
http://wrap.warwick.ac.uk/

Original citation:
Dain, J. A. (1992) A practical minimum distance method for syntax error handling.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-215

Permanent WRAP url:
http://wrap.warwick.ac.uk/60904

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60904
mailto:publications@warwick.ac.uk

A Practical Minimum Distance Methodfor Syntax Error HandlingJ. A. DainDepartment of Computer ScienceUniversity of WarwickCoventry, CV4 7AL

SummaryThis paper presents a method for recovering from syntax errors encountered during parsing.The method provides a form of minimum distance repair, has linear time complexity, andis completely automatic. It is incorporated into the LR parser-generator yacc in such away that a compiler writer can generate a parser with error recovery without providingany additional information to yacc. Error messages phrased in terms of source input aregenerated automatically. A formal method is presented for evaluating the performance oferror recovery methods, based on global minimum-distance error correction. The minimum-distance error recovery method achieves a theoretically best performance on 80% of Pascalprograms in the Ripley-Druseikis collection. Comparisons of performance with other errorrecovery methods are given.

IntroductionLanguage translators such as compilers and interpreters are an essential component of ev-ery software development system, and indeed every software system in which some sortof dialogue is conducted between user and computer, such as a spreadsheet or a databasepackage. A language translator includes a syntax analyser which must make provision forerrors in its input, otherwise the translator will not be robust. Classic recommendationsfor \what the compiler should tell the user" were made by Horning1 in 1974. The prob-lem of syntax error handling has received considerable attention over the last two decades,including various surveys.2;3;4 Yet the \perfect" syntax error handling scheme has not ap-peared. Such a scheme would combine the ability to construct a perfect repair for incorrectinput with the linear time complexity of e�cient parsers for the deterministic context-freelanguages.What would constitute a perfect repair? Minimum or Hamming distance is convention-ally used as a formal model which approximates the user's concept of syntax errors, as itmeasures the shortest way to transform erroneous input into correct input.2;5;6 Given a setof edit operations, typically insertion, deletion or replacement of a single symbol, the min-imum distance between two strings is the minimum number of edit operations required totransform one string into the other. In the context of parsing, the target string is a sentenceof the context-free language, into which the syntactically incorrect input string must betransformed. So a perfect repair is a sentence nearest to the actual input, in the sense thatthere is no sentence whose minimum distance from the input is smaller. Algorithms forglobal correction, which aim to construct such repairs, exist5;7;8;9;10 but are typically basedon Earley's algorithm11 for general context-free parsing and are not practical, requiringO(n3) time and O(n2) space.This paper presents a method for syntax error recovery which aims to provide a formof minimum distance repair, has linear time complexity, and can be incorporated into anLR parser-generator. The method is described in detail and it is shown how error messagescan be generated automatically. Finally a method for performance evaluation based onminimum distance is presented and used to evaluate several error recovery schemes.Minimum Distance RecoveryThe recovery method presented here will be invoked by a parser for a context-free language(CFL) L at the point at which the parser detects an error in its input. It will repair theinput, returning control to the parser in a con�guration in which the remaining input canbe parsed. An LL or LR parser possesses the correct pre�x property, so when such a parserdetects an error, the input parsed is a pre�x of some sentence of the language, and hencethere exists at least one su�x or continuation string whose concatenation to the parsedinput forms a sentence of L. The idea behind the method is to generate a set of pre�xesof continuation strings for the input already parsed, and to choose from it a string whoseminimum distance from a pre�x of the remaining input string is minimum over the set.This string is used to replace part of the input.

De�nitionsDe�nitions are given for a sequence of edit operations from one string to another, and theresulting minimum distance measure, following Wagner and Fischer.12 The concept of theparser-de�ned error in a string with respect to a CFL L, due to Peterson,13 is useful formodelling the point at which a pre�x of the string ceases to form a pre�x of L. The set ofcontinuation strings for any pre�x of L is also de�ned.Let � be a �nite alphabet of symbols. a; b denote symbols in �, u; v denote stringsover �, and � denotes the empty string. Let � be the set of edit operations f(a; b)ja; b 2� [f�g; (a; b) 6= (�; �)g.De�nition 1 For strings u; v in ��, u ! v via a ! b if (a; b) 2 � and there are stringsw; x in �� such that u = wax and v = wbx.De�nition 2 u ! v via E if E is a �nite sequence of edit operations e1 : : : en and thereare strings w1; : : : ; wn�1 in �� such that u! w1 via e1, wi ! wi+1 via ei for i = 1; : : : n�2,and wn�1 ! v via en.De�nition 3 The minimum distance d(u; v) between two strings u; v is given byd(u; v) = minfn j u! v via E for some sequence of edit operations E = e1 : : : eng.De�nition 4 The set of pre�xes Pre(L) of a language L over �� is given byPre(L) = fu 2 �� j uv 2 L for some v 2 ��g.De�nition 5 The parser-de�ned error for a string u with respect to a CFL L, where u 62 L,is after the string x at the symbol a where u = xay, x 2 Pre(L) and xa 62 Pre(L).De�nition 6 The set of continuation strings Cont(u) for a pre�x u of a CFL L is givenby Cont(u) = fw 2 �� j uw 2 Lg.Outline of the methodOur goal is to �nd a practical method for error recovery using minimum distance as acriterion for choosing a repair. The method will be invoked when the parser detects anerror in the input, that is, for a correct-pre�x parser, at the parser-de�ned error. Ideallythe repair would be the continuation string whose minimum distance from the remaininginput is minimum over the set of all continuation strings, but this is impractical. In orderto devise a practical method, we place a limit on the number of possible repair stringsby generating pre�xes of continuation strings, these pre�xes being of length up to a �xednumber �. The pre�xes are measured against a �xed number � of remaining input symbols,to �nd the best match. The chosen pre�x is then used to replace a pre�x of the remaininginput. The method does not guarantee to �nd a repair leading to a sentence of the language,only that a number of the remaining input symbols will be accepted by the parser.Two problems to be solved are which continuation string pre�x to choose, and howmuch of the remaining input to replace. It is desirable to obtain the closest possible matchbetween continuation string pre�x and remaining input, but not necessarily by replacing allthe input symbols used in the minimum distance measure. The closest match is obtained

