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Chapter 1

Introduction

1.1. Motivation

This dissertation is about the parallelization of an algorithm that has become known as the two-
pass radiosity method [Hec90] [KIW93] [SP89] [WCG87], for rendering artificial scenes with
photo realism on the screen of a workstation. Here, by parallelization of an algorithm, we mean
the design of a parallel architecture for the efficient execution of its parallelizable parts.
Parallelization, when so interpreted, is a difticult problem, even when the algorithm has a
regular precedence graph which is known at compile time [DHW93]. Roughly stated,
parallelization of a program is a decomposition of the program into a number of tasks of a
certain size which are then assigned to a parallel system with multiple processors, one for each
task. To achieve an efficient parallelization, we are faced with the following two fundamental
problems:

1. Latency and Synchronization: Arvind's Two Fundamental Issues [AI87]

Structurally, a parallel system can be thought of as a collection of processors, some
number of memory modules and some means for intercommunication, assembled for the
purpose of cooperating on the solution of a given problem. Consider the model that either
all the memory modules form one global address space (i.e., centralized-memory system)
so that they are equally accessible from all processors, or the model that the memories are
strictly local to processors (i.e., distributed-memory system) so that processors
communicate directly with one another via messages. Either model demonstrates that there
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will necessarily be limitations on time, or latency, to communicate between tasks by way of
sending and receiving méssagcs. On the other hand, a program must be logically
decomposed into communicating tasks in order to effect parallel execution, implying the
need for some sort of time-coordination, or synchronization to preserve dependency
constraints. In order to fully exploit the parallelism in an algorithm, all architects of parallel
systems must face those two fundamental issues, namely, latency and synchronization.

2. Speedup Bottleneck: Amdahl's Law [Amd67]

Consider a program consisting of parallelizable and non-parallelizable parts. Let f be the
fraction of the program that is parallelizable, and let T and T}, be the execution times of the
program on a single processor system and a parallel system with p identical processors,
respectively. Clearly, it holds that 0 < f< 1 and the fraction of the program which can be
run in parallel cannot exceed f. Because the parallel execution time for the parallelizable part
can be no less than f Ty/p, we have

: fT
T,2(1-f) T+ =5

Then the speedup S achievable on the parallel system is

T T (

§==2 s

SL< = .
T, (1-NT+fTdp (1-H+flp

(L.

Amdahl's law limits the speedup achievable by a parallel system, in particular when a
program contains some percentage of non-parallelizable part. For instance, if 5% of the
program must be performed sequentially, then the maximum speedup is 20, no matter how
many processors are used.

From the above discussion, it is clear that the more finely a program is decomposed into tasks,
the greater the opportunity for parallel execution. However, there is a commensurate increase in
the overhead of inter-task communication and synchronization requirements. In this sense, if
the efficiency of a parallelization is measured in terms of execution time and expressed as a
function of task size, then the optimum is a non-trivial compromise between speedup and
overhead which are both increasing with decreasing task size. This is shown in Fig. 1.1
[Sar87] in which the execution time of the sequential program is normalized to 1, and task size
s is relative to the size of the sequential program. The curve labelled 1/S is the inverse of the
speedup given in Eq. 1.1 with p = 1/s.

The curve labelled Q is the overhead due to inter-task communication and synchronization
requirements. At one extreme, the task size s is very small and parallelism can be exploited
maximally (f-> 1 and s -> 0; § -> o). However, the overhead dominates the useful
computation. At the other extreme, the task size s = | and no parallelism is exploited ($ = 1)
and the overhead is minimal (Q = 0). In both cases, the efficiency of parallelization is low. As
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can be seen from the figure, the optimum task size s* leading to a minimal execution time is
somewhere in between these two extreme situations.

Execution Time

Al—

0 S* 1

Task Size s

Figure 1.1: The Speedup-Overhead tradeoff.

It must be noticed that Fig. 1.1 is but a rough indication of the speedup versus overhead trade-
off, because the optimum depends not only on the topology of the architecture, but also on the
structure of the algorithm. Thus, achieving an efficient parallelization is much more involved
than simply finding the intersection of @ and 1/ curves. As a result, it is almost impossible to
come up with an efficient parallel architecture for a wide range of algorithms. Practice has
shown that general-purpose architectures cannot meet the requirements of large speedups and
low overheads simultaneously. To overcome this bottleneck, one can go two directions of
specialization. One is the "systolic-way", that is to require the algorithms to be affine nested-
loop algorithms [DHW93], the other is the "special-purpose way", that is focusing on a specific
application. Parallel architecture design of affine nested-loop algorithms has achieved great
progress in the last decade and its success is due to the fact that a design methodology has
emerged which is based on a well-defined model and methods which have sound mathematical
support. This research does not fall in this class of specialization, yet experience of designing
systolic-like architectures has had a great impact on it. Instead, a specific application for which
a systolic solver is not meaningful has been the point of departure. Illustrative problems can be
found in the fields of signal processing, image processing and computer graphics. The problem
we shall deal with in this dissertation is rendering artificial scenes. Parallel implementation of a
non-systolic yet specific algorithm Jeads to a feasible optimization problem which involves the
design of a good parallel algorithm and a good parallel architecture, which form together a
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good algorithm-architecture pair in the sense that it approaches an optimum in terms of speedup
and overhead trade-off (see Fig. 1.1). Thus, the key to success here is combined algorithm
development and architecture design.

Some attempts to combine algorithmic and architectural design systematically have been
reported in the literature. One example is the so-called systolic algorithm, which is a merging of
the notions of iterative algorithms and systolic architectures (see [MVD92}). Another example is
the so-called algorithmic engineering approach [McW92]. Both are dealing with systolic-like
static algorithms, and the "architectures” are conceptual and overly simplified: they are merely a
graphical representation of a massively parallel algorithm.

These approaches can hardly be classified as combined algorithm-architecture design because
the emphasis is clearly on massively parallel algorithm design and the architecture is enforced
by the algorithm. Moreover, aiming at a massively parallel algorithm is not always meaningful,
as the following two points may clarify:

1. The amount of parallelism in algorithms is one factor that has impact on the efficiency of
parallelization A common believe is that inherent parallelism should be explored as much as
possible. However, this is not always true, in particular when parallelism is hiding wastes
of operations. A prominent example is ray tracing. Ray tracing is an algorithm which can
produce realistic images. Rays are sent from a viewpoint through every pixel on a display
screen and traced as they are reflected and transmitted by objects in the space behind the
screen. When a ray hits an object, new rays may be generated, due to reflection,
transmission, and/or light sources. These new rays are in turn traced. The most time-
consuming computations in the ray-tracing algorithm are ray-object intersections. One may
conceive an algorithm which tests all the rays with all the objects in parallel so that a huge
amount of parallelism can be realized. However, the operation count in this algorithm is
extremely high, at the order of N x R, where N is the total number of objects and R is the
total number of rays, and is far beyond what is necessary to be computed, i.e., R
intersection points, since one ray can only intersect one object. This amount of parallelism
is certainly not meaningful because most parallelism of this form, which may even not be
attainable by the underlying architecture, is doomed to be wasteful.

2. Having a large amount of parallelism in an algorithm is no guarantee to having a well-
performing implementation. First of all, we must seek such architectures that can mitigate
the overhead of latency and synchronization. Once a particular architecture is chosen, the
utilization of concurrency depends totally on how the concurrent resources are allocated
and managed. This is the resource management problem.

This dissertation is also an attempt to combine algorithm and architecture design. There is,
however, quite a difference between this attempt and those mentioned above. As stated
previously, the point of departure has been a rendering problem from the field of computer
graphics. This problem does neither lead to a static algorithm nor to an architecture that is
naturally enforced by a massively parallel algorithm. Communication and synchronization
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overheads emerge straight from the beginning and finding a good, if not optimal, algorithm-
architecture pair is a true iterative and interactive process.

We aim at developing a parallel image rendering algorithm and architecture based on the so-
called two-pass approach. This approach is demanding orders-of-magnitude more processing
power for a single processor if we wish to make a state-of-art image in real-time or even
interactive time. An obvious answer to this dilemma lies in parallel processing, and all above-
mentioned algorithm/architecture issues will turn up, to wit:

I. Combined Algorithmic and Architectural Design is Essential

We will discuss the two-pass approach in chapter 2. Basically, it is a ray-tracing based
algorithm. As stated previously, for ray tracing, it is not worth testing all the rays with all
the objects. This is because most parallelism of this form, which may not even be attainable
by the underlying architecture, is wasteful. Instead of exploring parallelism in the algorithm
blindly, we should search for a.certain form of parallelism that is profitable to exploit in an
accompanying architecture. This unusual algorithmic characteristic reveals the strong
relationship between the algorithm and the architecture.

2. Latency Problem

As mentioned before, the most time-consuming computations in the ray-tracing algorithm
are ray-object intersections. To proceed with one ray-object intersection, first of all, one
needs the data representing the ray and the object. Owing to the large amount of data
resulting from the running of the algorithm, the latency for memory access becomes
serious if inappropriately handled. Imagine the time required to access a large database
containing hundreds of thousands or even a million objects (10 Mbytes - 100 Mbytes) in
case one wishes to access all pbjects (0.1 M - 1 M objects). Consequently, the parallelism
in the algorithm becomes insignificant due to the long latencies.

3. Synchronization Problem

Synchronization refers to the requirement that one task cannot begin execution until all of
its predecessor tasks have completed their execution. To avoid testing blindly with all the
objects, a ray may search for objects and test with them only when necessary. Put simply,
a ray can start testing with the closest object. If the ray hits the object, then it is not
necessary to go further. Otherwise, the ray continues testing with the next closest object
and so on until it hits. In other words, a ray-object test must wait for the result of its
previous ray-object test.This busy-waiting scheme is actually a synchronization at the
control-level', As can be seen, the granularity of synchronization at this level is rather fine.

I Synchronization may take place at control-level or data-level. Fork-Join instructions and data-driven
mechanisins are two examples of synchronization at the control-level. Presence_bits associated with registers
or memory locations are mechanism for synchronization at the data-level.
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The overhead of synchronization will certainly degrade the performance if one wishes to
synchronize at that level.

4. Resource Management Problem

In order to effect parallel execution, a program must be decomposed into a number of tasks
in a certain way. The resource management involves: (1) The grain-size problem refers to
decisions regarding the granularity of tasks and the choices as to which objects should be
packed into the same task. (2) The scheduling problem refers to the assignment of tasks to
available processors.

1.2. Overview of the Thesis

This dissertation is composed of seven chapters. Chapter 1, this one, is introductory.

In chapter 2, we first provide the background for the radiosity method and ray tracing. We then
presents a ray-tracing based two-pass approach that serves as basis for the target algorithm.
From a hardware perspective, we suggest a proximity enforced algorithm to take advantage of
the data-coherence property? at algorithmic level.

In chapter 3, we present the shelling technique. By and large, it is an algorithm that strives to
build the visibility orderings for the sets of input patches and rays. In an attempt to explain the
underlying ideas, we start with a "naive algorithm" and discuss its inefficiencies. We then move
to the conventional space partition technique, and we show that the conventional technique
gives too much constraints to the architectures, which are difficult to be realized by hardware.

In chapter 4, we turn to the resource management problem. We first point out some dynamic
behaviours like latencies in memory accesses, communications and synchronizations which
make the scheduling problem very difficult to manage and analyze at compile time. This leads to
a so-called runtime resource management problem which defers the actual scheduling to some
point during program execution. In contrast to compile-time scheduling, runtime scheduling
allows to manage resources for highly data-dependent programs and dynamic system
environments. However, a major shortcoming of runtime scheduling is that a non-negligible
runtime overhead will be introduced. In order to eventually gain in overall performance,

2 The data-coherence property is analogous to the property of locality of reference in virtual memory systems.
Locality of reference has two components: temporal locality and spatial locality. In temporal locality, there is a
tendency for a process to reference in the near future those elements of the reference string referenced in the
recent past. In spatial locality, there is a tendency for a process to make references to entries in the

neighbourhood of the previous reference.
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seemingly time-consuming or time-indeterminate algorithms are not feasible even though they
are sophisticated and may lead to a better solution in case of compile-time scheduling. This
limits feasible scheduling algorithms to those with low complexity and highly efficient
implementation. For this reason, we propose a technique called application-specific runtime
scheduling (ASRS) by tailoring the characteristics of this specific application.

In chapter 5, we present the system configuration of the radiosity engine, and discuss some
essential issues such as the memory structure, network design and synchronization mechanism
and give an outline of the functionality of the system. In order to take advantage of the data-
coherence property at all levels, a hierarchical memory which is divided into working register,
local memory, cache and main memory is proposed. As for the network design, we compare
different network topologies including ring, Illiac, torus and hypercube. It turns out that a
mesh-connected network is a good choice. To support fine grained synchronization, we borrow
the concept of I-structure memory from dataflow machine theory.

In chapter 6, we quantify the performance of the radiosity engine by using Monte Carlo
simulation. Finally, in chapter 7, we give some conclusions.



Chapter 1



Chapter 2

Photo-Realistic Rendering

2.1. Introduction

The production of realistic images requires to simulate the propagation of light within an
environment. Light leaving a surface may originate from the surface by direct emission, as from
a light source, or by the reflection or transmission of incident light. The incident light on the
surface can in turn arrive directly from a light source or indirectly by intermediate reflections
and transmissions from other surfaces within the environment. Thus realism can only be
achieved by taking global illumination into account, which includes the effects of all objects in
the environment.

In general, the transfer of light from one surface to another can be thought of as occurring by
way of four mechanisms, namely, diffuse to diffuse reflection, specular to diffuse reflection,
diffuse to specular reflection and specular to specular refiection (refer to Fig. 2.1). Two
commonly used methods of accounting for global illumination are radiosity and ray tracing.
Ray tracing, first described by Appel [App68] , only considers specular to specular and diffuse
to specular transfer. Although some of the most realistic images have been generated by ray
tracing, it ignores the illumination of a diffuse surface by light reflected specularly from another
surface (specular to diffuse) and the interreflection of light between diffusely reflecting surfaces
(diffuse to diffuse). Some extended ray-tracing algorithms, such as the methods of Kajiya
[Kaj86] and Ward et al. [WRC88], have been presented to account for these transfer
mechanisms. However, many incoming directions at each sample point on a diffuse surface
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which is visible to the eyepoint may have to be sampled, since the significant sources of
illumination may be difficult to find. This pixel by pixel determination of intensity imposed by
ray tracing from the eyepoint may introduce more work than necessary since the illumination of
a diffuse surface as perceived by the eyepoint typically changes relatively slowly from one pixel
to the next. In 1984, Goral et al. [GTGBR4] introduced a radiosity method based on principles
from the field of thermal engineering to model the interreflection of light between diffusely
reflecting surfaces. In the radiosity method, the set of sample points for which the intensities
are calculated depends on the discretization of the environment surfaces rather than the eyepoint
and image resolution. As compared with the ray tracing, the number of sample points required
can be greatly reduced. Unfortunately, the standard radiosity method treats only diffuse
surfaces, the specular reflection (specular to specular and diffuse to specular) is not taken into
account. Immel [ICG86] extended the radiosity method to incorporate specular effects by
discretizing a global cube placed over a specular surface into a finite number of directions. In
this approach, a relationship between a given incoming direction for a specular surface and all
outgoing directions for all other surfaces gives the directional intensity for this certain direction.
For highly specular surfaces, the discretization of the cube should be very fine (may be down to
pixel levels) as the directional intensity changes very quickly from one direction to another. The
computation and storage required precludes discretization to the required level. As a result,
artifacts appear on specular surfaces.

N s N
N TN, N

(a) (b) (©) (d)

Figure 2.1: The four mechanisms of light transport: (a) diffuse to diffuse, (b) specular to
ditfuse, (¢) diffuse to specular and (d) specular to specular.
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From the above discussion, we can conclude that ray tracing is most suited for the display of
specular environments, while the radiosity method is most suited for the display of diffuse
environments. In order to render a complex environment, several attempts have been made to
integrate radiosity and ray tracing. We shall discuss this after introducing the radiosity method
and ray tracing.

2.2. The Radiosity Method

The radiosity method, based on principles from the field of thermal engineering, models the
interaction of light between diffusely reflecting surfaces and accurately computes the global
illumination effects.

To start with, we say that the environment is defined by an enclosure consisting of a number of
surfaces. All surfaces of the enclosure are assumed to be ideal diffuse reflectors, ideal diffuse
light emitters, or a combination of the two. To perform radiosity analysis, the surfaces are
discretized into patches, for which a constant radiosity is assumed. The radiosity method
computes global illumination effects by solving the following radiosity equation that describes
an equilibrium energy balance within the enclosure.

N
B,A =EA+ piZlB. F_A
]=

Joey 2.1
where
Radiosity B: The total rate of energy leaving a patch.
Area A: The area of a patch.
Emission E: The rate of energy (light) emitted from a patch.
Reflectivity p: The fraction of incident energy which is reflected back into the
environment.
Form-factor Fj;: The fraction of energy leaving patch j that lands on patch i.
N: The total number of patches in the environment.

The radiosity equation states that the amount of energy (or light) leaving a surface is equal to the
sum of self-emitted light and the reflected light. The reflected light is equal to the light leaving
every other surface multiplied by the fraction of that light which lands on the receiving surface
and the reflectivity of the receiving surface.

Using the reciprocity relationship for form-factors, that is, F;; A; = Fji Aj, the radiosity
equation becomes:
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;—1
or in matrix form:
L-pyFpy i Fry e P Fy B, E,
Py o 1-PyFyy o Py Foy B, E,
= 2.3)
PyFyi PyFry 1Py Fyyd LBy Ey

Given the reflectivity of each diffuse reflector and the emission of each light emitter, the
radiosity of each patch can be obtained by solving the set of equations if the form-factor
between each pair of patches is known. These involve: (1) computing the form-factors and (2)
solving the radiosity equation. In the following, we shall discuss those two issues.

2.2.1. The Form-Factors

The form-factor, by definition, is the fraction of energy leaving one patch which lands on
another. For a non-occluded environment, the form-factor from the differential area dA; to the
differential area dAj, as shown in Fig. 2.2, is given by

a’Aj cos @, cos {pj
F E Y SR AN 2.4
dA A, — 24)

By integrating over area Ay, the form-factor from the differential area dA; to the finite area A; is
given by:

cos (p cos (p

Aj A @5)

4; j

The form-factor from the finite area A; to the finite area A; is defined as the area average, and is
given by:

cos Q) cos (p

-1
A.Aj B A j dA dA, 2.6)
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This expression for the form-factor does not account for the possibility of occluding patches
hiding all or part of one patch from another. If hidden patches are to be accounted for, an
additional term HID must be included in the integrand, as follows:

cos @, cos @
j i HID dA, dA,,
AA.

