
Comlm! & Graphic~ Vol. 16. No. 3, pp. 289-294, 1992 0097-8493/92 $5.00 + .00 
Printed in Great Britain. (~ 1992 Pergamon Press Ltd. 

Technical Section 
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Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C. 

Abstract--In this paper, we study the problem for finding all the regions, which are congruent to a testing 
region R, in an input planar figure F. In a shared memory system with m processors, we propose an el~cient 
MAX { O(mn), O(n log n)} time parallel algorithm, where n, m are the numbers of edges of F and R, 
respectively. Furthermore, our algorithm does not require to read from or write into the same memory 
location simultaneously, hence it can be implemented on an exclusive-read, exclusive-write (EREW) model. 

I.  I N T R O D U C T I O N  

Finding the congruent regions among geometric objects 
is a popular topic in computational geometry. In gen- 
eral, this problem arises in pattern recognition, com- 
puter vision, etc. Recently, some researchers have de- 
voted themselves to investigating this problem [ 1-4]. 

Roughly speaking, two planar regions R and S are 
congruent if there exists a mapping, including a proper 
geometrical translation and/or  rotation, which makes 
R onto S. A formal definition will be given in Section 
2. In [3], they defined the congruent regions finding 
problem as follows: Given a planar figure F and a test- 
ing region R, determine whether R is congruent to any 
region of F, and then find all of them if they indeed 
exist. Figure 1 shows an example of this finding prob- 
lem. Only the shadow regions bounded by edges (v0, 
17)  , (1.)7, 1)8) , ( 1 8 ,  1)9) , ( I )9,  V0) and bounded by (vl, 
v2), (v2, v3), (v3, v4), (v4, vl) are congruent to the 
testing region R. The value labeled with each edge rep- 
resents the length of that edge. 

The investigation of VLSI technology has made 
progress in parallel operation that reveals a high degree 
of parallelism in multiprocessor systems. Basically, 
there are two different architectural models for mul- 
tiprocessor systems. One of them is a tightly-coupled 
system where communication is through a shared 
memory. Thus, we also say that this system is a shared- 
memory multiprocessor system. The other one is a 
loosely-coupled system where communication is done 
via an interconnection network, that is, this is a mes- 
sage-passing multiprocessor system. 

In a shared-memory parallel system, each processor 
can read from or write into any memory location, de- 
pending on whether concurrent read from or concur- 
rent write into a memory is allowed or not. Therefore, 
a shared-memory parallel system can be further divided 
into the following four models: 

1. Exclusive-Read, Exclusive-Write (EREW) model. 
No two processors are allowed to read from or write 
into the same memory location simultaneously. 

2. Concurrent-Read, Exclusive-Write (CREW) model. 

* This work was supported in pan by the National Science 
Council of the Republic of China under Grant NSC 81-0416- 
E-002-20. 

Processors are allowed to read from the same mem- 
ory location, but no two processors are allowed to 
write into the same memory location simulta- 
neously. 

3. Exclusive-Read, Concurrent-Write (ERCW) model. 
Processors are allowed to write into the same mem- 
ory location but no two processors are allowed to 
read from the same memory location simulta- 
neously. 

4. Concurrent-Read, Concurrent-Write (CRCW) 
model. Multiple processors are allowed to read from 
and write into the same memory location simul- 
taneously. 

Among the schemes[ 1-4] mentioned above, only 
the method proposed in [ 3 ] adopts a parallel approach 
to solve this problem. In this paper, we propose a 
method rather in EREW model than in CREW model 
to find the congruent regions. Our algorithm requires 
only MAX { O(mn),  O(n log n) } computation time, 
where n, m are the numbers of edges of the input planar 
figure F and the testing region R, respectively. Fur- 
thermore, Shih, Lee, and Yang's[3] results may con- 
tain some repetitive congruent regions. In our algo- 
rithm, we have solved this problem. The rest of this 
paper is organized as follows: In Section 2~ some es- 
sential definitions and notations of the geometric ob- 
jects are described. In Section 3, we propose an efficient 
parallel algorithm for finding the congruent regions 
and analyze the time complexity. Finally, concluding 
remarks are given in Section 4. 

