
Comlm! & Graphic~ Vol. 16. No. 3, pp. 289-294, 1992 0097-8493/92 $5.00 + .00
Printed in Great Britain. (~ 1992 Pergamon Press Ltd.

Technical Section

A PARALLEL ALGORITHM FOR FINDING
C O N G R U E N T REGIONS*

CHIN-LAUNG LEI and HORNG-TWU LIAW
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C.

Abstract--In this paper, we study the problem for finding all the regions, which are congruent to a testing
region R, in an input planar figure F. In a shared memory system with m processors, we propose an el~cient
MAX { O(mn), O(n log n)} time parallel algorithm, where n, m are the numbers of edges of F and R,
respectively. Furthermore, our algorithm does not require to read from or write into the same memory
location simultaneously, hence it can be implemented on an exclusive-read, exclusive-write (EREW) model.

I. I N T R O D U C T I O N

Finding the congruent regions among geometric objects
is a popular topic in computational geometry. In gen-
eral, this problem arises in pattern recognition, com-
puter vision, etc. Recently, some researchers have de-
voted themselves to investigating this problem [1-4].

Roughly speaking, two planar regions R and S are
congruent if there exists a mapping, including a proper
geometrical translation and/or rotation, which makes
R onto S. A formal definition will be given in Section
2. In [3], they defined the congruent regions finding
problem as follows: Given a planar figure F and a test-
ing region R, determine whether R is congruent to any
region of F, and then find all of them if they indeed
exist. Figure 1 shows an example of this finding prob-
lem. Only the shadow regions bounded by edges (v0,
17) , (1.)7, 1)8) , (1 8 , 1)9) , (I)9, V0) and bounded by (vl,
v2), (v2, v3), (v3, v4), (v4, vl) are congruent to the
testing region R. The value labeled with each edge rep-
resents the length of that edge.

The investigation of VLSI technology has made
progress in parallel operation that reveals a high degree
of parallelism in multiprocessor systems. Basically,
there are two different architectural models for mul-
tiprocessor systems. One of them is a tightly-coupled
system where communication is through a shared
memory. Thus, we also say that this system is a shared-
memory multiprocessor system. The other one is a
loosely-coupled system where communication is done
via an interconnection network, that is, this is a mes-
sage-passing multiprocessor system.

In a shared-memory parallel system, each processor
can read from or write into any memory location, de-
pending on whether concurrent read from or concur-
rent write into a memory is allowed or not. Therefore,
a shared-memory parallel system can be further divided
into the following four models:

1. Exclusive-Read, Exclusive-Write (EREW) model.
No two processors are allowed to read from or write
into the same memory location simultaneously.

2. Concurrent-Read, Exclusive-Write (CREW) model.

* This work was supported in pan by the National Science
Council of the Republic of China under Grant NSC 81-0416-
E-002-20.

Processors are allowed to read from the same mem-
ory location, but no two processors are allowed to
write into the same memory location simulta-
neously.

3. Exclusive-Read, Concurrent-Write (ERCW) model.
Processors are allowed to write into the same mem-
ory location but no two processors are allowed to
read from the same memory location simulta-
neously.

4. Concurrent-Read, Concurrent-Write (CRCW)
model. Multiple processors are allowed to read from
and write into the same memory location simul-
taneously.

Among the schemes[1-4] mentioned above, only
the method proposed in [3] adopts a parallel approach
to solve this problem. In this paper, we propose a
method rather in EREW model than in CREW model
to find the congruent regions. Our algorithm requires
only MAX { O(mn), O(n log n) } computation time,
where n, m are the numbers of edges of the input planar
figure F and the testing region R, respectively. Fur-
thermore, Shih, Lee, and Yang's[3] results may con-
tain some repetitive congruent regions. In our algo-
rithm, we have solved this problem. The rest of this
paper is organized as follows: In Section 2~ some es-
sential definitions and notations of the geometric ob-
jects are described. In Section 3, we propose an efficient
parallel algorithm for finding the congruent regions
and analyze the time complexity. Finally, concluding
remarks are given in Section 4.

