input symbol. A reduction by the production

A— Xy, . XXt ... X, has been simulated.

Results of performance evaluation using the formal method are given in Tables V to XII.
Tables V to VIII show the results for the Minimum Distance Recovery Method with values
for o of 4, 5, 6 and 7 on the Ripley collection of Pascal programs. Tables IX and X show
the results for the Minimum Distance Recovery Method with values for o of 4 and 5 on the
collection of C programs. Tables XI and XII show the results for the Two Stage Recovery
Method with the value 5 for p on the Pascal and C collections. The columns of each table
are indexed by the number of errors according to the minimum-distance measure, and the
rows are indexed by the number of edit operations performed by the error recovery method.
An entry shows how many programs were found in that category. Blank entries are zeroes.
For example, the entry of 55 in column 1, row 1 of Table V shows that 55 programs out
of the Pascal collection contain 1 minimum-distance error and require 1 edit operation by
the Minimum Distance Recovery Method with o = 4.

The ideal for an error recovery method is to detect the exact number of errors in
the input program. This imprecise description is formalized by the number of minimum-
distance errors equalling the number of edit operations performed by the recovery method.
Thus the ideal is to have all (non-zero) entries in the tables of results occurring on the
diagonal. Table XIII shows, for each collection of programs and each recovery method,
the percentage of programs for which the number of minimum-distance errors equals the
number of edit operations.

Although the ideal for an error recovery method is to detect the exact number of errors
in the input program, it is also interesting to ask the question, for how many programs
does recovery nearly achieve this ideal. Expressing this formally, for how many programs
does the number of edit operations made by recovery equal the number of errors plus or
minus one. (How many programs lie on the diagonal or one away in the tables of results?)
The answer is given in Table XIV which shows, for each collection of programs and for each
recovery method, the percentage of programs for which the number of minimum-distance
errors equals the number of edit operations plus or minus one.

In addition to the figures on overall performance, it is useful to know how the recovery
method performs on programs that contain only a single error, and programs that contain
multiple errors. The Ripley collection contains 72 programs (60%) with a single error,
according to the minimum-distance measure. If the weights are taken into account, 71%
contain a single error.

The C collection contains 67 programs (60%) with a single error. Table XV shows
the percentage of single-error programs for which the number of minimum-distance errors
equals the number of edit operations, for each collection of programs and each recovery
method. Table XVI shows the percentage of multiple-error programs for which the number
of errors equals the number of edit operations.

One of the aims when designing the Minimum Distance Recovery Method was to im-
prove on the overall performance of the Two Stage Recovery Method, by maintaining good
performance on single errors and improving on phrase-level recovery when a single edit
operation fails to produce an acceptable repair. Table XV shows that, for single-error pro-
grams in the Pascal collection, the Minimum Distance Recovery Method (o = 7) achieves
excellent recovery (number of edit operations equals number of minimum-distance errors)
for 83% of the programs, compared with 90% for the Two Stage Recovery Method. Ta-
ble XVI shows that, for multiple-error programs in the Pascal collection, the Minimum
Distance Recovery Method achieves excellent recovery for 44% of the programs, compared

with 21% for the Two Stage Recovery Method. So the Minimum Distance Recovery Method
does indeed handle multiple errors better than the Two Stage Recovery Method, but does
not handle single-error programs as well. Inspection of the Pascal single-error programs
shows that, although there are several programs for which both recovery methods find the
same single-operation repair, there are also two for which the Two Stage Recovery Method
finds a single-operation repair but the Minimum Distance Recovery Method finds a repair
of two edit operations. One of these programs is shown below.

1 program p(input, output); begin if x = 1 then begin
2 writeln(’end of sort’)

3 else writeln(’loop detected in input order’);

4 x:=1 end.

The diagnostics from the Two Stage Recovery Method are:

Line 3: syntax error
writeln(’end of sort’)

’end’ inserted.
The diagnostics from the Minimum Distance Recovery Method are:

Line 3: syntax error

else writeln(’loop detected in input order’);
--" replace ’else’ with ’;’
Line 4: syntax error

x:=1 end.

insert ’end’

With generated repairs of length 4 and lookahead on the input of 8 symbols, the Mini-
mum Distance Recovery Method computes two repairs

; writeln (° end writeln (°
which are both at distance 1 from the input
else writeln (’ loop detected in input order ’) ;

It is a matter of luck that the Two Stage Recovery Method makes the (arbitrary) choice of
the better repair and the Minimum Distance Recovery Method does not. Not until several
symbols later in the actual input is it apparent that the repair made by the Minimum
Distance Recovery Method leads to a further edit operation.