by choosing the continuation string with smallest minimum distance from some pre�x ofthe �xed amount of input.The minimum distance method can now be outlined as follows.1. Let the input string be represented by uv where the parser-de�ned error is after u andv = v1 : : : vn, for vi 2 �, i = 1; : : : ; n.2. Let R = fw j uw 2 L; jwj < �g[fw j uw 2 Pre(L); jwj = �g, where � is a �xed integer.3. Choose x in R and m, 1 � m � � , such that d(v1 : : : vm; x) � d(v1 : : : vj; y) for allj; 1 � j � � , and all y in R, where � is a �xed integer.4. The repaired string is uxvm+1 : : : vn.The method due to Wagner and Fischer12 is used to compute the minimum distanced(u; v) between two strings u = u1 : : : um and v = v1 : : : vn, obtaining an m� n matrix Min which M [i; j] gives the minimum distance between u1 : : : ui and v1 : : : vj. The algorithmgiven by Wagner and Fischer actually computes least cost. It is simpli�ed to computeminimum distance, by letting all edit costs take the value 1.As an example grammar we use a small language for simple arithmetic expressionsgenerated by the grammarG = (fE;T; Fg; fid;+; �; (;)g; P;E) (1)where P contains the productions1. E ! T2. E ! E + T3. T ! F4. T ! T � F5. F ! id6. F ! (E)Consider the input string id � (id id id) + id + id. Taking � to be 6 and � to be 3, thenext � input symbols after detection of error at the �fth input symbol are id id) + id +.We compare just two of the possible continuation strings, + id + and + id). Table I showsthe minimum distance matrices for the actual input string id id) + id + and the twocontinuation strings + id + and + id).Although the minimum distance between id id) + id + and + id + is 3, less than thedistance of 4 between id id) + id + and + id), the latter string is a better repair because ithas a distance of 1 from the pre�x id id) of the remaining input, indicated by the smallestentry in the last rows of the two matrices. The string + id) is therefore chosen to replacethe pre�x id id) of the remaining input, giving a repaired string id � (id + id) + id + id.No practical method can guarantee to �nd a minimum-distance error correction, asthere may be an arbitrary number of input symbols to inspect before the correct choiceof repair can be made. On the other hand, increasing the amount of lookahead on theinput, or the length of continuation strings to be generated, should improve the chanceof making the correct choice of repair. Both these tactics supply more information to beused in making that choice. Increasing the number of input symbols to be inspected meansthat for some inputs, enough symbols will be seen to make the best choice. Increasing thelength of continuation strings means that repairs which diverge from the actual input canbe discarded.

Minimum Distance Recovery for LR ParsersThe problem of generating continuation strings is solved with the use of the LR parsetables. For any state of an LR parser, the tables indicate which input symbols give riseto a legal move, either shift, reduce or accept. The concept of a recovery con�guration isused to model the successive concatenation of such legal symbols to a continuation string.A recovery con�guration consists of an LR parser stack of states and a continuation string,analogous with a conventional con�guration of a stack of states and unexpended input. Aninitial recovery con�guration consists of the parser stack at the point of detection of errorand the empty string. Successive recovery con�gurations are formed from each legal (shift,reduce or accept) move. A shift move gives rise to a recovery con�guration consisting of thestack with the shift state pushed on and the shift symbol concatenated to the end of thecontinuation string. A reduce move gives rise to a con�guration consisting of the reducedstack and the (previous) continuation string. An accept move on the input endmarkersymbol $ does not give rise to further con�gurations, but indicates that the continuationstring is a su�x of the consumed input, i.e. the consumed input concatenated with thecontinuation string forms a sentence of the language.Some notation for LR parsers is required. Each state q in the set of states Q of anLR(1) parsing machine is constructed from a set of LR(1) items of the form [A! � � �; a]where A ! �� is a production of a context-free grammar G = (N;�; P; S) and a in� is a terminal of the grammar. A con�guration of an LR parser is represented by aninstantaneous description (ID) [q0 : : : qm; aj : : : aj+k], where q0 : : : qm is the sequence of stateson the parsing stack with qm at the top, and aj : : : aj+k is the unexpended input. Moves ofan LR(1) parser are given by the ACTION and GOTO transition functionsACTION: Q� � [f$g ! fSHIFTg �Q [fREDUCEg �P [fACCEPTg [fERRORgGOTO: Q�N ! QThe relation move in one step on parser con�gurations, denoted by the symbol `, is de�nedas follows.If ACTION(qm; aj) = (SHIFT; q), then [q0 : : : qm; aj : : : aj+k] ` [q0 : : : qmq; aj+1 : : : aj+k].If ACTION(qm; aj) = (REDUCE; A! �); j�j = n, and GOTO(qm�n; A) = q, then[q0 : : : qm; aj : : : aj+k] ` [q0 : : : qm�nq; aj : : : aj+k].A recovery con�guration of an LR(1) parser is represented by an ID hq0 : : : qm; ui, whereq0 : : : qm is the sequence of states on the parsing stack with qm at the top, and u in ��represents the continuation string. (Angle brackets h and i are used in place of [and] in order to distinguish IDs representing recovery con�gurations from IDs representingconventional con�gurations.) The relation move in one step on recovery con�gurations,denoted by the symbol `, is de�ned analogously to ` on conventional con�gurations, asfollows.If ACTION(qm; a) = (SHIFT; q); a 2 �, then hq0 : : : qm; ui ` hq0 : : : qmq; uai.If ACTION(qm; a) = (REDUCE; A! �); j�j = n, and GOTO(qm�n; A) = q, thenhq0 : : : qm; ui ` hq0 : : : qm�nq; ui.Let `� denote the re
exive and transitive closure of `. Let the con�guration of theparser at the point of detection of error be given by the ID [q0 : : : qm; aj : : : aj+k]. Then theset �� of continuation strings of length up to � symbols is given by�� = fbi : : : bi+��1 j bj 2 �; hq0 : : : q; �i `� hq0 : : : qn; bi : : : bi+��1ig [fbi : : : bi+k j bj 2 �; 0 �k < � � 1; hq0 : : : qm; �i `� hq0 : : : qn; bi : : : bi+ki and ACTION(qn; $) = ACCEPTg.