=L
Faa=a

iA i ) (2.7)

b

where HID takes the value / if the differential area dA; can see the differential area dAj,
otherwise HID takes the value 0.

For simple environments which do not contain occluded patches, the double area integral can be
transformed into a double contour integral by using Stoke's theorem, and can be solved
analytically [GH71] [SC78]. However, this approach is not feasible to compute form-factors
for general complex environments. In the following, we start with a geometric analogue to the
analytic derivation, and then discuss some efficient but approximate methods to compute form-
factors.

patch i

Figure 2.2: Geometry for form-factor derivation.

2.2.1.1. The Nusselt Analogue

A geometric analogue for the form-factor integral was developed by Nusselt [SRHI78], as
illustrated in Fig. 2.3. For a finite area, the form-factor is equivalent to the fraction of the base
of the hemisphere covered by projecting the area onto the hemisphere and then orthographically
down to the base. The derivation of the form-factor is as follows:
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1. Place a unit hemisphere oriented around the normal of a differential area dA;, and project
another differential area dAj, with a distance r from dA;, onto the hemisphere. The
projected area is given by:

dA. cos @.
dA ' = —de—">L (2.8)
iTTP
2. Orthographically project dA;' onto the base of the hemisphere to get an area:
dA. cos . cos @,
dA"=dA ' cos ¢ = —L—S I (2.9)
J J i A
3. The ratio of dA;" to the base of the hemisphere is given by:
dAj cos @, cos (pj .
dAj _ 2 _ dAj cos @, cos (pj .10
4 4 xr ’

which is just the form-factor from the differential area dA; to the differential area dA; as
given in Eq. 2.4

Figure 2.3: Nusselt Analogue.
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2.2.1.2. The Hemisphere Method

The Nusselt's analogue gives us a first hint to work on the hemisphere. To compute the form-
factor between a pair of patches, the surface of the hemisphere is discretized into small delta
areas, each representing a delta form-factor as defined in Eq. 2.10. The form-factor is equal to
the sum of the delta form-factors of the delta areas covered when projecting another patch onto
the hemisphere placed at the center of one patch. Instead of evaluating the complex double area
integral, the form-factor can be computed by the use of projection and summations. For an
occluded environment, if two patches project onto the same delta area on the hemisphere, a
depth comparison is made to determine which patch is seen through that particular direction by
comparing distances to each patch and selecting the closer one. The major difficulties of this
approach are:

1. How to derive the projected area when projecting a patch on the hemisphere?

The difficulty lies in the fact that the projected area is bounded by a complex curved
surface. This derivation is rather expensive and not amenable to hardware implementation
(and so slow).

2. How to discretize the surface of the hemisphere?

The main considerations in determining the discretization of the surface of the hemisphere
are: (1) The delta form-factors should be easily determined. In general, delta form-factors
can either be pre-stored in a memory or just derived on-the-fly. To reduce the storage
requirement or simplify the derivation, we could discretize the base of the hemisphere into
equal areas, then orthographically project each area onto the surface of the hemisphere.
Note that the discrete areas which are not covered by the base of the hemisphere are
discarded. With this arrangement, a particular discretization of the surface of the
hemisphere is obtained such that each delta area carries the same delta form-factor. So the
form-factor can be easily determined by accumulating the constant delta form-factor
representing each delta area covered. (2) A good discretization should take surface radiative
properties and geometric relationship between sources and receivers into account.
Otherwise, aliasing or wasting may happen due to under or over estimations of surface
projections, respectively.

2.2.1.2. The Hemi-Cube Method

Another efficient approach to approximate form-factors is the hemi-cube method. In this
approach, a hemi-cube instead of a hemisphere is used according to Nusselt's analogue. The
hemisphere described above is replace by the upper half of the surface of a unit cube
constructed around the center of the source patch. The surface of the hemi-cube (i.e., five
planar surfaces) is discretized into square pixels (or delta areas) at a given resolution, each
representing a delta form-factor (see [CG85]). The other patch is then projected onto the five
planar surfaces, and the form-factor is equal to the sum of the delta form-factors of the pixels
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(or delta areas) covered by the projected area. The item buffer can be used to determine which
patch is seen through a particular direction if two patches project onto the same pixel on the
hemi-cube. The advantage of the hemi-cube method is that it can take advantage of current
hardware Z-buffer supports which are available on high-end workstations. However, it has the
following disadvantages:

i. The regular arrangement of the pixels of the hemi-cube may cause aliasing due to the
limited resolution used. A typical example is: Suppose the original projection of a patch
covers 6 x 6 pixels; If the patch is slightly offset, it covers 7 x 7 pixels instead. Another
quite obvious artifact is due to small patches, in particular light emitters. Image a door knob
is lit with a small emitter. The projection of the emitter may not cover a pixel, therefore, the
door knob may look black even it is viewed from a close distance.

2. The patches are restricted to polygons as it is difficult to scan-convert curved surfaces such
as Bezier. A large memory is required to store the database.

3. As compared with the hemisphere method, the hemi-cube discretization yields less
accuracy at higher memory costs (see [WJC88]).

2.2.1.1. A Ray-Casting Based Approach

By virtue of the Nusselt's analogue, it seems more natural to place a hemisphere instead of a
hemi-cube around the center of a source patch. To overcome the problems of the hemisphere
method, a ray casting based approach has been proposed [WEH89] [SP89]. As before, a unit
hemisphere, say H, is placed at the center of the front face of a source patch, say O, such that
the base of the hemisphere is perpendicular to the normal of the patch, say in Z-direction. The
surface of H is discretized into 2 x Rg circles parallel to the XY-plane by a constant angle A9
and each circle is in turn discretized into 2 x Rg grids by a constant angle A¢ (see Fig. 2.4a).
Instead of projecting patches onto the hemisphere, rays are cast from O through the center of
their corresponding delta areas (the shaded rectangle in Fig. 2.4b), and denoted as rj;, i =0, /,
--Rp-1,j=0,1, .., Rg- 1. There are thus Rp x Rg rays uniformly distributed over (@, 8)-
plane as shown in Fig. 2.4b. The delta form-factor of each delta area is assigned to the
corresponding ray. A delta area is said to be covered by the projection of a patch if the
corresponding ray intersects the patch. The computation of the form-factor then proceeds as
usual in the hemisphere method. Hencetorth, we shall call the above procedure a ray-casting
procedure. Notice that the core computations involved in the ray-casting procedure will be the
ray-patch intersections.

The advantages of the ray-casting based approach are:

1. It is capable of intersecting rays with curved surfaces such as Bezier. This allows users to
use the original geometric representation of surfaces without polygonization.

2. It provides a means for more flexible sampling to avoid aliasing due to uniform sampling.
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The resolution and distribution of rays can be adapted to surface radiative properties and
geometric relationship between sources and receivers.

In the following, sampling concerns will be examined from two different perspectives:
L. Source Sampling

In the previously discussion, only one sample point is taken at the center of the source
patch over which a hemisphere or hemi-cube is placed. This amounts to reducing that
source to a point. This may be quite erroneous, for instance, when the area of the source is
quite large compared to the distance separating the patches (see Fig. 2.5a) or when the
source is partially occluded by other patches (see Fig. 2.5b). To approximate an area
source, several sample points must be taken from the source.

2. Receiver Sampling

Being oblivious to the geometry of a scene, it may be appropriate to concentrate on those
directions which are important and pay less attention to those directions which are less
important. By casting more rays in important directions, the uniform sampling proposed
above actually addresses this directional importance. The problem of this approach is that a
small patch can be easily missed when it falls to the less important directions. To avoid this
quite obvious artifact, more rays must be cast for sampling small patches.
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Figure 2.4: Uniformly distributed rays for a ray-casting based approach.
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Figure 2.5: Source sampling problems.

Recently, considerable effort has been devoted to the sampling problem, These include:

1. Wallace [WEH89] claimed that the number of sample points to approximate an area source

depends on how close the source is to the receiver. In other words, the number of sample
points required may vary from one receiver to another receiver. However, in the hemi-cube
(or hemisphere) method, the number of sample points is fixed for all the receiving patches.
In addition, the radiosities at the element vertices, which are used to actually render the
final image, cannot be determined directly. The radiosity of each vertex must be determined
by averaging the radiosities of the elements surrounding it. In view of this, he proposed a
receiver to source sampling. Instead of performing a hemi-cube (or hemisphere) at a
source, each element vertex in the scene is visited and form-factor is computed from the
source to the vertex by shooting rays from the vertex to sample points on the source. The
number of sample points on the source may vary from one vertex to the next, thus allowing
area sources to be approximated as accurately as desired. Furthermore, this eliminates the
sampling problem of small patches, since illumination is guaranteed to be computed at
every vertex. The main problem of this approach are: (1) All the vertices must be retrieved
from the large database for each selected source, representing an undesirable bottleneck
(i.e., long latency) for parailel processing. (2) No efficient space partition technique can be
used to accelerate the visibility testing. The shaft culling proposed in [HW91] still suffers
from some problems such as the saving in the visibility testing would not trade for the cost
in testing surfaces lying inside the shaft, and a shaft possibly contains almost the entire
scene. (3) Rays are unstructured in some sense, which is difficult to be handled (retrieved
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or generated) by hardware. For these reasons, this software oriented approach is not
amenable to hardware implementation. Most seriously, the parallelism in the algorithm
becomes insignificant due to the inherent long latencies.

2. Hanarahan [HSA91] pointed out that form-factors are prone to error, and therefore need
only be computed and stored if the error is within a specitied tolerance. He proposed a
recursive refinement procedure which simultaneously decomposes a polygon into a
hierarchy of patches and elements, and builds a hierarchical representation of the form-
factor matrix by recording interactions at different levels of detail. It first estimates the
mutual form-factors between two patches, and then either subdivides the patches and
refines further, or terminates the recursion and records an interaction between the two
patches. If either of the form-factor estimates is larger than a specified value Fy, the patch
with the larger form-factor undergoes a further subdivision Otherwise, the patches are
allowed to interact at this level of detail, and the true form-factor can be approximated
accurately by the estimate. Visibility only needs to be calculated as accurately as required
for form-factors within the error tolerance, and roughly the same amount of work is done
at each visibility test. The main problem of this approach are: (1) This approach works best
for scenes with few large initial polygons. For scenes with many small initial polygons, it
is wasteful to determine the level of interaction for each pair of polygons because many of
them may be totally occluded by intervening polygons. (2) The pairwise method for
computing form-factors works well for low-frequency shading intensities (minor intensity
transitions) but not for high-frequency shading intensities (clearly visible shadow
boundaries). To capture clearly visible shadow boundaries, the interaction between two
patches will be driven to an unacceptable low level. (3) The visibility test fires unstructured
rays between each pair of patches. As before, no efficient space partition technique can be
used to accelerate the visibility testing and unstructured rays are generally difficult to be
handled by hardware.

To conclude the discussion on the ray-casting based approach, the following general remarks
can be made:

1. It provides a means for more flexible sampling. Source sampling can be approximated by
placing several sample points on the source. Receiver sampling may be satisfied by casting
rays following the directional importance. Furthermore, the artifacts due to undersampling
of small patches can be solved by casting ulirahigh-resolution rays together with jittering
the ray directions. In [KJ91] [KJ92] [KTW93] [Shi90}, it is pointed out that it is nearly
impossible to capture clearly shadow boundaries by computing patch-to-element or
element-to-patch form-factors as in the radiosity method. Instead, a two-pass approach is
proposed in which the radiosity pass only accounts for the indirect lighting. The patch
refinement in this pass can be relatively coarse because the radiosity shading only shows
minor intensity variations. From this point of view, we believe that the ray-casting based
approach is sufficient for providing an accurate indirect interreflection.




2.2. The radiosity method 21

2. Although this approach does not lead to optimal solution, it is very amenable to hardware
implementation. Well-known space partitioning techniques [Cla76] [FTI86] [Gla84]
[MHI&8] [RW80] [TKM84] [WHG84] exist for accelerating the visibility testing. In
addition, this approach lends itself to parallel processing, as will be addressed in chapter 3.

2.2.2. Radiosity Solutions

Given the reflectivity of each diffuse reflector and the emission of each light emitter, the
radiosity of each patch can be obtained by solving the radiosity equation as given in Eq. 2.3 if
the form-factor between each pair of patches is known. There are two restrictions that prohibit
the use of standard solution techniques for linear systems. Firstly, we cannot compute and store
the complete form-factor matrix for a typical scene containing thousands of patches, since the
required storage may be prohibitively large. Secondly, we aim at a fast approximation instead
of an exact solution to the radiosity problem. In the following, we shall discuss the mainstream
of radiosity solutions. 4

2.2.2.1. Gauss-Seidel Iteration

In the conventional radiosity technique, the Gauss-Seidel method is used to solve the system of
equations given in Eq. 2.3 one row at a time. The evaluation of i row of the equations
provides an estimate of the radiosity of patch i based on the current estimates of the radiosities
of all other patches:

N
Bi = Ei + pi'ZIBj Fij' 2.1
]=

This amounts to gathering the light from the rest of the environment. Due to the strict diagonal
dominance of the form-factor matrix, the solution converges in a few iterations. However, you
cannot display the radiosity of all patches until after the first complete iteration cycle and all the
form-factors are pre-calculated and stored at the cost of O(N2), N being the number of patches.

2.2.2.2. Progressive Refinement

By virtue of Eq. 2.1, the contribution of the radiosity from patch i to the radiosity of patch j is
given by:

Bj due to Bl, = pj Bi Ft.j Al/Aj_ (2.12)
Thus we may solve the radiosity equation one column at a time by determining the contribution

made by patch i to the radiosity of all other patches. This amounts to shooting light out from
patch i into the environment as opposed to the gathering in the Gauss-Seidel iteration. It has the
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advantage of performing a single hemisphere or hemi-cube over a patch (called the source) and
adding the contribution from the radiosity of the source to the radiosity of all other patches.
Hence the storage cost is at the order of O(N) per iteration. By selecting different patches to be
the source, the radiosity of other patches can be incrementally updated until a sufficient number
of patches have shot their energy. This approach differs from the previous one primarily in two
respects. First, the radiosity of all patches is updated simultaneously, providing intermediate
results which can be displayed as the algorithm proceeds. Second, patches are selected as
sources according to their energy contribution (unshot radiosity) to the environment, providing
accurate results early in the solution process.

2.2.2.3. Overshooting Algorithms

In the shooting algorithm, whenever radiosity is shot from a source, this will increase the
unshot radiosity of other patches. Those patches will be in turn selected for shooting later, and
possibly a part of this radiosity will be sent back to the original patch. The idea of overshooting
algorithms is to take contribution coming from later steps into account and to shoot more
radiosity than is currently available on a source.

Generally, overshooting algorithms give a better convergence than the standard algorithms
without overshooting. One example is successive over-relaxation which is a variant of Gauss-
Seidel iteration. Instead of gathering a correct amount of radiosity, a factor o is added to take
contribution coming from later steps into account. This algorithm is similar to the Gauss-Seidel
iteration except Eq. 2.11 is modified to be:

N
B=(-a)B +a(E+ pi.lej Fij), 2.13)
j =

where o takes the value of 1.2 - 1.5.

Another example is called ambient overshooting [FP92], in which the ambient term introduced
by Cohen {CCWG88] is used as an estimate for the additional amount of overshooting. More
precisely, for each selected source, the radiosity AB; + p; ambient is shot instead of AB;.

In [GHS92], Greiner made a comparison for the convergence of different radiosity solutions.
The following results are excerpted from there:

1. Both the Gauss-Seidel iteration and successive over-relaxation work quite well in the long
term but they show very bad initial results, which makes them insuitable for interactive
rendering.

2. On the contrary, the progressive-refinement algorithm and ambient overshooting perform
very well in the first few steps but the convergence becomes a bit slow later on. The
progressive-refinement algorithm even performs better in the early stage of the iteration.
This fact, together with the advantage of reducing storage cost have made the progressive-
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refinement algorithm very appealing to interactive rendering.

2.3. Ray Tracing

Ray tracing is a simple but powerful algorithm that can naturally simulate complex lighting
effects such as reflection, refraction and shadowing. To clarify this, it is helpful to show which
paths of light reflection have been accounted for. As shown in Fig. 2.6, recursive ray tracing
[Whi80] takes into account the direct diffuse (path I-c-v) and directly specular reflections (path
l-g-v), as well as the indirect specular reflections (path l-a-h-v). However, it does not take into
account the contribution of light that is specularly reflected by mirroring surfaces onto diffuse
surfaces (path [-d-f-v). To capture this light, Arvo [Arv86] proposed a preprocessing pass
called backward ray tracing, in which rays are shot from the light sources and the mirrored
reflection is stored in illumination maps on the surfaces. The second pass then meets the first
pass at those surfaces (at fin Fig. 2.6). The other type of reflection that has been neglected is
the diffuse interreflection between surfaces (path {-e-b-v).

In the traditional ray-tracing algorithm, the global illumination is approximated by tracing rays
from the viewpoint, through each pixel of the display screen, and into the environment. When a
ray hits a surface, two things may happen:

1. If the surface is purely diffuse, then the light at that intersection point on the surface will be
taken as the intensity of that pixel. This is done by casting a shadow ray from the
intersection point to each light source. We then determine whether the surface will be
illuminated by a light source or not in the following way. If the shadow ray can reach the
light source without hitting any surface along the way, then the light source can illuminate
the surface. Otherwise, the surface is in shadow relative to that light source.

2. If the surface is purely specular, then a reflected/refracted ray is generated at the
intersection point. Again a shadow ray is cast from the intersection point to each light
source to determine the light coming from each light source. The reflected/refracted ray is
in turn traced to see if anything gives off light. This backward tracing is repeated until it
ends up a purely diffuse surface, rays leave the environment or further contributions can be
neglected. All these intensities carried with reflected/refracted rays will be added to give the
final pixel intensity.

