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A categorical embedding theorem is proved for geometric lattices. This 
states roughly that, if one wants to consider only those embeddings into pro- 
jective spaces having a suitable universal property, then the existence of such 
an embedding can be checked by seeing whether corresponding properties 
hold for many small intervals. Tutte’s embedding theorem for binary geometric 
lattices is a consequence of this result. 

1. INTR~DU~TJ~N 

The purpose of this paper is to prove a somewhat technical theorem 
which provides a sufficient condition in order that a geometric lattice G 
be embeddable in a finite-dimensional projective space over a given field K. 
The condition involves all the small dimensional intervals of G containing 
1. Instead of considering arbitrary embeddings, we restrict our attention 
to those having a universal property which implies that all embeddings 
of G in a finite-dimensional projective K-space are essentially the same. 
In order to state the theorem, we require some terminology. 

DEFINITIONS. 1. The dimension dim X of an element X of a geometric 
lattice is one less than the size of a basis of X. (This is the concept of 
dimension used in projective geometry: planes are 2-dimensional.) 

2. An isometry from a geometric lattice G to a geometric lattice H 
is an order-monomorphism i: G -+ H, mapping 1 to 1, preserving the 
dimension of each element of dimension at most max(1, dim G - I), and 
such that i(X v Y) = i(X) v i(Y) whenever X, YE G and X v Y # 1. 
(For example, the inclusion map is an isometry from the 2-dimensional 
lattice of points and lines of PG(n, K) into PG(n, K), where n 2 2. This 
definition thus properly contains the corresponding one in [3].) 
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3. If K is a field and G a geometric lattice, a K-envelope of G is 
a pair (E(G), i) consisting of a finite-dimensional projective K-space E(G) 
and an isometry i: G + E(G) such that, whenever cw: G -+ M is an isometry 
from G into a finite-dimensional projective K-space M, there is a unique 
isometry fl: E(G) -+ M such that 

is commutative. (Note that dim G and dim E(G) are, in general, different.) 

4. G is K-rigid if, for each isometry LX: G + M from G into a 
finite-dimensional projective K-space M spanned by LY(G) - (I>, the 
identity is the only collineation of M inducing the identity on or(G). (The 
existence of a K-envelope implies K-rigidity if dim G > 2 and K is 
isomorphic to no proper subfield of itself.) 

5. For XE G, GX denotes the interval [X, I]. Here dim GX = 
dimG - dimX- 1. 

The following is our main result: 

THEOREM 1. Let K be afield isomorphic to no proper subfieId of itserf, 
j >, 1 an integer, and G a geometric lattice with dim G > j + 2. Assume 
that, for all WE G, 

(a) Gw has a K-envelope whenever dim Gw = j + 1 or j + 2, 
and 

(b) Gw is K-rigid whenever dim GW = j. 

Then G has a K-envelope. 

From a geometric point of view, the most interesting case of this theorem 
is when j = 1. In this case, our definition of isometries requires that 
dim E(G) = dim G. Also, when j = I and K # GF(2), each element of 
dimension dim G - 2 is on at least 3 hyperplanes-in fact, at least 
4 hyperplanes if K is not a prime field. When j 3 2, there are no such 
restrictions on hyperplanes or dim E(G). 

The main theorems of [3] are similar types of embedding theorems. 
There are two ideas in their proofs. One of these is generalized in the 
embedding lemma of [3]; the other-using induction and gluing together 
modular lattices-is generalized in the present paper. However, here the 
glue used is categorical instead of geometric. 
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The results of [3] are not contained in Theorem 1. Thus, the main 
theorems there are concerned with embedding a geometric lattice G into 
a modular geometric lattice-not necessarily a projective space-of the 
same dimension as G. Also, in [3] there are no restrictions placed on the 
fields involved. However, the more useful special cases studied there are 
contained in Theorem 1. For example, Theorem 1 implies the (well-known) 
existence of a 6-dimensional projective GF(3)-representation of the 
Mathieu group Ml2 . It also implies the other results on extensions of 
finite inversive planes contained in [3, Section 51. In addition, it provides 
a new proof of Tutte’s theorem that binary matroids are representable 
over GF(2). 

While the notion of a K-envelope is natural, it is, unifortunately, 
stronger than one would like. For example, a triangle has no K-envelope 
for K # GF(2), as there always exist nontrivial collineations of PG(2, K) 
fixing a triangle pointwise. Another deficiency of K-envelopes is that G 
can have one and some Gp not (where p is a point). 