The set �� of continuation strings of length up to � symbols is generated and thecontinuation string x whose minimum distance from a pre�x of a �xed number � of theunexpended input symbols is minimum over the set is chosen as the repair and used toreplace the input pre�x. The repair x in �� satis�es the following.Let � = d(x; aj : : : aj+l) = minfd(x; aj : : : aj+i) j i = 0; : : : ; � � 1g:Then � � d(y; aj : : : aj+i) for all y in ��; i = 0; : : : ; � � 1:Recovery returns control to the parser in the con�guration [q0 : : : qm; xaj+l+1 : : : aj+k].Figure 1 gives the scheme developed as a procedure Recover in pseudo-Pascal for use byan LR parser. Generation of the set of continuation strings is by the recursive procedureGenerateRepairs. RepairString records the best continuation string so far, that is thestring of required length � whose minimum distance from a pre�x of the up-coming inputis smallest of all continuation strings generated so far. It is not necessary to store the entireset of continuation strings as the method is only interested in the one nearest to the actualinput. RepairDistance records the best minimum distance so far and RepairLength recordsthe length of the pre�x of input to be replaced by the best continuation string.ExamplesAs an example we use the string id � (id id id) + id + id used previously. Theerror message issued by the implementation of the Minimum Distance Recovery Methoddescribed below isLine 1: syntax errorid * (id id id) + id + id----------^ replace 'id' with '+'We show how this recovery action is synthesized by displaying the continuation stringsgenerated and their minimum distances from the remaining input.An LALR(1) parse table with default reductions (replacing error entries with reductions)for this grammar is shown in Table II. Blank entries in the ACTION section of the tableare ERROR entries. Blank entries in the GOTO section are never consulted (don't careentries).The parser detects an error when it is in con�guration [02758; id id) + id + id $].Generation of repairs commences with recovery con�guration h02758; �i. Table III showsrecovery con�gurations for generation of continuation strings of length 3. The left-handcolumn contains a con�guration number which indicates how the con�guration is generated,e.g. con�guration (1.2) gives rise to con�gurations (1.2.1) and (1.2.2).Table IV shows each continuation string generated together with the last row of itsminimum distance matrix from the remaining input string id id) + id +. The smallestentry in this table is minimum distance 1 between the continuation string + id) and theinput pre�x id id), obtained by replacing the parser-de�ned error symbol id by +. Controlis returned to the parser with con�guration [02758;+ id) + id + id $].Termination and ComplexityTermination of the parser with error recovery is assured because the error recovery proce-dure leaves the parser in a con�guration in which the upcoming input consists of a repair

string that will be consumed followed by a proper su�x of the original remaining input.The recovery algorithm has complexityO(n), because the recursive procedure GenerateRe-pairs contains a modi�ed version of the LR parsing algorithm which can be invoked up toa constant number (j�j) of times for each activation of GenerateRepairs.Error MessagesWe now show how the automatic generation of error messages can be achieved. We wishto supply the user with information about symbols which are in error and symbols whichare legal alternatives. The �rst kind of information is supplied by a message indicating theparser-de�ned error symbol, of the formLine 32, syntax error detected:while a[1 do begin----------^The second kind of information could be supplied by a list of all admissible symbols at thepoint of detection of error. Such a list might be very long and we consider it more e�cientand informative to the user to tell him or her exactly which symbols are chosen by therecovery method as the legal alternatives. This information can be supplied by a messageof the form']' inserted before 'do'ormissing ']'or one of the formLine 32 replaced by 'while a[1] do begin'The �rst form of message describes the action taken by the recovery method. Thesecond form gives the same information as the �rst, but is phrased in terms of what theuser has done rather than the recovery taken. The third message describes the actiontaken but gives the whole line rather than single symbol information. The second formof message may be more helpful to a beginning user, and less \egotistic";14;15 but if therecovery method has chosen the wrong repair, the message will be confusing to a beginnerand annoying to a knowledgeable user.Another approach to providing information about legal alternatives is that taken bySippu and Soisalon-Soininen,16 whose method generates messages of the formA symbol which could follow an expression has been inserted.A message giving information about which symbols are in error can be emitted beforethe recovery method is invoked. A message giving information about which correct symbolshave been chosen can be synthesized by the recovery method from the actions taken whilerecovery is performed, taking one of the forms

insert ']'delete 'do'replace ']' with '+'The input to a parser usually consists of values representing lexical tokens supplied by alexical analyser which processes the source input. Thus a parser has to construct messagesfrom internal values representing the symbols of the CFG. An earlier approach17 was to usethe names given in the input speci�cations to yacc corresponding to those values, givingmessages of the kindLEFTBRACKET inserted before DOHowever, the example messages above are phrased chie
y in terms of source input,which is clearer for the user who may not be familiar with the names of the grammarspeci�cation. In order to achieve this it is necessary for the message-generator to haveinformation about source representations for the vocabulary symbols. The approach wehave used is to associate with each token produced by the lexical analyser a string ofcharacters forming the source input consumed by the lexical analyser to produce thattoken. With this interface the parser typically receives from the lexical analyser a tripleconsisting of a token value, a semantic value, and a source string.This mechanism means that in error recovery, a repair involving actual input symbols(tokens) can have an associated synthesized message which is expressed in terms of sourcecharacters. A repair may also involve insertion of tokens. A representation of an insertedtoken as a string of source characters can be constructed by a lexical-analyzer generatorfrom the regular expression used to de�ne that token in the speci�cation.As examples of error messages, we show two Pascal programs from the Ripley collectionof student programs,18 together with the diagnostic output from the Minimum DistanceRecovery Method and from the Berkeley Pascal compiler, whose recovery is based on thework of Graham, Haley and Joy.19 Only the diagnostics which relate to syntax errors areshown for the Berkeley compiler; diagnostics relating to errors not described by the context-free syntax, such as type errors, declarations out of place or unde�ned variables, are notshown.The �rst program contains a simple error: a semicolon is missing from the end of line 2.1 program p(input, output); begin2 repeat writeln(' input is:', number)3 if number > 14 then x := 1 until x = 1 end.The diagnostic output from the parser with the Minimum Distance Recovery Method is:Line 3: syntax errorif number > 1---------------^insert ';'The diagnostic output from the Berkeley Pascal compiler is:3 if number > 1e ----------------^--- Inserted ';'