2. P R E L I M I N A R I E S

Before we embark on our study of an efficient par-
allel algorithm for finding congruent regions based on
a shared-memory system, we first give some definitions,
notations, and properties of the geometric objects.

A graph G = (V, E) consists of a set V of elements
called vertices and a set E of unordered pairs of mem-
bers of V called edges. The vertices of the graph are
shown as points, while the edges are shown as lines
connecting pairs of points. The edge between the pair
of vertices Va and vb is denoted by (va, v~). Here, we
call the vertices va and Vb the endpoints of the edge
(va, vb), and we say the edge (va, vh) is incident with
the vertices va and v~. In addition, if an edge does not

289

290 CHIN-LAUNG LEI and HORNG-TWU L1AW

~0 12 Vs

"N 6 ~

5 3.2 ¢

U3 ~2 U 2

Fig. 1. The input figure F and the testing region R.

exhibit a direction, it is called an undirected edge. Thus,
an undirected edge e = (v.,, Vb) can also be represented
by (Vb, Va), that is, (v~, v~) = (v~, va). On the other
hand, a directed edge has only one direction. Let
= (v~, vb) be a directed edge, where va is the tail vertex
and Vb is the head vertex. Therefore, (v~, Vb) ~ (Vb,
V~). A path of directed edges is a sequence of directed
edges that are connected with their endpoints. Without
loss of generality, let P = [F~, F2 F,] denote a
path of directed edges, where F~ = (v~, 1)2>, e2 = <1)2,

v3) V, = (v , , v,+~). Furthermore, a directed
cycle is a path of directed edges P = [F~, e2, . . . ,
E ,] , where F, = (v , , v2), ~2 = (v2, vs) em

= (Vm, v~ >, and 1)i # vj when i # j . Besides, a region
consists of a directed cycle and the interior of directed
cycle, which is the right-hand side when we walk along
the directed edge clockwisely. Here, we renewedly de-
fine the angle of each directed edge. For simplicity, let

= (v t , v2). First, we translate this directed edge and
let the tail vertex v~ be at the Cartesian coordinate
origin, that is, the tail vertex v~ is regarded as a Cartesian
coordinate origin. The angle between x-axis and F (or
simply the angle of F) is defined as the angle lying to
the right of us when we walk along the positive x-axis
to the tail of F. In this paper, we use A (F) to denote
it. Figure 2 shows the edge F = (v~, v2) and the angle
A(F). In addition, the angle between two adjacent
edges F~ = (v~, v2) and e2 = (v2, v3), denoted by
A(F~, ~2), is defined as the angle lying to the right of
us when we walk along F~ to the tail ofF2. Furthermore,
let F~ = (v2, v~) be the opposite direction ofF~. Thus,
A (~) and A(F'~) differs by 180 °, that is, A(F~)
= A(FI) - 180 or A(F'~) = A(FI) + 180 °. Without
loss of generality, we assume that any angle is non-
negative and less than 360 °. Thus, A(F'~) = (A(F~)
- 180)mod 360 °. A(F, , ~2), the angle between F~ and
V2, can be obtained by the following theorem.

T h e o r e m 1. Let F~ = (1)1,1)2 >, and e2 = (1)2, 1)3), then
A(F~, 72) = (A(~2) - A(F~))mod 360 °.

ii

Y-~ds

~[o X-torts

Fig. 2(a). The directed edge V = (v~, v2); (b) The angle
A (F) of the directed edge E

Y-a~ll

~ - / " ~ ~) I~ x-uls

(a) (b)
y-axis Y-rods va

v~ o ~ X-axis • X-u ls ,~ va
I " ~ / " 1~2

/
,Y

,/

(C) (d)

Fig. 3(a). The adjacent edges F~ and e2; (b) the angle
A(F~) of the directed edge F~; (c) The angle A(V2) of the
directed edge e2; (d) the angle A (Ft, ~2) between the adjacent

edges F~ and e2.

