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Computer Generation of Isomers 

K. Balasubramanian 

Department of Chemistry 
and 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, CA 94720 

Abs tract 

A computer program is developed for 

the enumeratIon of the isomers of poly-

substituted compounds with b 1  substituents 

of the type 1, b 2  substituents of the type 

2 ...... bn  substituents of the type n. The 

procedure is illustrated with octahedral 

molecules containing 4 kinds of substituents 

(such as F, Cl, Br and I) and the isomers 

of polysubstituted non-rigid pentane with 

4 kinds of substituents. 
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1. Introduction 

Chemical applications of non-numerical computational 

methods are becoming quite important in recent years. (Randi 

(1975), Randi (1979), RandiE (1980), Masinter et al. (1974a,b), 

Balasubramanian (1982a,b), Balasubranianian et al. (1980a), 

Doihaine (1981)). Several of these papers concern developing 

algorithms for the generation of discrete combinatorial struc-

tures and their applications to chemistry. Recently, Doihaine 

(1981) has developed a computer program for the enumeration of 

isomers of molecules containing 2 kinds of substituents. 

Balasubramanian (1981d) developed a combinatorial technique for 

nuclear spin statistics in molecular spectroscopy which was 

subsequently computerized (Balasubramanian (1982a,b)). In the 

present paper we develop computer programs and algorithms for 

the enumeration of isomers of polysubstituted compounds containing 

several kinds of substituents. The program that we use here is 

more general than the one given by Doihaine (1981) in that this 

program can handle more than 2 substituents by way of multinomial 

expansions. 

The history of isomer enumeration goes back to the last 

century. Several papers have appeared both in mathematical and 

chemical literature. (Balaban (1976), Balaban, et al. (1976), 

Balaban (1975) , Balasubrainanian (1978, 1979a-c, 1981a-b) 

Dolhaine (1980) , King (1972) , Klein and Cowley (1978) , Mislow 

(1976) , Nourse (1979) , P6lya (1937) , Robinson (1970) , and Ruch 

et al. (1970)). The topic has been reviewed by Rouvray (1974, 

1975) and in the recent book by Balaban (1976) . As pointed out 

by DoIhaine (1981) recently, even tho.ugh these methods provide 
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for generators of isomers, yet, one needs to evaluate several 

polynomial generators and in general several polynomial products 

of multinomials. Consequently, an efficient and general computer 

program is warranted for polysubstituted compounds. 

In the present paper we develop algorithms and computer 
t i  

programs which generate isomers of polysubstituted compounds 

with a minimal input. The required input for this program is 

just the cycle index and the information concerning the kinds 

of substituents. The program generates the total generating 

function wherein the coefficients of the various terms printed 

out give the number of isomers. 

2. Theory 

Let G be a group acting on a discrete set D, which is the 

set of sites in the molecule that can accommodate substituents. 

Let R be the set of substituents. In general let ISI denote 

the number of elements in a set S. Consider the set F of maps 

from D to R. Each element in this set is a map of sites to 

substituents and consequently, a way in which substituents can 

be placed on available sites. However, not all maps in F are 

distinct because one map can be equivalent to another by the 

action of G which permutes the sites and hence the maps. This 

action of G on D induces equivalence of maps in F. Two maps 

3 	f. and f. are equivalent if there exists a g C such that 
1 	J 

f(d) = f(gd), dD. 

Thus maps in F that are equivalent can be grouped together into 

equivalence classes. A representative in each class is an isomer 
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and the number of equivalence classes is exactly the number 

of isomers. In order to book-keep the number of different sub-

stituents in a map we introduce the concept of weight of a 

substituent. Let w(r) be the weight of a substituent r in R. 