Performance for the Pascal weighted set is generally better than for the unweighted set
because the programs with higher weights are generally those containing simple single-token
errors, which occurred more frequently in the original sample. (Tables XV and XVI show
that both recovery methods perform better on single-error programs than on multiple-error
programs.) The Minimum Distance Recovery Method (o = 4) achieves similar performance
for the Pascal unweighted set and the C set: excellent recovery for 67% of Pascal programs
and 66% of C programs. When the length o of repair generated is increased from 4 to

7, performance is improved slightly: from excellent recovery on 76% of Pascal (weighted)
programs, up to 80%.

To summarize these results, the best overall performance for Pascal is obtained by the
Minimum Distance Recovery Method with generated repairs of length 7 (o = 7), achieving
the theoretical ideal for 67% of the unweighted Pascal set and 80% of the weighted Pascal
set. The method gives slightly better performance on Pascal than on C. Increasing the
length of generated repair improves performance.

Comparison with Other Methods

The general approach of the Minimum Distance Recovery Method may be likened to that
of Rorich,?® who describes methods for error recovery in LL and LR parsers. Rorich’s
method finds a valid continuation string for the parsed input, and deletes symbols from
the remaining input until an anchor symbol is met, that is any input symbol which is
contained in the continuation string. The appropriate prefix of the continuation string is
inserted and parsing continues from the anchor symbol. A major difference is that the
Minimum Distance Recovery Method generates a number of continuations and chooses the
repair from these, whereas Rorich’s method generates only one continuation.

Our method for performance evaluation is qualitatively different from methods used by
other authors, in that it is a formal method using a mathematical measure of performance

instead of criteria such as “exactly what a competent programmer might have done”, “no

716 or “most plausible repair”.?®

undesirable side-effects

The advantages of the method used here lie in its formality: it is precise, objective, and
could be automated (although we have not done so). A potential disadvantage also lies in
the method’s formality: if the model of minimum-distance errors were not to correspond
closely with the human user’s concept of syntax errors, the method would provide an inap-
propriate measure of performance. We claim that the models are valid. The justification
for this claim is given by analysis of the Ripley suite of Pascal programs, which shows that
the minimum-distance error correction corresponds with the human’s perception (as given
by Ripley and Druseikis'®) in 106 of the 121 programs (88%).

The advantage of methods using informal criteria such as those cited above is that the
model of syntax errors is a human one (the evaluator’s own model). The disadvantage of
such methods is that the criteria are imprecise, subjective, and open to different interpre-
tations. In the case of single-error programs, it is often straightforward to decide on the
repair a competent programmer might make, for example insertion of a missing semi-colon.
But difficulties are frequent with multiple-error programs. For example, one of the Ripley
Pascal programs contains the fragment

const limit = 100; limitpl = limit + 1;
This might be corrected by a programmer to
const limit = 100; limitpl = 101;

using knowledge of both syntax rules (constant declarations may not contain expressions)
and simple arithmetic. (It is also possible that questions would be asked about the necessity
for declaring a second constant.) Ripley and Druseikis describe this error as an “extra + 17

but a competent programmer would be unlikely to correct it simply by deleting those extra
symbols. Again, Ripley and Druseikis describe the error in the statement

hs := sqrt(2*pi*x)*x**xrexp(-x)

as “no exponentation operator in Pascal”. The error might be corrected by the competent
programmer by a deletion of the extra multiplication sign, but it is plausible that he or she
would recognize the intended meaning and suggest replacement with a function call. It is
very difficult to decide on “the most plausible repair”. Firstly, how much knowledge will
the programmer use in making the repair? Secondly, the Ripley suite consists of shortened
and altered programs, so that they are not in themselves plausible programs; hence it is not
possible to find a plausible repair. Stirling?® notes that there are indeed cases where this
criterion cannot be used, in which case he uses instead the minimum distance criterion. We
claim that the minimum distance criterion provides an appropriate and accurate measure
for all cases.