Proof Since F~ and e2 intersect at the vertex v2, the
angle between them is equal to the angle between
F't and e2, that is, A(FI, e2) = A(F2) - A(F~). From
our assumption, any angle must be nonnegat ive and
less than 360 ° . Hence, A(Ft , e2) = (A(~2)
- A(F~))mod 360 °. []

Theorem 2. If A(FI, e2) and A(FI) are given, then
A(~2) = (A(F ' I) + A(Ft , ~2))mod 360 °.

Proof. From theorem l, A(FI, e2) = (A(~2)
- A(F~))mod 360 °. Thus, A(V2) - A(F~) = A(Vj,
e2) + 360k, for some integer k. That is, A(V2) =
A(F'I) + A(F~, e2) + 360k. Since A(~2) is also non-
negative and less than 360 ° , A(~2) = (A(F~)
+ (A(FI, ~2))mod 360 °. []

Figure 3 shows the adjacent edges F~ = (Vl, v2),
e2 = (v2, v3) and the angles of A(FI) , A(~2), A(Fz,
e2). Furthermore, we use [FI to represent the length
of any directed edge F in this paper.

Let ea, eb, ex, and ~y be four directed edges and the
head vertices of Fa and ~x be the tail vertices of eb and
ey, respectively. If there exists a condition such that
1~o1 = [~x], [~bl = I~ l and A(Fa, eb) = A(~x, ~y),
then we say that ~, is connected forwardly to eb with
respect to Fx and Vy. Besides, if ~, is connected for-
wardly to eb, then we also say that ~b is connected
backwardly to F~. Furthermore, if two regions A
= [~Ao, ~A ~ . _ ,] and B = [eBo, eB
es~_,] are congruent, then there must exist somej such
that eA(~.o~ is connected forwardly to ?~.,÷..o~) with
respect to es(,÷j~mo~,,~ and es((.....)=o~), where 0 _< i, j
< m - l .

In this paper, our approach is inspired by the method
found in [3] but improves upon it. In the next section,
we present an efficient parallel algorithm for finding
all the congruent regions. In [3], they have shown that
a path of directed edges [eo, e~ ~m-l] with I~l
= 17~1, 0 _< i _< m - 1, and A(~., ~.+,) = A(-[~,

A parallel algorithm for finding congruent regions 291

t'j+l), 0 -<j -< m - 2, defines a ~gion that is congruent
to a testing region [t o, t ~ t m-- l] , Thus, the kernel
part of our proposed algorithm is to judge whether the
specified candidate region from the input planar figure
F and the testing region R possess the same edges and
angles.

3. AN EFFICIENT PARALLEL ALGORITHM

We are now ready to propose a parallel algorithm
on an EREW shared-memory computer. The algo-
rithm presented as algorithm Parallel-Congruent makes
the following assumptions. Throughout this paper, we
use m processing elements (PEs) to execute our al-
gorithm, where m is the number of edges of testing
region R. Initially, we duplicate any edge of the input
planar figure F = { eo, e l , . . . , e,_~ } into two directed
edges with opposite direction. Thus, we get a new set
D = { eo, el ~2,-~ }. In addition, the edge t'g of
the testing region R = [to, t~ t,,_~] is stored
into PEg, where i = 0, 1 m - 1. After some steps
of our algorithm, there are m sets of directed edges Do,
D, , . . . , D,,- i stored in shared memory, where D r
= {~g: IVgl = [G [, O < - i < - 2 n - l } , 0 - < j - < m - 1.
Furthermore, each element of Dj is denoted as Dr[k],
1 _< k _< n r, where nj is the number of edges in D r and
each Dj[k] contains six fields EDGE, TAIL, HEAD,
ANGLE, FLINK, and BLINK. The fields TAIL and
HEAD store the tail vertex and head vertex of the edge,
respectively. The field ANGLE stores the angle of the
edge in D r. The field FLINK is pointed to Dj+l, BLINK
is pointed to Dj_~. I fDr[k] .FLINK and Dr[k] .BLINK
are pointed to an element of Dr+ ~ and D r_ l, respectively,
then Dr[k] .EDGE can be forwardly and backwardly
connec ted to D j + I [D j [k] . F L I N K] . E D G E and
Dr_I[Dj[k].BLINK].EDGE, respectively. In the fol-
lowing algorithm, we need to sort the order of a pair
sequence. For convenience, we define the order of any
two pairs as follows: (a, b) < (c, d) if and only if a
< c or (a = c and b < d). Without loss of generality,
we assume that m is even and Dr[k].FL1NK and
Dj[k] .BLINK are null initially. The algorithm, de-
scribed in what follows as algorithm Parallel-Congruent
proceeds in stages.