Finally, the field K must be specified throughout this paper because of 
the following type of example: AG(2,3) is contained in PG(2,4), but of 
course PG(2, 3) is not. 

2. PRELIMINARY RESULTS 

G will always denote a (not necessarily finite) geometric lattice. We 
write G# = G - (1). The element spanned by a subset S of G is the join 
of S. p, q, r will always denote points of G. Isomorphisms will be bijective. 
Most other definitions were already given in Section 1. All other terms can 
be found in [2], [3], or [4]. 

K will denote a (not necessarily commutative) field. Projective K-spaces 
will always be finite dimensional. 

The following obvious fact will be used frequently: if S spans G, and 
p E S, then the set of elements p v X, XE S, spans Gp. 

Note that, by definition, the composition of two isometries is again an 
isometry. 

LEMMA 1. Let G and H be geometric lattices and i: G + H an isometry. 
Then 

(a) i(G) has a natural lattice structure such that i: G + i(G) is an 
isomorphism; 

(b) if X, YE G is a modular pair with X v Y # 1, then i(X A Y) = 
i(X) A i(Y); and 

(c) dim G < dim H. 
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Proof. (a) is obvious. In (b), i(X A Y) < i(X) A i(Y), while 

dimi(XA Y) = dimXA Y = dimX+dim Y-dimXv Y 
= dim i(X) + dim i(Y) - dim i(X) v i(Y) 
> dim i(X) A i(Y), 

so i(X A Y) = i(X) A i(Y). This proves (b). Since i maps chains of G to 
chains of H, (c) is clear. 

LEMMA 2. Suppose K is isomorphic to no proper subfield of itself. Let 
i: M + N be an isometry of projective K-spaces of dimension 3 2. If 
i(M)+ spans N, then i(M) = N and i is an isomorphism. 

Proof. First suppose dim M = 2. If X, YE M are lines, there is a 
point p on X and Y. Then i(p) is on i(X) and i(Y). Thus the lines in i(M) 
are pairwise coplanar, but are not concurrent, and hence all lie in a plane 
of N. Since i(M)+ spans N, dim N = 2, and i(M) is a subplane of N 
isomorphic to N. The restriction on Know implies that i(M) = N. 

Now let dim M > 3. Then the restriction of i to any plane E of M 
induces an isomorphism from E into the plane i(E). Hence, each point and 
line of i(E) is in i(M), so the points of i(M) consist of all points of some 
subspace X of N. Since i(M)* spans N and X 3 Y for all YE i(M)*, we 
must have X = 1. 

(Obviously, Lemma 2 holds for dim M = 1 if and only if Kis finite.) 

LEMMA 3. If (E(G), i) is a K-envelope of G, then i(G)* spans E(G). 

Proof. Set M = vi(G)*, so M = [0, M] is a projective K-space. 
Suppose M # 1. Then M r$ i(G)+, as otherwise 1 # i-l(M) 2 X for all 
XE G#‘. Define i’: G -+ M to be i on G#, and let i’(1) = M. Then i’ is an 
isometry. There is an isomorphism p: E(G) -+ M with pi = i’. By 
Lemma l(c), dim E(G) < dim M, which is not the case. 

LEMMA 4. Suppose K is isomorphic to no proper subfield of itself, and 
dim G > 3. Let p be a point of G, (E(G), i) a K-envelope of G, and 
(E(Gp), i”) a K-envelope of Gp. Then 

(a) dim E(Gp) = dim E(G) - 1, and 

(b) if q~: E(Gp) --+ E(G) is the isometry making 

G --L E(G) 

u Q t 
Gp --%- E(Gp) 

commutative, then v is an isomorphism from E(Gp) onto E(G)“(p). 

582a/18/1-2 
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Proof. Since i”(p) is the O-element of E(G’), XE E(Gp) implies 
X 3 i”(p) and hence v(X) 3 @‘(p) = i(p). Thus, v maps E(G*) into 
E(G)i’~‘. 

By Lemma 3, i(G)# spans E(G), so (i(G)i’p))# spans E(G)i(p’. (For, each 
element of E(Gp) is a join of points i(q), and hence of lines i(p) vi(q) = 
i(pvq).) Since i(G)iCp’ = i(G”) = vip(Gp), (Im v)# spans E(G)“(“). By 
Lemma 2, Im q~ = E(G)i(P), so Lemma 4 holds. 