2. P R E L I M I N A R I E S  

Before we embark on our study of an efficient par- 
allel algorithm for finding congruent regions based on 
a shared-memory system, we first give some definitions, 
notations, and properties of the geometric objects. 

A graph G = (V, E) consists of a set V of elements 
called vertices and a set E of unordered pairs of mem- 
bers of V called edges. The vertices of the graph are 
shown as points, while the edges are shown as lines 
connecting pairs of points. The edge between the pair 
of vertices Va and vb is denoted by (va, v~). Here, we 
call the vertices va and Vb the endpoints of the edge 
(va, vb), and we say the edge (va, vh) is incident with 
the vertices va and v~. In addition, if an edge does not 
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Fig. 1. The input figure F and the testing region R. 

exhibit a direction, it is called an undirected edge. Thus, 
an undirected edge e = (v.,, Vb) can also be represented 
by (Vb, Va), that is, (v~, v~) = (v~, va). On the other 
hand, a directed edge has only one direction. Let 
= ( v~, vb) be a directed edge, where va is the tail vertex 
and Vb is the head vertex. Therefore, (v~, Vb) ~ (Vb, 
V~). A path of directed edges is a sequence of directed 
edges that are connected with their endpoints. Without 
loss of generality, let P = [F~, F2 . . . . .  F,] denote a 
path of directed edges, where F~ = (v~, 1)2>, e2 = <1)2, 

v3) . . . . .  V, = ( v , ,  v,+~). Furthermore, a directed 
cycle is a path of directed edges P = [F~, e2, . . . ,  
E , ] ,  where F, = ( v , ,  v2), ~2 = (v2, vs) . . . . .  em  

= (Vm, v~ >, and 1)i # vj when i # j .  Besides, a region 
consists of a directed cycle and the interior of directed 
cycle, which is the right-hand side when we walk along 
the directed edge clockwisely. Here, we renewedly de- 
fine the angle of each directed edge. For simplicity, let 

= (v t ,  v2). First, we translate this directed edge and 
let the tail vertex v~ be at the Cartesian coordinate 
origin, that is, the tail vertex v~ is regarded as a Cartesian 
coordinate origin. The angle between x-axis and F (or 
simply the angle of F) is defined as the angle lying to 
the right of us when we walk along the positive x-axis 
to the tail of  F. In this paper, we use A (F) to denote 
it. Figure 2 shows the edge F = (v~, v2) and the angle 
A(F).  In addition, the angle between two adjacent 
edges F~ = (v~, v2) and e2 = (v2, v3), denoted by 
A(F~, ~2), is defined as the angle lying to the right of 
us when we walk along F~ to the tail ofF2. Furthermore, 
let F~ = (v2, v~ ) be the opposite direction ofF~. Thus, 
A ( ~ )  and A(F'~) differs by 180 °, that is, A(F~) 
= A(FI)  - 180 or A(F'~) = A(FI) + 180 °. Without 
loss of generality, we assume that any angle is non- 
negative and less than 360 °. Thus, A(F'~) = (A(F~) 
- 180)mod 360 °. A(F, ,  ~2), the angle between F~ and 
V2, can be obtained by the following theorem. 

T h e o r e m  1. Let F~ = ( 1)1,1)2 >, and e2 = (1)2, 1)3), then 
A(F~, 72) = (A(~2) - A(F~))mod 360 °. 
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Fig. 2(a). The directed edge V = (v~, v2); (b) The angle 
A (F) of the directed edge E 
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Fig. 3(a). The adjacent edges F~ and e2; (b) the angle 
A(F~) of the directed edge F~; (c) The angle A(V2) of the 
directed edge e2; (d) the angle A (Ft, ~2) between the adjacent 

edges F~ and e2. 