Algorithm Parallel-Congruent
Input: The set of edges E = {eo e.-l} of the

input planar figure F and the cycle of
directed edges [to tin-t] of the
testing region R.

Output: All the regions of planar figure F that are
congruent to the testing region R.

Step 1: Duplicate the set of edges E = {eo, el
e,_ ~ } of F to the set of directed edges D =
{eo, e, ~2,-1 }.

Step 2: Load 7) into the processing element PE r ,
where j=O, 1 m - 1.

Step 3: Calculate the values FAg = A(tg, t(g+~) mo~ ,1)
and store it into PEg, where i = O, 1
m - 1 .

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Load the set of directed edges D = { Vo, e~,
. . . . V2.-i } into the processing elements
by the following operations.

For i = 0 to 2 n - 1 do
F o r j = 0 to m - 1 do in parallel

ki = (j+i) mod 2n
ek, enters PEj
If I~k~ [= I-/j I then PEj copies e-k~ into

the set Dj
end

end
F o r j = 0 to m - I do in parallel

Calculate the relative angle of each edge
in Dj and let the value of the angle be
Aj(-~k,), 0 <-- kj <_ 2 n - 1.

end
For j = 0 to m - 1 do in parallel

Sort the pairs (V~kj, Aj(~kj)), 0 <-- kj
-< 2 n - 1, where v~k, is the tail vertex of
edge ~kj in Dj.

end
F o r j = 0, 2, 4 m - 2 do in parallel
(7.1) For k = 1 to nj d o / / n j is the number

of edges in D j / /
Aj(~k,') = (Aj(Ekj) -- 180 °) rood 380 °
Aj+l(ep,.,) = (FAj + Aj(~k~')) mod 360 °

Il O <_ kj,
Pj+ I <-~

2 n - 1 //
Let this edge ~kj be pointed by L and

use binary search to find the pair (v,
Ar+l(~p,÷~)) in Dr+~, where v is both
the head vertex of edge ~k, in Dj and
the tail vertex of certain edge in
Dr+l. Let R be a pointer to this
found edge in Dr+l. If such R exists,
then DAk].FLINK ~ R and
Dr+IIDr[kl.FLINKI.BLINK .,,.- L.

If such R does not exist, then
Dr[k].EDGE ~- 0.

end
end
F o r j = 1, 3, 5 , . . . , m - 3 do in parallel

Perform step (7. l) of Step 7.
All processing elements perform this step

iteratively until there is no more edge in
each Dr, 0 < j -< m - 1, which can be
deleted in one iteration.

(9.1) For j = 0, 2, 4 m - 2 do (a) and
(b) in parallel

(a) F o r k = l t o n j d o
If Dr+~ [D r [k].FLINK].EDGE = 0

then Dr[k].EDGE ~-- 0
end

(b) For k = 1 to nr+l do
If Dj IDj+ I[k].BLINK].EDGE=0

then Dj+I[2k].EDGE ~ 0
end

end
(9.2) F o r j = 1, 3, 5 m - 3 do in

parallel

292

PEj and PEj+~ simultaneously
perform steps (a) and (b) of step
9, respectively.

end
Step 10: (10.1) Hink all the remainder regions into

some sets Ao A~, 0 -< k _< 2 n - 1, in
the shared memory, from Do to Dm-i via
appropriate pointers.