Then with each map feF, we can associate a weight 

W(f) = TI w(f(d)). 
deD 

For example, if w1 , w2 ,...w2,  are the weights of 2 substituents 

in the set R and if a structure contains b 1  substituents of 

the type 1, b substituents of the type 2,..,., b 2,  substituents 
b b 

of the type £, then the weight of this function would be w 
1 

 

b ,  
P61ya (1937) proved a theorem now well-known as P61ya's 

theorem which gives a generating function for the equivalence 

classes of rnapsin F from a group structure known as the cycle 

index of 	 With each element geG we can associate a 
bb 	b 

cycle representation x 1  x 2 2 .. . 	if g has b 1  cycles of length 

1, b 2 	 ....., cycles of length 2 	b cycles of length n. To illustrate, 

the permutation (12) (345) (67) (89) would have the cycle representation 

xx3  since it has 3 cycles of length 2 and a cycle of length 3. 

Then one can define a group structure known as the cycle index 

of a group G, P,  defined as follows. 

_1 
PG(xl,x2,...) - TGT 

b 1  b  2 	b n x1  x2  ....x 
geG 

(1) 

Pdlya (1937) proved that the generating function (G.F.) for 

	

isomers is obtained by replacing every xk  by 	(w(r)) . In 
reR 

symbols, 

G.F. = P (xk 	(w( r))k) . 	 (2) 
reR 



3. Algorithms and Programs 

As noted by Dolhaine (1981), even though the above theorem 

is an elegant way to generate isomers, yet, one has to expand 

several multinomials (in general) and collect the coefficients 

in various terms. Thus a computer program is warranted for a 

general polysubstituent compound.Dolhaine's recent program can 

handle at most 2 substituents. We formulate here an algorithm 

and computer program, in general, for any number of substituents. 

To illustrate, consider an octahedral molecule which con- 
6 

tains/substitutional sites. The cycle index of the rotational 

group 0 of this molecule is shown below. 

P0  = 	(x + 6x21x4  + 3x 2  1x  22 + 6x + 8x) 	 (3) 24 	1 

If the set R has 4 different substituents with the weights a, 

b, c, and d, then by P61ya's theorem the generating function is 

given by the following expression. 

G.F. = 2 [(a+b+c+d) 6  + 6(a+b+ c+d)2 	(a 4  +b  4+c4+d4) + 3(a+b+c+d) 2  

(4) 

x (a2 +b 2 +c 3+d2 ) 2  + 6(a2 +b 2 +c 2 +d2 ) 3  + 8(a3+b 3+c 3+d 3 ) 2 1. 

The above generating function has several multinomials which 

have to be expanded, multiplied and added together. The final 

generating function thus obtained contains 84 unique terms. 

Thus one can see that the problem addressed here is sufficiently 

complex that a computer program is warranted for this purpose. 
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A. Generation of Unique Ternis in the Generating Function 
b 
1  b 
	b 

With each term w 1 w2  .. . .w2. we can associate a vector 

(b 1 ,b 2 , .... ,b 2.) such that 	b equals the total number of 

substitutional sites. Let the total number of sites be IDJ. 
Then the problem of generating the unique terms in the gener-

ating function amounts to generating all vectors 

b. .> 0 such that 	b = j D . This indeed corresponds to the 

compositions of the integer IDI into  IRI parts since JRJ = 2, 

is the number of substituents. This number can be found using 

the following logic. The procedure shown below is the one given 

by Nijennuis and Wilf (1975). Suppose we wish to distribute 

IDI indistinguishable balls into JRJ labelled cells such that 

any cell contains 0, 1, 2 .....up to IDI balls, then each such 

distribution yields a composition. This can be accomplished by 

constructing the cell boundaries as follows. Consider a cell 

containing 2 walls with I DI + IRI -1 spaces as shown below. 

1 2 ........JDJ + IRI 	IDI+JRI+ 1  

The number of ways of distributing IDI balls in the available 

IDI + IRI -1 spaces is 

( IDI + IRI 	l) 

I DI 

After distributing these balls cell boundaries can be construc-

ted in the rest IRI -1 available spaces. Such an arrangement 

contains exactly I RI cells among which we have distributed I DJ 
indistinguishable balls. Consequently, we have obtained a 

composition of IDI into JRJ parts. The above procedure has 



facilitated not only a method to count the number of compositions 

but also to construct them. The above procedure, in fact, 

amounts to finding all I RI -1 subsets from a IDI + I RI -1 set. 
There are standard combinatorial algorithms for this purpose, 

for example, see the algorithm NEXCOM given by Nijenhuis and 

Wilf (1975). The subroutine which is based on this algorithm 

generates all the unique terms in the generating function for 

isomers. 