In order to compare our results of performance evaluation with those of other meth-
ods, we define the recovery action taken on a program to be ezcellent it the number of
edit operations e equals the number of minimum-distance errors m. We equate this with
the classification ezcellent of Sippu and Soisalon-Soininen'® and the classification good of
Stirling.?® We define recovery to be acceptable if ¢ = m £ 1 and equate this with the com-
bined classifications ezcellent and good of Sippu and Soisalon-Soininen, and the combined
classifications good and marginal of Stirling.

Several authors16:17:21,28,30,31,32.33) ave used their error recovery methods in constructing
syntax analysers for Pascal which are then tested on the Ripley suite. Table XVII shows
the percentage of recovery actions performed by these schemes on the Ripley suite which
are acceptable, and Table XVIII shows the percentage which are excellent.

The majority of methods give acceptable performance for 70 to 80% of Pascal programs.
(It should be noted that the Minimum Distance Recovery Method also gives acceptable per-
formance in this range for C programs, e.g. 79% with o = 5.) The Minimum Distance
Recovery Method gives acceptable performance for 80% or more of Pascal programs, per-
formance which is bettered by the schemes of Spenke et al?! and Burke and Fisher.?*3° The
high performance of these schemes and that of Boullier and Jourdan®' may be partly due
to hand-tuning of the recovery schemes for Pascal, as they employ language-specific data
on input symbols.

Conclusions

A method for error recovery has been presented, using a single stage for repair of the input
which aims to provide a practical minimum-distance repair, i.e. locally minimum-distance
in linear time. The method satisfies established criteria for error handling schemes. The
LR parser-generator yacc has been enhanced with the method and used to build compilers
for several languages. A formal method for performance evaluation has been presented and
used to evaluate the recovery scheme and one other. The scheme compares reasonably well
with previous methods in terms of performance, and is superior in terms of its practical
application, as its use is totally automated and is independent of language. The generation
of clear, informative error messages has been automated. The resulting tools should be of
interest and practical use to compiler writers.

References

1]

2]

3]

[11]

[12]

[13]

[14]

[15]

[16]

J. J. Horning, ‘What the compiler should tell the user’; in F. L. Bauer and J. Eickel
(ed.), Compiler Construction, An Advanced Course, Springer Verlag, New York, 1974.

S. Sippu, ‘Syntax error handling in compilers’, Report A-1981-1, Department of Com-
puter Science, University of Helsinki, Helsinki, 1981.

K. Hammond and V. J. Rayward-Smith, ‘A survey on syntactic error recovery and
repair’, Computer Languages, 9, 51-67 (1984).

J. A. Dain, ‘Syntax error handling in language translation systems’, Research Report
188, Department of Computer Science, University of Warwick, Coventry, 1991.

A. V. Aho and T. G. Peterson, ‘A minimum-distance error-correcting parser for
context-free languages’, SIAM Journal of Computing, 1, 305-312 (1972).

D. Gries. ‘Error recovery and correction, an introduction to the literature’, in F. L.
Bauer and J. Eickel (ed.), Compiler Construction, An Advanced Course, Springer
Verlag, New York, 1974.

G. Lyon. ‘Syntax-directed least-errors analysis for context-free languages: a practical

approach’, Communications of the ACM, 17, 3-14 (1974).

T. Krawczyk. ‘Error correction by mutational grammars’, Information Processing Let-

ters, 11, 9-15 (1980).

S. O. Anderson and R. C. Backhouse, ‘Locally least-cost error recovery in Earley’s
algorithm’, ACM Transactions on Programming Languages and Systems, 3, 318-347
(1981).

J. Mauney and C. N. Fischer, ‘An improvement to immediate error detection in strong
LL(1) parsers’, Information Processing Letters, 12, 211-212 (1981).

J. Earley, ‘An efficient context-free parsing algorithm’, Communications of the ACM,
13, 94-102 (1970).

R. A. Wagner and M. J. Fischer, ‘The string-to-string correction problem’, Journal of
the ACM, 21, 168-173 (1974).

T. G. Peterson, ‘Syntax error detection, correction and recovery in compilers’, Ph. D.
thesis, Stevens Institute of Technology, 1971.