(10.2) Rotate each remainder region A;, 0
_< i _< k, so that the smallest labeled
vertex is at the first position.

(10.3) Sort Ao At with the first vertex.
(10.4) Erase the repetitive regions and

output all the proper congruent regions.

CHIN-LAUNG LEI and HORNG-Twu LIAW

vx

v ° ~ v ~

Now, let us discuss this algorithm. The algorithm
Parallel-Congruent uses m processing elements, where
m is the number of edges of the testing region R. Step
l requires O(n) time to duplicate the set of edges of
the input planar figure F, where n is the number of
edges of F. In Step 2, the directed edges [t o, t i
tm-I] are loaded into the processing elements that re-
quires O(m) computation time. Similarly, Step 3 re-
quires O(m) time to calculate the relative angles of all
the directed edges [t o, t ~ t m-~]. In Step 4, the
set of directed edges D = { eo, el V2n-l } are loaded
into the processing elements and compared with the
directed edge tj on PEj, where j = 0, l m - 1.
Since there exist 2n directed edges, this step requires
O(n) computation time. In the worst case, there exist
O(n) directed edges in Dj when Step 4 is completed.
In Step 5, each processing element PEj, j = 0, 1 , . . . ,
m - 1, calculates the relative angles of all the edges in
Dj. Since there may exist O(n) edges in Dj in the worst
case, it takes O(n) computation time. Step 6 sorts all
the pairs in D:, where each pair is composed by a tail
vertex and an angle of certain edge. From [5] we know
that any algorithm for sorting n elements must require
at least ft(n log n) operations in the worst case. In this
step, we sort the tail vertices in first pass, and then sort
the angles in second pass. Each of these two passes is
completed in O(n log n) time. Therefore, the whole
step takes O(n log n) time. In Step 7, for each edge in
Dj, j = 0, 2 m - 2, it uses binary search scheme
to find the ordered pair (v Aj+l(eoj+l)) in Dj÷t, where
v is not only the head vertex in Dj but also the tail
vertex in Dj+I, and Aj+j (V~+,) is the angle of certain
edge in D;÷~, 0 < p~÷~ < 2n - 1. First, we adopt binary
search to find v in D;+~, and then adopt binary search

vl

v° es vs
1 1

j es
v 4 x v s

Fig. 4(a). The input planar figure F; (b) The testing re#on R.

"o 1

%

vx

/ \ .
?"

* ezo .J

Fig. 5. All the directed edges of figure F.

to find Aj+~(~rj+l) in Dj÷I again. Since there may exist
O(n) edges in Dj÷t in the worst case, it requires O(log
n) time to search the tail vertex and the angle of certain
edge in Dj÷I. Therefore, the whole step requires O(n
log n) computation time. Step 8 is similar to Step 7,
and it takes O(n log n) computation time. In Step 9,
we use the concept of the odd-even transposition
sort[6, 7] to delete some unsuitable edges in Dj. Shih,
Lee, and Yang [3] have shown that this step must per-
form O(m) iterations in the worst case to complete
this odd-even scheme. Therefore, this step takes O(mn)
computation time in the worst case. Furthermore, there
may exist O(n) remainder regions after Step 9. Thus,
using m processing elements, Step 10.1 requires O(n)
computation time to feed these regions into A0
At., 0 < k < 2n - 1, in shared memory. Step 10.2
requires O(m) time to rotate each Ai, 0 < i < k. Thus,
it takes O(n/m)*O(m) = O(n) computation time to
complete this step. Step 10.3 sorts Ao At with the
first vertex. Many papers have been published on par-
allel sorting scheme for last three decades. Whichever
we choose, this step does not exceed O(n log n) com-
putation time. Moreover, there may still exist O(n)
regions after Step 10.3. Thus, it takes O(mn) com-
putation time to erase and sequentially output all the
congruent regions. Consequently, MAX{O(mn), O(n
log n)} time is required in Step 10.