B. Generation of Coefficients (the number of isomers in 
the Generating FunctIon) 

A subroutine calledVECtt  expands each multinomial in the 

generating function (the terms are given by the subroutine 

NEXCOM). By expand we mean that it generates the coefficient 

for each unique term in a multinomial. Then it multiplies 

together several multinomials contained in each term of the 

cycle index. For example, the second term in the generating 

function for the isomers of polysubstituted octahedral compounds 

has two rnultinomials shown below. 

(a+b+c+d) 2  (a4+b 4 +c4+d4 ). 

VEC expands each multinomial separately then multiplies them 

together and returns the total coefficients and terms in this - 

product. The main program multiplies these coefficients with 

the corresponding coefficient in the cycle index and adds to 

the previously generated vector and coefficients. In this 

manner the program scans through all the term's in the cycle 

index and generates the overall generating function for isomers. 
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(Number of terms in the cycle index) 

(Coefficients in the same order as 
shown in (5)) 

(The first term) 

(The second term) 

(The third term) 

2 (The fourthterm). 

Ir 

C. Input and Output Descriptions 

The present program can actually handle the generalized 

character cycle indices introduced elsewhere (Balasubramanian 

(1981d), For the present purpose, however, we need to consider 

only the cycle index corresponding to the totally symmetric 
'I 

representation. The required input is essentially the coef -

ficients and various terms in the cycle index. Note that to 

generate isomers, we restrict ourselves to the totally symmetric 

irreducible representation (which we denote by Al) of the 

rotational subgroup. The input description is shown in Table 1. 

We will expound further here on this table with examples. Let 

us consider the rotational group D 4  acting on 4 corners of a 

square. The cycle index is shown below. 

(x + 3x + 2x4  + 2xx2 ) 	 (5) 

In particular we will concentrate on cards ensuing the fourth card. The 

last term xx2  in the cycle index has 2 components (NPRO 

the superfix and suffix of the first ëomponent is 2 and 1 

(because it is x) , while for the second component it is 1 and 

2. Cards 4-9 are shown below for this cycle index. 

Card 

4 5 

5 1 3 2 	2 

6 1 4 1 

7 1 2 2 

8 1 1 4 

9 2 2 1 



An example of a complete input is given in Table 2 for the 

isomers of polysubstituted octahedral compounds. The cycle 

index for this case is shown in Eq (3) . We consider 4 different 

substituents. The output corresponding to this input is shown 

in Table 3. As one can see, Table 3 contains the total number 

of all isomers, the number of isomers with different types of 

substituents. The vector in each term of the generating function 

gives the number of times several different substituents occur. 

For example, a typical vector (b 1 ,b 2 ,...,b), stands for the 

isomers of a molecule containing b 1  substituents of the type 1, 

b 2  substitue.nts of the type 2 ...... b ,  substituents of the type 

. The coefficient of the corresponding vector gives the number 

of isomers of that kind. For example, the coefficient of the 

vector (4, 2, 0, 0) is 2 indicating there are 2 isomers for a 

compound of the type Mx4Y 2 , where M is the atom at the center. 

As a second example let us consider a non-rigid unbranched 

pentane with 4 different substituen.ts. The cycle index is 

shown below with the rotational group being the generalized 

wreath product C 2 [C 3 ,E]. For details, of the cycle index of. 

generalized wreath product, see Balasubramanian (1979a) 

P(C2[C3,E])= -. [x 2  .+ 4xx3 + 4xx + 3x + 6xx6 ]. 	(6) 

The input and the output for this molecule are shown in Tables 

4 and 5, respectively. 