P. J. Brown, ‘ “My system gives excellent error messages” — or does it’, Software —
Practice and Experience, 12, 91-94 (1982).

P. J. Brown, ‘Error messages: the neglected area of the man/machine interface?’,

Communications of the ACM, 26, 246-249 (1983).

S. Sippu and E. Soisalon-Soininen, ‘A syntax-error handling technique and its ex-
perimental analysis’, ACM Transactions on Programming Languages and Systems, 5,

656-679 (1983).

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

J. A. Dain, ‘Error recovery for yacc parsers’, Proceedings of the EUUG Autumn 1985
Conference, Copenhagen, 1985.

D. C. Ripley and F. C. Druseikis, ‘A statistical analysis of syntax errors’, Computer
Languages, 3, 227-240 (1978).

S. L. Graham, C. B. Haley and W. N. Joy, ‘Practical LR error recovery’, ACM SIG-
PLAN Notices, 14(8), 168-175 (1979).

J. Rorich, ‘Methods for the automatic construction of error correcting parsers’, Acta

Informatica, 13, 115-139 (1980).

M. Spenke, H. Muhlenbein, M. Mevenkamp, F. Mattern and C. Beilken, ‘A language
independent error recovery method for LL(1) parsers’, Software — Practice and Ez-

perience, 14, 1095-1107 (1984).

B. Dwyer, ‘A user-friendly algorithm’, Communications of the ACM, 24, 556-561
(1981).

E. Kantorowitz and H. Laor, ‘Automatic generation of useful syntax error messages’,
Software — Practice and Experience, 16, 627-640 (1986).

N. W. Holloway, ‘MINDER: Minimum distance error recovery for Yacc parsers’, De-
partment of Computer Science, University of Warwick, Coventry, 1988.

J. A. Dain, ‘Automatic error recovery for LR parsers in theory and practice’, Ph.D.
thesis, University of Warwick, Coventry, 1990.

B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, MA,
1986.

A. V. Aho, B. W. Kernighan and P. J. Weinberger, The Awk Programming Language,
Addison-Wesley, Reading, MA, 1988.

C. Stirling, ‘Follow set error recovery’, Software — Practice and Ezperience, 15, 239—

257 (1985).

M. G. Burke and G. A. Fisher, ‘A practical method for syntactic error diagnosis and
recovery’, ACM SIGPLAN Notices, 17(6), 67-78 (1982).

M. G. Burke and G. A. Fisher, ‘A practical method for LR and LL syntactic error
diagnosis and recovery’, ACM Transactions on Programming Languages and Systems,

9, 164-197 (1987).

P. Boullier and M. Jourdan, ‘A new error repair and recovery scheme for lexical and
syntactic analysis’, Science of Computer Programming, 9, 271-286 (1987).

T. M. Pennello and F. DeRemer, ‘A forward move algorithm for LR error recovery’,
Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, 1978.

[33] A.Paiand R. B. Kieburtz, ‘Global context recovery: a new strategy for syntactic error
recovery by table-driven parsers’, ACM Transactions on Programming Languages and

Systems, 2(1), 18-41 (1980).

Table I: Minimum distance matrices

|

)

|

id id)

€

|

)

|

id id)

€

Table II: LR parse table for grammar (1)

ACTION GOTO
STATE |id () + =+ $ |E T F
0 |S4 S5 1 2 3
1 56 ACC
2 |Rl Rl Rl Rl S7 RI
3 |R3 R3 R3 R3 R3 R3
4 |R5 R5 R5 R5 R5 RS>
5 | S4 S5 8 2 3
6 |S4 S5 9 3
7 [S4 S5 10
8 S11 6
9 |R2 R2 R2 R2 S7 R2
10 |R4 R4 R4 R4 R4 R4
11 |R6 R6 R6 R6 R6 R6

Table III: Generation of continuation strings

Configuration Stack Continuation String
Number
(1) 0T2*7T(5E8 €
(1.1) 0T2*7T(5FE8)11)
(1.2) 0T2*7T(5E8+6 +
(1.1.1) 0T2*7F10)
(1.2.1) 0T2*7T(5E8+6:d4 + ud
(1.2.2) 0T2*7T(5E8+4+6(5 + (
(1.1.1.1) 072)
(1.2.1.1) 0T2*7T(5E8+6F3 + ud
(1.2.2.1) 0T2*7T(5E84+6(5wd4 + (1
(1.2.2.2) 0T2*7T(5E84+6(5(5 +((