LEMMA 5. Suppose K is isomorphic to no proper subfield of itse,f, and 
dim G 3 2. Then G has a K-envelope if and only if 

(a) there is an isometry LX: G + M with M aprojective K-space; and 

(b) for each such 01 and M for which a(G)+ spans M, each isometry 
a(G) -+ M is induced by a unique colh’neation of M. 

Proof. Suppose (E(G), i) is a K-envelope of G. Then (a) holds. Suppose 
ol(G)# spans M. Let /3: E(G) + M be the isometry for which /3i = 01. 
Then Im 01 = Im /Ii C Im /I implies that (Im ,3)# spans M, so /3 is an 
i&morphism (by Lemma 2) and dim E(G) = dim M. Now let y: a(G) + M 
be an isometry, and let 6: E(G) -+ M be the unique isometry for 
which ya = 8. Then 6 is an isomorphism (by Lemma 2, since 
dim E(G) = dim M), and y01 = 6/3-la. Consequently, Sfl-’ is a 
collineation of M which agrees with y on a(G). Also, if E is another such 
collineation of M, then ycu = EOI, so E/3i = EX = y01. The uniqueness of 6 
now forces c/3 = 6. 

Conversely, assume (a) and (b). In (a) we may assume that a(G)” spans M 
and dim M is minimal. We then claim that (M, a) is a K-envelope of G. 

Suppose /3: G + N is an isometry, where N is a projective K-space. 
We may assume that p(G)+! spans N. By our choice of M, there is an 
isometry o: M + N. Now note that a&‘: /I(G) + N is an isometry. 
By (b), there is a unique collineation y: N + N extending it. Then 
UC-&y3 = yp, so /I = y-l UOI. Moreover, Im /I C Im y-la. Since /3(G)+ 
spans N, so does (Im y-lo)+. Thus, y-la: M -+ N is an isomorphism 
(Lemma 2). 

Finally, suppose E: M -+ N is an isometry such that /3 = ECX. Then E is 
an isomorphism (Lemma 2), and E-ly-luol = a. Now E-ly-lo: M + M 
is a collineation agreeing with the identity on a(G). By (b), ~-ly-lu = 1, 
so E is unique. This proves both Lemma 5 and the following fact. 

COROLLARY. Suppose K has no proper sub$eId isomorphic to itseFand 
that (E(G), i) is a K-envelope of G, where dim G 3 2. If a: G + M is an 
isometry, where M is a projective K-space spanned by CL(G)“, then 
dim E(G) = dim M and (M, a) is also a K-envelope of G. 
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LEMMA 6. Suppose K has no proper subfield isomorphic to itself. If 
dim G > 2 and G has a K-envelope, then G is K-rigid. 

Proof. Lemma 5b. 
The preceding lemma requires the assumption made on K. For example, 

let M be a finite-dimensional projective K-space isomorphic to a proper 
sublattice G of itself. Let i: G -+ G be the identity map. Then (G, i) is a 
K-envelope of G. Let ar: G + M be the inclusion map. Then M can have 
nontrivial collineations inducing the identity on G = or(G). 

LEMMA 7. If G is indecomposable, it is K-rigid whenever Aut(K) = 1 
(e.g., when K is a prime field or the realfield). 

Proof. Let i: G - M be an isometry, where i(G)+ spans M. Let p be a 
collineation of M inducing the identity on i(G). Then q is induced by a 
linear transformation (since Aut(K) = 1) and is the identity on a spanning 
set of points of M. Thus y is induced by a diagonalizable linear transforma- 
tion, whose eigenspaces yield a direct decomposition of i(G) unless v = 1. 

THEOREM 2. Let K be afield not isomorphic to a proper subfield of itself, 
G a geometric lattice of dimension > 3, and M a projective K-space. Let 
p, q, r be a triangle of G. Assume: 

(a) there is an isometry i: G -+ M; 
(b) G”, G”, and GpvQ have K-envelopes; and 

(c) either p v q has just 2 points, or Gr, Gp” and Gq” have 
K-envelopes. 

Then G has a K-envelope. 

Proof. We will apply Lemma 5. Thus, we must show that, for each 
such i: G + M such that i(G)+ spans M, each isometry cy: i(G) -+ M 
extends to a unique collineation of M. Clearly, we may assume that 
G = i(G) and i is the inclusion map. Thus, if X, YE G and X v Y # 1, 
then X v Y is the same in G and M, as is X A Y if X, Y is a modular pair 
(Lemma 1 b). 