D. Limitations and Error Messages 

Arrays in the present program are dimensioned to suffi-

ciently large numbers that most of the chemically interesting 

cases can be handled. The present program can handle generating 

functions of isomers with at most 1000 terms. Nevertheless, 

the program can be easily modified by a suitable expansion of 

arrays. The present version is restricted to cycle index which 
bb 	b 

contains terms x1  x2 	with n < 5. For n > 6, a message 

is printed out by the subroutine \TEC specifying this limitation. 

This subroutine contains comment statements giving instructions 

as to where modifications are necessary. 

This program can detect a number of inconsistent input 
bb 	b 

errors. For example, it checks each term x 1 1x2 2 .. 	in the 

cycle index to see If that term satisfies the following condition. 

n 
ib = IDI = NT. 

i= 1 

If this condition is not met then the program prints out an 

error message Itlnput error for this term check N(I) , I exp(I)t. 

The user should check the term just printed out and correct it. 

The second error message is based on the requirement that the 

coefficient of any term in the polynomial 

fGj PG(xk 	(w(r))k) 
rcR 

should be divisible by IGI . If not the program prints out an 
error message 11 ICO(J) is not divisible by MODG. 	Input error". 

The error is either in the set of coefficients in the cycle index 

or in the terms of the cycle index that could not otherwise be 

detected by the earlier criterion. 

L 
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Table 1. Input for the Program Isomer 

Input 
Card 	Format 	Variables 	 Description 

lOA8 Title Alphanumeric title 

2 1615 NGCI Number of cycle indices. 

Always 1 for generating isomers. 

NSUBS I RI , number of different 
subs tituents. 

NT I DI , 	 total number of substi- 

tutional sites 

MODG JGJ, number of elements in the 

group G. 

3 AlO SYM Label of the irreducible repre- 
sentation. 	For the generation 

of Isomers it is always Al. 

4 1615 NCI Number of terms in the cycle 
index. 

5 1615 ICOCI(2), Coefficients of NCI terms in 
1=1, NCI the cycle index. 

For each J=l, NCI feed a card described as Card 6. 

6 1615 NPRO Number of distinct components 

in each term of the cycle 

index 

N(I,J), The superfixes of each component 

1=1, NPRO of a term in the cycle index. 

Iexp(I,J), The suffixes of each component 

1=1, NPRO of a term in the cycle index. 
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Table 2. Input for the Isomers of Octahedral Molecules with 
Six Different Substituents 

Card 

1 	Isomers of polysubstituent octahedral molecules 

2 1 4 6 24 

3M 

4 5 

5 1 6 3 6 8 

6 1 6 1 

7 2 2 1 1 4 

8 2 2 2 1 2 

9 1 3 2 

10 1 2 3 

14 



15 

LSOMERS CF PU.YSUBSTITUTEO OCTAHEDR4L COMPOIJNOS 
Al 
tPRU,N(!3,11,NPRC 1 	6 

IEXPS 	I 
NPRO,N(L),Lz19P0 2 	2 1 

IEXPS 	1 	4 
NPRO,N(I),!*I,NpQ 2 	2 2 

IEXPS 	1 	2 
NPRL,N(1JI19NPKU 1 	3 

IExPS 	2 
NPR0 9 N(1)9110P140 1 	2 

LEXPS 	3 
TOT4L 4t.ER OF (SCHERS 240 

THE GErRATING FI.CT!ON FOR ISC.MERS 
COEFFICIENT VECTOR 

1 6 	0 0 0 
1 5 	1 0 0 
2 4 	2 0 0 
2 3 	3 0 0 
2 2 	4 0 0 
1 1 	5 0 0 
I C 	6 0 0 
I 5 	0 1 0 
2 4 	1 1 0 
3. 3 	2 1 0 
3 2 	3 I. 0 
2 1 	4 1 0 
1 0 	5 1 0 
2 4 	0 2 0 
3 3 	1 2 0 
6 2 	2 2 0 
3 1. 	3 2 0' 
2 C 	4 2 0 
2 3 	0 3 0 
3 2 	1 3 0 
3 1 	2 3 0 
2 C 	3 3,0 
2 2 	0 4 0 
2 1 	1 4 0 
2 U 	2 4 0 
1 1 	0 5 0 
1 d 	1 s o 
1 0 	0 6 0 
1 5 	0 0 1 