Proof  Since F~ and e2 intersect at the vertex v2, the 
angle between them is equal to the angle between 
F't and e2, that is, A(FI,  e2) = A(F2) - A(F~). From 
our  assumption,  any angle must  be nonnegat ive  and 
less than 360 ° . Hence, A(Ft ,  e2) = (A(~2) 
- A(F~))mod 360 °. [] 

Theorem 2. If A(FI,  e2) and A(FI)  are given, then 
A(~2) = (A(F ' I )  + A(Ft ,  ~2))mod 360 °. 

Proof. From theorem l, A(FI,  e2) = (A(~2) 
- A(F~))mod 360 °. Thus, A(V2) - A(F~) = A(Vj, 
e2) + 360k, for some integer k. That is, A(V2) = 
A(F'I) + A(F~, e2) + 360k. Since A(~2) is also non- 
negative and less than 360 ° , A(~2) = (A(F~) 
+ (A(FI,  ~2))mod 360 °. [] 

Figure 3 shows the adjacent edges F~ = (Vl, v2), 
e2 = (v2, v3) and the angles of A(FI) ,  A(~2), A(Fz, 
e2). Furthermore, we use [FI to represent the length 
of any directed edge F in this paper. 

Let ea, eb, ex, and ~y be four directed edges and the 
head vertices of Fa and ~x be the tail vertices of eb and 
ey, respectively. If there exists a condition such that 
1~o1 = [~x], [~bl = I~ l  and A(Fa, eb) = A(~x, ~y), 
then we say that ~, is connected forwardly to eb with 
respect to Fx and Vy. Besides, if ~, is connected for- 
wardly to eb, then we also say that ~b is connected 
backwardly to F~. Furthermore, if two regions A 
= [~Ao, ~A . . . . . .  ~ . _ , ]  and B = [eBo, eB . . . . . .  
es~_, ] are congruent, then there must exist somej  such 
that eA(~.o~ is connected forwardly to ?~.,÷..o~) with 
respect to es(,÷j~mo~,,~ and es(( ..... )=o~), where 0 _< i, j 
< m - l .  

In this paper, our approach is inspired by the method 
found in [ 3 ] but improves upon it. In the next section, 
we present an efficient parallel algorithm for finding 
all the congruent regions. In [ 3 ], they have shown that 
a path of directed edges [eo, e~ . . . . .  ~m-l] with I~l 
= 17~1, 0 _< i _< m - 1, and A(~., ~.+,) = A(-[~, 
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t'j+l ), 0 -<j -< m - 2, defines a ~gion that is congruent 
to a testing region [ t o, t ~ . . . . .  t m-- l ] ,  Thus, the kernel 
part of our proposed algorithm is to judge whether the 
specified candidate region from the input planar figure 
F and the testing region R possess the same edges and 
angles. 