In the above discussion, it is assumed that one shadow ray is cast from an intersection point to
each light source and also one reflected/refracted ray is generated for an intersection point on a
purely specular surface. As a result, ray traced images will have sharp reflections, sharp
refractions and sharp shadows. By distributing the directions of rays according to the analytic
function they sample, ray tracing can also incorporate fuzzy phenomena (see [CPC84]).
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Figure 2.6: Different paths of light reflection.

2.4. Two-Pass Approach

As stated previously, the radiosity method is most suited for the display of diffuse
environments, while ray tracing is most suited for the display of specular environments.
Recently, several attempts have been made to integrate radiosity and ray tracing to render a
complex environment. They either extend the conventional ray-tracing algorithm to include
diffuse interreflection [Kaj86] [WRC88] or extend the conventional radiosity method to add in a
specular component [WCG87] [SP89] [Hec90]. Our emphasis will be on the second approach
on which the proposed two-pass approach is based. While using ray tracing for the specular
reflection, the traditional radiosity method is used to compute the radiosity shading including
lighting received both directly or indirectly from the light sources. One major shortcoming of
this approach is that high radiosity gradients over patches, in particular clearly visible shadow
boundaries, cannot be efficiently and economically solved. Methods in [CGIB86] [CF90]
[Arv86] [Hec90] either require a large data structure or fail to provide the dynamic adaptation
needed.
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We observed that high radiosity gradients over patches are mainly due to the lighting received
directly from the main light sources and most radiant patches. If we neglect the so-defined
direct lighting in the radiosity pass, the radiosity shading may only show minor intensity
variations. Thus, the patch refinement can be kept relatively coarse and solved efficiently and
economically. In this way, the first pass only calculates the indirect lighting for each diffuse
patch and is done by the conventional radiosity method, and the direct lighting is then calculated
at the secand pass by casting shadow rays as in the traditional ray tracing. In this approach,
there are two crucial issues to be explored. The first, is to select light sources which will
contribute to the direct lighting. The other, is to reduce the number of shadow rays. A detailed
description of these issues is beyond the scope of this thesis. We can mention however that a
source selection algorithm has been developed that can select potential sources globally or
locally as per patch, and the number of shadow rays can be further reduced by applying an
adaptive image refinement technique in combination with a shadow coherence method. For
additional details we refer to [KJ91] [KJ92].

2.5. A Proximity Enforced Algorithm

For a ray-casting based approach, it requires a place large enough to store the complete database
of a scene. A hierarchical memory system is generally assumed to meet this requirement. This
hierarchy, which is used in almost all computer systems today, reflects one of computer
design's truisms, "fast memory is expensive but is very limited in capacity, and slow memory
is cheaper but can be quite large in capacity”. Owing to the limited bandwidth of the memory
system and the relatively low transmission rates in communication links, it is necessary to
transmit only those data which are relevant to the execution of the program, store them in the
fast memory and keep them stationary as much time as possible. This can be accomplished by
the following strategy: (1) First of all, we should store most referenced data in the fast memory,
while store less referenced data in the slow memory. (2) Secondly, the execution of the
program that implements the ray-casing based approach should be enforced so that the data
stored in the fast memory allow to be referenced as much time as possible. This leads to a so-
called proximity enforced algorithm. This is based on the observation that the half spaces seen
through sample points on the same patch or on the neighbouring patches with similar
orientations will be very much alike. For clarify, we illustrate with a two-dimensional example
in Fig. 2.7. The half spaces seen through sample points p;, p2 and p3 are indeed very similar.
For practical usage, three hemispheres may be performed at those sample points during the
same progressive refinement step. The relevant data required by the first hemisphere can be
stored in the fast memory, and most of them will be referenced by the second and third
hemispheres due to the data-coherence property. Consequently, we can get rid of the long
latencies of retrieving data from the slow memory via the slow communication links. In chapter
5, we will use effectiveness as a measure to see how well the so-called data coherence can be
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exploited.

From the above discussion, we then modify the progressive-refinement algorithm. During one
progressive refinement step, several patches instead of one single patch are selected as sources
based on the criteria of unshot radiosity and proximity. The proximity criterion is added to
enforce sample points to be kept close by so that data coherence can be maximally exploited.
For instance, we can take advantage of the data structure (octree [Gla84] [MM83], binary tree
[KMB85], or a spatially enumerated auxiliary data structure [MHS86] [TI86]) storing patches
together with patches’ normal vectors to determine the proximity.

We are now investigating the convergence of this proximity enforced progressive-refinement
algorithm. In the literature, there is a similar approach called the blockwise refinement
[GHS92]. The difference is that the criterion of selecting patches is only unshot radiosity as in
the traditional progressive-refinement algorithm. The results show that the blockwise
refinement performs better than the traditional progressive-refinement algorithm during the
initial stage of the iteration. We believe that the convergence of our approach will be similar to
the blockwise refinement because patches in prokimity to each other often receive similar
radiosity. From this point of view, most probably they will be selected to be sources as in the
block refinement.
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Figure 2.7: The half spaces seen through three sample points.

The same situation happens at the ray tracing pass. For intersection points on the same patch or
on the neighbouring patches with similar orientations, the local environment seen by shadow
rays (for shadow ray casting) and/or reflection/transmission rays (for reflection/transmission
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ray casting), will be very much alike (see Fig. 2.8). This motivated us to use a patch-based
ordering for shooting. By following the scan-line ordering, intersection points pertaining to the
same patch can be grouped together for shadow ray casting and/or reflection/transmission ray
casting. In this way, the relevant data required by an intersection point (to start with a shadow
ray casting and/or a reflection/transmission ray casting) can be stored in the fast memory, and
most of them will be referenced by other intersection points in the same group due to the data-
coherence property.
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Figure 2.8: The local environment seen through two intersection points.

2.6. Concluding Remarks

In this chapter, we have presented a ray-casting based two-pass approach that serves as the
basis for our target algorithm. A proximity enforced algorithm is then suggested by taking
advantage of the data-coherence property at algorithmic level. In the radiosity pass, the most
time-consuming computation is the form-factor computation. As for the ray-tracing pass,
shadow ray casting and/or reflection/transmission ray casting would dominate in computation.
They all rely on the ray-casting based approach. In this sense, any program that implements the
two-pass approach will consist of a core program which performs the ray-casting procedure.
From chapter 3 onwards, emphasis will be put on this ray-casting procedure.
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Chapter 3

A New Space 'Partitioning Technique

3.1. Introduction

In chapter i, we have argued that the minimum execution time of a paralle! algorithm as a
function of task size depends on both the topology of the architecture and the structure of the
algorithm. If neither an architecture nor an algorithm is pre-specified in greater detail, then one
will have to start-off from some initial algorithm-architecture pair and rely on some design
methodology to carry it over into alternative pairs which supposedly approach gradually the
optimum pair. The choice of an initial algorithm-architecture pair is crucial as it may otherwise
not be easy to reach the optimum pair. In a general setting, the search for an optimum will most
likely start-off from some sequential program which results from the designing of an algorithm
that has been carried out on a standard workstation. However, in cases when the underlying
problem resembles in some way or another problems from scientific computing, it will most
probably be possible to cast the sequential program in the form of regular nested-loop program
(massively parallel algorithm). Although such initial programs may be an oversimplification and
wasteful in terms of operation counts, they have the advantage that they are easy to parallelize
and naturally suggest a (almost) linear speed-up architecture. In other words, a systolic-like
algorithm is, then, a good initialization. Consider a ray-casting procedure. We have chosen the
initial algorithm-architecture pair to ly on the ideal linear speed-up line. We shall call this pair
the naive pair.

As stated previously, the core computations involved in the ray-casting procedure is the ray-
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patch intersections. Let p;, i =0, I, ., N - 1, be N patches in a scene, and letrgj=0,1,..,
Ry-1,k=0,1,.,Rg-1,be R=RpxRgrays uniformly distributed over (¢, 6)-plane (see
Fig. 2.4b). The naive algorithm is given in Fig. 3.1.

Obviously, the sequential or single-processor execution of this program will take time O(R x
N). On the other hand, a parallel or multi-processor execution of this program would be
achievable in time almost zero, provided the number of processors is R x N and communication
overhead is disregarded. But as the speedup-overhead tradeoff given in Fig. 1.1 predicts, this
massively parallel algorithm will also have a large execution time as will be obvious from its
tremendous amount of intrinsic communication. Nevertheless, the naive algorithm is a very
useful algorithm to start-off the design of a realistic well-performing architecture because it is
completely transparent in the sense that all possible parallelism as well as all possible overhead
is explicit in it. As will become clear in this chapter and chapter 4, this property makes the task
of reducing overhead while preserving as much as possible of the inherent parallelism much
easier. In the remainder of this chapter we will analysis the naive algorithm, and discuss a
conventional and a new space partitioning techniques.

Algorithm: Naive
for all patches p; ,i =0,1,..,N-1
for all angles (oj,j =0,1,.., Ryp- 1
for all angles 6k, k =0,1,.,Rg-1
compute intersection(p;, rik)
end for
end for

end for

Figure 3.1: The naive algorithm.

3.2. A Naive Algorithm

The naive algorithm can also be cast in the form of a nested loop program (NLP). A particular
form of which is shown in Fig. 3.2, where ij, [ = I, 2, ..., n, are referred to as loop indices,
and fjj, fy,j are referred to as integer-valued boundary functions, possibly involving loop
indices. The constants my are increment or decrement steps of the loop indices. Ci,i=1,2,

o
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..., k, are conditions on the loop indices. Bj ,i =1, 2, ..., k, are program badies, which are
either ordered sets of assignment statements or NLPs themselves. The collection of all if-then-
else blocks is called the loop-nest body. If the loop indices are stacked in a column vector [ =
i, if, ..., in)t, then I is called an iteration vector. Here, the superscript  denotes transpose.
Since the intended execution of an NLP is serial, that is, the iterations of loops will be executed
one by one, in the order imposed by the loop indices, a mental execution of such a program is
necessary to expose the intra-iteration dependencies which are more or less hiding the implicit
parallelism in the program. In [DHW93], a methodology is proposed to map nested loop
programs into parallel processor arrays for the case when fj, the f, and the C are affine
functions. This methodology starts off with a conversion of an affine nested loop program to a
single assignment program (SAP) which is a graphical representation of the program static
computational structure.

forij =fi 1 t0 fy,1, step m]

for iz =fi2 to fy 2, step m2

for ip = fi to fy 1, Step mp

if Cy then Bj

elseif ...

else if Ci then By

end if

end if

end for

end for

end for

Figure 3.2: A general NLP.
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Definition 3.1 (Computational Structure, Dependence Vector) Let P be an SAP
derived from an NLP as given in Fig. 3.2. The computational structure of P is an indexed
directed graph Q(N, E) defined in the n-dimensional iteration domain I = {/ [7= liz, iy, ...
inlt fi0 Si1<fuls oo fin <y Sfun). BEach node ny e N represents an iteration and is located
at the point corresponding to the iteration vector I = [iy, ip, ..., iy]?. There is an edge ¢jye E
between two nodes n; and ny if node ny requires a data from node nj. The edges are labelled
with a vector which is called a dependence vector. The edge ejy is labelled with the dependence
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Figure 3.3: The computational structure Q for the naive algorithm.

If the number of iterations for each loop in an NLP is known at compile time, which is
generally called a manifest iteration, then it is possible to derive the computational structure
before program execution. This is essential to the applicability of a compile-time scheduling
relying on graph-theoretic method. Now consider the naive algorithm. All the boundary
functions are constant parameters which are known at compile time. The
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computational structure of the naive algorithm can thus be easily drawn as shown in Fig. 3.3. A
patch can be delivered to all the nodes on a (j, k)-plane by way of broadcasting. Similarly, a ray
can be delivered to the nodes where they are used. It is thus seen that nodes in the graph of Fig.
3.3 do not depend on each other. Being free from data dependencies, each node in Fig. 3.3 can
be assigned to a separate processor to perform an intersection computation whenever patch and
ray data become available. As a result, the naive algorithm belongs to a class of massively
parallel algorithms, which lends itself to a massively parallel implementation. However, they
turn out to be rather inefficient in terms of utilization of resources.

3.3. The Conventional Technique

The computational structure in Fig. 3.3 results in many wasteful computations. This is due to
the fact that the sets of input patches and rays are not ordered from the viewpoint of a sample
point. These wasteful computations can be avoided by ordering the input sets of patches and
rays in some way. In what we shall call the conventional technique, the 3-dimensional object
space is partitioned into cells according to a particular encoding scheme, e.g., octree [Glag4]
[MMB3], binary tree [KM85] or a spatially enumerated auxiliary data structure [MHS&6]
[FTI86]. Each cell stores patch data of those patches which are intersected with the cell. In this
way, patches are localized and ordered in the same way as the cells are enumerated.

Algorithm: Serial
fori:=0to Ry-1 do

for j :=0to Rg-1 do
hit := false;
while (hit = false) do
begin
cell := cell traversal(ray);
for each patch in cell do
hit .= compute intersection(ray, patch)

end;

Figure 3.4: The conventional technique.
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The pseudo-code for the Serial algorithm that implements the conventional technique is given in
Fig. 3.4. One ray is shot and tested against all patches in the first cell. If the ray hits some
patches in this cell, distances are compared to determine the nearest intersection point. If there is
no hit, then the next cell is traversed and tested again until there is a hit. As you can see, the
outer loop in the naive algorithm that iterates through all the patches has now become the inner
loop. Due to the test condition in the while-loop, the inner loop only iterates through those
patches stored in the cells opened during the lifetime of a ray. Some saving in intersection
computations can be made at the expense of cell traversals. One major problem of this approach
which is common to any space partitioning technique is the inclusion of data-dependent
iterations, as is explained below. In data-dependent iterations, the number of iterations is
determined at run time and cannot be known at compile time. This makes the scheduling task
cumbersome.

Let ¢, be the minimum intersection distance of a ray found at cell i. We have the following
formula for the distance to the intersection point, ¢ min

tmm = mm(tl, tz, 13, I A

The min(.) takes the minimum of its arguments. Due to the structure of the cells, we can state
the following for the minimum intersection distance #; within a cell i.

where R, , is the largest intersected distance of the previous cell, i.e., cell i-1, with the ray.

Legend
cell
= patch
—p Ty

Figure 3.5: Cellwise space searching in the conventional technique.
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We now introduce the concept of luzy evaluation for the minimum distance computation. The
term lazy evaluation stems from the practice found in many programming languages when
evaluating (Boolean) expressions, Take as an example the evaluation of the expression (a or b),
where a and b may be complex expressions themselves. After evaluating a, if @ is found to be
trire, then b no longer needs to be evaluated. This saves considerable time if the evaluation of b
takes longer than the premature test on a. Hence we would like to defer the evaluation of b until
the result of @ is known. This will introduce a control dependency rather than a data
dependency. A lazy evaluation equivalent of the while-loop in the algorithm of Fig. 3.4 is
given in Fig. 3.6 hereafter.

In the conventional technique, the cellwise space searching in the calculation of intersection
points as can thus be stated as a lazy evaluation by unfolding the while-loop in Fig. 3.4.
Observe that there is data-dependent iterations in the for-loops enclosed in the square braces is
not known at compile time. Also not known at compile time is the number of iterations in the
if-then-else nest, which is another type of data-dependent iteration. Due to those data-
dependent iterations, it is not possible to draw the computational structure before program
execution,

Other shortcomings in this approach are:

L. Obviously, small cell sizes will result in fewer intersection computations per cell. This is
because a ray needs to be tested against all the patches stored in a cell opened by the ray.
However, although the number of intersection computations can be reduced by using
small-sized cells, this will bring about an increasing number of cell traversals and vice
versa. Therefore, it is very hard. to balance workloads representing cell traversal and
intersection computation due to the conflict of reducing one computation together with the
other.

2. A patch might have to be retrieved many times from memory because neighbouring rays
are most likely to traverse the same cells and even hit the same patches. This results in a lot
of waste in terms of communication.
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t) = infinity,
cell := cell raversal(ray);
for each patch in cell do
t ;= compute intersection(ray, patch),
if t; SR, then tyin =1
else
begin
cell .= cell raversal(ray),
for each patch in cell do
t, 1= compute intersection(ray, patch),
ty = min(tI, tz);

if Iy, SRZ then tin = 1o

else

end;

Figure 3.6: A lazy evaluation equivalent of the while-loop in the Serial algorithm.
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3.4. The Shelling Technique

To overcome the shortcomings of the conventional technique, a new space partitioning
technique which we call the shelling technique [SDP90] [SLD91] [SDP915] is proposed. This
technique relies on a visibility ordering with respect to a sample point. The basic ideal is to opt
for a view-dependent partitioning of the object space, as illustrated in Fig. 3.7. Compared to the
conventional technique, patches are now confined to partitions instead of cells. As a
consequence, a ray now only tests against patches residing in the partition where the ray lies.

As a first step, the hemisphere above the patch on which the current sample point lies, and
which we call the source patch, is partitioned into wedge-type partitions. This space partitioning
is clearly reflected into the resulting computational structure which is shown in Fig. 3.9. The
blocks of circles correspond to partitions and the circles within a block correspond to ray-patch
intersection computations within a partition. Unprimed, primed and double primed patch labels
refer to the same physical patch which extends over a single, two or three partitions,
respectively. There is obviously an improvement in operation counts compared to the naive
algorithm, which would correspond to a single large block of intersection computations.
Nevertheless, the small blocks in Fig. 3.9 have still an all-ray-to-all-patch relationship structure
as in the naive algorithm. This is again due to the fact that patches residing in a single partition
are not ordered by following the visibility ordering. There is thus still a waste of computations
within each partition, since there is no visibility (depth) information whatsoever. In passing, we
notice that if the number of partitions is maximized, then we are back to the conventional
algorithm, whereas minimizing that number leads us to the naive algorithm, We will come later
to the question as to what might be an optimal number of partitions. For the time being it is
sufficient to notice that the partitioning introduced so far does not introduce any dependencies.
We now proceed with resolving the question of how to reduce the waste in computations within
a partition. Recall that this waste is due to a lack of depth information. So as a second step, we
propose to provide such information by introducing a second partition which is along radial
direction. Indeed, the northern hemisphere which is local to the source patch (on which lies the
sample point relative to which the former partitioning was defined) is partitioned into concentric
half spheres which define shells of uniform radius. This is shown in Fig. 3.8. The objective of
this partitioning is as follows. A ray which reaches the spherical boundary of a shell is declared
to have survived if it has not hit any patch it encountered on its cell traversing path. Otherwise,
it is declared dead. Only survived rays can continue cell traversing beyond this shell. The
computational structure going with this partitioning as well is shown in Fig. 3.10. In contrast to
the azimuthal partitioning, radial partitioning does introduce dependencies.