'2 4 	1 0 1 
3 3 	2 0 1 
3 2 	3 0 •1 
2 1 	4 0.1 
1 0 	50 1 
2 4 	0 1 1 
5 3 	1 1 1 
€ 2 	2 1 1 
5 1 	3 1 1 
2 0 	4 1 1 
3 3 	0 2 1. 
8 2 	1 2 1 
8 1 	2 2 1 
3 C 	3 2 1 
3 2 	0 3 1 
5 1 	1 3 1 
2 C 	2 3 1 

Table 3 

2 	1 0 4 1 
2 	C 1 4 1 
1 	C 0 5 1 
2 	4 0 0 2 
3 	3 1 0 2 

6 	2 2 0 2 

3 	1 3 0 2 
2 	C 4.0 2 
3. 	3 0 1 2 
8 	"2 1 L 2 
a 	1 2 1 2 

3. 	0 3 1 2 
6 	2 0 2 2 

8 	1 1 2 2 
6 	0 2 2 2 

3 	1 0 3 2 

3 	'C 1 3 2 
2 	C 0 4 2 

2 	 1 0 0 3 

3 	2 1. 0 3 

3 	1 2 0 3 
0 3 2 	Q3 

3 	2 0 1 3 

S 	I 1 1 3 

3 	0. 2 1. 3 

3 	1 0 2 .3 

3. 	C 1 2 3 

2 	0 0 3 3 

2 	 2 0 0 4 

2 	1 1 0 4 

2 	0 2 3. 4 

2 	1 , 0 1 4 

2 	. 	.0 .1 1 4 

2, 	0 0 2 4 

t 	t 0 .0 5 

I 	C 1 0 5 

1 	0 0 1 5 

1 	C 0 0 '6 



Table 4. Input for the Isomers of Polysubstituted Unbranched 
Pentane with Four Kinds of Substituents 

Card 

1 Isomers of unbranded polysubstituted pentanes 

2 1 	4 12 18 

3 Al 

4 5 

5 1 	4 4 3 	6 

6 1 	12 1 

7 2 	9 1 1 	3 

8 2 	6 2 1 	3 

9 1 	6 2 

10 2 	3 1 2 	6 

NO 
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LSuMt.RS Of 	UhdXAhCJ-EC PULYSUBSTUUTEU PENT4NES 
Al 
NPRO,N(1),1-1,fPRC 1 12 

