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Abstract

A computer program is develqped for
the endmeration of the isomers of poly- |
substituted compounds with b1 substituents
of the type 1, b, substituents of the type

2,....,b_ substituents of the type n. The

n
procedure is illustrated with octahedral
molecules containing 4 kinds of substituents
(such as F, Cl, Br and I) and the isomers

of polysubstituted non-rigid pentane with

4 kinds of substituents.

This work was supported by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Chemical Sciences
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1. Introduction

Chemical applications of non-numerical computational
me thods are becoming quite impoftant in recent years. (Randic
(1975), Randié (1979), Randié (1980), Masinter et al. (1974a,b),
Balasubramanian (1982a,b), Balasubramanian et al. (1980a),
Dolhaine (1981)). Several of these papers concern developing
algorithms for the generation of discrete combinatorial struc-
tures and their applications to chemistry. Recently, Dolhaine
(1981) has developed a computer program for fhe enumeration of
isomers of molecules containing 2 kinds of substituents.
Balasubramanian (1981d) deﬁeloped a coﬁbinatorial technique for
nuclear spin statistics in molecular spectroscopy which was
subsequently computerized (Balasubramanian (1982a,b)). In theb
present paper we develpp computer programs and algorithms for
the enumeration of isomers of polysubstituted compounds containing
several kinds of substituents. The program that we use here is
more general than the one given by Dolhaine (1981) in that this
program can handle more than 2 substituents by way of multinomial
expansions.

The history of isomer enumeration goes back to the last
century. Several papers have appeared both in mathematical andm
chemical literature. (Balaban (1976), Balaban, et al. (1976),
Balaban (1975); Balasubramanian (1978, 1979a-c, 1981la-b),
Dolhaine -(1980), King (1972), Klein and Cowley (1978), Mislow
(1976), Nourse (1979), Pdlya (1937), Robinson (1970), and Ruch
et al. (1970)). The topic has been reviewed by Rouvray (1974,
1975) and in the recent book by Balaban (1976). As pointed out

by Dolhaine (1981) recently, even though these methods provide
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for generators of isomers, yet, one needs to evaluate several
polynomial generators and in general sevefal'polynomial products
of multinomials. Consequently, an efficient and general computer
program is warranted for polysubstituted compounds.

In the present paper we develop algorithms and computer
programs which generate isomers of polysubstitﬁted compounds
with a minimal input. The required input for this program is
just the cycle index and the information concerning the kinds

of substituents. The program generates the total generating

function wherein the coefficients of the various terms printed

out give the number of isomers.

2. Theory

Let G be a group acting on a discrete set D, which is the
set of sites in the molecule that can accommodate substituents.
Let R be the set of substituents. In general let |S| denote
the number of elements in a set S. Consider the set F of maps
from D to R. Each element in this set is a map of sites to
sﬁbstituents and consequently, a way in which substituents can
be placed on available sites. However; not all maps in F are
distinct because one map can be equivalent to another by the
action of G which permutes the sités and hence the maps. This
action of G on D induces equivalence of maps in F. Two maps

fi and fj are equivalent if there eXists a ge G such that
fi(d) = fj(gd), deD.

Thus maps in F that are equivalent can be grouped together into

equivalence classes. A representative in each class is an isomer



and the number of equivalence classes is exactly the number
of isomers. In order to book-keep the number of different sub-
stituents in é map we introduce the concept of weight of a
substituent. Let w(r) be the weight of a substituent r in R.

Then with each map feF, we can associate a weight
W(f) = I w(£f(d)).
deD

For example, if Wis Wy,...Wy are the weights of & substituents
in the set R and if a structure contains bl substituents of

the type 1, b2 substituents of the type 2,...., b, substituents

b, b
of the type &, then the weight of this function would be wllwz2
b
.,.,wll P6lya (1937) proved a theorem now well-known as Pélya's

theorem which gives a generating function for the equivalence

Classes of maps in F from a group structure known as the cycle

(
index of a group G. With each element geG we can associate a
b, b b '
cycle representation Xllxzz....xnn if g has b1 cycles of length

1, b2 cycles of length 2,....,bn cycles of length n. To illustrate,
the permutation (12)(345)(67)(89) would have the cycle representation
x§x3 since it has 3 cycles of length 2 and a cycle of length 3.

Then one can define a group structure known as the cycle index

of a group G, PG’ defined as follows.