From the above analysis, we observe that our al-
gorithm is dominated by Step 6, 7, 8, 9, and 10. Thus,
the time complexity of this proposed algorithm is
MAX { O(mn), O(n log n)}.

The following example illustrates how the congruent
regions are found by the algorithm Parallel-Congruent.

DO DI D2
EDGE TAIL HEAD ANGLE EDGE TAIL HEAD ANGLE EDGE TAIL HEAD ANGLE
~0 VO V1 60 ~0 VO Vl 60 ~O VO VI 60
~l v | v 2 300 ~1 Vl v2 300 ~1 vl V2 300
~2 V2 V0 180 it2 V2 V0 180 ~2 V2 V0 180
i~3 V2 V3 270 i~3 V2 V3 270 e3 V2 V3 270
~4 V3 V4 180 ~4 V3 V4 180 ~4 V3 V4 180
~5 V4 V0 90 i~5 V4 V0 90 e5 V4 V0 90
~6 VI V0 240 i~ V1 V0 240 ~6 V1 V0 240
~7 V0 V2 0 ~7 Vo V2 0 ~7 V0 V2 0
i~ V2 V1 120 i~8 V2 V1 120 i~8 V2 VI 120
~9 V0 V4 270 t~9 V0 V4 270 i~9 V0 V4 270
I}10 V4 V3 0 i~10 V4 V3 0 el0 V4 V3 0
~11 V3 V2 90 ~11 V3 V2 90 ~ll V3 V2 90

Fig. 6. The contents of Do, D~ and D2.

A parallel algorithm for finding congruent regions 293

DO DI D2
EDGE TAR. HEAD ANGLE EDGE TAIL HEAD ANGLE EDGE TAIL HEAD ANGLE

i~7 V0 V2 0 ! ~7 V0 V2 0 ~7 V 0 V2 0
~0 V0 VI 60 ~0 V0 VI 60 ~0 V0 VI 60

~9 V0 V4 270 ~9 V0 V4 270 ~9 V0 V4 270
~6 VI V0 240 ~i V1 VU 240 ~6 VI V0 240

li~l VI V2 300 ~1 V[V 2 300 ~1 IV1 V2 300
~g V2 VI 120 ~8 V2 VI 120 ~8 V2 VI 120

1~2 v2 Vo 18o ~2 V2 VO ISO ~2 v2 VO 180
I~3 V2 V3 270 ~3 V2 iV3 270 ~3 i V2 V3 270
~11 V3 V2 190 ~lt V] V 2 90 ell IV3 V2 90
~4 v3 v4 1~8o t,~ v 3 v 4 180 ~,~ [v3 v4 ~8o
~10 V4 V~ 0 ~10 V4 V3 0 el0 V4 V3 0
~5 V4 V0 90 ~5 V4 Vo 90 ~5 i V4 V0 90

Fig. 7. The result of Fig. 6 after sorting.

Example
Figure 4 (a) shows an input planar figure F , and Fig.

4 (b) shows a testing region R. By executing the Al-
gorithm Parallel-Congruent, we easily find all the re-
gions that are congruent to the testing region R. The
input planar figure F consists of a set of edges E = { eo,
et, e2, e3, e4, e5 } and the testing regions R is defined

as [to, t~, 12]. For simplicity, assume that leo[= [e, [

= le21 = le31 = le, I = le51--17ol = It,I = 1721
= I .

Step i duplicates the set of edges E = { eo, e ~ , . . . ,
e5 } of the input figure F to the set of directed edges D
= { eo, ~ , . • . , e~ }. Figure 5 shows all the directed
edges of figure F.