3. AN EFFICIENT PARALLEL ALGORITHM 

We are now ready to propose a parallel algorithm 
on an EREW shared-memory computer. The algo- 
rithm presented as algorithm Parallel-Congruent makes 
the following assumptions. Throughout this paper, we 
use m processing elements (PEs) to execute our al- 
gorithm, where m is the number  of edges of testing 
region R. Initially, we duplicate any edge of the input 
planar figure F = { eo, e l , . . . ,  e,_~ } into two directed 
edges with opposite direction. Thus, we get a new set 
D = { eo, el . . . . .  ~2,-~ }. In addition, the edge t'g of 
the testing region R = [ to, t~ . . . . .  t,,_~] is stored 
into PEg, where i = 0, 1 . . . . .  m - 1. After some steps 
of our algorithm, there are m sets of directed edges Do, 
D, ,  . . . ,  D,,- i  stored in shared memory, where D r 
= {~g: IVgl = [ G [ , O < - i < - 2 n  - l } , 0 - < j - < m -  1. 
Furthermore, each element of Dj is denoted as Dr[k ], 
1 _< k _< n r, where nj is the number  of edges in D r and 
each Dj[k] contains six fields EDGE, TAIL, HEAD, 
ANGLE, FLINK, and BLINK. The fields TAIL and 
HEAD store the tail vertex and head vertex of the edge, 
respectively. The field ANGLE stores the angle of the 
edge in D r. The field FLINK is pointed to Dj+l, BLINK 
is pointed to Dj_~. I fDr[k] .FLINK and Dr[k ] .BLINK 
are pointed to an element of Dr+ ~ and D r_ l, respectively, 
then Dr[k] .EDGE can be forwardly and backwardly 
connec ted  to D j + I [ D j [ k ] . F L I N K ] . E D G E  and  
Dr_I[Dj[k].BLINK].EDGE, respectively. In the fol- 
lowing algorithm, we need to sort the order of a pair 
sequence. For convenience, we define the order of any 
two pairs as follows: (a,  b) < (c, d) if and only if a 
< c or (a = c and b < d). Without loss of generality, 
we assume that m is even and Dr[k].FL1NK and 
Dj[k] .BLINK are null initially. The algorithm, de- 
scribed in what follows as algorithm Parallel-Congruent 
proceeds in stages. 

Algorithm Parallel-Congruent 
Input: The set of edges E = {eo . . . . .  e.-l} of the 

input planar figure F and the cycle of 
directed edges [ to . . . . .  tin-t] of the 
testing region R. 

Output: All the regions of planar figure F that are 
congruent to the testing region R. 

Step 1: Duplicate the set of edges E = {eo, el . . . . .  
e,_ ~ } of F to the set of directed edges D = 
{eo, e, . . . . .  ~2,-1 }. 

Step 2: Load 7) into the processing element PE r , 
where j=O, 1 . . . . .  m -  1. 

Step 3: Calculate the values FAg = A( tg, t(g+~) mo~ ,1) 
and store it into PEg, where i = O, 1 . . . . .  
m - 1 .  

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Step 9: 

Load the set of  directed edges D = { Vo, e~, 
. . . .  V2.-i } into the processing elements 
by the following operations. 

For i = 0 to 2 n - 1  do 
F o r j  = 0 to m - 1  do in parallel 

ki = ( j+i)  mod 2n 
ek, enters PEj 
If I~k~ [ = I-/j I then PEj copies e-k~ into 

the set Dj 
end 

end 
F o r j  = 0 to m - I  do in parallel 

Calculate the relative angle of each edge 
in Dj and let the value of the angle be 
Aj(-~k, ), 0 <-- kj <_ 2 n -  1. 

end 
For j = 0 to m -  1 do in parallel 

Sort the pairs (V~kj, Aj(~kj )), 0 <-- kj 
-< 2 n -  1, where v~k, is the tail vertex of 
edge ~kj in Dj. 

end 
F o r j  = 0, 2, 4 . . . . .  m - 2  do in parallel 
(7.1) For k = 1 to nj d o / / n j  is the number  

of edges in D j / /  
Aj(~k,') = (Aj(Ekj) -- 180 °) rood 380 ° 
Aj+l(ep,.,) = (FAj + Aj(~k~')) mod 360 ° 

Il O <_ kj, 
Pj+ I <-~ 

2 n -  1 // 
Let this edge ~kj be pointed by L and 

use binary search to find the pair (v, 
Ar+l(~p,÷~)) in Dr+~, where v is both 
the head vertex of edge ~k, in Dj and 
the tail vertex of certain edge in 
Dr+l. Let R be a pointer to this 
found edge in Dr+l. If such R exists, 
then DAk].FLINK ~ R and 
Dr+IIDr[kl.FLINKI.BLINK .,,.- L. 