On the other hand, the introduction of depth information will reduce the wastetul computations

to a large extent. Yet within the space bounded by the two spherical boundaries of two
consecutive shells and the two edges of the wedge partition, which we will call temporarily a
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subshell, a subset of rays travelling through this space may not hit some or even all of the
patches that is confined to its traversing path. Therefore, it would even save more computations
if it would be possible to know in advance that a particular ray will not hit a particular patch ina
subshell. To explore the possibility of saving computations in this sense, we go into a further
refinement of visibility information by introducing a bounding area at the level of patches.

Thus, as a third step, we propose to view a patch as being enclosed in what we shall name a
Spherical Bounding Box (SBB). Clearly, rays that are outside an SBB of a patch will not
intersect this patch, and therefore ray-patch intersection computations for such rays do not have
to take place. This bring about a nearly ideal computational structure as shown in Fig. 3.11.
For clarity, the ideal computational structure is denoted by shaded nodes there. The unshaded
part that remains wasteful is mainly due to the fact that it is difficult to isolate two patches close
to each other in the depth direction by the shellwise searching. Theoretically, they can be
isolated by using an infinitesimal shell radius. However, the depth complexity of a scene is in
general low as pointed out in [CH92]. It is not worthy to isolate a few more patches at the
expense of many more cell traversals.

In the above discussion, we attempted to explain the ideas behind the shelling technique by
considering their main effects on the computational structure of the naive algorithm. However,
as already alluded to, some dependencies should have come into the computational structures
shown in Fig. 3.10 and Fig. 3.11 which is due to the fact that a ray's behavior in one shell will
depend on the computational results of that same ray in previous shells. We will come to this
point in a moment.

To conclude, we claim that the shelling technique can remedy the shortcomings of the
conventional technique. This is because

1. Rather than relying on small-sized cells to screen out unnecessary patches, the SBB of a
patch is used to screen out unnecessary rays. Regardless of the size of a cell, only rays
within an SBB are used for computing intersection points. As opposed to the conventional
technique, a median-sized cell suffices for our purpose. Moreover, a grid-ray cell traversal
based on grids defined on the basis of medium-sized cells was proposed that can reduce the
number of cell traversals considerably. It seems likely that workloads related to cell
traversal and intersection computation can be balanced to some extent.

2. In the shelling technique, the retrieval of one patch allows for computing intersection
points with a bundle of rays. One may assign a separate processor to each ray. The
difficulty is that the number of rays allowed for intersection computations may change from
patch to patch. This prompts a dynamic architecture that allows this run-time changing
parallelism to be exploited. Pipeline processing seems more appropriate for this purpose
because it can handle the changing in the number of rays in a natural way. Moreover, the
pipelinability in computations can be better exploited in the shelling technique than in the
conventional technique. This is because a ray can be retrieved much faster than a patch,
allowing an Intersection Computation Unit (/CU) to perform at a higher rate.
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3.4.1. Issues in the Shelling Technique

By and large, the shelling technique leads to an algorithm which is not so massively parallel
than the naive algorithm, but is much efficient due to its build-in visibility ordering of the
patches and the rays. In the previous section, we exposed the underlying ideas by visualizing
their complexity reducing effects on the computational structure of the naive algorithm. In this
section, we shall discuss some key issues in the shelling technique more fully and formally.

We first present the algorithm that implements the shelling technique with the aid of pseudo-
code given in Fig. 3.12. For simplicity, we assume that only one partition participates in the
wedge-type partitioning (see Fig. 3.7), which is the entire half-space seen through a sample
point. The half-space is partitioned into a shell-like structure by a set of concentric spheres
centered at the sample point (i.e., build shell()). By following that structure, the shelling
technique proceeds with a shellwise searching until no more rays are left. For clarity, we
distinguish two types of ray: cell-traversal ray (ctray) and intersection-computation ray (icray).
Within a shell, a ctray is shot to search for the first cell (i.e., cell traversal(ctray)). Insteas of
testing against all the patches in this cell as in the conventional technique, each patch now tests
against a bundle of icrays determined by the patch's SBB. This is done by first computing the
SBB of a patch (i.e., spherical bounding box(patch). Then each remaining icray within the
SBB computes intersection with the patch (i.e., compute intersection(icray, patch)). The ctray
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will continue traversing to start over the same procedure until it reaches the current shell
boundary (i.e., continue traversing(ctray, shell)). This is controlled by the condition
shell_boundary in the inner while-loop. After iterating through all the ctrays belonging to the
current shell via the for-loop, the ray memory will be updated to check if there is any survival
ray (i.e., update ray memory(icray)). If this is the case, the above procedure is repeated for the
next shell. Otherwise, it ends.

Algorithm: Shell
shell_done .= false;
while (shell_done = false) do
begin
shell = build shell();
for each remaining ctray in shell do
shell_boundary = false;
while (shell_boundary = false) do
begin
cell := cell raversal(ctray);
for each patch in cell do
sbb = spherical bounding box(patch);
for each remaining icray in sbb do
compute intersection(icray, patch);
shell_boundary := continue traversing(ctray, shell)
end;
shell_done = update ray memory(icray)

end;

Figure 3.12: The shelling technique.
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3.4.1.1. Shellwise Space Search

The shelling technique and the conventional technique are similar in the sense that they both
search an area of space where a ray-patch intersection is highly likely, then perform any
intersection tests. As a ray does not know about the patches in its path until it strikes one, the
concept of searching thus comes up for this purpose. The conventional technique relies on a
depth-first search in the sense that a ray makes a way into the space outwards until it hits a
patch. An interesting question is: can we take advantage of the known space explored by a ray
already shot, which has been ignored by the conventional technique. Due to the property of ray
coherence, neighbouring rays will most probably open the same cells and even hit the same
patches. It is unwise to search for the known space again, at least for the small bundle of
neighbouring rays. This leads to the shellwise space searching as suggested in the shelling
technique, which is by nature a breadth-first search. Basically, a ray enters an area of space
bounded by a shell boundary to explore the unknown space. As it happens, one or more
patches would be found there, representing a space which is known to contain patches. We can
now perform intersection tests for each patch in the known space against a bundle of rays
potentially hit the patch. After collecting all the remaining rays leaving the current shell, we
proceed to the next shell to start over again until no more rays are left (see also Fig. 3.13). This
constitutes of the idea of shellwise space search. Note that by using the conventional technique,
those intersection tests belonging to the same patches can only take place by shooting
neighbouring rays over and over again.

~
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Figure 3.13: Shellwise space searching in the shelling technique.
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As stated previously, a highly efficient computational structure can be derived by shellwise
searching the space. This is similar to the lazy evaluation of the conventional technique as
displayed in Fig. 3.6 by interpreting R; as the radius of shell i. The program in Fig. 3.14 uses a
beam-scheme to explain the concept of the lazy evaluation for the shelling technique. In this
figure, B; represents the bundle of rays (or beam) entering shell i. For simplicity, we assume
that each shell only needs to be traversed once for each ray. Within Shell 1, each ctray in B;
starts with a cell traversal. Each patch found tests against a bundle of icrays determined by the
patch's SBB. Each ctray will continue traversing to start over the same procedure until it
reaches the current shell boundary. When all the ctrays in B; complete the cell traversal and all
the patches finish intersection computation, we start checking all the icrays in By to see if there
is any survival ray. This is done by comparing the current intersected distance of an icray,
icray.t;, with the current shell radius, R;. A ray is declared to have survived if the former is
larger than the latter. Otherwise, it is declared dead. A new beam, By, is formed if there is any
survival ray (i.e., build beam(icray)). The above procedure is repeated until no more beams are
left.

The shelling technique is basically an approach to make the massively parallel naive algorithm
more efficient. Therefore, the shelling technique must preserve the inherent parallelism of the
naive algorithm as much as possible. The program in Fig. 3.14 uses bundle of rays that
traverse cells shellwise and intersects with patches, and is thus one possible parallel algorithm
that implements the shelling technique. The potential difficulties of this approach are:

1. The amount of parallelism in computations is decreasing successively from inner shells to
outer shells. This is best explained by the continuously reducing-sized beams (see Fig.
3.13). The difficulty is how to manage available resources to cope with this run-time
changing parallelism. ’

2. A new beam can only be formed until all the computations involved in the current beam
have been finished. This introduces a totally sequential processing among different shells.

3. As can be seen, the constructs enclosed in the square braces in Fig. 3.14 take the form of
mixing up some data-dependent iterations. Indeed we can say that the computational
structure of the shelling technique is not known at compile-time. This makes compile-time
scheduling infeasible.

The first two difficulties can be solved by the use of ray-frustum casting, as will be discussed
in a moment. The third is a general problem for any space partitioning technique. We can only
rely on a runtime scheduling, which will be the main topic in chapter 4.
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shell_done = false;

== for each ctray in B ; do

cell .= cell traversal(ctray),

for each patrch in cell do
sbb = spherical bounding box(patch);
for each icray in sbb do

e icray.t | = compute intersection(icray, patch);

== shell_done = true;

for each icray in B i do
if icray.t I R I then icray.t . =icray.t,
else

shell_done = false;

S Bz := build beam(icray);

if shell_done := false then
begin
== for each ctray in B2 do
cell := cell traversal(ctray);
for each patch in cell do
sbb := spherical bounding box(patch);

for each icray in sbb do

- icray. t, = compute intersection(icray, patch);
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== shell_done = true;

for each icray in Bz do
o < . i
lfzcraly.t2 < R2 then icray.t . =icray.t,
else

shell_done .= false;

- B 3= build beam(icray);,

if shell_done := false then

begin

end

end;

Figure 3.14: Lazy evaluation equivalent for the shelling technique.

3.4.1.2. Grid-Ray Cell Traversal

In the shelling technique, we proceed with a shellwise space searching by following a shell-like
structure, which is a set of concentric spheres centered at a sample point. Practically, this
structure should be superimposed on an underlying data structure. From a hardware
perspective, a spatially enumerated auxiliary data structure is chosen for this purpose.
Basically, the three-dimensional object space is partitioned into uniformly distributed cells.
Each cell stores patch data of those patches which are intersected with the cell. Conventionally,
one ray is shot to find the first cell and tested against all patches stored there. If there is no hit,
then the next cell is traversed and tested again until there is a hit. The shellwise space searching
is similar to this cellwise space searching. The only difference is that each ray must traverse up
to the current shell boundary instead of cell boundary. This is accomplished by comparing the
ray's current intersected distance to a cell boundary with the shell radius. In this sense, the
underlying cell-traversal algorithms of finding cells for both techniques are exactly the same. In
the literature, many efficient algorithms have been proposed [FTI®6] [Gla84] [MHI&E]
[TKM&84]. In this section, our emphasis will be on the determination of the resolution of cell-
traversal rays.
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In the shelling technique, we claim that the density of cell-traversal rays can be much lower than
that of intersection-computation rays. The density of intersection-computation rays is subject to
a number of constraints like the accuracy of form-factors, antialiasing and resolution of images.
For high quality, high resolution rendering, this density will generally be high. This is due to
that fact that ray casting is a point sampling technique and if a uniform ray distribution is
assumed, then small patches or object shape details will determine the ray sampling density.
However, the situation is different for cell-traversal rays. Indeed, although cell traversing is
also a sampling technique, here the ray density can be much smaller since it is directly
depending on the sizes and the distribution of the cells which we have assumed to be fixed and
uniformly distributed over space. Therefore, it would be overdone if the cell traversing would
be performed with a ray density equal to the high density used for intersection computation.
One may ask what the cell size should be and how it depends on the scene to be rendered. The
answer is that, for the shelling technique, a medium-sized cell will do, because of the
following:

1. For the conventional technique, a small-sized cell is crucial. This is because a ray needs to
test against all patches stored in a cell opened by the ray. If a larger cell is taken, more
intersection computations are required due to the fact that on the average more patches
might be stored in a cell. Rather than relying on small-sized cells to screen out unnecessary
patches, the shelling technique relies on the SBB of a patch to screen out unnecessary rays.
Regardless of the size of a cell, only rays within an SBB are used for computing
intersection points.

2. The SBB of a patch is effective for screening out irrelevant rays in angular directions. In
the direction of depth, the shelling technique relies on a shell structure to isolate patches. If
two occluded patches belong to different shells, they can be isolated because only
remaining rays leaving a shell will be used for intersection computation. Unless those two
patches are very close to each other, then they can only be isolated by using small-radius
shells. This is not worthy because the depth complexity of a scene is generally low
[CH92].

From the above discussion, we conclude that medium-radius shells and hence medium-sized
cells suffice to isolate patches in the shelling technique. In view of this, we propose a grid-ray
cell traversal based on low-resolution grids imposed by the structure of the medium-sized cell
partitioning of the scene.

A prerequisite in applying grid-ray cell traversal is to use uniform cell partitioning of the scene.
From a hardware perspective, this is a preferential choice rather than a restriction. This is
because a CTU is much more efficiently traversed a uniformly partitioned space than otner
complex data structures like octree or macro region etc. We now discuss how to determine the
density of grids in (@, 8)-space for all the cells in space, as well as the corresponding grid rays

that perform cell traversal.
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In Fig. 3.15, let O be a sample point on which a shell-structure is built, and let a be the size of
uniformly distributed cells. Furthermore, let s and s - 1 be two shells with shell radii sa and (s -
I) a, respectively. Then the density of grid rays within shell s is determined in such a way that
allows to open all the cells intersected with the region bounded by shell s - 7 and shell 5. One
possible solution to determining the density of grid rays within shell s is to define inscribed
spheres? for all possible cells which just touch the shell s and project those inscribed spheres
onto the spherical surface of shell s. After projecting, each inscribed sphere actually defines a
circle on shell s. Then the density of grid rays is determined by taking the minimum sampling
grids in terms of @ and 6 angles to capture all possible projected circles. In [Hek93c¢], we have
proven that the minimum sampling grids occur at the circle defined by projecting the shaded
inscribed sphere as shown in Fig. 3.15 and are given by

3 The inscribed sphere of a cell is defined as the largest sphere that is totally contained in the cell.
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For shell s, we can define a set of rays uniformly distributed over ¢ and 6 angles, with
4(8) and Ogrid(s) as given in Eq. 3.1 which can serve as cell-traversal rays.

r=

angular spacing Peri

Due to the medium-sized cells, and in contrast to the density of intersection-computation rays, a
rather low density of rays will thus suffice for cell traversing of the space.
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Figure 3.16: A missing cell.

In the shelling technique, a peculiar situation as depicted in Fig. 3.16 can happen. In shell 4,
the two grid rays both miss the shaded cell because the ray's current intersected distance to a
cell boundary is larger than the shell radius. In case the cell contains a patch, it will not be
considered for intersection computation in shell 4. Although the patch will be found later in the
next shell, some intersection-computation rays which should rather hit that patch will already
have been declared as dead in shell 4. To overcome this missing cell problem, each intersection-
computation ray is assigned with a shell_id tag representing its version in the course of its
lifetime in different shells. Also, each patch is assigned with a shell_id tag indicating to which
shell it belongs. A set of intersection-computation rays can be determined by comparing each

o
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ray's shell_id against a patch's shell_id. In the example of Fig. 3.16, the shell_id of missing
patch is 4. Hence, for computing intersection points, one must use the bundle of rays whose
shell_id is 4 too (and not 5 ). In this way, the missing patch (which will be found eventually in
shell 5) will recover what was lost in shell 4 and yield correct intersection points.

Having introduced the low-density grid rays, we shall now consider the issue of balancing the
workloads going with cell traversal and intersection computation. For the conventional
technique, it is very hard to balance the workloads representing cell traversal and intersection
computation as pointed out in [TI86]. The difficulty lies in the conflict of reducing one
computation together with the other. For instance, the number of intersection computations can
be reduced by using small-sized cells, but this brings about an increasing number of cell
traversals, and vice versa An important feature in the shelling technique is that it resolves this
conflict. By using the shelling technique, the total number of intersection computations appears
to be kR, where k > | and R is the total number of intersection-computation rays. It turns out
that the value of k is insensitive to the cell size and is largely determined by the depth
complexity of a scene. On the other hand, the number of grid rays and hence the number of cell
traversals can be reduced considerably by increasing the cell size. The result is that cell
traversal and intersection computation workloads can be balanced.

Consider a ray frustum bounded by two constant-@ planes, say ¢ = @min. ¢ = Pmax; and two
constant-6 planes, say 8= Opin, 8 = Oy, in polar coordinate system. Total number of grid
rays up to shell S is given by

S [¢mwl (pmin ] 6mwc emin ]
sg,l( Baria | [ Peria|* 2 ( Oia || 0 |7 3.2)

Assuming that the ray frustum is defined on grids with spacings Pyri and 6 then Eq. 3.2

grid’
can be simplified as

g
Y ol ) AL,
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where Ap = and A6=6, -6

Pmax ™~ Pmin min’

The number of grid rays can be reduced considerably by increasing the cell size but has little
effect on the number of intersection computations. An interesting consequence is that a
balancing point in terms of workloads can be obtained by a well-chosen cell size. Theretfore, a
cluster can be configured as a fixed number of ICUs and CTUs. In fact, we would like to come

to a configuration which is as simple as one /CU and one CTU.

It should be noted that the size of a ray frustum is subject to a lower bound. Going beneath this
bound, cell traversals are always more than intersection computations. Consider a ray frustum
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containing only one intersection-computation ray which is not defined on grids. By Eq. 3.2,
there exist 4 grid rays which may contribute more cell traversals than intersection computations
for a sparse scene (i.e. k = 1). If this not the case, the workloads for cell traversal and
intersection computation will be equal when grid rays traverse up to a certain shell-number. We
shall call this the balanced shell-number, and is denoted as Spyjance- The balanced shell-number
can be derived by equating the workloads for cell traversal and intersection computation. It
follows that

halance
Z( +1)(9A—6-+1)=kR. (3.3)
s=1 gnd grid

Shell
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Figure 3.17: The balanced shell-number (Shell) vs A (Phi) and A8 (Theta) for R = 100K.
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Shell

e k=3

Figure 3.18: The balanced shell-number (Shell) vs Ag (Phi) and A8 (Theta) for R = IM.
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Figure 3.19: The two-dimensional representation of Figs. 3.17 and 3.18 in case Agp = AB.