In Step 2, all the directed edges t o, t ~, and -/2 are
loaded into the processing elements PEo, PE~, and PE:,
respectively.

Step 3 calculates the angle of FAo = A(to, t~)
= A(t ' ,) - (A(7o) - 180 ° -I- 360°), FAj = A(t~,
72) = A(-t2) - (A(7 ,) - 180°), and FA2 = A(T2,
to) = A (t o) - (A (t 2) - 180 ° + 360 °) + 360 ° . With-
out loss of generality, let FAo = 240 ° - (0 - 180 °
+ 3 6 0 °) = : 6 0 ° ,FAI = 120 ° - (2 4 0 ° - 180 °) = 6 0 ° ,
a n d F A 2 = 0 - (1 2 0 ° - 180 ° + 3 6 0 °) + 3 6 0 ° = 6 0 ° .
Then, we save FAo, FA,, and FA2 into PEo, PEI, and
PE2, respectively. In Step 4, if I ek~ I = I t j[then PEj
copies e-kj into the set Dj, where 0 < k s < 11, 0 < j _< 2.
Therefore. Do = { eo, el el~ }, DI = { eo, eJ

Do
BLINK EDGE TAIL HEAD ANGLE FLINK

0 0 Vo V2 0

0 f~0 Vo V1 60

0 0 V 0 V4 270

0 0 V 1 VQ 240

0 ~1 VÂ V2 300

0 0 V2 VI 120

0 e] V2 Vo 180

0 0 V2 V3 270

0 0 V~ V2 90

0 0 v~ v4 180

0 0 V4 V~ 0

0 0 v4 V 0 90

0

0

0

t 2

0

~0

0

0

0

0

0

D 2

D1

BLINK EDGE TAlL HEAD ANGLE FLINK

,lln miml|

ml llmlllllqD
,llNNBR I!

, l i K U t a / i l l |

,llWt N|

BLINK EDGE TAIL HEAD ANGLE FLINK

0 0 V o V2 0 0

~2 ~0 V0 V1 60 0

0 0 VQ V4 270 0

0 0 V1 VQ 240 0

~0 ~1 V) V2 300 0

0 0 V2 VI 120 0

~1 1~2 V2 Vo 180 0

0 0 V2 V~ 270 0

0 0 V 3 V2 90 0

0 0 v~ V4 180 0

0 0 V4 IV3 0 0

0 0 V4 Vo 90 0

Fig. 8. Tables of Do, D~ and D: that contain [:LINK and BLINK.

294 CHIN-LAUNG LEI and HORNG-TWU LIAW

el~ } and D2 = { Co, el ~ }. Step 5 calculates the
relative angle of each edge in Dj, 0 -<j -< 2, and let the
angle be Aj(~kj), 0 < k _< 11. For simplicity, we show
them in terms of three tables, each table contains four
fields EDGE, TAIL, HEAD, and ANGLE. The field
EDGE represents the edge name in Dj, 0 -< j -< 2. The
fields TAIL and HEAD are the tail vertex and head
vertex of certain edge, respectively. Furthermore, the
field ANGLE stores the relative angle. In order to con-
tinue our example, each angle in field ANGLE is given
a suitable value. Figure 6 shows these three tables.

In Step 6, we sort all the pairs (v~kj, A(-~kj)), 0 < kj
-< 11, where v~k, is the tail vertex of edge ekj in Dj, 0
-< j -< 2. Figure 7 shows the result, after sorting, of
Fig. 6.

In Steps 7 and 8, binary search scheme is adopted
to find the appropriate pair with respect to the testing
region R. Two pointers FLINK and BLINK are used
to point to the suitable edge, respectively. For ease and
simplicity, we replace these pointers with appropriate
edges. Figure 8 shows this result. Furthermore, in Step
9, the scheme of the odd-even transposition sort is
adopted to delete unsuitable edges in each Dj at each
iteration until no more edge can be deleted in each Dj.