We must show that any isometry ol: G + M extends to a unique 
collineation of M. Clearly, 01 can be replaced by ~CX for any collineation F 
of M. The main step of the proof consists of proving (*): for some such v, 
the isometry /I = ~a.: G --f M fixes p, q, r, and induces the identity on Gp 
and Gq. 

There is a collineation ?1 of M such that yip = p. We may thus 
assume that a(p) = p. By Lemma 5, there is a collineation y2 of M such 
that OL and y2 agree on Gp. Replace 01 by &x, so a(p) = p and 01 induces 
the identity on G*. 
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In particular, a(p v q v r) = p v q v r, so a(q v r) is a line of the plane 
p v q v r. Consequently, there is a perspectivity ([2, p. 301) p3 of M with 
center p such that y&q v r) = q v r. Replacing a by ‘paa, we find that 
a(p) = p, a.(q v r) = q v r, and a induces the identity on Gp. Sincep v q, 
q v r is a modular pair of lines fixed by a, by Lemma lb a(q) = q. 
Similarly, a(r) = r. 

The restriction ag of a to 6’~ extends to a collineation cr of M*. Here, 
u induces the identity on Gpvq, and hence on Mpvg (Lemma 5). Conse- 
quently, 0 is a perspectivity of MQ, and q v p is a center. Let A be an axis 
of a, so A > q is a hyperplane of M. 

We are trying to prove (*). If u = 1, then a induces the identity on G” 
and 64. Suppose, therefore, that 0 # 1. Then A is on every line > q of M 
fixed by u, except possibly for the center q v p of u. In particular, A > q v r. 

Since G# spans M, there is a point t Q: A of G. If possible, choose t # p. 
Clearly, a(t) < a(p v t) = p v t. There is thus a (p, A)-perspectivity y4 
of M such that y4a(t) = t. Since A > q v r, fi = v4a fixes p, q, r, t, and 
induces the identity on G”. Moreover, the restriction /3’~ of /3 to Gg still 
extends to a (q v p, A)-perspectivity ~9 of MQ. Once again, (*) holds if 
79 = 1, so we assume ~9 # 1. Since p fixes q v t Q: A, q v t must be the 
center q v p of rg. Also, if x < A is a point of G, then p v x, q v x is a 
modular pair, where p v x and q v x are fixed by /3 (since q v x -C A is 
fixed by +), so /3(x) = x. Consequently, if t = p then p is the only point 
of G not on A, so ,6l is induced by the identity of M. We may thus assume 
that q v p = t v p has at least 3 points. 

Now consider the restriction /3+’ of /? to G’, the extension rr of p to MC, 
and the restrictions + and T T Q  of T g  and T7 to Mg”. By (c) and Lemma 5, 
7’ exists, and F = 7” since both extend the restriction of /3 to Gn”. Here, 
Tgr  is a perspectivity of Mq” with center q v r v p and axis A; moreover, 
7” f 1 since T g  # 1 and q v r is not the center of 7’. But T’ is also a 
perspectivity, with center r v p, fixing r v t # r v p, and inducing 
Trq = 7Qr # 1 on Mrvg. Thus, Tr has axis A, center r v p, and fixes r v  t, 

where r v p f r v t Q: A. This is impossible, since T? # 1. Thus, if t # p, 
then necessarily T g  = 1, and hence p induces the identity on Gg. 

This proves (*). As before, if x Qc p v q is a point of G, then 
/3(p v x) = p v x and /l(q v x) = q v x imply, by Lemma 1 b, that 
p(x) = x. Ifp v q has just 2 points, it follows that p = ~a extends to the 
identity collineation of M. Suppose p v q has more than 2 points. Then p 
is induced by 7’ again. Restricting to Grvq, we find that 7cg induces the 
identity on G”g and hence is the identity on Mrvg. Thus, 7r is a perspec- 
tivity, with r v q and r v p centers, so 7’ = 1. Then /3r induces the identity 
on Gr. It follows that /3(x) = x if x < p v q, so once again ,6 extends to the 
identity of M. 



ENVELOPES OF GEOMETRIC LATTICES 19 

Finally, suppose y is a collineation of M extending #?. Then y’ and yq 
extend /3p and p, and hence are 1 (Lemma 5). Consequently, y is a 
perspectivity with centers p and q, so y = 1. This proves the theorem. 