Figs. 3.17 and 3.18 show three-dimens‘ional plots of the balanced shell as a function of A and
A@ for different values of R and k. For clarity, we also give their two-dimensional cuts in Fig.
3.19, where A@ = AG. These figures reveal some interesting features.

1. The balanced shell-number increases as the number of intersection-computation rays
grows. This allows to use small shell-radius when the number of intersection-computation
rays is large, representing a more efficient shell-structure which may reduce the number of
intersection computations. When k = 3, the balanced shells for R = 100K and R = IM, are
30 and 70, respectively. This allows to choose 0.05 (= 3 /30)and 0.025 (= 3 /70) as the
cell size, where 3 is the worst case distance a grid ray may traverse.

2. For a complex scene, an efficient shell structure becomes very important in order to reduce
the number of intersection computations. This is because the depth complexity of a
complex scene is generally high. It thus requires an efficient shell-structure with small
shell-radius to isolate patches. In contrast, the shell-structure is not so important for a
simple scene since the depth complexity is quite low. This suggests that the shell-radius
and so the cell size should be adjusted in accordance with the scene complexity. It is
interesting that the balanced shell-number can be adjusted consistently according to the
depth complexity. From Fig. 3.19, it is seen that the balanced shell-number increases as
the k value increases. A complex scene often reflects a larger k value, and thus allows a
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larger balanced shell-number, representing a smaller shell-radius as desired.

3.4.1.3. Bundle-Ray Intersection

Instead of testing against all the patches in a cell as in the conventional technique, each patch
found in the shellwise space search tests against a bundle of rays determined by the patch's
SBB. The implications of this bundle-ray intersection on the shelling technique are twofold: on
the one hand this helps in building the visibility ordering on the ray side as irrelevant rays for a
patch can be largely screened out by the patch's SBB, on the other hand the communication
overhead can be amortized over many useful computations. The success of this bundle-ray
intersection is directly attributed to exploiting the property of coherence. In the literature,
different manifestations of coherence were used to accelerate ray tracing. They can be classified
into the following categories.

1. Object Coherence

Object coherence means that objects tend to be continuous and distinct objects tend to be
disjoint in space. Since local neighbourhoods of space are most likely occupied by the
same objects, they can be localized by creating a hierarchy of bounding volumes around
them or by partitioning the object space using various encoding schemes like octree, binary
tree, or a spatially enumerated auxiliary data structure. The performance of ray-tracing can
be greatly improved upon by checking for intersection with simple bounding volumes and
traversing the space in a judicious way instead of going through exhaustive search.

2. image Coherence

Image coherence can be considered a consequence of object coherence after projecting an
object onto a two-dimensional image plane. The local constancy of space gives rise to a
similar property in the image, across which colours change only gradually.

3. Ray Coherence

Ray coherence means that rays with nearly the same origins and directions will probably
intersect with the same objects in the environment. This property has been exploited to
reduce computation by considering bundles of rays (also called beams) that interact as a
whole with abjects in the environment.

The shelling technique exploits both object coherence and ray coherence. Object coherence is
accounted for by means of uniformly distributed cells. Ray coherence is accounted for by
means of a classification technique which determines potential rays that may intersect a patch.
This can avoid ray-patch intersection computations for such rays do not have to take place. The
question is how to select an appropriate classification technique. One may choose to use a fast
method but may classify rays which are far too many. The other may pay a higher overhead by
using a superior method that can classify potential hit-rays accurately. The tradeoff largely
depends on the following considerations:
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|. Traditionally, objects have been modelled by means of polygons to take advantage of
machines that provide hardware acceleration for polygonal rendering. We aim at
developing a rendering accelerator that supports both polygon and Bezier patch modelling
of objects. We thus have to come up with a classification technique that can handle both
polygon and Bezier patch.

2. Calculation of ray identifiers (i.e., ray addresses) is very frequently performed in any
classification technique. To make this calculation simple, it is natural to choose an easy
distribution function to master rays, subject to the constraint that the quality of the image
must not be sacrificed.

ray

VA

A

A6
delta area of a ray
constant-0 plane
spherical bounding box
—» Y
()
Ag constant-@ plane

Figure 3.20: An example of SBB defined on the surface of a hemisphere.

To facilitate our further discussion, we define some basic terms in the following.

Let V be a set of points in a plane, the convex hull of V is the smallest convex object containing
all the points. This is the ordinary convex hull used in the area of computational geometry,
which is defined on a set of points. In the field of computer graphics, another kind of convex
hull called convex hull of directions plays an important role.

betFQ be a vector from the point P to the point Q. The direction of FQ. is defined to be the unit
vector PO / [PQ!, where IPQI is the magnitude of the vector PQ. We now give the definition of
convex hull of directions as follows:

o
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Definition 3.2 (Convex Hull of Directions) Let Uf{.}, _07; be a set of directions
defined by a set of pomts Pg, ..., Py on a unit sphere centered at point Q. The convex hull of
directions OP OP is defined as a minimum convex set on the surface of the unit sphere
which cumain.s P(), R |

Consider a ray-casting procedure. A unit hemisphere is placed around a sample point on a
source patch such that the base of the hemisphere is perpendicular to the normal of the patch at
the sample point. The surface of the hemisphere is discretized into delta areas by constant-@ and
constant-8 planes uniformly distributed over (¢, 6)-plane with constant Ap and A6. Rays are
then cast from the sample point through the center of each delta area to the environment, as
shown in Fig. 3.20. By definition, the convex hull of directions for a set of so-defined rays is
the minimum convex set on the surface of the hemisphere containing all the centers of those
delta areas corresponding to the set of rays. Alternatively, we could derive a spherical surface
on the hemisphere, which is bounded by two constant-@ and constant-6 planes (see Fig.
3.20), that contains all the points. This is what we call the spherical bounding box of
directions, as is defined below.

Definition 3.3 (Spherical Bounding Box of Directions) Let ﬁ;, _0?; be a set
of directions defined by a set of points Py, ..., Py on a unit sphere centered at point 0. The
spherical bounding box of directions -O_ﬁ(.) a’;, is defined as a spherical surface on the
sphere, which is bounded by two constant-@ and two constant-6 planes in polar coordinate
system, that contains Py, ..., Py |

Definition 3.4 (Spherical Bounding Box of a Patch) Let H be a unit hemisphere wuh
center O and normal vector directed in Z direction, let P be a polygon or Bezier patch, and let P
be the projected image of P by projecting each point of P perspectively onto H. The spherzcal
bounding box of P is the spherical bounding box of directions defined by all the points in P
and the point O. n

Having introduced the definition of SBB, we now come to the comparison of classification
techniques. In the literature, different ways of classifying potential rays that intersect a patch
have been proposed. Two of them are the following:

1. Bounding Sphere

Let P be a point, and let C be a sphere with center O, O # P, and radius r. Furthermore, let
O be a point inside C. Then the following inequality holds for the inner product of
directions dir(PQ) and dir(PO).

(dir(PO), dir(PO)) > 1 - (11POIY,

whete (dir(PD), dir(PO)) is the inner product of directions dir(PQ) and dir(PO). Taking a
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sphere as the bounding volume of a patch, then we can classify potential hit-rays by
checking the above inequality. Because a sphere is a rather loose bounding volume of a
patch, it is likely that too many rays will be classified as potential hit-rays. Moreover, it is
difficult to derive ray identifiers for the potential hit-rays which are confined to a circle on
the hemisphere . This is because those ray identifiers are unstructured in some sense.

. Convex Hull

Alternatively, we can project a patch onto a unit hemisphere centered at the sample point
then determine a minimum convex set on the surface of the hemisphere which contains the
projected patch. Although this method allows to classify potential hit-rays accurately, it is
not practical to use it because its speed and numerical stability are very poor. Again, it is
difficult to derive ray identifiers for the potential hit-rays which are confined to the convex
hull. .

From a hardware perspective, identifying ray coherence requires quickly determining a
reasonable bounding volume for a patch that allows efficient retrieving of rays. As mentioned in
section 3.4, we may choose the SBB of a patch as the bounding volume. At least, this makes
the retrieval of rays much easier. We shall discuss this in the following.

/2
(2R 0 1) A6
0 T SBB
246
ray
A6
ray identifier

(2R,- 1) Ap

Figure 3.21: A rectangular window on the (¢, 6)-plane defined by an SBB.

Consider a ray-casting procedure. Let ryji=0, 1, .., Rep- 1,j=0,1,.,Rg-1,be R = R(p X
Rg rays uniformly distributed over (¢, 8)-plane (see Fig. 2.4b). The A6 and A¢ can be
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obtained as follows:

I
2
AB = =,
2Rl9
27
Ap ===
2R¢

For addressing purpose, each ray is assigned with a two-dimensional index, (Ag, AQ), called
ray identifier. For a ray defined on grid (¢, 6), its ray identifier can be computed as follows:

£
_A@
Ag=28—
9, (3.4)
4 =40
72

By definition, the SBB of a patch is a spherical surface on a unit hemisphere, and is bounded
by two constant-@ planes, say ¢ = Q1,0 = @2, ¢] < ¢2, and two constant-6 planes, say 6=
07,8 = 62, 01 < 02. It defines a rectangular window on the (@, 6)-plane, as shown in Fig.
3.21. By virtue of Eq. 3.4, the ray identifiers for boundary rays of the window are given by

8 ] 8
A91= 0 ’ A62= AO b
2 2
[0 ] Aol (3.3
A, =|A4 , A =|A4 ,
¢, ‘g n7| "’2

where [ Tanal.J represent ceil and floor operators, respectively. All the potential hit-rays can
then be retrieved by addressing the window: ABI SAgs A92 and Aq,] SALSA 9y

The question that remains to be answered is how to quickly determine a reasonable SBB of a
polygon or Bezier patch. By definition, the SBB of a patch is a spherical surface bounded by
two constant-@ and constant-6 planes, that contains the projected image of the patch on the
hemisphere. Theoretically, we could project each point of the patch onto the hemisphere, then
the constant-@ and constant-@ planes that bound the SBB are those planes taking the smallest
and largest @ and 6 values among all projected points. One may ask can we just count on the 4
vertices of a polygon or the 16 control points of a Bezier patch to determine those bounding
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planes. It turns out that the smallest and largest ¢ values, as well as the largest 8 value of the
vertices (or control points) can be used for this purpose. Unfortunately, the minimum 6
bounding plane of the SBB may not necessarily take the smallest € value among the vertices (or
control points). It is therefore necessary to find an efficient way to estimate the minimum 6 of
the patch. By estimate we mean that the derived minimum 6 value must be less than or equal to
the minimum 6 of the patch. This is accomplished by first determining the smallest 8 value
among the vertices (or control points), and then subtracting a correction term &g from the
smallest @ value to get a value guaranteed to be less than or equal to the minimum 6 of the
patch. The next lemma provides that correction term.

Lemma 3.1: Let L be a line segment with endpoints P (1, ¢}, 87) and Q (I, @2, 61), where 0
< @1, 92 <mand 0 < 81 < /2. Then the difference between 6; and the minimum 6 angle of L,
denoted as £g, is given by

SIE

ifA(p=I(p2-(p1I=7tand9 =2£,

1

£ = cos 91

6 6,- cos! (

) otherwise. (3.6)

.2, 2 AQ
1 - sin 91 sin (—5—)

Proof: It is trivial to prove the case when Ap = w and 6] = /2. We are now dealing with the
non-trivial case. In Fig. 3.22, let N be any point on L, and let M be the middle point of L. The
@ angle of N is given by

— -l (€
B=1tan (Z)'

Because y = tan-! x is a monotonically increasing function of x when 0 <y < /2, it follows
that the minimum @ angle of L, By, happens at M, and is given by

Substituting x by cos 63, and subsequently b by sin 87 cos A6/2, we obtain

cos 6 '

Bmin = cos! ( .
1-sin’@ ; sin? (%)

O
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Therefore

cos 6 :

-9 . —0 - el
89—91 emm—el cos™ (

).
29

. 2 .2
I -sin 915m (2

This proves the lemma. u

The above lemma states that the minimum 6 angle of a line segment with two endpoints lying
on a unit hemisphere can be estimated by subtracting a correction term g from the smallest 8
value of the two endpoints. We now come to the main theorem.

V4
A

P, ¢,0)

Figure 3.22: The derivation of &g for the line segment L.
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Figure 3.23: The maximal 'extent IT of P and its projected part IT".

Theorem 3.1: Let H be a unit hemisphere on the plane Z = 0, centered at a point O. Let P be a
polygon, and let P’ be the projection of P onto H with O the center of projection. Furthermore,
let @min and By, be the smallest @ and @ angles among the vertices of P, respectively, and let
®max and Bmgy be the largest ¢ and @ angles among the vertices of P, respectively. Then the
spherical surface on the hemisphere, which is bounded by the following constant-¢ and
constant-6 planes:

$= (pmin’
= Opaps

3.7)

6= 6min . 89((Pmax i q’min’ emin)’

6= min(8yp,y %),

is an SBB of P. The min(.) takes the minimum of the two arguments.

o
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Proof: In Fig. 3.23, let /1 be the maximal extent of the patch P such that the angular
components of the vertices of ITare still bounded by Bmin, Omax, Pmin, and Qpqyx. Let IT be the
projection of IT onto H with O the center of projection. Then P’ is contained in IT' If we can
prove that the above four bounding planes take the minimum and maximum angular
components of [T, then, by definition, S is an SBB of P.

It is clear that the minimum and maximum @ angles of IT" are By;n and 8,y Consider the
minimum ¢ angle of I1". By lemma 3.1, this angle iS 8min - €6(Pmax ~ Pmin. Omin)- The
maximum B angle of IT is By,y, because the error g on the hemisphere H is non-positive, but
it must be clipped against H and thus is limited to #/2. This proves the theorem. |

For practical usage, €gis a rather complex function of two parameters 8; and A¢. There is a

clear need for further exploration to make it appealing for hardware implementation. We
observe that £g has the following properties:

. In Eq. 3.6, consider the case when 6; # /2. It turns out that £g is a monotonically
increasing function of A for 8; = constant .

2. Furthermore, ggis bounded between 0 and (Eg)nm when A@ = constant , and is given by

| < (86)mux = C()s'l (2_—_....“_C)

) S _— ’ .
¢ % ¢, = onstant 2-C 38
where
A
— 24229
C=2sin 7
From Eq. 3.6, it follows that
dcos &y sin 291 D - C sin® 91)
—_—t = ( 5 -0),
391 A@ = constant ,1 D sinz 91 2(1-Dsin 91)
(3.9)

dcos & | _ D C sin® 26 ’
dAQ 6, = constant 1-Dsin’ 6, 8(1-Dsin’6)

D=sin2£22=C(2-C).

where

From Eq. 3.9, it follows that, if 8; = constant, then cos €gis a monotonically decreasing
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function of A because

dcos € o
e <0.
AQ 8, = constant
This proves that £g is a monotonically increasing function of A@ when 6; = constant.

Consider the case when A@ = constant . The maximal error (eg)mcan be derived by setting

dcos &y
— | =0
30 f A@ = constant

and checking if

2
d cos £y
2 lA st nt<
301 @ = consta

From Egq. 3.9, we have

D (I - Csin® 0)

C=0,
2 (1 - D sin® 0)
so that
2J1-C
Y |
(£e)maxlg,;=cos S (3.10)
and
6] =sin’! 2—15 G.11)

This proves that £gis bounded as stated.
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A three-dimensional plot of £g as a function of 8; and Ag is shown in Fig. 3.24. The eftects of
Ag on 97 and (Ee)mwc are shown in Fig. 3.25a and 3.25b. It is seen that 9? monotonically
increases from m/4 to #/2 when A6 increases from 0 to &, and that (89)max monotonically
increases from 0to /2 when Ag increases from 0 to 7. See also Table 3.1 for some specitic
values. The maximal error (eg)mux is less than 70° when Ag is smaller than 90°. This motivates
us to store the values of (gg)max with respect to A@ ranging from 0 to 7 in a table. Because &g s
a monotonically increasing function of A for 61 = constant., this allows us to quantize the
whole ¢ range (i.e., from 0 to 7 ) into a set of Ag, values. Based on the Ag of a patch, instead
of calculating £g on-the-fly, we retrieve the value of (89)max for that Ag, closest to and larger
than Ag from the table.

Table 3.1: Some specific values for (Sg)max.

Ag (degree) 9;(dcgrce) (Eg)max(degrec)

10 45.05 0.11

20 45.22 0.44
30 45.50 0.99
60 47.06 4.12
90 49.94 9.88
120 54.74 19.47
150 63.04 36.07
180 90 90
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Figure 3.24: The three-dimensional graph of &g vs. 87 and A¢.
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Figure 3.25: The figure of (&) vs. Ag.
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Figure 3.26: The image plane bounding box for determining primary rays.
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Figure 3.27: The derivation of (x;, y5) for perspective projection.

Let V and S be the origin (i.e., viewpoint) and the display screen in an eye coordinate system,
respectively. Let P be a polygon, and let P’ be the projection of P onto § with V the center of
projection. By definition, the I/PBB of P is a rectangle on §, which is bounded by two constant-
Xs and two constant-ys planes, that contains P'. The derivation of I/PBB is much easier than that
of SBB. We can simply project each vertex of P onto S with V the center of projection. Then
the four constant-xg and constant-ys planes that bound the /PBB take the smallest and the
largest x5 and ys values among the four projected vertices. The coordinates (xg, ys) of the
projected point p' (xs, ys) of a point p (Xe, ye, z¢) can be easily computed. Indeed, consider the
(Ye, Ze)-plane drawn in Fig. 3.27. The triangles OQ'P' and OQP are similar, giving the
relation y¢/D = y/ze. A similar construction in the XeZe plane yields xy/D = x./ze. After
obtaining the coordinates (x;, ys) of all the vertices, it is trivial to determine the smallest and
largest xs and y coordinates that define the /PBB.

3.4.1.4. Ray-Frustum Casting

Recall that, the shelling technique proceeds with a shellwise space searching. Each patch found
tests against a bundle of rays determined by the patch's SBB. As long as a patch becomes
known, we may adhere to it and use a bundle of rays that traverse cells as usual. This leads to
the ray-frustum casting. We first give the definition of a ray frustum.

