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Preface

A marriage of a family F of sets is an injective choice function

for F. The marriage problem consists in estaLJlishing necessary and

sufficient criteria which decide if a family has an injective choice

function. First P. Hall formulated his well-known criterion for finite

families in 1935. This criterion was generalized by M. Hall to

infinite families which have finite members only. A detailed

discussion of the results up to 1970 and many applications can be

found in Mirsky's book [Mil. In the seventies the research on the

marriage problem took a rapid development. Several necessary and

sufficient conditions for countable families were found; on the one

hand transfinite versions of Hall's Theorem, as for example in [N2],

on the other hand extensions of the Compactness Theorem as in [HPS 1].

In Chapter III we are going to present these criteria and show that

they are all equivalent.

But only three years ago, R. Ah a r on t , C.St.J.A. Nash-Williams,

and S. Shelah published the first necessary and sufficient criterion

for arbitrary families. Its form follows the one of P. 's Theorem:

a family has a marriage if ·and only if it does not contain one of a

set of "forbidden" substructures. Similar criteria can be found in

the second chapter of this book.

The Aharoni-Nash-Williams-Shelah-criterion. which we obtain as

a consequence of a criterion of K.P. Podewski in this book, has been

successfully applied by Aharoni to solve some famous problems in graph

theory. His main result is the proof of a strong form of Konig's

Duality Theorem, suggested by P. Erdos. As a consequence he could

prove a strong version of Menger's Theorem for graphs which contain no

infinite path. One aim of this book is a self-contained representation

of these intricate theorems. For this reason we have inserted a

separate chapter on set theory for those readers who are not so

familiar with transfinite methods. We suggest reading the introduction

after the study of Chapter I.

Hannover, March 1986
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