The second program contains a more complex error: the formal parameter list does notinclude the type of the parameter.1 program p(input,output);2 procedure factorial (a);3 var q:integer; begin x:=1 end; begin end.The diagnostic output from the parser with the Minimum Distance Recovery Method is:Line 2: syntax errorprocedure factorial (a);----------------------^ insert ':'-----------------------^ insert 'identifier'The diagnostic output from the Berkeley Pascal compiler is:2 procedure factorial (a);E -------------------------^--- Expected ':'E -------------------------^--- Inserted identifierThe �rst program, containing a simple error, gives rise to almost identical messagesgenerated by the two systems. The second program shows a very slight di�erence in ap-proach; the Minimum Distance Recovery Method notes the action taken in recovery, andthe Berkeley compiler additionally notes an expected symbol. Preference between the twois a matter of taste.Evaluation of Recovery MethodsCriteria for Error HandlingFollowing Horning,1 R�orich20 and Spenke et al,21 we set several criteria for error handling,in the general areas of quality of performance, e�ciency and ease of use. A good schemeshould: detect all errors in the input; parse all the input; repair simple errors and recoverfrom complex errors; generate good error messages; have practical requirements in time andspace; have no e�ect on the analysis of correct input; be capable of automatic generation;be capable of incorporation into a practical parser-generator.A parser incorporating the Minimum Distance Recovery Method detects all errors inthe input and parses all the input. The method repairs every simple error and recovers froma complex error in the sense that it terminates and returns control to the parser. Using thescheme described above to generate error messages ensures that all error messages tell theuser exactly which symbol lies at the point of detection of error, and the recovery actiontaken. All messages are directed towards the user and expressed in terms which the userunderstands.22 They meet the criteria of simplicity, honesty and reliability.15;23 They can becriticized for detailing the action taken | expressing the compiler's point of view | ratherthan telling what the user has done. We have used this approach because the recoverymethod cannot guarantee either to make a correct inference about the user's intention orto make a correct repair.

The Minimum Distance Recovery Method is practical in both time (O(n)) and space,requiring only a minor amount of storage for string representations of the CFG terminalsymbols, in addition to the usual storage for LR parsers. It has been used in languagecompilers which run with normal memory requirements and with acceptable response timeson various computers (DEC VAX/750, SUN 3 and SUN 4). There is no e�ect on the analysisof correct input, as the recovery method is only invoked when the parser detects an error.The parser proceeds exactly as normal on correct input, with no overheads.The error handling scheme can be completely automatically generated: no additionalspeci�cations are required of the user other than the CFG and semantic actions requiredby the parser generator.The scheme has been incorporated into the practical parser-generator yacc. In practice,with this parser-generator, fewer speci�cations are required than formerly, as the user nolonger has to supply error productions if error recovery is required.Performance in PracticeIt is essential to evaluate the performance in practice of an error recovery schemewhich is in-tended for practical use, and to use a representative collection of inputs for that evaluation.The MinimumDistance RecoveryMethod was incorporated in the LR parser-generator yaccby Holloway24 and Dain.25 The implementation was parameterized for the length � of con-tinuation strings generated and the amount of lookahead � on the input. The interfacebetween the lexical analyzer and the parser was implemented for yacc and its companionscanner-generator lex by Holloway.Although the parser-generator incorporating the Minimum Distance Recovery Methodcan be used to build parsers with error recovery for any language which can be describedby a yacc speci�cation (any context-free language), we have concentrated performanceevaluation on the programming languages Pascal and C. There are two reasons for thischoice. Firstly, the primary aim of our work is to improve error recovery in programminglanguage compilers, and Pascal and C are programming languages in very widespreaduse. Secondly, many authors have used the Ripley database18 of student Pascal programsto evaluate performance, so comparisons of our scheme with others will be possible forPascal. In addition to Pascal and C, we have constructed parsers for various other languagesincluding C++26 and awk.27Parsers for C and Pascal were constructed using the implementation of the parser-generator yacc incorporating the Minimum Distance Recovery Method with the followingpairs of values for �, the length of strings generated, and � , the amount of lookahead onthe input: 4 and 8, 5 and 10, 6 and 12, 7 and 14. The grammar used for C was the ANSIC draft grammar. The grammar used for Pascal was the grammar of the Berkeley Pascalcompiler.The Ripley database of student Pascal programs was used as inputs for the Pascalparsers. The database consists of a reduced sample of original input programs, shortenedand altered (presumably to keep the size of the database small). Associated with some ofthe errors is a weight that indicates how many times the particular kind of error occurredin the original sample. 121 of the Ripley programs contain one or more syntax errorsaccording to the grammar we used. (The remaining few programs contain errors such asdeclarations in incorrect order which are not described by the grammar.) A collection of

all C programs submitted to the C compiler on the University of Warwick Department ofComputer Science VAX/75 over three separate 24 hour periods during October 1985 wasmade. At that time in the University calendar, there were many undergraduate studentsstarting to learn the C language, so there were many short, erroneous programs submitted.All programs containing syntax errors and less than 100 lines long were used as inputs,making a total of 112 such programs altogether.A Formal Method for Performance EvaluationThe aim of our new method for performance evaluation is to provide an objective measurefor evaluation that uses formal de�nitions of errors. The method measures, for each in-put program, the number of minimum-distance errors and the number of edit operationsperformed by the error recovery scheme. The number of minimum-distance errors in a pro-gram is given by the global minimum-distance error correction according to the model ofAho and Peterson,5 determined by inspection of the input. The number of edit operationsperformed by the recovery method is determined by running the parser with error recoveryon the input and inspecting the resulting error messages, which detail the edit operationsmade. A comparison can then be made between the number of minimum-distance errors,the ideal, with the number of edit operations, the actual performance. Each input pro-gram is associated with an entry in a matrix showing numbers of minimum-distance errorsagainst numbers of edit operations. For a given recovery method incorporated in a parserfor a language, a table is drawn up for a set of input programs in the language, showingthe total numbers of programs corresponding to each position in the matrix.Tables were drawn up for both collections of programs, the Ripley set of Pascal programs(weighted and unweighted) and our set of C programs, for the MinimumDistance RecoveryMethod with the various values for � and � . Results are not available for the set ofC programs with � of 6 and 7, as error recovery took too long to complete with theseparameters.In order to use the formal evaluation method to make comparisons with another recoveryscheme, tables were also drawn up for a method implemented in the parser-generator yaccreferred to here as the Two Stage Recovery Method.17 This method consists of two stages,a local recovery followed if necessary by a phrase-level recovery. Local recovery consistsof a single edit operation (replace, delete or insert) on the input at the point of error.This repair is tested by attempting a forward move of the parser on the repaired input. Ifthe repair permits the parser to consume a further �xed number � of input symbols, therepair is deemed to be successful and control is returned to the parser, with the repairedinput. If the forward move of the parser fails before � symbols are consumed, then thesecond stage takes place. In this stage, the parser is returned to the con�guration in whichit determined an error, and the set of LR items for the current state is used to guide aphrase-level recovery. The last item in the kernel of the set of items is chosen to provide agoal non-terminal. If its �rst component is given by [A ! X1 : : :Xm �Xm+1 : : :Xn], thenm states are popped from the stack and the GOTO state for the new top of stack stateand non-terminal A is pushed. Finally, the parser is put in a con�guration in which eitherit can shift the next input symbol or there is no more input, by repeatedly either makinga legal reduce move or deleting the next input symbol. A reduction by the productionA! X1 : : :XmXm+1 : : :Xn has been simulated.