3. THE INDUCTION STEP 

Theorem 1 is an easy consequence of the following result. 

MAIN LEMMA. Let G be a geometric lattice with dim G > 4 and K be 
afield not isomorphic to a proper sub$eId of itse!f. Assume that, for all points 
p, q, r, Gpvq has a K-envelope and GpVq” is K-rigid. Then G has a K-envelope. 

Proof. The proof is broken into several steps. 

(i) For each p, q let (E(GpvQ), ipv3 be a K-envelope of Gpvq. In 
particular, we will have E(GP) and i’. There is a unique isometry vaq 
making 

G’ i’ E(Gp) 

u t ‘p.v (1) 
GPvQ i’v’ E(GPw) 

commutative. Clearly, vD2, = 1. By Lemma 4, 

Im yDq = E(GP~“(P~Q) (2) 

and dim E(Gp) = dim E(G*“r) + 1 for all p, q, r with q # r. 
We may assume that the E(GP) are pairwise disjoint. Let C be their 

union. Define a relation - on z by: for X, YE 2, 

X-Y 9 3p, q: X E E(Gp), YE E(Gq), X 3 iP(p v q), 

Y 2 iq(p v q), and Q(X) = y;;(Y). (3) 

Note that X > i”(p v 4) implies, by (2), that X E Im y9a . 

(ii) The crucial step of the proof consists of proving that - is an 
equivalence relation. It is clearly reflexive and symmetric. Suppose 
X, Y, Z E 27 and Y - X - Z. Let X E E(Gp), YE E(G’$ Z E E(G’). First 
note that 

Y 2 iq(p v q v r) and Z >, i’(p v q v r). (4) 

In fact, X > i”(p v 4) and i*(p v r), so X > i”(p v q v r) > iP(p v q). 
Then v;iY = q;iX >, q;ii’(p v q v r) = Fq(p v q v r) by (l), so 



20 WILLIAM M. KANTOR 

Y 3 qJpvq(~ v 4 v r) = P(p v q v r), again by (1). The other half of (4) 
follows by symmetry. 

Next note that, by (2), vg9q;i( U) is defined for each U E E(G~~‘(PYq), and 
is in E(G ) * i”(pvq). Moreover, for each S E Gn’“, (1) and (2) imply that 

p7,,~,,liqs) = yQpi”“*(s) = i@(S). 

Now take U E E(G~)iP(gVQY’). Then, by (2), v v-‘y v’-‘q~ y-‘(U) is PT VP 9w QP 49 PP 
defined, and is again in E(G~)@(PVgV’). This defines a collineation # of the 
projective space E(G~~Po’vqYF). Three applications of (5) show that, 
whenever SE Gpvqvr, #P(S) = P(S). However, i” induces an isometry 
of GP"4'""' into E(GP)i’(Pv’Wr), and iP(GP'Q"J# = (iP(@)i’(PWvr))# spans 

E(G3iP(pYpV’). Since we are assuming that Gpvw” is K-rigid, it follows that 
* = 1. 

In particular, ~9r~~~~r*~~~~~p~~~(X) = X. Since Y - X - 2, 
r&(X) = I&(Y) and v;:(X) = v$(Z). These equations unravel to give 
CGV’) = c,,‘(z)> h w  ere Y 2 i*(g v r) and 2 > i’(q v r) by (4). By (3), 
Y N 2. 

(iii) Denote the equivalence class of X by [Xl, and let H denote 
the set of equivalence classes, together with a new symbol 0. Define 
[X] > 0, and [Xl 3 [X’] whenever A’, x’ E E(Gp) for some p and X 3 X’. 
For this to be meaningful, we need to know that [x] = [YJ, [xl] = [Y’J, 
and Y, Y’ E E(G*) imply that Y > I”. But 

y = ~qp9$p7 3 FJ@,qJ;p-‘) = Y’, 

as required. 

Next, suppose [X] > [X’] = [Y’], with X, X’ E E(Gp) and Y’ E E(G*). 
We claim that there is a YE E(Gq) for which [X] = [Y]. For, [X’] = [Y’] 
implies that X 3 X’ > iP(p v q), so X E Im vpg . Consequently, 
Y = ~,,,vpiX has the desired properties. 