(1.1.1.1.1) 0E1)
(1.1.1.1.2) 0T 2%7) *
I

(1.2.1.1.1) 0T2*7(5E84+6T9 id
(1.11.1.11) 0E1+6) +
(1.1.1.1.12) 0E1) $
(1.1.1.1.21) 0T 2*7id4) * id
(1.1.1.1.22) 0T2*7(5) * (
(12.1.1.1.1) 0T2*7(5ES8 +id
(121.1.12) 0T2*7(5E8+6T9*7 +id*
(1.1.1.1.1.1.1) 0E 1+ 6id 4) + id
(1.1.1.1.1.12) 0E1+6(5)+ (
(12.1.1.1.1.1) 0T2*7(5E8)11 +id)
(12.1.1.1.12) 0T2*7(5E8+6 +id +

Table IV: Continuation strings and minimum distances

+ O <H O <H oD <H <H o
S H e N D
+ D H Hmmm NN
—_ MM MmN MmN — N
S NN NN MmN
S NN NN MmN
w N O™
Z(dl(dd

o % ox T+ 4+

Table V: Numbers of Pascal programs, edit operations against errors
Minimum Distance Recovery Method, o = 4

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
115 1
21 5 15 2
3] 5 3 6
41 2 3 2 2
511 1 1
6] 1 2
7
| 1 1
9 1
10
11 1
121 1
>12 1 1
Total |72 24 13 3 2 3 2 0 0

Table VI: Numbers of Pascal programs, edit operations against errors
Minimum Distance Recovery Method, o = 5

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
115 1
21 7 15 2 1
31 3 5 6
411 2 2
51 2 2
6 3 1
T 1 2
8
9 1
10
11
12
>12 1 1
Total |72 24 13 3 2 3 2 0 0

Table VII: Numbers of Pascal programs, edit operations against errors
Minimum Distance Recovery Method, o = 6

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
1157 1 1
21 8 16 2 1
3 3 6 1
4 2 1 1
511 1 3 1 1
6 2
T 1 2
8 1
9 1
10
11
12
>12 1 1
Total |72 24 13 3 2 3 2 0 0

Table VIII: Numbers of Pascal programs, edit operations against errors
Minimum Distance Recovery Method, o = 7

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
1159 2 1
21 6 16 3 11
3 4 4 1
41 2 1 1
51 2 2 1 1
6 1 2
7
8| 1 1 1
91 1
10
11
121 1
>12 1 1
Total |72 24 13 3 2 3 2 0 0

Table IX: Numbers of C programs, edit operations against errors
Minimum Distance Recovery Method, o = 4

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
115 3 1 2
21 3 6 2
3] 2 1 6 1
41 2 1 3
5 2 4
6 2 1
7 2
8 1
9 1
10 1 1 1
11 1
12
>12
Total | 67 16 12 4 7 3 1 1 1

Table X: Numbers of C programs, edit operations against errors
Minimum Distance Recovery Method, o = 5

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
1157 3 1
213 9 3 2
31 3 6 1
41 2
) 3 1
6| 2 2
7 2 1
8 1 1
9 1 2 1
10 1 1
11
12
>12
Total | 67 16 12 4 7 3 1 1 1

Table XI: Numbers of Pascal programs, edit operations against errors
Two Stage Recovery Method, p =5

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
1|57
2 10
3 1
4 1
51 1 1 2 1
6 1
7 1 2
81 2 2 1
9 1
10
11 1
12 1
>12110 6 6 3 1 3 2
Total |72 24 13 3 2 3 2 0 0

Table XII: Numbers of C programs, edit operations against errors
Two Stage Recovery Method, p =5

Number Number of
of edit minimum-distance errors
operations | 1 2 3 4 5 6 7 8 9
1163
21 1 12
3 3
4 2 1 1
51 1 4 1
6 1
7
8
9 1
10 1
11
12| 4
>121 2 1 3 2 6 2
Total | 67 16 12 4 7 3 1