Results of performance evaluation using the formal method are given in Tables V to XII.Tables V to VIII show the results for the MinimumDistance Recovery Method with valuesfor � of 4, 5, 6 and 7 on the Ripley collection of Pascal programs. Tables IX and X showthe results for the Minimum Distance Recovery Method with values for � of 4 and 5 on thecollection of C programs. Tables XI and XII show the results for the Two Stage RecoveryMethod with the value 5 for � on the Pascal and C collections. The columns of each tableare indexed by the number of errors according to the minimum-distance measure, and therows are indexed by the number of edit operations performed by the error recovery method.An entry shows how many programs were found in that category. Blank entries are zeroes.For example, the entry of 55 in column 1, row 1 of Table V shows that 55 programs outof the Pascal collection contain 1 minimum-distance error and require 1 edit operation bythe Minimum Distance Recovery Method with � = 4.The ideal for an error recovery method is to detect the exact number of errors inthe input program. This imprecise description is formalized by the number of minimum-distance errors equalling the number of edit operations performed by the recovery method.Thus the ideal is to have all (non-zero) entries in the tables of results occurring on thediagonal. Table XIII shows, for each collection of programs and each recovery method,the percentage of programs for which the number of minimum-distance errors equals thenumber of edit operations.Although the ideal for an error recovery method is to detect the exact number of errorsin the input program, it is also interesting to ask the question, for how many programsdoes recovery nearly achieve this ideal. Expressing this formally, for how many programsdoes the number of edit operations made by recovery equal the number of errors plus orminus one. (How many programs lie on the diagonal or one away in the tables of results?)The answer is given in Table XIV which shows, for each collection of programs and for eachrecovery method, the percentage of programs for which the number of minimum-distanceerrors equals the number of edit operations plus or minus one.In addition to the �gures on overall performance, it is useful to know how the recoverymethod performs on programs that contain only a single error, and programs that containmultiple errors. The Ripley collection contains 72 programs (60%) with a single error,according to the minimum-distance measure. If the weights are taken into account, 71%contain a single error.The C collection contains 67 programs (60%) with a single error. Table XV showsthe percentage of single-error programs for which the number of minimum-distance errorsequals the number of edit operations, for each collection of programs and each recoverymethod. Table XVI shows the percentage of multiple-error programs for which the numberof errors equals the number of edit operations.One of the aims when designing the Minimum Distance Recovery Method was to im-prove on the overall performance of the Two Stage Recovery Method, by maintaining goodperformance on single errors and improving on phrase-level recovery when a single editoperation fails to produce an acceptable repair. Table XV shows that, for single-error pro-grams in the Pascal collection, the Minimum Distance Recovery Method (� = 7) achievesexcellent recovery (number of edit operations equals number of minimum-distance errors)for 83% of the programs, compared with 90% for the Two Stage Recovery Method. Ta-ble XVI shows that, for multiple-error programs in the Pascal collection, the MinimumDistance Recovery Method achieves excellent recovery for 44% of the programs, compared

with 21% for the Two Stage RecoveryMethod. So the MinimumDistance RecoveryMethoddoes indeed handle multiple errors better than the Two Stage Recovery Method, but doesnot handle single-error programs as well. Inspection of the Pascal single-error programsshows that, although there are several programs for which both recovery methods �nd thesame single-operation repair, there are also two for which the Two Stage Recovery Method�nds a single-operation repair but the Minimum Distance Recovery Method �nds a repairof two edit operations. One of these programs is shown below.1 program p(input, output); begin if x = 1 then begin2 writeln('end of sort')3 else writeln('loop detected in input order');4 x:=1 end.The diagnostics from the Two Stage Recovery Method are:Line 3: syntax errorwriteln('end of sort')--------------------------^'end' inserted.The diagnostics from the Minimum Distance Recovery Method are:Line 3: syntax errorelse writeln('loop detected in input order');--^ replace 'else' with ';'Line 4: syntax errorx:=1 end.----------^insert 'end'With generated repairs of length 4 and lookahead on the input of 8 symbols, the Mini-mum Distance Recovery Method computes two repairs; writeln (' end writeln ('which are both at distance 1 from the inputelse writeln (' loop detected in input order ') ;It is a matter of luck that the Two Stage Recovery Method makes the (arbitrary) choice ofthe better repair and the Minimum Distance Recovery Method does not. Not until severalsymbols later in the actual input is it apparent that the repair made by the MinimumDistance Recovery Method leads to a further edit operation.Performance for the Pascal weighted set is generally better than for the unweighted setbecause the programs with higher weights are generally those containing simple single-tokenerrors, which occurred more frequently in the original sample. (Tables XV and XVI showthat both recovery methods perform better on single-error programs than on multiple-errorprograms.) The MinimumDistance Recovery Method (� = 4) achieves similar performancefor the Pascal unweighted set and the C set: excellent recovery for 67% of Pascal programsand 66% of C programs. When the length � of repair generated is increased from 4 to