IEXPS 	I 
NPR0,14(j),11,tPC 2 9 1 

LEXPS. 	1 	3 
NPRQ,41 1)91s1,t%pC 2 6 2 

IEXPS 	1 	3 
NPRO,rl$II,lcI,*jpRU 1 6 

lEAPS 	.2 
NPkUpN(l),ja1,(tpFU 2 3 1 

lEAPS 	2 	6 
IUT41 hLrdEN (iF 	lCMERS 1180416 

THE CL;6k4TlMi FLNCTION FOR ISOMERS 
C3EFFICIEP4I VECTOR 

1 14 0 0 .0 
4 11 1 0 0 

11 IC. 2 0 0 
36 5 3 0 0 
61 S. 4 0 0 
88 .7 5 0 0 

1(2 6 .6 0 0 
88 5. 7 0 0 
61 . 4 8 0 0 

• 	. 	 . 3 9 0 0 
Ii 2 10 0 0 

• 	 4 1' 11 0 0 
1 C 12 0 0 

• 	 . 	. 	
. 	4 11 0 1 0 
3 C 10 1 1 0 

1(6 S 2 1 0 
24C 8 3 1 0 

7 4 10 
SC'. 65 1 0 
SC'. 5 6 1 0 
jif 4 7 1 0 
244 3 8 1 0 
1(6 2 9 	- 1 0 

1 10 1 0 
4 0 11 1 0 

• 	 17 	- 10 0 2 0 
ioo ,c i 2 0 
360 a 2 2 0- 
748 7 3 2 0 

1141 6 4 2 0. 
LiCC 5 5 2 0 
1147 4 6 2 0 

148 3 7 2 0 
3LC 2 a z 0 
LC6 1 9 2 0 

17 0 10 2 0 
28 S 0 3 0 

24U 81 3 0 
.148 7 2 3 0 
148C . •6 3 3 0 
1556 5 4 3 0 
1S56 4 5 3 0. 
148C 3 6 3 0 

148 2 7 3 0 
24C 1 8 3 0 

30 C 9 3 0 

il 8 0 4 
358 7 1 4 

Table 	5 	1147 6 2 6 
1956 5 3 4 
24CC 4 4 4 
1556 3 5 4 
1147 2 6 4 

1 7 4 
61 0 8 4 
88 7 0 5 

SC'. 6- 1 5 
1300 5 2 5 
LS6 4 3 5 

3 	. 4 5 
2 5 5 

5(4 1 6 5 
8d U 7 5 

1C2 6 0 6 
S 1 6 

1147 4 2 6 
146C 3 3 6 
1141 2 4 6 
SC'. 1 5 6 
1C2 C 6 6 
68 5 0 1 

3S6 4 1 7 
74d 3 2 1 
748 2 3• 1 

1 4 1 
€8 U 5 .7 
67 4 0 8 
4C 3 1 8 

itO 4 2 8 
1 3 8 

61 C 4 8 
36 3 0 9 

106 2 1 9 .  
1(6 1 2 9 

36 0 3 9 
11 	. 2 0 10 
3C 1 1 10 
11 0 2 10 

4 1 0 ii 
4 C 1 Il 
1 0 •0 12 
4 11 0 0 

30 10 1 0 
1(6 S 2 0 

4C 8 3 U 
356 7 4 0 
5(4 6 5 0 
SC'. 5 6 0 

4 7 0 
Z4C 2 8 0 
ICO 2 9 0 

30 1 10 0 
4 C 11 0 

30 10 0 1 
212 S 1 1 
ito e 2 1 

1456 7 3 1 
222 6 4 1 
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I 0 2. 
Table S 	 C d 2 0 2 

(continued) 1147 6 4 0 2 
13(0 5 5 0 2 
1141 4 6 0 2 

148 3 7 0 2 
360 z .  8 3 2 
1(6 1 9 0 2 

17 C 10 0 2 
106 5 0 1 2 
Ict 6 1 1 2 

1 2 1 2 
4256 6 3 1 2 
5816 5 4 1 2 
5816 4 ,5 1 2 
4256 3 6 1 2 
2200 2 7 t 2 

106 1 8 1 2 
1(6 C 9 1. . 	2 
360 8 0 2 2 

22CC 7 1 2 2 
6 2 2 .2 

• 	 . 	11120 5 .3 2 2 
13340 4 4 2 2 
11128 3 5 2 2 
6342 2 6 2 2 
Z2 C6 1 7 2 2 
itu 8 2 2 
743 7 0 3 2 

4256 6 1 3 2 
11128 5 2 3 2 
1714C 4 3 3 2 

.I7140 3 4 3.2 
11128 2 5 3 2 
4S6 1 6 3 2 

148 0 7 3 2 
1141 6 0 4 2 

5 1. 4 2 
13340 4 2 4 2. 
1114C 3 3 4 2 
1334C 2 4 4.2 
5376 1 5 4 2 
1141 C 6 4 2 
1300 5 0 5 2 
5076 4 L 5 2 

11128 3 2 5 2 
11128 2 3 5 2 
5016 . 	1 4 5 2 
13(0 C 5 5 2 
1141 4 0 6 2 
4296 3 1 6 2 
6342 	.. 2 2 6 2 
4256 • 	1 3 6 2 	• 