If such R does not exist, then 
Dr[k].EDGE ~-  0. 

end 
end 
F o r j  = 1, 3, 5 , . . . ,  m - 3  do in parallel 

Perform step (7. l) of  Step 7. 
All processing elements perform this step 

iteratively until  there is no more edge in 
each Dr, 0 < j -< m -  1, which can be 
deleted in one iteration. 

(9.1) For j = 0, 2, 4 . . . . .  m - 2  do (a) and 
(b) in parallel 

(a) F o r k =  l t o n j d o  
If Dr+~ [D r [k].FLINK].EDGE = 0 

then Dr[k].EDGE ~-- 0 
end 

(b) For k = 1 to nr+l do 
If Dj IDj+ I[k].BLINK].EDGE=0 

then Dj+I[2k].EDGE ~ 0 
end 

end 
(9.2) F o r j  = 1, 3, 5 . . . . .  m - 3  do in 

parallel 
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PEj and PEj+~ simultaneously 
perform steps (a) and (b) of step 
9, respectively. 

end 
Step 10: (10.1) Hink all the remainder regions into 

some sets Ao . . . . .  A~, 0 -< k _< 2 n -  1, in 
the shared memory, from Do to Dm-i via 
appropriate pointers. 

(10.2) Rotate each remainder region A;, 0 
_< i _< k, so that the smallest labeled 
vertex is at the first position. 

(10.3) Sort Ao . . . . .  At with the first vertex. 
(10.4) Erase the repetitive regions and 

output all the proper congruent regions. 

CHIN-LAUNG LEI and HORNG-Twu LIAW 
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Now, let us discuss this algorithm. The algorithm 
Parallel-Congruent uses m processing elements, where 
m is the number of edges of the testing region R. Step 
l requires O(n) time to duplicate the set of edges of 
the input planar figure F, where n is the number of 
edges of F. In Step 2, the directed edges [ t o, t i . . . . .  
tm-I ] are loaded into the processing elements that re- 
quires O(m) computation time. Similarly, Step 3 re- 
quires O(m) time to calculate the relative angles of all 
the directed edges [ t o, t ~ . . . . .  t m-~ ]. In Step 4, the 
set of directed edges D = { eo, el . . . . .  V2n-l } are loaded 
into the processing elements and compared with the 
directed edge tj on PEj, where j = 0, l . . . . .  m - 1. 
Since there exist 2n directed edges, this step requires 
O(n) computation time. In the worst case, there exist 
O(n) directed edges in Dj when Step 4 is completed. 
In Step 5, each processing element PEj, j = 0, 1 , . . . ,  
m - 1, calculates the relative angles of all the edges in 
Dj. Since there may exist O(n) edges in Dj in the worst 
case, it takes O(n) computation time. Step 6 sorts all 
the pairs in D:, where each pair is composed by a tail 
vertex and an angle of certain edge. From [ 5 ] we know 
that any algorithm for sorting n elements must require 
at least ft(n log n) operations in the worst case. In this 
step, we sort the tail vertices in first pass, and then sort 
the angles in second pass. Each of these two passes is 
completed in O(n log n) time. Therefore, the whole 
step takes O(n log n) time. In Step 7, for each edge in 
Dj, j = 0, 2 . . . . .  m - 2, it uses binary search scheme 
to find the ordered pair (v Aj+l(eoj+l)) in Dj÷t, where 
v is not only the head vertex in Dj but also the tail 
vertex in Dj+I, and Aj+j (V~+,) is the angle of certain 
edge in D;÷~, 0 < p~÷~ < 2n - 1. First, we adopt binary 
search to find v in D;+~, and then adopt binary search 
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j es 
v 4 x v s 

Fig. 4(a). The input planar figure F; (b) The testing re#on R. 

"o 1 

% 

vx 

/ \ .  
?" 