It follows that H is a poset. 
Write p* = [P(p)] = {P(p)} E H, and consider HP*. We claim that 

X--f [X] is an isomorphism of E(Gp) onto HP’. For, X > P(p) (the 
O-element of E(Gp)) implies that [X] > p*. Order is clearly preserved. 
[Xl = [Y] with X, YE E(G*) implies that A’ = q;;(X) = v;:(Y) = Y 
(as v9,9 = 1). Moreover, [X] E H p* means that [X] > p* = [P(p)], so 
[X] = [xl] for some X’ > P(p). This proves our claim. 

For WE Gp, define I?( FV) = [P(W)], so 199: GP + HP* preserves order. 
Moreover, @ is an isometry since ip is. 

There is a natural extension 8: G + H of the maps 09 defined by 
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0(O) = 0 and e(w) = &‘(I+‘) if W > p. This map is well-defined: 
W >, p, 4 implies i”(W) > P(p v q), so by (1) and (2), y;;,lP’( W) = 
iPyq( W) = p7$Q( W), and hence @( W) = [i”(W)] = [P(W)] = O’J( W) by 
(3). 

8 is an order-monomorphism. For, W > 0 implies 0(W) 3 e(O), while 
W > U > p implies P(W) >, P(U), and hence @(IV) = [P(w)] > 
[P(U)] = l@‘(U). Since each BP is injective, so is 8. 

(iv) We have now embedded G in H. We next show that H is a 
lattice. First, let us show that p* v q* exists and 

p” v q* = [i”(p v q)] = [i”(p v q)]. (6) 

For, [P(p v q)] > [P(p)] = p*, while (by (1) and (2)) v;$P(p v q) = 
igyq(p v q) = y;iiq(p v q), so [ip(p v q)] = [iq(p v q)] 3 q*. Suppose 
[XJ 3 p*, q*. Then we may assume that [XJ = [X’] with XE E(Gp) and 
x’ E E(GQ). By (3), X > P(p v q), so [Xl > [P(p v q)]. This proves (6). 

Now consider any [a, [Y] E H - (0). If [X’j, [Y] 3 p*, then [X] v [Y] 
and [X] A [ yl exist by the structure of H**. Consider the remaining case. 
Here it is clear that [Xl A [Y] = 0. Let X E E(Gp), YE E(Gq), and write 
Y’ = Y v iQ(p v q) E E(GQ). Then [Y’] > [P(p v q)] > p* by (6), so 
[X] v [Y’] exists and is > [X], [Y]. Suppose [Z] > [XJ [Y]. Then 
[Z] 3 p*, q*, so (by (6)) [Z] b [Y] v [P(p v q)] = [Y’], and hence 
[Z] 3 [Xl v [Y’]. This proves that H is a lattice. We remark that it has a 1, 
namely Cl”], where lp is the appropriate element of E(GP). 

Note that B(G) is the set of elements of H which are joins of points. 
Note also that H has a natural dimension function, defined by dim 0 = - 1 
and dim[X] = dim X + 1 when Xe E(GP). (This is well-defined: if 
[X] = [Y], YE E(Gq), then dim X = dim cpp:X + 1 = dim v;tY + 1 = 
dim Y.) Moreover, 8 is an isometry. 

(v) We next prove the following universal property of H. Let 
(Y: G + M be an isometry from G into a projective K-space M. Then there 
is a unique isometry /3: H --t M such that 

G e l H 

\k (7) 

M 

is commutative. 

To prove the existence (and uniqueness) of p in (7), for each p let cP 
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denote the restriction of cy to Gp. There is a unique isometry 
BP: Gp -+ Mtitp) such that 

GP i’ 
l Wp) 

\ Al 
Ma(p) 

(8) 

is commutative. Let /I,, denote the restriction of p to E(Gp)iPtPvq). 
We require the relation 

Let 01~“~ denote the restriction of 01 to Gpvq. Then we have the following 
diagram: 

G”‘” pa 
l E(GP”J) 

Mo(Pvq) 

By (1) and (8), if WE Gpvq, then 

/3*q~pqipvq(W) = fPV(W) = up(W) = apvq( W). 

Thus, /3p%pDqipyq = apvq = /3Q”~qpipvq. Since the above diagram can be 
completed in just one way (by the definition of envelopes), (9) follows. 

We now define /3 by p(O) = 0 and /$[a) = /3”(X) if X E E(Gp). Suppose 
[X] = [Y] with XE E(Gp) and YE E(Gq). Then q;:(X) = y;;(Y), 
X E E(Gp)iPcpvq), and YE E(G ) q igfpvq), so /3”(X) = BpQypq&(Y) = /9(Y) 
by (9). Consequently, /3 is well-defined. 