Definition 3.5 (Ray Frustum) A ray frustum is defined as the region bounded by the
following constant-@ , constant-@ or constant-r planes represented in polar coordinate system:
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Figure 3.28: Ray-frustum casting in the shelling technique.

In Fig. 3.28, we use the example in Fig. 3.13 to demonstrate the ray-frustum casting. The key
point is that ray frustums are now defined by patches instead of shells. The main advantage of
this approach is that more parallelism can be exploited as ray frustums in different shells may be
executed in parallel. In this example, being free from data dependencies, RF; and RF; can be
executed in parallel. In this approach, the processing of ray frustums is reminiscent of
wavefronts swept over entire space. The problems that remain to be answered are:

1. How to determine the patches that define ray frustums?

The answer is rather involved and more details will be treated in chapter 4. Basically, they
should be large patches from the viewpoint of a sample point. Otherwise, they are most
probably hidden by intervening patches, representing a waste in computations. In order to
find those patches, a low-density ray casting is used as a preprocessing step. Due to the
low-density rays, we can say that most patches found in this step are large in some sense.
Ray frustums are then built on the basis of those large patches.

2. How to compute ray frustum from a patch?

By definition, a ray frustum is nothing but a region bounded by six planes in polar
coordinate system. It is clear that the r = ry, bounding plane can be derived from the
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vertices (or control points) of the patch. The four constant-@ or constant-6 planes can be
derived from the patch's SBB, as is discussed below.

3.5. A Formal Comparison

The underlying principle of the shelling technique is to establish parallelism that is profitable to
exploit in the underlying architecture by virtue of the following dual strategy:

1. Visibility Ordering
By following a visibility ordering, rays can search for relevant patches in a manner of
backward ray tracing, resulting in a highly efficient computational structure as shown in

Fig. 3.11. Most redundant parallelism in computations, prevailing in the naive algorithm,
becomes to be obsolete.

2. Ray-Frustum Casting

By grouping rays on the basis of the Spherical Bounding Box (SBB) of a patch, a ray
frustum is formed and will be served as basis for casting. The implications of the ray-
frustum casting on the shelling technique are twofold: (1) It helps in building the visibility
ordering on the ray side as irrelevant rays for a patch can be largely screened out by the
patch's SBB; (2) It is a versatile computational primitive that can mitigate the overhead of
long latencies for patch requests.

Due to the inclusion of data-dependent iterations (see Fig. 3.14), the computational structure of
the shelling technique is no longer manifest at compile time. Besides, the computational
structure of one scene may be very different from that of another scene. All these prevent us
from deriving a solution that is optimal in some sense by means of formal techniques like
mathematical programming or graph-theoretic method. In this section, we shall make a formal
comparison between ray-frustum casting and single-ray casting. To simplify the comparison,
the following assumptions are made:

1. First of all, we assume that the three-dimensional object space is partitioned into a shell-
like cell structure with respect to a sample point. A patch is stored into cells in which it
resides. This allows to derive the space occupied by a shell easily, which may otherwise be
rather involved.

2. Secondly, we assume that patches are uniformly and randomly distributed over the space.
More precisely, we assume that for arbitrary points (x], y1, z7) and (x2, y2, z2) in spcce,
and randomly selected patch P, that the probability that P takes up (x7, yJ, z]) is equal to
the probability that P takes up (x2, 2, 22).

3. Finally, we assume that rays are uniformly distributed in (@, 6)—plane with constant A@
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and A@ (see Fig. 2.4b). As each ray subtends A@ and A8 , it can be viewed as a ray
frustum taking up a finite space.

For the sake of completeness, we briefly state the single-ray casting and the ray-frustum
casting.
1. The single-ray casting
Each ray within a shell performs intersection tests with all the patches in the space taken up

by it sequentially. As a result, a ray may either die there or survive and leave for the next
shell. When the latter happens, the ray continues testing as before until it hits a patch.

2. The ray-frustum casting

All the rays within a shell perform intersection tests with all the patches in the space taken
up by them in a pipelined fashion. As a result, a number of rays may die there and only
remaining rays allow to leave for the next shell. The remaining rays continue testing as
before until no more ray is left.

Consider a sector of space extending from a point on which a shell-like cell structure is built.
Let
R;:  The number of rays in shell i of the sector; Ry =R,

P;: The number of patches in shell { of the sector; Py = P.

r: The radius of the first shell of the sector.
K: Screening factor, that is the fraction of rays screened out in a shell.
S: Surviving factor, that is the fraction of rays leaving a shell; =1 - K.

T;:  The pipeline period of an Intersection computation unit (/CU).

T The time spend on retrieving a patch (from a memory and possibly via a
network or bus) which is assumed to be much larger than T).

We aim at deriving a formula for the execution time of a sector processing. This derivation is
based on the following observations:

1. The number of patches in a region is proportional to its volume (by assumption 2).

2. The screening factors of two shells are the same if the ratio of number of patches is the
same as the ratio of densities of rays (i.e., the number of rays per unit volume) in those
two shells (by assumptions 2 and 3).

In order to simplify the derivation, we are looking for a shell structure, possibly with variable
shell-radius, such that the screening factor for each shell is the same. By observation 2, this can
be accomplished by choosing an appropriate radius for each shell to keep the ratio of number of
patches the same as the ratio of densities of rays in two consecutive shells. In general, rays
become divergent in subsequent shells, an so their densities decrease accordingly. For
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simplicity, we take the average density upon entering and leaving a shell as the density of rays
in the shell. The ratio of the density of rays in the first shell and the second shell is given by

2

2 __1_
(kA + KP4

2

where kr is the radius of the second shell.

By observations 1 and 2, the screen factors of the first and second shells are the same if the
following is satisfied

F__ .1 3.12)

@’ -F) el

Solving Eq. 3.12, we have
k=17

By repeating this for the other shells, we derive a shell structure as shown in Fig. 3.29 in
which all the screening factors are the same. By observation 1, we can have the number of
patches in shell i, for all i # 1, from the ratio of the volume of shell i to that of the first shell, it
follows that

P;=i2P.

third shell

0.7r second shell

0.7 first shell

Figure 3.29: A shell structure to keep the screening factor equal.

When neglecting the cell-traversal time, we find the execution time, Ty, for the ray-tfrustum
casting to be

o
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T.=(RP+SR 22sP+ SR S°P+.) T, (3.13)

If we assume that a single bundle-patch intersection-time is balanced with the loading time of
the next patch.
Now, from Eq. 3.13

2
z(l+S)RPTl _(HSZ)

T _—9
(-5

o putting C

a- 52)3 f
we get

Trf= CrfR P TX (3.14)

In Fig. 3.30, we show the effect of § on Cpf: C,fstarts increasing slowly when S increases, but
goes up very quickly when S approaches /. This implies that the overall time 7yf will increase
very fast when the bundle of rays in the sector doesn't match with the ray coherence of patches.

300
200 1

100

Figure 3.30: The effect of S on Cy,

For comparison purpose, we look at the fraction ¢, of T,y spent on shell i. and is given by
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2G-0 i -1

s ppr if SRT.>T,

~ i 2>

Trf~ i-12 i1 (3.15)
$TpT, if S RT,<T,

In the above formula, the bundle-patch intersection-time may or may not be balanced with the
loading time of the next patch.

For the single-ray casting, the time spent on shell i, ¢, say, depends on ADRC; = KR/i2P, that
is, the average degree of ray coherence of patches in shell i. In case the patches in the shell can
be hit by at most one ray, that is, when ADRC; < 1, then t, is determined by the retrieving time
of patches in the space taken by the rays. Otherwise, ¢ is the sum of two contributions: (1) the
part hit by the rays, and (2) the part that remains no hit. Hence

o ‘
8" 'kR+S'’P)T,  if ADRC,>1,

v i, (3.16)
s ipT, if ARDC,<1.

’

Comparing Eqs. 3.15 and 3.16, we conclude

1. In case ADRC; < 1, there is no advantage at all from using the shelling technique because

i-1
>t if $RT,>T,
3.17)

t =t

Y
<t S RTST,

2. In case ADRC; > 1, if we can match the bundle of rays in shell i with ADRC; , that is, if

s Ip - KR
12P
then
(S+K ADRC) T, .
——m_ci_T;_ tr 1f S R TA> T’,
L= (3.18)
i-1
(S+KADRC) 1, if 8 RT,<T,

.
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3. By Eq. 3.18, we must keep the screening factor K as high as possible, because in this case
ADRC; > 1. In the ideal case, K = /, that is, § = 0, in which case

T, -l
= if § RT,>T,
=4
» i (3.19)

ADRC;t, if S RT,<T,

justifies the usage of spherical bounding boxes to force K to be high.
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Chapter 4

Mapping onto a
Pipelined Parallel Architecture

4.1. Introduction

In order to make the algorithm execution fast on a parallel machine, it is required that the
parallelism in the algorithm can be expressed effectively by a powerful programming language
and the architecture of the machine should be able to support the parallel execution of the
resulting program. For instance, parallelism in an algorithm can be fully expressed by data-flow
programming with Val [AD79] [McG82] and /d [Nik87a] [Nik87b] and supported by dataflow
machines. In recent years, substantial efforts are being exerted on developing parallel
programming languages. Different parallel programming paradigms are evaluated. These
include shared variables in parallel Fortran and C, message passing in CSP/Occam and in
extended Fortran and C on hypercubes, single assignments in SISAL and data-flow
programming with Val and /d. The detailed description is beyond the scope of this thesis. Our
emphasis will be on finding an appropriate architecture that supports the parallel execution of an
algorithm, This requires to know different styles of parallel computation pursued by a parallel
machine. First of all, paraliel computation can be characterized as function-parallel or data-
parallel depending on the way it is partitioned and distributed [Ost87]. A function-paraliel
computation decomposes a program into modules of different functionality, which can be
executed in parallel on multiple processors. This is suitable for an algorithm that can be
programmed using many independent subroutines, e.g., flight simulation. A data-parallel
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computation partitions a data domain into data segments and distributes them among multiple
processors. Then each processor works on the data segment assigned to it independently. This
is appropriate for an algorithm performing the same set of operations repeatedly and
independently on a large set of data. Secondly, parallel computation can be characterized as
parallel execution or pipelined execution depending on how it executes. Parallel execution
exploits spatial parallelism by using multiple processors executing independent tasks.
Contrastingly, pipelined execution exploits temporal parallelism by overlapping difterent tasks.
To understand this, it requires a bit more explanation. A pipeline consists of a cascade of
processing stages. Each stage behaves like a filter, which operates on its input data and passes
output data to the succeeding stage. Successive tasks are streamed into the pipeline and get
executed in an overlapped fashion. Some important characteristics of pipelined execution are
listed as follows:

1. Through pipelining, communication with the external world usually only occurs at the start
and end of the pipeline. This can reduce I/O bandwidth for outside communication, which
is especially important for a parallel machine that communicates with the external world
through a host computer.

2. Pipelining keeps the amount of parallel activity constant (i.e., equals to the number of
stages in the pipeline) while significantly reducing the hardware requirement. It offers an
economical way to realize parallelism.

The above recognition of parallel computation is very helpful for the practice of architecture
design. Now, let's take a closer look at the algorithm that implements the shelling technique.
We claim that it belongs to the class of data-parallel algorithms. Consider the most time-
consuming computations, that is, intersection computations in the Shell algorithm (see Fig.
3.12). It is repeatedly executed for each participating icray-patch pair (i.e., for instance, the
inputs to each node in Fig. 3.11). Although some dependencies have come into play due to the
fact that a ray's behavior in one shell will depend on the computational results of that same ray
in previous shells, different rays are still independent. This justifies the above claim.

Next, we shall discuss how to execute the data-parallel algorithm if somehow the partitioned
data domain has been distributed among multiple processors. As a general principle, the object
space is partitioned into wedge-type partitions as the one shown in Fig. 3.7. Then each partition
is assigned to a processor. Computations in different partitions can be executed in parallel,
whereas within each partition a pipelined execution is assumed. This leads to a locally pipelined
globally parallel (LPGP) scheme. This choice is based on the following considerations:

1. Due to the property of ray coherence, neighbouring rays most probably intersect with the
same patches in the environment. When using multiple processors executing neighboring
rays (i.e., locally parallel), memory contention may occur due to the fact that multiple
processors may attempt to access the same patches. Consequently, the parallelism in
computation becomes insignificant because the same patches cannot be fetched
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simultaneously by all processors for the lock-step manipulation. To resolve the memory
contention, we may execute computations regarding neighbouring rays in a pipelined
tashioned. Through pipelining, communication with the external world only occurs at the
start and end of the pipeline. At the first time, it is indispensable to retrieving the patch data
(i.e., patch geometry information) from the memory system. Upon receiving the patch
data, the bundle of so-defined icray-parch pairs are streamed into the pipeline and get
executed in an overlapped fashion. No more requests for the same patch are necessary. In
this way, the parallelism in computation can be best exploited through the use of temporal
parallelism because the communication overhead of retrieving a patch can be amortized
over many computations.

2. Due to the limited size of a patch, it occupies a contiguous and bounded region in space.
This implies that computations in partitions which are not in the geometric neighbourhood
of the same patches often incur less memory contention. In case the granularity of a
partitioning is not very fine, we can take advantage of spatial parallelism by using multiple
processors executing computations in different partitions.

From the above discussion, we conclude that a pipelined parallel architecture is appropriate for
the parallel processing of the shelling technique. By operating several pipelines simultaneously,
parallel computation can exploit both spatial (multiple processors) and temporal parallelism
(pipelines). We shall now come to the resource management problem in order to effect parallel
execution.

1. How to partition a program into basic schedulable fragments and to partition the data
domain into data segments for optimal execution?

This is the grain-size* problem [Kru88]. We may have the greater opportunity for parallel
processing when the size of each program fragment becomes smaller. However, a
commensurate increase in the communication overhead due to latency and synchronization
may dominate the useful computation and thus slow down the program execution. Such a
situation becomes evident in our case. In the previous discussion, if the partitioning is
running into the geometric neighbourhood of the same patches, then memory contention
occurs due to the fact that multiple processors attempt to access the same patches.
Consequently, the parallelism in computation becomes insignificant because the same
patches cannot be fetched simultaneously by all processors for the lock-step manipulation.
In this chapter, we shall discuss a geometry based grain packing to determine a suitable
grain size.

2. How to schedule the program fragments and to allocate the data segments on a parallel
machine to obtain the shortest possible execution time?

4 We define a grain as one or more concurrently executing program fragments. The grain-size is the size of a

grain.
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This is the scheduling problem, which is known to be NP-complete [GI79] [ISC84]
[KN84], except in a few specific contexts with very unrealistic constraints. Hence various
approaches have been proposed that all seek to obtain satisfactory sub-optimal solutions in
a reasonable amount of time [Bok81] [Lo88] [MO86] [SE87] [ST85]. There are two basic
considerations for the scheduling problem: (1) To which processors should the program
fragments and their corresponding data segments be assigned? (2) In what ordering should
the program fragments be executed on the assigned processors? In this chapter, we shall
discuss a set of heuristics that serves for this purpose.

4.2. Geometry Based Grain Packing

In [KCN90a] [KCN90b], a grouping technique was proposed for balancing computation time
and communication time by controlling the granularity through data partitioning and
overlapping the operations through pipelihing. This approach is limited to a class of data-
parallel algorithms with regular computational structures’ which are known at compile-time.
The shelling technique leads to a data-parallel algorithm whose computational structure is
neither regular nor manifest at compile-time (refer to section 3.4). Nevertheless, the grouping
technique in [KCN90a] [KCN90b] may serve a good starting-point for solving the grain-size
problem. We first give the definition of grouping borrowed from [KCN90b].

Definition 4.1 (Grouping, Groups, Base Node) Let Q (N, E) be a regular
computational structure. The grouping G(Q, (d, s)) of Q(N, E) along a direction d of size s is to
partition the set N into disjoint subsets Ny, I € 1, called groups, such that, denoting by | | the
cardinality of a set

1. INd=s, and
2. UNr=N, and
3.forallnyje N J =I+rsd,0<r<landJel,

the node ny is called the base node of the group N n

The result of a grouping can be represented as another computational structure called the
contracted computational structure.

Definition 4.2 (Contracted Computational Structure) Let G(Q, (4, 5)) be a grouping.
The contracted computational structure Q'(N', E') of Q(N, E) with respect to G(Q, (d, 5)) s a

5 A computational structure is said to be regular if it posseses regular dependence vectors.
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computational structure, where

1. each node in N’ corresponds to one group in the grouping, and

2. each edge in E’ corresponds to a dependence constraint between two nodes of Q' |
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Figure 4.1: The computational structure Q for the naive algorithm.

The computational structure Q of the naive algorithm is shown in Fig. 4.1. Given the
computational structure, our goal will be to schedule its execution on a parallel machine. One
possible solution is to assign each node in the computational structure to one processor. This
requires a way of delivering all patches and all rays to the relevant processors at the same time,
so that all processors can perform intersection computations independently and simultaneously.
This is clearly not practical due to nature limitations of communication bandwidths. Hence, the
expected high execution speed due to the parallelism in computation will be obstructed severely
due to communication overhead. To solve this, one may group the computational structure Q
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along [/ 0 0] direction of size N, that is, the number of patches. The contracted computational
structure Q' after grouping is shown in Fig. 4.2. We again assign each node in Q' to one
processor. Now only one patch needs to be delivered to all processors simultaneously,
bandwidth requirements can be relaxed considerably. However, a processor only performs one
intersection computation after receiving one patch and one ray data. The communication
overhead of delivering those data would limit the computational rate of a processor. Further
grouping might be necessary to reduce that influence. Fig. 4.3 shows the contracted
computational structure Q" of further grouping Q' along [/ 0] and [0 1] directions of sizes 2
and 2, respectively. By assigning each node in Q" to one processor, a processor now performs
four intersection computations after receiving one patch and four ray data. In other words, a
delivery of one patch data can support up to four intersection computations.

In the naive algorithm, the best grain size can be determined by balancing computation time and
communication time through grouping because the computation/communication ratio can be
controlled by adjusting the size of the groups. For many NLPs, the amount of computation in
one iteration might not be enough to balance the overhead in communication, In other words, a
processor might spend more time in communicating I/O data than in computing the simple
iterations. It is thus necessary to control the number of iterations executed between each round
of communication through grouping. This a key step leading to the best grain size for an NLP.
To determine this best size, first of all, it requires a clear model of communication cost which is
derived based on the underlying processor interconnection and memory structure.