Table XIII: Percentage of programs with number of minimum-distance errors
equal to number of edit operations

Recovery Method Pascal Pascal C
(Weighted)

Two stage, p =15 57% 1% 3%

Minimum Distance, c =4 67% 76% 66%

Minimum Distance, o = 65% 7% 65%

Minimum Distance, o = 67% 4% -

Minimum Distance, c =7 67% 80% -

Table XIV: Percentage of programs with number of minimum-distance errors
equal to number of edit operations plus or minus one

Recovery Method Pascal Pascal C
(Weighted)

Two stage, p =15 57% 1% 5%

Minimum Distance, c =4 80% 86% 76%

Minimum Distance, c =5 81% 87% 79%

Minimum Distance, c =6 83% 86% -

Minimum Distance, c =7 84% 90% -

Table XV: Percentage of single-error programs with number of minimum-distance errors
equal to number of edit operations

Recovery Method Pascal Pascal C
(Weighted)

Two stage, p =15 90% 91% 97%

Minimum Distance, c =4 7% 86% 82%

Minimum Distance, c =5 7% 86% 85%

Minimum Distance, c =6 80% 89% -

Minimum Distance, c =7 83% 90% -

Table XVTI: Percentage of multiple-error programs with number of minimum-distance errors
equal to number of edit operations

Recovery Method Pascal Pascal C
(Weighted)

Two stage, p =15 21% 29% 40%

Minimum Distance, c =4 52% 53% 42%

Minimum Distance, c =5 48% 55% 36%

Minimum Distance, c =6 48% 40% -

Minimum Distance, c =7 44% 56% -

Table XVII: Percentage of recovery actions which are acceptable

Recovery Method Acceptable Recovery
Two Stage!” 57%
Stirling (a)*® 66%
Stirling (b)?® 66%
Sippu and Soisalon-Soininen'® 67%
Pennello and DeRemer?? 70%
Wirth?® 2%
Boullier and Jourdan®! 7%
IBM Pascal/VS* %
Pai and Kieburtz?? 7%
Anderson and Backhouse® 79%
Minimum Distance, o = 4 80%
Minimum Distance, ¢ = 5 81%
Minimum Distance, 0 = 6 83%
Minimum Distance, o = 7 84%
Spenke et al?! 91%

Burke and Fisher®® 98%

Table XVIII: Percentage of recovery actions which are excellent

Recovery Method Excellent Recovery
Sippu and Soisalon-Soininen'® 36%
Stirling (a)?® 38%
Stirling (b)*® 40%
Pennello and DeRemer?? 42%
Wirth?® 45%
Pai and Kieburtz® 52%
Two Stage!” 57%
Anderson and Backhouse® 57%
Minimum Distance, ¢ = 5 65%
Minimum Distance, o = 4 67%
Minimum Distance, o = 6 67%
Minimum Distance, 0 = 7 67%
Boullier and Jourdan®! 5%
Spenke et al*! 7%

Burke and Fisher° 8%

procedure Recover;

begin
let the parser configuration be given by the ID [qo...qm,aj...a;j4k];
RepairString := ¢;
RepairDistance := 2 * 7;

GenerateRepairs(qo...qm, €);
set the parser configuration to [qo...qm,RepairStringaj+quirLa%th...aj+g
end;

procedure GenerateRepairs(Stack, Continuation);
begin

let Stack be denoted by the states qo...qn;

let Continuation be denoted by the symbols bj...by;

if n = 0 or ACTION(qn, $) = ACCEPT then

begin

for i := 0 to 7-1 do
if MinDist(Continuation, aj...aj+i) < RepairDistance then

begin
RepairString := Continuation;
RepairDistance := MinDist(Continuation, aj...ajyi);

RepairLength := i+l
end
end
else for each symbol b in ¥ do
if ACTION(gm, b) = (SHIFT, q) then
GenerateRepairs(qp...qnq, b1...byb)
else if ACTION(qn, b) = (REDUCE, A — «) then

begin
p := lal;
q := GOTO(gn-p, A);

GenerateRepairs(qo...qu-_pq, b1...bn)
end
end;

Figure 1: The Minimum Distance Recovery Method for LR parsing