P.(x,,X ) = 1 .Z xblxbz an | (1)
(X1 sXps e TaT oL 1 Xy X

P6lya (1937) proved that the generating function (G.F.) for

isomers is obtained by replacing every Xy by } (w(r))k. In
, reR
symbols,

| . k
G.F. = P.. - w{r))"). (2)
¢ > L (W)



3. Algorithms and Programs
As noted by Dolhaine (1981), even though the above theorem

is an elegant way to generate isomers, yet, one has to expand

“several multinomials (in general) and collect the coefficients

in various terms. Thus a computer program is warranted for a

general polysﬁbstituent compound.Dolhaine's recent program can

handle at most 2 substituents. We formulate here an algorithm

and computer program, in general, for ény number of substituents.
To illustrate, consider an octahedral molecule which con-

6 ,
tains/substitutional sites. The cycle index of the rotational

- group O of this molecule is shown below.

!
Py = 77

2

6 2 3 :
(xl + 6x1x +»3x1x 2 3) (3)

4

If the set R has 4 different substituents with the weights a,

b, ¢, and d, then by Pdlya's theorem the generating function is

~given by the following expression.

4, 4 2

G.F. = 57 [(a+b+c+d)® + 6(arbrcrd)? T (atsbtecteaty + 3(arbrcra)
(4)

2)2 4 6(a?+b2+c?ea?) + g(adep3ec3ead?).

b'q (a2+b2+c3+d
The above generating function has several mul tinomials which
have to be expanded, multiplied and added together. The final
generating function thus obtained contains 84 unique terms.

Thus one can see that the problem addressed here is sufficiently

complex that a computer program is warranted for this purpose.



A. Generation of Unique Terms in the Generating Function

b, b, b,
With each term WI WyT....W," We can associate a vector

(bl’bZ"°°°’bz) such that § b, equals the total number of
A i ‘
substitutional sites. Let the total number of sites be | D] .

Then the problem of generating the unique terms in the gener-

ating function amounts to generating all vectors (bl’bZ"°°’b2)’
b, > 0 such that } b, = |D|. This indeed corresponds to the

— i
compositions of the integer |D| into |R| parts since |R| = &

is the number of substituents. This number can be found using
the following logic. The procedure shown below is the one given
by Nijennuis and Wilf (1975). Suppose we wish to distribute

|D| indistinguishable balls into |R| labelled cells such that
any cell contains 0, 1, 2,....up to |D| balls, then each such
distribution yields a composition. This can be accomplished by
constructing the cell boundaries as follows. Consider a cell
containing 2 walls with |D] + |R| -1 spaces as shown below.

|D[+[R| [D[+|R[+1

The number of ways of distributing |D| balls in the available

|D| + |R| -1 spaces is

(|D|+ IR| -1)

| D
After distributing these balls cell boundaries can be construc-
ted in the rest |R| -1 available spaces. Such an arrangement
contains exactly |R| cells among which we have distributed |D|

indistinguishable balls. Consequently, we have obtained a

composition of |D| into |R| parts. The above procedure has
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facilitated not only a method to count the ﬁumber of compbsitions
but also to construct them. The above procedure, in fact,
amounts to finding all |R|-1 subsets from a |D| + |R|-1 set.
There are standard combinatorial algorithms for this purpose,

for example, see the algorithm NEXCOM given by Nijenhuis and

Wilf (1975). The subroutine which is based on this algorithm

'generates all the unique terms in the generating function for

isomers.

B. Generation of Coefficients (the number of isomers in
the Generating Function)

A subroutine called "VEC" expands each multinomial in the

~generating function (the terms are given by the subroutine

NEXCOM) . By expand we mean that it generates the coefficient
for each unique term in a multinomial. Then it multiplies

together several multinomials contained in each term of the

- cycle index. For example, the second term in the generating

function for the isomers of polysubstituted octahedral'compounds

has two multinomials shown below.

(a+b+c+d)2(a4+b4+c4+d4);

VEC expands each multinomial separately then multiplies them
together and returns the total coefficients and terms in this _

product. The main program multiplies these coefficients with

- the corresponding coefficient in the cycle index and adds to

the previously generated vector and coefficients. In this
manner the program scans through all the terms in the cycle

index and generates the overall generating function for isomers.



C. Input and Output Descriptions

The present program can actually handle the generalized
character cyclé indices introduced elsewhere (Balasubramaniah
(1981d). For the present purpose, however, we need to consider
only the cycle index corresponding to the totally symmetric
representation. The required input is essentially the coef-
ficients and various terms in the cycle index. Note that to
generate isomers, we restrict ourselves to the totally symmetric
irreducible representation (which we denote by Al) of the
rotational subgroup. The input description is shown in Table 1.
We will expound further here on this table with examples. Let
us consider the rotational group D4 actihg on 4 corners of a:

square. The cycle index is shown below.