Figure 4.2: The computational structure Q’ after the grouping G(Q, ([ 0 01, N).
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Figure 4.3: The computational structure Q" after the grouping G(Q', ({1 01%, 2), ([0 I}, 2)).

Having introduced the concept of grouping by the example of the naive algorithm, we shall
now come to the grain-size problem of the shelling technique. Suppose that we have the
computational structure for the scene given in Fig. 3.9, and is shown Fig. 4.4 (redrawn from
Fig. 3.11). It is very difficult to decide the best grain size by explicitly equating (i.c.,
balancing) computation time with communication time due to the lack of a clear model of
communication cost. Except for some specific classes of applications, communication cost
cannot be known until program execution time. For instance, latencies in data accesses and
synchronizations may vary considerably due to contention in resources. Furthermore, the
influence of data partitioning on the communication cost can also be significant. This is because
remote memory accesses are much more expensive than local memory accesses in a distributed
memory or shared memory with multiple memory hierarchies.

To determine a suitable grain size, we should somehow control the number of iterations
executed between each round of communication. Our solution, called geometry based grain
packing, is to pack iterations in such a way that communication cost can be implicitly reduced
and parallelism in computation can be exploited through pipelining. It is based on the following
definition:

Definition 4.3 (Basic Block) A basic block is a piece of pipelinable codes which may be
entered only at the beginning, and when entered are executed in a pipelined fashion to the end
of the block without performing any branch statement on exiting the block. L

By packing intersection computations between a patch and the bundle of icrays within the
patch’s SBB into a basic block (the shaded box in Fig. 4.4), communication cost can be
implicitly reduced and parallelism in computation can be exploited through pipelining. This can
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be understood as follows. The patch data must be retrieved from the memory system at the first
time. Upon receiving the patch data, the bundle of so-defined icray-patch pairs are streamed
into the pipeline and get executed in an overlapped fashion. No more requests for the same
patch are necessary. The parallelism in computation can be best exploited through the use of
temporal parallelism because the communication overhead of retrieving a patch can be amortized
over many computations.
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Figure 4.4: An example computational structure of the shelling technique.

4.3. Runtime Scheduling

The general scheduling problem is a resource management problem that determines a policy
used to manage the access to and use of a resource by its various consumers. To obtain a high-
quality policy, one requires detailed information regarding the resource and consumers at the
time of scheduling. However, except for some specific classes of applications, most of those
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details in the practical scheduling problem cannot be known until program execution time. For
instance, a highly data-dependent program whose conditional constructs like branches varies
drastically from one set of input data to another. Latencies in memory accesses,
communications and synchronizations may vary considerably due to conflicts in resources.
Furthermore, data partitioning in a multiprocessor system can be very important in the context
of scheduling. This is because remote memory accesses are much more expensive than local
memory accesses in a multiprocessor system with distributed memory or shared memory with
multiple memory hierarchies. These dynamic behaviours make the scheduling problem very
difficult to manage and analyze at corapile time. In contrast to compile-time scheduling, runtime
scheduling allows to manage resources for highly data-dependent programs and dynamic
system environments. However, a major shortcoming of runtime scheduling is that a non-
negligible runtime overhead will be introduced. To explain this, we first discuss several key

issues regarding the collection and utilization of runtime information in runtime scheduling,

I. What is runtime information?

The runtime information consists of dynamic program informations and dynamic system
information. The dynamic program information can vary from rather rough characterization
like the number of processes, or the average execution time of a process and the total
amount of interprocess communications, to fine details like control and data dependencies
among processes. The dynamic system information includes resource availability, resource
utilization and workload distribution in the system environment. In this work, dynamic
program information is estimated to a level that allows us to use the clustering technique
described above. This requires knowledge of both the workload of each process and the
total amount of interprocess communication between each process pair.

2. How to obtain runtime information?

Obviously, dynamic program information can only be generated from the program itself, It
can be generated by some runtime directives from the compiler/programmer or some
runtime routines provided by compiler/programmer. In this work, we rely on the runtime
information captured by some runtime routines which are well-tuned for our specific
application.

3. How to utilize runtime information?

This is actually the runtime scheduling problem, i.e., how to utilize runtime information to
determine a better scheduling. As the scheduling algorithm is executed during the runtime
of the application program, its execution time must be kept small as compared with the
execution time of the scheduled application program. This leads to an unusual scheduling
problem on which a runtime constraint is imposed. A sophisticated scheduling algorithm
gives a superior scheduling, but the overall performance may be significantly bad due to its
high overhead. One may choose a low overhead but less etfective scheduling algorithm to
obtain a better overall performance.
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The above discussion makes clear that major runtime overheads in runtime scheduling are:
1. Runtime information gathering

Runtime scheduling makes use of the runtime information gathered by some runtime
routines which are well-tuned for a specific application. Intuitively, the more detailed and
accurate the available information, the better scheduling can be obtained. However, detailed
and accurate information also means more expensive to gather.

2. Scheduling

As the scheduling algorithm is executed during the runtime of the application program, its
execution time can incur considerable runtime overhead. In order to eventually gain in
overall performance, seemingly time-consuming or time-indeterminate algorithms are not
feasible even though they are sophisticated and may lead to a better solution in case of
compile-time scheduling. This limits feasible scheduling algorithms to those with low
complexity and highly efficient implementation.

4.4. Application-Specific Runtime Scheduling

We aim at providing a hardware accelerator board tailored for fast image rendering based on ray
tracing and radiosity shading. By tailoring the characteristics of this specific application, we
developed a technique called application-specific runtime scheduling (ASRS). It is application-
specific in the sense that only a class of applications which are ray-casting based, can be
applied. In general, runtime resource scheduling can be totally managed by the operating
system or directed by the compiler. However, operating system management can only be based
on system observables like the number of ready processes, past resource utilization, etc. It is
difficult to achieve a good performance for lack of detailed information about the program.
Compiler-directed runtime resource management is a combination of compilation techniques
and runtime system techniques, which is quite interesting for a general purpose machine
oriented towards a wide range of applications. For our purpose, an application-specific
approach is more appropriate as runtime scheduling routines can be well-tuned for the specific
application, which leads to a low complexity and highly efficient implementation. This is
justified by the following considerations:

1. We can view a program execution as many serial-parallel execution phases probably
intermingled together. Within each phase, the dynamic program information is relatively
stable, but the dynamic program information varies drastically from phase to phase.
Intuitively, the longer each stable phase, the more runtime overhead can be afforded for
runtime scheduling. For this reason, we organize the execution of a number of ray-casting
procedures pertaining to neighbouring sample points in the radiosity pass as a phase. In the

O
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ray-tracing pass, we organize the execution of a number of ray-casting procedures
pertaining to patch-based intersection points as a phase. This leads to a proximity enforced
algorithm as discussed in section 2.5. In this way, runtime overhead can be amortized over
the entire execution of the phase. Furthermore, the data management overhead coming
from dynamic data allocation and access can be reduced considerably as data coherence can
be exploited to a great extent.

2. Within each phase, we rely on a low-density ray casting to estimate the dynamic program
information required for the scheduling of high-density ray casting. The overhead of
runtime information gathering is negligible because the number of low-density rays is
much less than that of high-density rays.

3. All the heuristics in the application-specific runtime scheduling are quite simple but
efficient. This choice is in accordance with the requirements of low complexity and highly
efficient for feasible scheduling algorithms as stated previously. For instance, the
clustering technique is quite efficient as far as both balancing workload and reducing
interprocessor communication are taken into account. [t is quite simple: on the one hand the
workload estimates are as simple as the lump-sum aggregates regarding cell-traversal and
intersection-computation counts; on the other hand interprocessor communication can be
implicitly reduced and workload can be explicitly balanced by means of packing and
partitioning.

4.4.1. Basic Terms

The shelling technique leads to an algorithm whose computational structure is neither regular
nor manifest at compile-time. It thus cannot take advantage of the linear space-time mapping
used in systolic array design and the grouping used for regular computational structures to
schedule its execution on a parallel machine. Moreover, a basic block becomes the basic unit of
execution and allocation. In view of this, there is a clear need to use a different graph-theoretic
model to schedule basic blocks on a parallel machine.

A ray-frustum process is defined as all the computations regarding cell traversal and intersection
computation for a set of rays in a ray frustum. Fig. 4.5 shows the flowgraph of a ray-frustum
process. It consists of two different computational blocks CT and IC possibly connected by
two different kinds of edges. Edges with arc represent data communication requirements, while
edges without arc represent the intended ordering for execution. For instance, the edge from a
CT block to an IC block represents the requirement of sending rays and patches for intersection
computation. However, the edge connecting two CT blocks stands for an intended ordering for
execution. We intend to execute the first CT block and then the second CT block. Each of the
CT and IC blocks is associated with a weight that represents the amount of cell-traversal and
intersection computation in terms of operation counts, respectively. Each edge with arc is
associated with a weight that represents the amount of communication required in terms of
message length. A ray-frustum process may have many ditferent representations. Fig. 4.5
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demonstrates two possible representations for the same ray-frustum process rfl. By following
a depth-first order, a patch will be found and contribute 6 intersection computations after
traversing 2 cells. In addition, there are & cells that remain to be traversed. This results in the
left flowgraph shown in Fig. 4.5. Similarly, we can work out the right flowgraph in Fig. 4.5
by following a breadth-first order. It is seen that different ways of searching may result in
different cell-traversal and intersection-computation times. A set of ray-frustum processes can
be represented as a block graph.

Definition 4.4 (Block Graph) Let RF be a set of ray-frustum processes. The block graph
of RF is a directed graph G(N, E), where

L. N =UrferF (Ber,ir U Bic,f) is a set of nodes, where Bt rfand Bj rrare a set of CT and
IC blocks in the ray-frustum process rf, respectively.

2. E = 0uUD is a set of edges, where O = UrfeRF (Oct,rf Y Ojerf )is a set of edges
representing the linear orders of blocks in the ray-frustum processes and D = {(bp,;, by,j) |
p,q € Nand p # g} is a set of edges representing data communication requirements. Each
block in Oy, rand O /¢ represent a set of linear orders of CT and JC blocks in the ray-
frustum process rf, respectively.

3. Each block in By /ris associated with a weight that represents the amount of cell-traversal
computation in the ray-frustum process rf and each block in B, is associated with a
weight that represents the amount of intersection computation in the ray-frustum process 7f.

4. Each edge in D is associated with a weight that represents the amount of communication
required between two blocks. n

As pointed out in the above, a ray-frustum process may have many different representations. It
is the scheduler that determines which one should be taken. It is thus not possible to
characterize a block graph before a solution, that is, a schedule, is attempted. Moreover, a block
graph may change from scene to scene. It is therefore useless to derive the block graph for a
particular case. In this work, we make use of virtual block graphs to lead the way to the
solution algorithm. To facilitate our further discussion, we define some basic terms in the
following:

Definition 4.5 (Execution Profile) Let G(N, E) be a block graph. The execution profile
of G(N, E) is a space-time diagram showing its actual execution. n

Definition 4.6 (Intrinsic Execution Profile) Let G(N, E) be a block graph. The
intrinsic execution profile of G(N, E) is an execution profile with zero communication time. W

Definition 4.7 (Ideal Execution Profile) Let G(N, E) be a block graph. The ideal
execution profile of G(N, E) is a space-time diagram showing its actual execution when: (1)
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Minimum cell traversal and minimum intersection computation are assumed for each ray-
frustum process; and (2) All communication is neglected. |

L

y/

shell

Figure 4.5: Two possible representations for the ray-frustum process rfl.

As an illustration, consider the example of Fig. 4.5 again. Two different intrinsic execution
profiles for the ray-frustum process rf! are shown in Fig. 4.6. In this case, the block graph is
executed by two processors: one cell-traversal unit (CTU) and one intersection-computation
unit JCU). CTU and ICU are responsible for the execution of CT and IC blocks, respectively.
Due to data communication requirements (the arc in the figure) and different amount of cell-
traversal and intersection computations, a processor might be idle for a portion of time during
its execution. In the former case, the idle time for a processor can be interpreted as the time
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waiting for some messages. For instance, the JCU has been idle for 2 or 6 time units while
waiting for ray and patch messages. We shall call this the message idle time of the arc. Fig. 4.6
also shows the idle times for CTU and ICU. In this simple example, it is seen that the depth-
search strategy is better than the breadth-first strategy. This is justified by the idle times for
CTU and ICU.
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(b) Breadth-First Strategy

Figure 4.6: The intrinsic execution profiles for the example of Fig. 4.5.
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4.4.2. Tackling the Scheduling Problem: Some Heuristics

As stated previously, we rely on ASRS that can handle dynamic and irregular computations in
the shelling technique. A good schedule can be obtained through utilizing the runtime
information gathered while keeping the runtime overhead sufficiently low. In order to loosely
conform to the runtime constraint in the runtime scheduling problem, seemingly time-
consuming and time-indeterminate algorithms have been rejected as feasible solutions even
though this may not be conductive to optimality. Within the realm of suboptimal solutions, it is
not clear whether efficient approximation algorithms exist. It is thus necessary to use a heuristic
approach through empirical evaluation. In looking for a good and efficient heuristic, it is
instructive to investigate some existing heuristics that are commonly used to tackle the
scheduling problem. They include the following:

1. System Load Balancing

Processes are assigned such that each available processor has the same number of
processes.

2. Load Balancing

Processes are assigned such that each available processor has equal workload.

3. Clustering

Processes are assigned such that each available processor has roughly equal workload and
the amount of interprocessor communication is minimized.

These heuristics use program information of various degrees of detail, revealing different
algorithmic complexities. Consider the case of the shelling technique. System Load Balancing
is the simplest as only the number of ray-frustum processes is required. Clustering requires a
substantial amount of program information regarding the workload of each ray-frustum process
and the total amount of communication between each ray-frustum process pair, and has the
highest complexity among the three. In between the two lies Load Balancing that requires lump-
sum aggregate regarding the workload of each ray-frustum process. Obviously, System Load
Balancing is the fastest among the three as far as the runtime constraint is concerned. However,
it is difficult to achieve satisfactory performance if only the number of ray-frustum processes is
available in scheduling. As a matter of fact, two ray-frustum processes may differ in workloads
representing cell traversal and intersection computation considerably. In [SE90], it is suggested
to decouple the reduction of communication from workload balancing so that Clustering
becomes quite simple but efficient. It is therefore more satisfactory to choose Clustering as the
basis of subsequent evaluation.

Strictly speaking, simple lump-sum aggregates regarding the amount of computation and
communication for each ray-frustum process are not sufficient to guarantee a good schedule.
This is because precedence relations among ray-frustum processes have been ignored in
scheduling. As an illustration, consider the block graph in Fig. 4.7. To simplify the discussion,
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the communication overhead of sending messages has been neglected. The use of workload
balancing strategy will assign the ray-frustum processes rf2 and 7f3 to CTUI (35 cell-traversal
computations) and JCUI (35 intersection computations), and the ray-frustum process rf! to
CTU2 (25 cell-traversal computations) and ICU2 (25 intersection computations). Fig. 4.8
shows the execution profile of this schedule whose total execution time is 18% Ionger than that
of the optimal execution profile shown in Fig. 4.9. The optimal execution profile is obtained by
assigning the ray-frustum processes rf/ and rf2 to CTUI (40 cell-traversal computations) and
ICU1 (40 intersection computations), and the ray-frustum process rf3 to CTU2 (20 cell-
traversal computations) and JCU2 (20 intersection computations). This is due to the long
message idle time on edge d of the ray-frustum process rf3 that causes ICUI to be idle for a
long time. This suggests that a good scheduling should take message idle time into account and
it is better to overlap this idle period with other useful computations.

il 112 3
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Figure 4.7: An example block graph.
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Figure 4.8: Execution profile using workload balancing strategy.
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Figure 4.9: Execution profile under optimal scheduling.

It is very hard to achieve the optimal execution profile for a block graph consisting of a huge
number of ray-frustum processes. The potential difficulties are the following: (1) It is
unfeasible to characterize all ray-frustum processes which are probably intermingled together
due to the runtime constraint; (2) The optimal execution profile requires an expensive global
search to minimize idle times; and (3) The intervention of non-negligible communication
overhead makes the situation even worse. Instead of pursuing this unlikely solution, we make
one bold assumption, that is, message idle times can be perfectly overlapped with useful
computations as more and more ray-frustum processes are packed and assigned to a processor.
In looking for a packing scheme that supports this assumption, we make the following
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observation. Due to the limited size of a patch, it occupies a contiguous and bounded region in
space. This implies that only neighbouring ray-frustum processes will incur memory
contention. This suggests to pack neighbouring ray-frustum processes into higher-level ray
frustum in order to reduce communication overhead.

This leads to a geometry based grain packing. Conceptually, it can be viewed as a two-level
grain packing. The low-level packing is done by defining ray frustums from patches as before.
Neighbouring ray frustums can be further packed into a higher-level ray frustum, and is
recognized as the high-level packing. As more and more neighbouring ray-frustum processes
are packed, we may have the greater opportunity for overlapping message idles times with
useful computations. After further packing, the scheduling problem becomes more tractable: (1)
It is feasible to characterize all high-level ray-frustum processes; (2) It might be possible to
search the large-grain block graph for the optimal execution profile; (3) The influence of
communication overhead on scheduling becomes insignificant.

Due to the high complexity of the scheduling problem, ASRS breaks down the scheduling
problem into four simpler subproblems and tackles each of them separately. First of all, we
glance briefly through these subproblems. Next these subproblems will be outlined in more
detail, and their implementation aspects will be discussed.

1. Runtime Information Gathering

This is a preprocessing step that is used to prepare all necessary information for scheduling.
At the beginning of each phase, a low-density ray casting is invoked to gather runtime
information. These include: (1) workloads regarding cell-traversal and intersection
computations, (2) cells and patches found in the low-density ray casting and (3) a list of
ordered patches.

2. Clustering

Based on the workloads regarding cell-traversal and intersection computations, ray-frustum
processes are packed and partitioned into clusters in order to reduce intercluster
communication and balance workloads. Accordingly, cells and patches found in the low-
density ray casting are classified into their corresponding clusters. On each cluster, patches
are given descending priorities according to the order of finding them in the low-density
ray casting.