Since each /P is an isometry, so is /3. This completes the existence half 
of (7). For uniqueness, note that (7) will yield (8) by restriction. Thus, 
since /P’ was uniquely determined in (8), p is unique in (7). 

(vi) The proof of Theorem 1 will be completed by applying the 
Embedding Lemma of [3] to H. We must check the following properties 
of H. H is a poset. Each [X] E H has a dimension. We can thus speak of 
points, lines, planes, and 3-spaces of H. The required axioms are as follows. 

(El) For each point p*, the poset HP* is a projective K-space of 
dimension > 3. 

(E2) Two distinct points are on a unique line; no point is on any 
other point. 
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(E3) If two distinct planes are on (at least) two points, they are 
on a 3-space. 

(E4) Each line plane, and 3-space is on at least one point. 

(ES) No element of dimension < 3 is on all points. 

All these properties are obvious. For example, consider (E3). Let 
[EJ and [E,] be planes on p* with [El] A [Ez] a line. By (iv), [El] v [E,] 
exists, and by considering HP* we find it is a 3-space. 

Now [3] yields a modular geometric lattice N, and a monomorphism y 
from the points, lines, planes, and 3-spaces of H into N, such that (I) v 
maps points, lines, planes, and 3-spaces to elements of the same dimension 
while preserving order, (II) for each point p* of H, q(Hp*) contains all 
lines and planes of N on p(p*), and (III) dim N = dim HP* + 1. Clearly, 
N is a finite-dimensional projective K-space, and v extends to a unique 
order-preserving monomorphism-also called v-from H to N, which 
preserves dimension. 

Consequently, q induces an isomorphism from HP* onto Na(p*). If 
0 f Wl,[Yl~H,andp* d Wl,thenqWl v [Yl> = ~([-U v [Yl VP*) = 
$Ul) v  d[Yl v  P*); but, if q* < [Yl, then 

d[Yl v P*) = d[Yl v p* v q*) = y([Y]) v y(p* v q*) 

= Fm v dP*) v dqV* 

Thus, ‘p is a join-monomorphism, and hence an isometry since ~(1) = 1. 

(vii) It remains only to show that, corresponding to any isometry 
/3: H -+ M, with M a projective K-space, there is a unique isometry 
y: N + M making 

commutative. 
For each point x of N, let q’(x) be the set of lines [.%‘I of H with 

&Xl) > X. Then p’(x) is a set of pairwise coplanar lines of H such that 
(by property (II) of N) each point of H is on one of these lines. Similarly, 
if L is a line of N, let v’(L) be the set of planes [X] of H with ~([a) > L. 
Then v’(L) is a set of planes, any two of which span a 3-space of H, such 
that each point of H is on one of these planes. 

Now define y(x) = A&‘(X) and y(L) = h/3$(L) for each point x 
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and line L of N. We claim that y(x) is a point and y(L) is a line. For 
example, consider /Iv’(L). This is a set of planes of M such that any two 
span a 3-space and each point of p(H) is on one of these planes. In M, 
any two of these planes meet in a line. Suppose three of these planes 
El, E, , Es of M satisfy E3 > El A E, . Clearly, El A Es A E3 is a point 
of M and dim(E, v E, v Es) = 3 < dim p(H). We can thus find E E &J’(L) 
with E Q El v E, v Es . However, once again dim(E v Ei v Ei) = 3 
whenever 1 < i < j < 3, so each E A (Ei v Ej) is a line. Since these lines 
span E, we must have E < El v E, v Es, which is not the case. This 
proves that y(L) is a line. The proof that y(x) is a point is similar. 

Suppose x < L. Then each plane in y’(L) is on a line in y’(x). (This 
requires property (II) of N.) Since the same must hold for /3$(L) and 
Isvw, $4 -=l Y(L)- 

It is easy to see x ---f q’(x) and L -+ y’(L) are injective. So are 
x --f y(x) and L + y(L). For example, consider y(L). Any two planes of 
rpp’(L) meet in L, and any two planes of &J’(L) meet in y(L). Thus, 
distinct lines L determine sets v’(L) having at most one common plane, 
and hence determine different lines y(L). 