* ezo .J 

Fig. 5. All the directed edges of figure F. 

to find Aj+~(~rj+l) in Dj÷I again. Since there may exist 
O(n) edges in Dj÷t in the worst case, it requires O(log 
n) time to search the tail vertex and the angle of certain 
edge in Dj÷I. Therefore, the whole step requires O(n 
log n) computation time. Step 8 is similar to Step 7, 
and it takes O(n log n) computation time. In Step 9, 
we use the concept of the odd-even transposition 
sort[6, 7] to delete some unsuitable edges in Dj. Shih, 
Lee, and Yang [ 3 ] have shown that this step must per- 
form O(m) iterations in the worst case to complete 
this odd-even scheme. Therefore, this step takes O(mn) 
computation time in the worst case. Furthermore, there 
may exist O(n) remainder regions after Step 9. Thus, 
using m processing elements, Step 10.1 requires O(n) 
computation time to feed these regions into A0 . . . . .  
At., 0 < k < 2n - 1, in shared memory. Step 10.2 
requires O(m) time to rotate each Ai, 0 < i < k. Thus, 
it takes O(n/m)*O(m) = O(n) computation time to 
complete this step. Step 10.3 sorts Ao . . . . .  At with the 
first vertex. Many papers have been published on par- 
allel sorting scheme for last three decades. Whichever 
we choose, this step does not exceed O(n log n) com- 
putation time. Moreover, there may still exist O(n) 
regions after Step 10.3. Thus, it takes O(mn) com- 
putation time to erase and sequentially output all the 
congruent regions. Consequently, MAX{O(mn), O(n 
log n)} time is required in Step 10. 

From the above analysis, we observe that our al- 
gorithm is dominated by Step 6, 7, 8, 9, and 10. Thus, 
the time complexity of this proposed algorithm is 
MAX { O(mn), O(n log n)}. 

The following example illustrates how the congruent 
regions are found by the algorithm Parallel-Congruent. 

DO DI D2 
EDGE TAIL HEAD ANGLE EDGE TAIL HEAD ANGLE EDGE TAIL HEAD ANGLE 
~0 VO V1 60 ~0 VO Vl 60 ~O VO VI 60 
~l v |  v 2 300 ~1 Vl v2 300 ~1 vl  V2 300 
~2 V2 V0 180 it2 V2 V0 180 ~2 V2 V0 180 
i~3 V2 V3 270 i~3 V2 V3 270 e3 V2 V3 270 
~4 V3 V4 180 ~4 V3 V4 180 ~4 V3 V4 180 
~5 V4 V0 90 i~5 V4 V0 90 e5 V4 V0 90 
~6 VI V0 240 i~ V1 V0 240 ~6 V1 V0 240 
~7 V0 V2 0 ~7 Vo V2 0 ~7 V0 V2 0 
i~ V2 V1 120 i~8 V2 V1 120 i~8 V2 VI 120 
~9 V0 V4 270 t~9 V0 V4 270 i~9 V0 V4 270 
I}10 V4 V3 0 i~10 V4 V3 0 el0 V4 V3 0 
~11 V3 V2 90 ~11 V3 V2 90 ~ll V3 V2 90 

Fig. 6. The contents of Do, D~ and D2. 
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DO DI D2 
EDGE TAR. HEAD ANGLE EDGE TAIL HEAD ANGLE EDGE TAIL HEAD ANGLE 

i~7 V0 V2 0 ! ~7 V0 V2 0 ~7 V 0 V2 0 
~0 V0 VI 60 ~0 V0 VI 60 ~0 V0 VI 60 

~9 V0 V4 270 ~9 V0 V4 270 ~9 V0 V4 270 
~6 VI V0 240 ~i V1 VU 240 ~6 VI V0 240 

li~l VI V2 300 ~1 V[ V 2 300 ~1 IV1 V2 300 
~g V2 VI 120 ~8 V2 VI 120 ~8 V2 VI 120 

1~2 v2 Vo 18o ~2 V2 VO ISO ~2 v2 VO 180 
I~3 V2 V3 270 ~3 V2 iV3 270 ~3 i V2 V3 270 
~11 V3 V2 190 ~lt V] V 2 90 ell IV3 V2 90 
~4 v3 v4 1~8o t,~ v 3 v 4 180 ~,~ [v3 v4 ~8o 
~10 V4 V~ 0 ~10 V4 V3 0 el0 V4 V3 0 
~5 V4 V0 90 ~5 V4 Vo 90 ~5 i V4 V0 90 

Fig. 7. The result of Fig. 6 after sorting. 