7, performance is improved slightly: from excellent recovery on 76% of Pascal (weighted)programs, up to 80%.To summarize these results, the best overall performance for Pascal is obtained by theMinimumDistance Recovery Method with generated repairs of length 7 (� = 7), achievingthe theoretical ideal for 67% of the unweighted Pascal set and 80% of the weighted Pascalset. The method gives slightly better performance on Pascal than on C. Increasing thelength of generated repair improves performance.Comparison with Other MethodsThe general approach of the Minimum Distance Recovery Method may be likened to thatof R�orich,20 who describes methods for error recovery in LL and LR parsers. R�orich'smethod �nds a valid continuation string for the parsed input, and deletes symbols fromthe remaining input until an anchor symbol is met, that is any input symbol which iscontained in the continuation string. The appropriate pre�x of the continuation string isinserted and parsing continues from the anchor symbol. A major di�erence is that theMinimumDistance Recovery Method generates a number of continuations and chooses therepair from these, whereas R�orich's method generates only one continuation.Our method for performance evaluation is qualitatively di�erent from methods used byother authors, in that it is a formal method using a mathematical measure of performanceinstead of criteria such as \exactly what a competent programmer might have done", \noundesirable side-e�ects"16 or \most plausible repair".28The advantages of the method used here lie in its formality: it is precise, objective, andcould be automated (although we have not done so). A potential disadvantage also lies inthe method's formality: if the model of minimum-distance errors were not to correspondclosely with the human user's concept of syntax errors, the method would provide an inap-propriate measure of performance. We claim that the models are valid. The justi�cationfor this claim is given by analysis of the Ripley suite of Pascal programs, which shows thatthe minimum-distance error correction corresponds with the human's perception (as givenby Ripley and Druseikis18) in 106 of the 121 programs (88%).The advantage of methods using informal criteria such as those cited above is that themodel of syntax errors is a human one (the evaluator's own model). The disadvantage ofsuch methods is that the criteria are imprecise, subjective, and open to di�erent interpre-tations. In the case of single-error programs, it is often straightforward to decide on therepair a competent programmer might make, for example insertion of a missing semi-colon.But di�culties are frequent with multiple-error programs. For example, one of the RipleyPascal programs contains the fragmentconst limit = 100; limitp1 = limit + 1;This might be corrected by a programmer toconst limit = 100; limitp1 = 101;using knowledge of both syntax rules (constant declarations may not contain expressions)and simple arithmetic. (It is also possible that questions would be asked about the necessityfor declaring a second constant.) Ripley and Druseikis describe this error as an \extra + 1"

but a competent programmer would be unlikely to correct it simply by deleting those extrasymbols. Again, Ripley and Druseikis describe the error in the statemenths := sqrt(2*pi*x)*x**x*exp(-x)as \no exponentation operator in Pascal". The error might be corrected by the competentprogrammer by a deletion of the extra multiplication sign, but it is plausible that he or shewould recognize the intended meaning and suggest replacement with a function call. It isvery di�cult to decide on \the most plausible repair". Firstly, how much knowledge willthe programmer use in making the repair? Secondly, the Ripley suite consists of shortenedand altered programs, so that they are not in themselves plausible programs; hence it is notpossible to �nd a plausible repair. Stirling28 notes that there are indeed cases where thiscriterion cannot be used, in which case he uses instead the minimumdistance criterion. Weclaim that the minimum distance criterion provides an appropriate and accurate measurefor all cases.In order to compare our results of performance evaluation with those of other meth-ods, we de�ne the recovery action taken on a program to be excellent if the number ofedit operations e equals the number of minimum-distance errors m. We equate this withthe classi�cation excellent of Sippu and Soisalon-Soininen16 and the classi�cation good ofStirling.28 We de�ne recovery to be acceptable if e = m� 1 and equate this with the com-bined classi�cations excellent and good of Sippu and Soisalon-Soininen, and the combinedclassi�cations good and marginal of Stirling.Several authors9;16;17;21;28;30;31;32;33 have used their error recovery methods in constructingsyntax analysers for Pascal which are then tested on the Ripley suite. Table XVII showsthe percentage of recovery actions performed by these schemes on the Ripley suite whichare acceptable, and Table XVIII shows the percentage which are excellent.The majority of methods give acceptable performance for 70 to 80% of Pascal programs.(It should be noted that the MinimumDistance RecoveryMethod also gives acceptable per-formance in this range for C programs, e.g. 79% with � = 5.) The Minimum DistanceRecovery Method gives acceptable performance for 80% or more of Pascal programs, per-formance which is bettered by the schemes of Spenke et al21 and Burke and Fisher.29;30 Thehigh performance of these schemes and that of Boullier and Jourdan31 may be partly dueto hand-tuning of the recovery schemes for Pascal, as they employ language-speci�c dataon input symbols.ConclusionsA method for error recovery has been presented, using a single stage for repair of the inputwhich aims to provide a practical minimum-distance repair, i.e. locally minimum-distancein linear time. The method satis�es established criteria for error handling schemes. TheLR parser-generator yacc has been enhanced with the method and used to build compilersfor several languages. A formal method for performance evaluation has been presented andused to evaluate the recovery scheme and one other. The scheme compares reasonably wellwith previous methods in terms of performance, and is superior in terms of its practicalapplication, as its use is totally automated and is independent of language. The generationof clear, informative error messages has been automated. The resulting tools should be ofinterest and practical use to compiler writers.

References[1] J. J. Horning, `What the compiler should tell the user', in F. L. Bauer and J. Eickel(ed.), Compiler Construction, An Advanced Course, Springer Verlag, New York, 1974.[2] S. Sippu, `Syntax error handling in compilers', Report A-1981-1, Department of Com-puter Science, University of Helsinki, Helsinki, 1981.[3] K. Hammond and V. J. Rayward-Smith, `A survey on syntactic error recovery andrepair', Computer Languages, 9, 51{67 (1984).[4] J. A. Dain, `Syntax error handling in language translation systems', Research Report188, Department of Computer Science, University of Warwick, Coventry, 1991.[5] A. V. Aho and T. G. Peterson, `A minimum-distance error-correcting parser forcontext-free languages', SIAM Journal of Computing, 1, 305{312 (1972).[6] D. Gries. `Error recovery and correction, an introduction to the literature', in F. L.Bauer and J. Eickel (ed.), Compiler Construction, An Advanced Course, SpringerVerlag, New York, 1974.[7] G. Lyon. `Syntax-directed least-errors analysis for context-free languages: a practicalapproach', Communications of the ACM, 17, 3{14 (1974).[8] T. Krawczyk. `Error correction by mutational grammars', Information Processing Let-ters, 11, 9{15 (1980).[9] S. O. Anderson and R. C. Backhouse, `Locally least-cost error recovery in Earley'salgorithm', ACM Transactions on Programming Languages and Systems, 3, 318{347(1981).[10] J. Mauney and C. N. Fischer, `An improvement to immediate error detection in strongLL(1) parsers', Information Processing Letters, 12, 211{212 (1981).[11] J. Earley, `An e�cient context-free parsing algorithm', Communications of the ACM,13, 94{102 (1970).[12] R. A. Wagner and M. J. Fischer, `The string-to-string correction problem', Journal ofthe ACM, 21, 168{173 (1974).[13] T. G. Peterson, `Syntax error detection, correction and recovery in compilers', Ph. D.thesis, Stevens Institute of Technology, 1971.[14] P. J. Brown, ` \My system gives excellent error messages" | or does it', Software |Practice and Experience, 12, 91{94 (1982).[15] P. J. Brown, `Error messages: the neglected area of the man/machine interface?',Communications of the ACM, 26, 246-249 (1983).[16] S. Sippu and E. Soisalon-Soininen, `A syntax-error handling technique and its ex-perimental analysis', ACM Transactions on Programming Languages and Systems, 5,656{679 (1983).