1 .4 2 2
PG = §-(xl + 3x2 + 2x4 + lexz) (5)

In particular we will concentrate on cards ensuing the fourth card.

last term xixz in the cycle index has 2 components (NPRO = 2),
the superfix and suffix of the first component is 2 and 1
(because it is xi), while for the second component it is 1 and_

2. Cards 4-9 are shown below for this cycle index.

Card
i 4 5 (Number of terms in the cycle index)
5 1 3 2 2 (Coefficients in the same order as
shown in (5))

6 1 4 1 (The first term)

7 1 2 2 (The second term)

8 1 1 4 (The third term)

91 2 2 1 1 2 (The fourth term).

The



An example of a complete input is given in Table 2 for the
isomérs of polysubstituted octahedral compounds. The cycle

index for this case is shown in Eq (3). We consider 4 different
substituents. The output corresponding to this input is shown

in Table 3. As one can see, Table 3‘contains the total number
of all isomers, the number of isomers with different types of
substituents. The vector in each term of the generating function
gives the number of times several different substituents occur.

For example, a typical vector (bl,bz,.;.,bl), stgnds for the

~ isomers of a molecule containing b1 substituents of the type 1,

b2 substituents of the type 2,....,b2 substituents of the type

2. The coefficient of the corresponding vector gives the number
of isomers of that kind. For example, the coefficient of the |
vector (4, 2, 0, 0) is 2 indicating there are 2 isomers for a
gompound of the type MX4Y2,_where M is the atom at the center.

As a second example let us consider a non-rigid unbranched

pentane with 4 different substituents. The cycle index is

shown below with the rotafionallgroup being the generalized
wreath product CZ[CS’E]' For details of the cycle index of.

generalized wreath product, see Balasubramanian (1979a).
| 1 .12 9 L6
'P(Cz[Cs,E])= 18 [x1 + Ax Xg # 4xy

2 6 3
Xz + 3x2 + 6x2x6]. (6)

The input and the output for this molecule are shown in Tables.

4 and 5, respectively.
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D. Limitations and Error Messages

Arrays in the present program are dimensioned to suffi-
ciently large numbers that most of the chemically interesting
cases can be handled. The present program can handle generating
functions of isomers with at most 1000 terms. Nevertheless,
the program can be easily modified by a suitable expansion of

arrays. The present version is restricted to cycle index which

b, b b
contains terms X1 xzz...xnn with n < 5. Forn > 6, a message

is printed out by the subroutine VEC specifying this limitation.
This subroutine contains comment statements giving instructions
as to where modifications are necessary.

This program can detect a number of inconsistent input

b, b b
errors. For example, it checks each term xllxzz...xnn in the

cycle index to see if that term satisfies the following condition.

. ib, = |D| = NT.

e 3

i
If this condition is not met then the program prints out an
error message "Input error for this term check N(I), I exp(I)"™.
The user should check the term just printed out and correct it.
The second error message is based on the requirement that the

coefficient of any term in the polynomial

6] Pglx >~ I w(x))™

reR
should be divisible by |G|. If not the program prints out an
error message "ICO(J) is not divisible by MODG. Input error".

The error is either in the set of coefficients in the cycle index
or in the terms of the cycle index that could not otherwise be

detected by the earlier criterion.
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Table 1. Input for the Program Isomer
Input
Card Format Variables Description
1 10A8 Title Alphanumeric title
2 1615 NGCI Number of cycle indices.
' Always 1 for generating isomers.
NSUBS | R| , number of different
' substituents. '
NT |D|, total number of substi-
tutional sites
MODG | G| , number of elements in the
~group G.

3 Al0 SYM Label of the irreducible repre-
sentation. For the generation
of Isomers it is always Al.

4 1615 NCI Number of terms in the cycle

‘ index.
5 1615 I1CoC1(2), Coefficients of NCI terms in
I=1, NCI the cycle index.
For each J=1, NCI feed a card described as Card 6.

6 1615 NPRO Number of distinct components
in each term of the cycle
index

N(1,J), The superfixes of each component
I=1, NPRO of a term in the cycle index.

Iexp(1,J),
I=1, NPRO

The suffixes of each component
of a term in the cycle index. .



Table 2. Input for the Isomers of Octahedral Molecules with
Six Different Substituents -

Card

1 Isomers of polysubstituent octahedral molecules

2 1 4 - 6 24

3 Al

4 5

5 1 6 3 6 ‘8

6 1 6 1

7 2 2 1 1 4

8 2 2 2 1 2
1 3 2

10 1 2 3
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Table~“4. Input for the Isomers of Polysubstituted Unbranched
Pentane with Four Kinds of Substituents

Card

1 Isomers of unbranded polysubstituted pentanes
2 1 4 12 18
3 Al
4 5
5 1 4 4 3 6
6 1 12 1
7 2 9 1 1 3
8 2 6 2 1 3
9 1 6 2

3 1 2 6

10 2

16
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