There is now an obvious and unique extension of y to an isometry 
y: N + M. We claim that (10) holds. For, if p* is any point of H, then 
y~‘q~(p*) consists of all the lines in HP*, and hence /$‘y(p*) consists of 
lines on /3(p*). Consequently, yy(p*) = /3(p*). Also, if [Z] is any line 
of H, then v’q([Z]) consists of all planes of H on [Z], so &‘q([Z]) 
consists of planes on /3([Z]). C onsequently, y&zl) = ,W3 Thus, yy 
and /3 are isometries H + M which agree on points and lines. Restricting 
to each HP*, we find that yg, = /3. 

Finally, y is unique in (10). For, suppose (10) holds. Let x be any point 
of N, and let [X] E cp’(x>, so [X] E H is a line and &%‘I) > x. Then 
Y(X) -=l Ydm = B[Xl f or all [X] E v’(x). Consequently, y(x) = h&‘(x) 
as before. Similarly, y(L) must be h/$‘(L). This completes the proof of 
the Main Lemma. 

4. MAIN RESULTS 

Proof of Theorem 1. We use induction on dim G. If dim G = j + 2, 
there is nothing to prove. Assume dim G > j + 2. By induction, G” has a 
K-envelope as dim Gp > j + 2. The same will be true of Gp’“, except 
perhaps if dim G V* = j + 1, in which case hypothesis (a) applies. 
Similarly, GPw” will have a K-envelope, except perhaps if dim G”@” = 
j + 1 or j, in which case (a) or (b) applies. In any case, by Lemma 6, 
G PvQvT is K-rigid. Consequently, by the Main Lemma, G has a K-envelope. 
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THEOREM 3. Suppose K has no proper subfield isomorphic to itself. Let 
j > 1, and let G be a geometric lattice with dim G > j + 2. Suppose 
j > 1 if Aut(K) # 1. Assume that, for all WE G, 

(a’) Gw has a K-envelope whenever dim Gw = j or j + 1, and 

(b’) there is an isometry from Gw into a projective K-space whenever 
dimGW =j+2. 

Then G has a K-envelope. 

Proof. By Lemmas 6 and 7, (b) of Theorem 1 holds. Apply Theorem 2 
to GW whenever dim Gw = j + 2 to see that (a) also holds. 

5. APPLICATIONS 

As a first example, consider a finite geometric lattice G of dimension 3 4 
such that Gw is an inversive plane whenever dim Gw = 3. All these 
inversive planes then have the same order n. It is easy to check that such 
an inversive plane is egglike [2, p. 2541 if and only if n is a prime power 
and G has a GF(n)-envelope (PG(3, n), i). This is the case when n < 3 
([2, p. 2731); by a basic result of Dembowski [l], it is also the case whenever 
n is even. Also, in these cases it is clear that each affine plane Gw (where 
dim Gw = 2) has a GF(n)-envelope. Finally, when dim Gw = 1, Gw has 
n + 1 points, and hence is certainly GF(n)-rigid. Consequently, Theorem 1 
applies for n = 3 or n even. When n = 3 and G is the 5-dimensional 
lattice associated with the Mathieu group M12, we find that G has a 
GF(3)-envelope (PG(5, 3), i). Consequently, by Lemma 5, M,, is contained 
in PGL(6, 3), as is well-known. Similarly, when n is even we can obtain the 
result proved in [3, Section 5, Remark 21. 

The following is quite a different application. 

THEOREM 4. (Tutte). Let G be a finite geometric lattice each of whose 
colines is on at most 3 hyperplanes. Then G has a GF(2)-envelope. 

ProoJ: This is clear for dim G < 1, and easy to check for dim G = 2. 
It is straightforward to check that, when dim G = 3, there is an isometry 
from G into PG(3,2). The result now follows from Theorem 3. 

Our results are not strong enough to prove either Tutte’s representation 
theorem for unimodular lattices or an analogue of Theorem 4 for 
representations over GF(3) (see [4]). The reason is that, in either case, the 
lattice does not always have a K-envelope. 



26 WILLIAM M. KANTOR 

It is probably worth mentioning that, in the definition of K-envelopes 
in Section I, it would have been pointless to require that /3 be induced by 
a linear transformation (as opposed to a semi-linear one). For, assume 
Aut(K) # 1 and G = PG(n, K), n 3 2. If i is the identity map on G, 
then (G, i) should be the appropriate envelope. Yet, if in the definition 
(w: G -+ G is not linear, then neither is /l (i.e., a-‘). 
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