[17] J. A. Dain, `Error recovery for yacc parsers', Proceedings of the EUUG Autumn 1985Conference, Copenhagen, 1985.[18] D. C. Ripley and F. C. Druseikis, `A statistical analysis of syntax errors', ComputerLanguages, 3, 227{240 (1978).[19] S. L. Graham, C. B. Haley and W. N. Joy, `Practical LR error recovery', ACM SIG-PLAN Notices, 14(8), 168{175 (1979).[20] J. R�orich, `Methods for the automatic construction of error correcting parsers', ActaInformatica, 13, 115{139 (1980).[21] M. Spenke, H. Muhlenbein, M. Mevenkamp, F. Mattern and C. Beilken, `A languageindependent error recovery method for LL(1) parsers', Software | Practice and Ex-perience, 14, 1095{1107 (1984).[22] B. Dwyer, `A user-friendly algorithm', Communications of the ACM, 24, 556{561(1981).[23] E. Kantorowitz and H. Laor, `Automatic generation of useful syntax error messages',Software | Practice and Experience, 16, 627-640 (1986).[24] N. W. Holloway, `MINDER: Minimum distance error recovery for Yacc parsers', De-partment of Computer Science, University of Warwick, Coventry, 1988.[25] J. A. Dain, `Automatic error recovery for LR parsers in theory and practice', Ph.D.thesis, University of Warwick, Coventry, 1990.[26] B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, MA,1986.[27] A. V. Aho, B. W. Kernighan and P. J. Weinberger, The Awk Programming Language,Addison-Wesley, Reading, MA, 1988.[28] C. Stirling, `Follow set error recovery', Software | Practice and Experience, 15, 239{257 (1985).[29] M. G. Burke and G. A. Fisher, `A practical method for syntactic error diagnosis andrecovery', ACM SIGPLAN Notices, 17(6), 67{78 (1982).[30] M. G. Burke and G. A. Fisher, `A practical method for LR and LL syntactic errordiagnosis and recovery', ACM Transactions on Programming Languages and Systems,9, 164{197 (1987).[31] P. Boullier and M. Jourdan, `A new error repair and recovery scheme for lexical andsyntactic analysis', Science of Computer Programming, 9, 271{286 (1987).[32] T. M. Pennello and F. DeRemer, `A forward move algorithm for LR error recovery',Conference Record of the Fifth Annual ACM Symposium on Principles of ProgrammingLanguages, 1978.

[33] A. Pai and R. B. Kieburtz, `Global context recovery: a new strategy for syntactic errorrecovery by table-driven parsers', ACM Transactions on Programming Languages andSystems, 2(1), 18{41 (1980).

Table I: Minimum distance matrices� id id) + id + � id id) + id +� 0 1 2 3 4 5 6 � 0 1 2 3 4 5 6+ 1 1 2 3 3 4 5 + 1 1 2 3 3 4 5id 2 1 1 2 3 3 4 id 2 1 1 2 3 3 4+ 3 2 2 2 2 3 3) 3 2 2 1 2 3 4

Table II: LR parse table for grammar (1)ACTION GOTOSTATE id () + � $ E T F0 S4 S5 1 2 31 S6 ACC2 R1 R1 R1 R1 S7 R13 R3 R3 R3 R3 R3 R34 R5 R5 R5 R5 R5 R55 S4 S5 8 2 36 S4 S5 9 37 S4 S5 108 S11 S69 R2 R2 R2 R2 S7 R210 R4 R4 R4 R4 R4 R411 R6 R6 R6 R6 R6 R6

Table III: Generation of continuation stringsCon�guration Stack Continuation StringNumber(1) 0 T 2 * 7 (5 E 8 �(1.1) 0 T 2 * 7 (5 E 8) 11)(1.2) 0 T 2 * 7 (5 E 8 + 6 +(1.1.1) 0 T 2 * 7 F 10)(1.2.1) 0 T 2 * 7 (5 E 8 + 6 id 4 + id(1.2.2) 0 T 2 * 7 (5 E 8 + 6 (5 + ((1.1.1.1) 0 T 2)(1.2.1.1) 0 T 2 * 7 (5 E 8 + 6 F 3 + id(1.2.2.1) 0 T 2 * 7 (5 E 8 + 6 (5 id 4 + (id(1.2.2.2) 0 T 2 * 7 (5 E 8 + 6 (5 (5 + (((1.1.1.1.1) 0 E 1)(1.1.1.1.2) 0 T 2 * 7) *(1.2.1.1.1) 0 T 2 * 7 (5 E 8 + 6 T 9 + id(1.1.1.1.1.1) 0 E 1 + 6) +(1.1.1.1.1.2) 0 E 1) $(1.1.1.1.2.1) 0 T 2 * 7 id 4) * id(1.1.1.1.2.2) 0 T 2 * 7 (5) * ((1.2.1.1.1.1) 0 T 2 * 7 (5 E 8 + id(1.2.1.1.1.2) 0 T 2 * 7 (5 E 8 + 6 T 9 * 7 + id *(1.1.1.1.1.1.1) 0 E 1 + 6 id 4) + id(1.1.1.1.1.1.2) 0 E 1 + 6 (5) + ((1.2.1.1.1.1.1) 0 T 2 * 7 (5 E 8) 11 + id)(1.2.1.1.1.1.2) 0 T 2 * 7 (5 E 8 + 6 + id +

Table IV: Continuation strings and minimum distances� id id) + id ++ (id 3 2 2 3 4 4 5+ ((3 3 3 3 4 5 5) $ 2 2 2 3 3 4 5) * id 3 2 2 3 4 3 4) * (3 3 3 3 4 4 5+ id * 3 2 2 2 3 4 4) + id 3 2 2 3 3 2 3) + (3 3 3 3 3 3 4+ id) 3 2 2 1 2 3 4+ id + 3 2 2 2 2 3 3