1141 C 4 6 2 
748 3 0 7 2 

22CC 2 1 7 2 
22C0 1. 2 7 2 

748 0 3 
360 2 0 8 2 
1(6 1 1 8 2 
360 C 2 8 2 

26...0 5 5 1 1 
2212 4 6 1 1 

3 7 1 1 
7C6 2 8 1 1 
212 1 9 1 1 

3C C 10 1 1 
106 9 0 2 1 
7(6 8 1 2 1 

22CC 7 2 2 1 
4256 6 3 2 1 
5816 5 4 2 1 
5876 4 5 2 1 
4 e. 3 6 2 1 
22CC V 7 2 1 

106 1 8 2 1 
1(6 C 9 2 1 
24C 8 0 3 1 

L4c6 7 1 3 1 
6 2 3 1 

7560 5 3 3 1 
4 4 3 1 

7540 3 5 3 1 
42S6 2 6 3 1 
1456 1 7 3 1 
24C C 8 3 1 
.356 1 0 4 1 

2212 6 1 4 1 
5 2 4 1 

9L4C 4 3 4 1 
C4C 3 4 4 1 

5d76 2 5 4 1 
2212 1 6 4 1 

: 	.356 C 7 4 1 
C4 6 0 5 1 

26CC 5 1 5 1. 
5616 4 2 5 1 
7,C 3 3 5 1 
5016 2 4 5 1. 
2600 1 5 5 1 
5(4 0 6 5 1 
5(4 5 0 6 I. 

2272 4 1 6 1 
4256 3 2 6 1 
42C6 2 3e 6 1 
2212 1.4 6 1 

5(4 0 5 6 1 
3'2 4 0 7 1 

1456 3 1 7 1 
22CC 2 2 7 1 
1496 1 3 7 1 

.356 0 4 7 1 
3 0 8 1 

7C6 2 1 8 1 
7(6 1 2 8 1 
24C C 3 8 1 
ICÔ 2 0 9 1 
212 1 1 9 1 
1(6 C 2 9 1 
36 1 0 10 1 
2C C 1 tO 1 

4 	. C 0 II I 
11 IC 0 0 2 

p 

I 



19 
LC6 1 0 9 2 
106 C & 9 2 
U 0 0 10 2 ZL,CC '. 4 0 4 
36 S 0 0 3 Isid 3 5 

240 a 1 0 3 1141 2 6 0 4 
140 1 2 0 3 Table 5 	 396 A 1 0 4 

146C 
isco 

6 
5 

3 
4 

0 
0 

3 
(continued) 

c 8 0 
1 

4 
4 3 i 0 

Lcco 4 5 0 3 2212 6 1 1 4 
L 4EC 3 6 0 3 5 2 L 6 

748 2 7 0 3 9U40 4 3 1 4 
240 1 8 0 3 9040 3 '. 

36 C 9 0 3 5f 16 2 5 1 4 
240 8 0 1 3 2212 1 6 1 4 

14c6 1 1 1 3 0 7 1 4 
421;6 4 2 1 3 1147 0 2 4 
760 5 3 1 3 5816 5 1 2 4 
904C 4 4 1 3 1334C 4 2 2 4 
7560 3 5 1 3 11140 3 3 2 4 
42S6 2 6 1 3. 2 4 2 4 
1S6 1 1 1 3 5E 16 t 5 2 4 

240 C 8 1 3 1141 0 6 2 4 
148 7 0 2 3 117S6 5 0 3 4 

426 6 1 2 3 904U '. 1 3 4 
11128 5 2 2 3 11140 3 2 3 ' 
1714C 4 3 2 3 1714C 2 3 3 ' 
17140 3 4 2 3 94 1 4 3 4 
11128 2 5 2 3 . 	. .0 5 3 ( 

425C L 6 2 3 . 	 24CC 4 0 4 ' 
148 0 7 2 3 U40 3 1 4 ' 

1440 6 0 3 3 	. 1334C 2 2 4 4 
76C 5 1 3 3 9040 1 3 4 

17140 4 2 3 3 . 	 . 	. 	2.00 0 4 '. 