In Step 10, all the remainder regions are loaded into
three sets Ao, A~, and Az, that is, Ao = { Po, ~ , V2 },
Aj = {~], e2, Co}, andA2 = {e2, Co, el }. Then, these
three sets Ao, A~, and A2 are rotated, respectively.
Therefore, Ao = {eo, e~, ~2}, A~ = {~0, ~ , ~2}, and
A2 = { Co, ej , e2 }. Now, these three sets are sorted in
terms of the first vertex. Finally, we erase the possible
repetitive sets and output all the remainder regions,
which are congruent to the testing region R. Therefore,
only the region bounded by edges Vo, ~ , and ~2 is
congruent to the testing region R.

4. CONCLUDING REMARKS

In this paper, we propose an efficient parallel algo-
ri thm for finding the congruent regions. Compare with
previous papers. In [8, 9] , they limit the input form
to be polygons. In [3], they adopts a CREW shared-
memory model. In Step 4 of our algorithm, each pro-
cessing element PEj, j = 0, l , m - 1, read the
different edge ei, i = 0, l, . . . , 2n - l , on the same
time. Therefore, we modify their CREW model to
EREW model in this paper. Furthermore, in [3], their
proposed algorithm requires O(//2) computat ion t ime

for finding the congruent regions by using m processing
elements. Whereas, the t ime complexity of our algo-
ri thm only takes M A X { O (m n) , O(n log n)} com-
putation t ime using the same number of processing
elements. In addition, the results in [3] may contain
some repetitive congruent regions. Here, we have
solved this serious problem completely in our proposed
algorithm. Moreover, our algorithm can be easily
modified to handle the situation where the number of
available processing elements is not the same as the
number of edges in the testing region. Up until now,
there still existed some interesting open problems, for
instance, can we propose a parallel algorithm for find-
ing all the 3-dimensional regions, which are congruent
to a planar or 3-dimensional testing regions R? In ad-
dition, there is a region similarity problem, which is
similar to this congruent region problem, in compu-
tational geometry. The difference between them is that
the similarity problem must also consider the scaling
factors[l , 8, 9, 10].

Acknowledgement--The authors would like to thank the ref-
erees for their valuable comments and suggestions.

REFERENCES
1. H. Alt, K. Mehlhorn, H. Wagener, and E. Weizi, Con-

gruence, similarity, and symmetrics of geometric objects
In: Proc. 3rd ACM Ann. Symp. on Computational Ge-
ometry, 308-315 (1987).

2. M. D. Atkinson, An optimal algorithm for geometrical
congruence, Journal tfAlgorithms. 8, 159-172 (1987).

3. Z. C. Shih, R. C. T. Lee, and S. N. Yang, A parallel
algorithm for finding congruent regions, Parallel Com-
puting. 13, 135-142 (1990).

4. K. Sugihara, An n log n algorithm for determining the
congruity of polyhedra, Journal of Computer and System
Sciences 29, 36-47 (1984).

5. E. Horowitz and S. Sahni, Fundamentals of Data Struc-
tures, Computer Science Press, Rockville, MD (1976).

6. G. Baudet and D. Stevenson, Optimal sorting algorithms
for parallel computers, 1EEE Transactions on Computer,
27(1) 84-87 (1978).

7. D. E. Knuth, The Art of Computer Programming, Vol.
3, Sorting and Searching, Addison-Wesley, Reading, MA
(1973).

8. S. G. Akl and G. T. Toussaint, An improved algorithm
to check for polygon similarity, lnfiyrmation Processing
Letters, 7(3) 127-128 (1978).

9. A. Byka, On polygon similarity, Information Processing
Letters, 9(1) 23-25 (1979).

10. M. J. Atallah, Checking similarity of planar figures, In-
ternational Journal of Computer Information Science,
13(4) 279-290 (1984).