Table V: Numbers of Pascal programs, edit operations against errorsMinimum Distance Recovery Method, � = 4Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 55 12 5 15 23 5 3 64 2 3 2 25 1 1 1 16 1 2 1 1 17 1 18 1 19 11011 112 1>12 1Total 72 24 13 3 2 3 2 0 0

Table VI: Numbers of Pascal programs, edit operations against errorsMinimum Distance Recovery Method, � = 5Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 55 12 7 15 2 13 3 5 64 1 2 25 2 2 16 3 1 17 1 289 1 110 11112>12 1Total 72 24 13 3 2 3 2 0 0

Table VII: Numbers of Pascal programs, edit operations against errorsMinimum Distance Recovery Method, � = 6Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 57 1 12 8 16 2 13 3 6 14 2 2 1 15 1 1 3 1 16 27 1 28 19 1101112 2>12 1Total 72 24 13 3 2 3 2 0 0

Table VIII: Numbers of Pascal programs, edit operations against errorsMinimum Distance Recovery Method, � = 7Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 59 2 12 6 16 3 1 13 4 4 14 2 1 15 2 2 1 16 1 1 27 18 1 1 19 1101112 1>12 1Total 72 24 13 3 2 3 2 0 0

Table IX: Numbers of C programs, edit operations against errorsMinimum Distance Recovery Method, � = 4Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 55 3 1 22 3 6 23 2 1 6 14 2 1 35 2 46 3 2 17 2 28 19 110 1 1 1 111 1 112>12Total 67 16 12 4 7 3 1 1 1

Table X: Numbers of C programs, edit operations against errorsMinimum Distance Recovery Method, � = 5Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 57 3 12 3 9 3 23 3 6 14 25 3 16 2 2 37 2 18 1 19 1 2 110 1 11112>12Total 67 16 12 4 7 3 1 1 1

Table XI: Numbers of Pascal programs, edit operations against errorsTwo Stage Recovery Method, � = 5Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 572 103 1 14 1 15 1 1 2 16 17 1 28 2 2 19 11011 112 1>12 10 6 6 3 1 3 2Total 72 24 13 3 2 3 2 0 0

Table XII: Numbers of C programs, edit operations against errorsTwo Stage Recovery Method, � = 5Number Number ofof edit minimum-distance errorsoperations 1 2 3 4 5 6 7 8 91 632 1 123 34 2 1 15 1 4 16 1 17 189 110 11112 4>12 2 1 3 2 6 2 1 1Total 67 16 12 4 7 3 1 1 1

Table XIII: Percentage of programs with number of minimum-distance errorsequal to number of edit operationsRecovery Method Pascal Pascal C(Weighted)Two stage, � = 5 57% 71% 73%Minimum Distance, � = 4 67% 76% 66%Minimum Distance, � = 5 65% 77% 65%Minimum Distance, � = 6 67% 74% -Minimum Distance, � = 7 67% 80% -

Table XIV: Percentage of programs with number of minimum-distance errorsequal to number of edit operations plus or minus oneRecovery Method Pascal Pascal C(Weighted)Two stage, � = 5 57% 71% 75%Minimum Distance, � = 4 80% 86% 76%Minimum Distance, � = 5 81% 87% 79%Minimum Distance, � = 6 83% 86% -Minimum Distance, � = 7 84% 90% -

Table XV: Percentage of single-error programs with number of minimum-distance errorsequal to number of edit operationsRecovery Method Pascal Pascal C(Weighted)Two stage, � = 5 90% 91% 97%Minimum Distance, � = 4 77% 86% 82%Minimum Distance, � = 5 77% 86% 85%Minimum Distance, � = 6 80% 89% -Minimum Distance, � = 7 83% 90% -

Table XVI: Percentage of multiple-error programs with number of minimum-distance errorsequal to number of edit operationsRecovery Method Pascal Pascal C(Weighted)Two stage, � = 5 21% 29% 40%Minimum Distance, � = 4 52% 53% 42%Minimum Distance, � = 5 48% 55% 36%Minimum Distance, � = 6 48% 40% -Minimum Distance, � = 7 44% 56% -

Table XVII: Percentage of recovery actions which are acceptableRecovery Method Acceptable RecoveryTwo Stage17 57%Stirling (a)28 66%Stirling (b)28 66%Sippu and Soisalon-Soininen16 67%Pennello and DeRemer32 70%Wirth28 72%Boullier and Jourdan31 77%IBM Pascal/VS21 77%Pai and Kieburtz33 77%Anderson and Backhouse9 79%Minimum Distance, � = 4 80%Minimum Distance, � = 5 81%Minimum Distance, � = 6 83%Minimum Distance, � = 7 84%Spenke et al21 91%Burke and Fisher30 98%

Table XVIII: Percentage of recovery actions which are excellentRecovery Method Excellent RecoverySippu and Soisalon-Soininen16 36%Stirling (a)28 38%Stirling (b)28 40%Pennello and DeRemer32 42%Wirth28 45%Pai and Kieburtz33 52%Two Stage17 57%Anderson and Backhouse9 57%Minimum Distance, � = 5 65%Minimum Distance, � = 4 67%Minimum Distance, � = 6 67%Minimum Distance, � = 7 67%Boullier and Jourdan31 75%Spenke et al21 77%Burke and Fisher30 78%

procedure Recover;beginlet the parser configuration be given by the ID [q0 : : : qm; aj : : : aj+k];RepairString := �;RepairDistance := 2 * �;GenerateRepairs(q0 : : : qm, �);set the parser configuration to [q0 : : : qm; RepairStringaj+RepairLength : : : aj+k]end;procedure GenerateRepairs(Stack, Continuation);beginlet Stack be denoted by the states q0 : : : qm;let Continuation be denoted by the symbols b1 : : : bn;if n = � or ACTION(qm, $) = ACCEPT thenbeginfor i := 0 to �-1 doif MinDist(Continuation, aj : : : aj+i) < RepairDistance thenbeginRepairString := Continuation;RepairDistance := MinDist(Continuation, aj : : : aj+i);RepairLength := i+1endendelse for each symbol b in � doif ACTION(qm, b) = (SHIFT, q) thenGenerateRepairs(q0 : : : qmq; b1 : : : bnb)else if ACTION(qm, b) = (REDUCE, A! �) thenbeginp := |�|;q := GOTO(qm�p, A);GenerateRepairs(q0 : : : qm�pq; b1 : : : bn)endend;

Figure 1: The Minimum Distance Recovery Method for LR parsing