22CC 3 3 3. 3 . 3 0 5 4 
LiLAC - 	2 4 3 3 5d76 2 1 5 4 
760 1 5 3 3 5a76 L 2 5 4 
146C C 6 3 3 	. 19.6 C 3 5 

S -. 	0. ' 114? 2 0 6 4 
904C 4 1 4 3 2212 1 1 6 4 

17L4C 3 2 4 3 . 	ii" C 2 6 4 
11140 2 3 4 3 3S6 0 7 4 
9C4C 1 4 4 3 0 1 7 
LSSo 0 5 4 3 61 . 	C C 
19S6 ', 0 5 3 7 0 n 5 
76C 3 1 5 3 5(4 6 1 3 5 

11k28 2 2 5 3 1 0U 2 0 5 
7564 1 3e 5 3 LSt- 4 3 a 5 
L'J46 C ' 5 3 Lcc6 3 4 0 5 
1460 3 a 6 3 2 5 
429a 2 1 6 3 5C4 L 6 0 5 
42c6 1 2 6 3 . 1 0 5 
146C 0 3 6 3 ,C4 6 0 1 5 

14E 2 0 7 3 Z6C 1 1 5 
14S6 1 1 7 3 4 2 1 5 
748 0 2 7 3 7560 3 3 1 5 
240 1 0 8 3 2 4 1 5 
240 0 1 8 3 ZuUU 1 5 I. .5 

36 0 0 9 .3 5(4 C 6 1 5 
61 8 0 0 4. . 	 LiCC 5 a 2 5 

sce 1 1 0 ' 5876 ft i 2 5 
1147 6 2 0 4 11128 3 2 2 5 
Lsc6 5 3 0 4 IlLiE 2 3 2 5 

5816 1 4 2 5 

uc 2 5 



KC 

4 0 3 5 
3 1 3 5 
2 2 
1 3 3... 5 
C 4 3:: 5 

a 4• 5 TableS 
(continued) 

o 3 
2 0 5 .5 
1 1. 5 5 
o 2 55 

5 1 0 6 5 d 0 

0 1 6 5 1 
C 0,  7 5 240 3 t 0 8 

6 0 0 6 2 2 0 8 

5 1 0 ..6 240 1 3 0 8 

4 2 06 61 0 4 0 8 

3 3 06 24C 3 0 1 8 

2 4 0 6 2 1 1 8 

1 5 0 •6 . 1 1 2 L 8 

C 6 0 6 24C 0 3 t a 
5 0 1 6 360 2 0 2 B 

4 1 1 6 IC6 1 1 2 8 

3 2 1 6 360 0• 2 2 8 

2 3 1 6 240 1 0 3 0 

1 .4 1 6 24c a 1 3 8 

C 5 1.6 61 0 0 ' 8 

4 0 2 .6 36 3 0 0 9 

3 1 2 6 
. 

' 106 . 	 2 1 0 9 

2 2 2 6 . LC6 1 2 0 9 

1 3 '2 6 i6 0 3 0 9 

C 4 2 :io Lt6 a 1 9 

3 0 3 .6 le lz 1 1 1 9 

2 1 3'.b' 0 2 1 9 

1 2 3 .6 . 106 1 0 2 9 

0 3 3 6 , ICÔ 0 1 2 9 

2 0 4 6 36 C 0 3 

1 1 4 6 17 2 0 0 10 

C 2 4 6 2j j 1 0 10 

1 0 5 6 11 C 2 0 10 

O 1 5 6 30 1 0 1 10 

C 0 6 6 ]C C 1 1 

5 0 0 7 0 2 10 

4 0 7 . 0 0 11 

3 0 7 4 - 	 C 1 0 11 

2 3 0 7 , c 0 1 ii 

1 4 0 7 '1' 0 0 12 

C 5 0 7 
4 0 1 7 
3 1 1 7 
2 2 1 7 
1 3 1 7 
C 4 1 7 
3 0 2 7 
1 1 2 7 
L. 2 2 7 
0 3 2 7 
2 0 3 7 
1 1 3 7 
0 2 3 7 
1 0 4 7 
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Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 	. 
product by the University of California or the U.S. 

	

• 	• 	 Department of Energy to the exclusion of others that 
may be suitable. 	- 
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