Example 
Figure 4 (a )  shows an input planar figure F ,  and Fig. 

4 (b)  shows a testing region R.  By executing the Al- 
gorithm Parallel-Congruent, we easily find all the re- 
gions that are congruent to the testing region R.  The 
input planar figure F consists of  a set of  edges E = { eo, 
et, e2, e3, e4, e5 } and the testing regions R is defined 

as [to, t~, 12]. For simplicity, assume that leo[ = [e, [ 

= le21 = le31 = le, I = le51--17ol = It,I = 1721 
= I .  

Step i duplicates the set of  edges E = { eo, e ~ , . . . ,  
e5 } of  the input figure F to the set of  directed edges D 
= { eo, ~ ,  . • . ,  e~ }. Figure 5 shows all the directed 
edges of  figure F.  

In Step 2, all the directed edges t o, t ~, and -/2 are 
loaded into the processing elements PEo, PE~, and PE:, 
respectively. 

Step 3 calculates the angle of  FAo = A(to, t~) 
= A( t ' , )  - (A(7o) - 180 ° -I- 360°),  FAj = A(t~, 
72) = A(-t2) - (A(7 , )  - 180°), and FA2 = A(T2, 
to) = A ( t o ) -  ( A ( t 2 ) -  180 ° + 360 ° ) + 360 ° . With- 
out loss of  generality, let FAo = 240 ° - (0 - 180 ° 
+ 3 6 0  ° ) = : 6 0  ° ,FAI  = 120 ° - ( 2 4 0  ° -  180 ° ) = 6 0  ° , 
a n d F A 2 = 0 - ( 1 2 0  ° -  180 ° + 3 6 0  ° ) + 3 6 0  ° = 6 0  ° . 
Then, we save FAo, FA,, and FA2 into PEo, PEI, and 
PE2, respectively. In Step 4, if I ek~ I = I t j[ then PEj 
copies e-kj into the set Dj, where 0 < k s < 11, 0 < j _< 2. 
Therefore. Do = { eo, el . . . . .  el~ }, DI = { eo, eJ . . . . .  

Do 
BLINK EDGE TAIL HEAD ANGLE FLINK 

0 0 Vo V2 0 

0 f~0 Vo V1 60 

0 0 V 0 V4 270 

0 0 V 1 VQ 240 

0 ~1 VÂ V2 300 

0 0 V2 VI 120 

0 e ]  V2 Vo 180 

0 0 V2 V3 270 

0 0 V~ V2 90 

0 0 v~ v4  180 

0 0 V4 V~ 0 

0 0 v4 V 0 90 

0 

0 

0 

t 2  

0 

~0 

0 

0 

0 

0 

0 

D 2 

D1 

BLINK EDGE TAlL HEAD ANGLE FLINK 

,lln miml| 

ml llmlllllqD 
,llNNBR I! 

, l i K U t a / i l l |  

,llWt  N| 

BLINK EDGE TAIL HEAD ANGLE FLINK 

0 0 V o V2 0 0 

~2 ~0 V0 V1 60 0 

0 0 VQ V4 270 0 

0 0 V1 VQ 240 0 

~0 ~1 V) V2 300 0 

0 0 V2 VI 120 0 

~1 1~2 V2 Vo 180 0 

0 0 V2 V~ 270 0 

0 0 V 3 V2 90 0 

0 0 v~ V4 180 0 

0 0 V4 IV3 0 0 

0 0 V4 Vo 90 0 

Fig. 8. Tables of Do, D~ and D: that contain [:LINK and BLINK. 
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el~ } and D2 = { Co, el . . . . .  ~ }. Step 5 calculates the 
relative angle of  each edge in Dj, 0 -<j -< 2, and let the 
angle be Aj(~kj), 0 < k _< 11. For  simplicity, we show 
them in terms of  three tables, each table contains four 
fields EDGE, TAIL, HEAD, and ANGLE.  The field 
EDGE represents the edge name in Dj, 0 -< j -< 2. The 
fields TAIL and HEAD are the tail vertex and head 
vertex of certain edge, respectively. Furthermore,  the 
field ANGLE stores the relative angle. In order to con- 
tinue our example, each angle in field ANGLE is given 
a suitable value. Figure 6 shows these three tables. 

In Step 6, we sort all the pairs (v~kj, A(-~kj)), 0 < kj 
-< 11, where v~k, is the tail vertex of edge ekj in Dj, 0 
-< j -< 2. Figure 7 shows the result, after sorting, of 
Fig. 6. 

In Steps 7 and 8, binary search scheme is adopted 
to find the appropriate pair  with respect to the testing 
region R. Two pointers FLINK and BLINK are used 
to point to the suitable edge, respectively. For ease and 
simplicity, we replace these pointers with appropriate 
edges. Figure 8 shows this result. Furthermore,  in Step 
9, the scheme of  the odd-even transposition sort is 
adopted to delete unsuitable edges in each Dj at each 
iteration until no more edge can be deleted in each Dj. 

In Step 10, all the remainder  regions are loaded into 
three sets Ao, A~, and Az, that is, Ao = { Po, ~ ,  V2 }, 
Aj = {~], e2, Co}, andA2 = {e2,  Co, el }. Then, these 
three sets Ao, A~, and A2 are rotated, respectively. 
Therefore, Ao = {eo, e~, ~2}, A~ = {~0, ~ ,  ~2}, and 
A2 = { Co, ej ,  e2 }. Now, these three sets are sorted in 
terms of  the first vertex. Finally, we erase the possible 
repetitive sets and output  all the remainder regions, 
which are congruent to the testing region R. Therefore, 
only the region bounded by edges Vo, ~ ,  and ~2 is 
congruent to the testing region R. 

4. CONCLUDING REMARKS 

In this paper, we propose an efficient parallel algo- 
ri thm for finding the congruent regions. Compare  with 
previous papers. In [8, 9] ,  they limit the input form 
to be polygons. In [ 3 ], they adopts a CREW shared- 
memory model. In Step 4 of our algorithm, each pro- 
cessing element PEj, j = 0, l . . . .  , m - 1, read the 
different edge ei, i = 0, l, . . . ,  2n - l ,  on the same 
time. Therefore, we modify their CREW model to 
EREW model in this paper. Furthermore,  in [ 3 ], their 
proposed algorithm requires O(//2) computat ion t ime 

for finding the congruent regions by using m processing 
elements. Whereas, the t ime complexity of our algo- 
ri thm only takes M A X { O ( m n ) ,  O(n log n)} com- 
putation t ime using the same number  of processing 
elements. In addition, the results in [3] may contain 
some repetitive congruent regions. Here, we have 
solved this serious problem completely in our proposed 
algorithm. Moreover, our algorithm can be easily 
modified to handle the situation where the number  of 
available processing elements is not the same as the 
number  of edges in the testing region. Up until now, 
there still existed some interesting open problems, for 
instance, can we propose a parallel algorithm for find- 
ing all the 3-dimensional regions, which are congruent 
to a planar  or 3-dimensional testing regions R? In ad- 
dition, there is a region similarity problem, which is 
similar to this congruent region problem, in compu- 
tational geometry. The difference between them is that 
the similarity problem must also consider the scaling 
factors[l ,  8, 9, 10]. 
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