3. Assignment

The assignment algorithm assigns the clusters formed in the clustering step to a network of
processors. Meanwhile, the geometry information regarding cells and patches found in the
low-density ray casting are distributed and pre-loaded to the local memories of their
corresponding processors.

N
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4. Local Scheduling

Based on the priorities of patches set in the clustering step, the local scheduling algorithm
defines local processes and determines their ordering for execution.

4.4.2.1. Runtime Information Gathering

In order to obtain a low complexity and highly efficient implementation for runtime scheduling,
we adopt an application-specific heuristic in which runtime routines have been well-tuned for
the specific application. To ensure performance gains, runtime information captured must be
essential and the execution time of runtime routines must be kept small as compared with that of
the application program. This largely depends on the scheduling technique being used and the
program characteristics. ASRS consists of a set of heuristics that requires the program
information regarding the workloads of each ray-frustum process. With regard to the program
characteristics, it can be seen from Fig. 3.12 that cell traversal and intersection computation are
the two most time-consuming computations in the shelling technique. It becomes clear that the
runtime information should include workloads representing cell-traversal and intersection
computations for each ray-frustum process. The question now is how can we have workload
estimates without going through an expensive execution.

Due to the property of ray coherence, neighbouring rays will most probably traverse the same
cells and even hit the same patches. It would therefore seem that workloads representing cell-
traversal and intersection computations gathered by low-density rays may give us a good
estimate of those for high-density rays unless the number of low-density rays is rather low.

The pseudo-code of the low-density ray casting is similar to the one given in Fig. 3.12. The
main difference lies in: (1) the use of initial partitioning, (2) the resolution of rays, and (3) the
declaration of ray hit.

1. As mentioned previously, the geometry based grain packing is essential to ASRS. Here we
use it to reduce the runtime information required for scheduling. In the radiosity pass, the
space is initially partitioned into a number of virtual ray frustums with equally spaced AOs
and Ags. As for the ray-tracing pass, ray frustums are by nature defined by limited number
of light sources and/or specular surfaces. Instead of characterizing each individual ray
frustum, runtime information is gathered with respect to those virtual ray frustums.

2. The low-density rays can be viewed as a subsampling of the high-density rays. For
convenience, we denote Hi_Low_Ratio as the proportionality of the number of rays cast in
the high-density and the low-density ray castings. To ensure performance gains,
Hi_Low_Ratio must be kept as large as possible (so long as runtime information gathered
is still meaningful).

3. Instead of going through elaborate intersection computation, all the rays within the SBB of
a patch will be declared as hit. In this way, the low-density ray casting can be performed
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on a machine without any dedicated intersection-computation hardware. This is of prime
importance to the performance of our target architecture built around a rather cheap
platform with limited computing power.

4.4.2.2. Clustering

The second and the most important subproblem in ASRS is clustering. Due to the conflicts of
reducing intercluster communication with balancing workload, algorithms that try to
simultaneously achieve both objectives turn out to be unfeasible. In contrast, our strategy is to
explicitly attempt workload balancing among clusters, whereas the objective of reducing
intercluster communication is achieved implicitly through the use of a geometry based grain
packing. With this approach, the reduction of intercluster communication can be largely
decoupled from workload balancing, which leads to a simple but efficient solution algorithm.

1. Grain Packing

Due to the limited size of a patch, it occupies a contiguous and bounded region in space.
This implies that only neighbouring ray-frustum processes will incur the intercluster
communication if they are not packed into the same cluster. This suggests to pack
neighbouring ray-frustum processes into clusters in order to reduce intercluster
communication.

2. Partitioning

After low-density ray casting, the lump-sum aggregates regarding workload estimates for
some representative ray-frustum processes become available. Based on those workload
estimates, virtual ray frustums are packed into clusters in such a way that workloads can be
evenly distributed over clusters. We distinguish between two different types of clusters as
there exist two different subprocesses in a ray-frustum process. A sector is a cluster
referring to a cell-traversal subprocess while a section is a cluster referring to an
intersection-computation subprocess. We now state workload balancing more precisely by
saying that the workloads representing intersection computation for one section should be
close to that of other sections and also close to the workloads representing cell traversal for
each sector belonging to this section. For a given number of processors, in general we can
use a bin-packing or BSP algorithm to balance workloads distributed over clusters. The
latter is more preferable due to the following advantages: (1) the resulting clusters can be
easily assigned to a network of processors with hypercube or mesh topology, and (2) any
intermediate imbalance can become smooth afterwards without redoing the entire
partitioning. BSP is a recursive bisection based on assigning a scalar field value to esch
partition. In our case, the scalar field value may represent lump-sum aggregate regarding
workload estimate for cell traversal or intersection computation. Bisection then consists of
partitioning a cluster into two clusters with median field value. In our case, bisection
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consists of partitioning a cluster into two clusters with median workload estimate by taking
alternatively constant-¢ and constant-8 partition planes.

The BSP algorithm for building sections is given in Fig. 4.10, and is explained as follows:

L. In the low-density ray casting, an initial partitioning is used to gather runtime information.
Let Ny and Ng be the number of partitions along ¢ and 6 directions, respectively. Then, a
set of initial clusters (i.e., virtual ray frustums) C = e, i=1, .., N(p andj=1, .., Ng, is
formed. After the low-density ray casting, each cluster cjj is associated with a workload
wlj; regarding the total number of intersection computations in the cluster. In addition, the
number of processors N, preferably a positive power-of-2 number, serves as an input that
determines the maximum level of bisection.

2. For each bisection level, say s, in BSP, 25 intermediate parts, denoted as S, k=25- 1, ..,
1, 0, need to be bisected. Each intermediate part S will be bisected into two parts, Cy. and
Cp, each with approximately median workload.

Algorithm: BSP

Input:
L. A set of initial clusters C =gy, i=1, .., Nypandj=1,., Ng.
2. A non-negative real number wi;; representing the workload for a cluster cij.

3. A positive power-of-2 number N denoting the number of processors.

Output.

1. A set of N Sections.

Algorithm:

\
\ I. Create a set of N empty Sections § = US),;:
| Sp=@and WL, =0,n=0,.. N-1.

2. Set Sg and WL to the set of initial clusters and its associated workload, respectively:
=C: = l .
So=C and WLo= Y w .
3. Set bisection direction dir = 0.
4. Set bisection level s = ().

5. Repeat the following steps until s = fog, N- I:
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For each Section Sy € S, k=25-1,..,1,0:
Sk = \cij, L =iy, .., ip and j =ji, .., jn.
If dir is equal to 0

Partition Sy along i direction into two parts, Cy, and Cy, each with
approximately median workload:

CL=\cyj,i=if .., imand j=ji, ... ju
Ch =\cjj i =ip, .., ipand j =jy, .., jh.
Assign Cy and its associated workload to So; and WLy, respectively.

Assign Cy and its associated workload to Sox+; and Wik,
respectively.

Change bisection direction: dir = 1.
Increment bisection level by I:s =5+ 1.
Otherwise

Partition Sy, along j direction into two parts, Cy and Cg, each with
approximately median workload:

CL= Ucij, i = i, .. ipand j=Jp, ... jm
Ch =Yg, i=ij, ., ipand j =jm, .., jb-
Assign Cp and its associated workload to Sz and WLy, respectively.

Assign Cy and its associated workload to S2z+7 and WLpg,y,
respectively.

Change bisection direction: dir = 0.
Increment bisection level by 7: [ =1+ 1.

6. Output all Sections, Sy, n=0,..,N- 1.

Figure 4.10: The BSP algorithm for building sections.

O
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In accompany with BSP, the problem data domain is partitioned into data segments
accordingly. A consequence of partitioning the problem data domain is the decomposition of the
address space: a data item is no longer referenced by one global address, but by the couple
(processor ID, local address). We use a simple example to explain this. In an array, indices
constitute a unique reference to an element. If the array is partitioned into blocks which are
distributed over the processors in a regular way. The local indices within the block can be
computed from the global indices and knowledge about the distribution. As we shall see, a
simple algorithm is used to assign clusters to processors on a k-ary n-cube network$. Thus, the
processor ID of a data can be easily determined if we can classify to which part the data belongs
during BSP. We shall discuss this data classification in the following.

In the shelling technique, we have three major data sets, e.g. rays, cells and patches. We shall
concentrate on classifying cells and patches into their corresponding clusters because the set of
rays belonging to a cluster can be trivially determined from their defining sections/sectors. A
precise solution would be to test cells and patches against each partition plane during BSP.
Special care must be taken when they extend over a partition plane. This is done by comparing
the portions of cells or patches in both parts and taking the one where the major portion resides.
Due to the runtime constraint, it would be more appropriate to classify cells and patches by
simply referring to their corresponding clusters. More precisely, cells and patches belonging to
a cluster will be classified to one of the two parts in which the cluster lies. Only when a cluster
is cut through by the partition plane, a precise test is used for all the cells and patches belonging
to the cluster. This is done by comparing the portions of their SBBs in both parts and taking the
one where the major portion resides.

The patch classification algorithm embedded in BSP is given in Fig. 4.11. For simplicity, we
only show the modified step 5 in Fig. 4.10. We shall explain this in the following:

1. In low-density ray casting, an initial partitioning is used to gather runtime information. Let
Ny and Ng be the number of partitions along @ and 6 directions, respectively. Then, a set
of initial clusters C = Ucy;,i=1,..,Npand j=1, .., Ng, is formed. Let R = Urij, i =1,
-~ Ngandj=1, .., Ng, be a set of registers, in which each register rij € R corresponds to
a cluster ¢j;. During the low-density ray casting, a patch found in cluster cjj will be stored
into the corresponding register ryj. This set of registers R storing patches found in the low-
density ray casting will serve as the input to the patch classification algorithm.

2. For each bisection level, say s, in BSP, 25 intermediate parts, denoted as Sg, k=25- 1, ..,
1, 0, need to be bisected. As explained before, each intermediate part S will be bisected
into two parts, C, and Cy, each with approximately median workload.

3. The cluster IDs of patches stored in the corresponding registers of S will be set according

6 A k-ary n-cube network is a network with cubes of z dimensions and k nodes in each dimension. Note that
rings, meshes and hypercubes all fall into this network.



104 Chapter 4

to:
a. The partition plane doesn't cut through clusters.

In this case, the cluster IDs of patches stored in registers whose corresponding clusters

belonging to Cy or Cy will be set to 2k or 2k + 1 , respectively.

b. The partition plane cuts through clusters.

In this case, the cluster IDs of patches stored in registers corresponding to those clusters
will be determined by comparing the portions of their SBBs in Cy and Cy. If the major
portion resides in Cy, then their cluster IDs will be set to 2k. Otherwise, the cluster IDs
will be set to 2k + 1.

Algorithm: Patch Classification

Input

1. A set of registers R = urij,i=1,.,Npand j=1, .., Ng, in which each register #;j
€ R stores the patches belonging to ¢;; during the low-density ray casting.

Output

1. The set of registers R storing patches with their cluster IDs set.

Algorithm
5. Repeat the following steps until s =logy N-I:
For each Section Sy € §,k=25-1,..,1,0
Sk =\cy, i=ip, .., ipand j=jj, .., jn
If dirisequal to 0

Partition Sy, along i direction into two parts, Cy and Cy, each with
approximately median workload:

CL=Vcy, i=if ... imand j = ji, ., jn
Co=\cjj,i=ip, .,ipand j=jp, .., jn

Foreach cjje Cp,

If cluster c;j is cut through by the partition plane, i.e., i = i
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For each patch p stored in register r;;

Determine the portions of the SBB of patch p in both
parts

It the portion of the SBB of patch p in Cy, dominates
Set ti1e cluster ID of patch p to 2k
Otherwise
Set the cluster ID of patch p to 2k + 1
Otherwise
For each patch p stored in register r;;
Set the cluster ID of patch p to 2k
Foreach cjje Cy
If cluster ¢y is cut through by the partition plane, i.e., i = iy,
For each patch p stored in register r;;

Determine the portions of the SBB of patch p in both
parts

If the portion of the SBB of patch p in C; dominates
Set the cluster ID of patch p to 2k
Otherwise
Set the cluster ID of patch p to 2k + 1
Otherwise
For each patch p stored in rcgis‘ter rij

Set the cluster ID of patch p to 2k + 1

Figure 4.11: The patch classification algorithm.

Besides the processor ID, the local address of a patch needs to be determined in order to have a
complete foreign pointer. Normally, the local address of a patch is a unique sequence number
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on each cluster. In our case, patches on each cluster are given descending priorities according to
the order of finding them in the low-density ray casting.

4.4.2.3. Assignment

The third subproblem in ASRS is assignment. After clustering, the assignment algorithm
assigns the clusters of processes to a network of processors in such a way that the total amount
of communication is low. Meanwhile, the partitioned data segments are distributed and pre-
loaded to the local memories of their corresponding processors. The assignment problem
belongs to a class of difficult combinatorial optimization problems known as the Quadratic
Assignment Problem. In looking for a good and efficient assignment algorithm, we investigated
the following two strategies:

1. Heaviest-to-Nearest Strategy

A good assignment algorithm is based on a heaviest-to-nearest strategy. The idea behind
this approach is that if the heaviest communicating cluster pairs are assigned to the nearest
(i.e., physically the closest) processors whenever possible, then the total amount of
communication should be low. This approach gives a good solution but at the expense of a
rather large execution time. The heaviest-to-nearest algorithm is given in Fig. 4.12.

2. A Simple Strategy

A simple strategy is to assign clusters directly to a network of processors without regarding
the amount of intercluster communication. As described above, the clustering is done by a
BSP technique. Since a partitioning of depth n provides 27 clusters, it is convenient to
assign those clusters directly to processors on a network with a k-ary n-cube network. Due
to the property of object coherence, a patch can only extends over a bounded region in
space. In case the granularity of a partitioning is not very fine, the traffic patterns can be
highly localized because most traffic requirements are issued to only geometric
neighbourhood. As a result, this simple approach can loosely conform to the heaviest-to-
nearest strategy unless the granularity of a partitioning is rather fine. For this reason, this
simple strategy is used in the assignment algorithm.

Algorithm : Heaviest-to-Nearest Assignment

Inpur:
1. A set of N clusters C=ue;, i =0, ..,N- 1.

2. A non-negative real number cl;; representing the intercluster communication between
c; and ¢j.

3. A processor graph representing a network of N processors.
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Output:

L. A one-to-one mapping from clusters to processors.

Algorithm:
1. Mark all clusters unassigned and all processors unallocated.
2. Repeat the following steps until all clusters are assigned.

If there is no assigned cluster or no communication between assigned clusters
and unassigned clusters:

Locate the heaviest communicating but unassigned cluster.
Assign it to an unallocated processor with the most communication links.

Mark the unassigned cluster assigned and the unallocated processor
allocated.

Otherwise:

Locate the heaviest communicating cluster pair consisting of one unassigned
cluster and one assigned cluster.

Assign the unsigned cluster to the nearest unallocated neighbour of the
processor allocated for the assigned processor.

Mark the unassigned cluster assigned and the unallocated processor
allocated.

Figure 4.12: The heaviest-to-nearest strategy .

4.4.2.4. Local Scheduling

ASRS consists of a set of heuristics based on the assumption that message idle times can be
perfectly overlapped with useful computations when more and more ray-frustum processes are
packed into a cluster and assigned to a processor. This assumption may break down if the
execution ordering for local processes is inappropriate, thus the execution time may increase
undesirably. This raises the fourth subproblem in ASRS called local scheduling. The purpose
of the local scheduling algorithm is to define local processes and determine their ordering for
execution.
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Figure 4.13: A simple example.

The local scheduling algorithm takes the optimal solution based on an ideal execution profiles as
a target. This is because the ideal execution profile stands for the best ever possible execution.
As far as the runtime constraint is concerned, it is very hard to achieve the optimal solution for a
totally unknown space. In the first place, the fulfilment of the ideal execution profile may be
violated as a ray doesn't know about the patches in its path until it strikes one. At least, the
earliest time to find a patch cannot be guaranteed if a ray doesn't know where is the patch.
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Hopefully, some representative ray frustums become known to the scheduler after low-density
ray casting. An interesting question is to what extent the known information can be used to
guide the local scheduling algorithm. For a better understanding of the problem, it is helptful to
illustrate with a simple example. Consider the local scheduling of a cluster as shown in Fig.
4.13a. As you can see, there are two ray frustums rfl and rf2 whose ideal execution profiles
are given in Fig. 4.13b. In this example, we can quickly come to the optimal solution as shown
in Fig. 4.14a. We make use of the optimal solution to evaluate a certain solution, which can
lead the way to the solution algorithm. For this purpose, we discuss the following three
strategies.

1. Depth-First Strategy

In order to find the patch defining a ray frustum as early as possible, a depth-first search is
used. This amounts to defining one subshell for a given ray frustum defined by a patch. In
this example, we have two subshells, say subshelll and subsheli2, defined by rfI and #f2,
respectively. If subshelll is executed first, then the resultant execution profile as shown in
Fig. 4.14b clearly deviates from the optimal solution by introducing one more idle time for
CTU due to one extra intersection computation. This extra intersection computation comes
from ray r3 which may otherwise hit patch 2 and die if a breadth-first search is taken.

2. Breadth-First Strategy

With this strategy, one or more subshells may be defined for a given ray frustum,
depending on the number of shells over which the ray frustum extends. In this example,
two subshells will be defined by rfI. The above extra intersection computation can be
saved by using this strategy. However, it can be seen from Fig. 4.14¢ that one more idle
time for JCU is introduced as compared with the optimal solution. This is because the
earliest time to find patch / no longer holds.

3. Speculative Strategy

From the above discussion, we can conclude with a speculative strategy with regard to a
ray-frustum process: (1) If there is a high probability for the existence of patches, a
breadth-first search is used to reduce unnecessary intersection computations; (2)
Otherwise, a depth-first search is used instead in order to find a patch as early as possible.
In this example, two subshells as shown in Fig. 4.14d are defined by rfI: (1) one attempts
a breadth-first search due to the existence of patch p2, and (2) the other attempts a depth-
first search as the region is empty. This is equivalent to say that rf2 must be executed
before rfl. This strategy leads to the optimal solution.

The problem that remains to be answered is how to determine the execution ordering when two
ray frustums defined by two unoccluded patches are assigned to one processor. Consider the
example in Fig. 4.15. As you can see, there are two ray frustums defined by two unoccluded
patches p3 and p4. The optimal solution suggests to start with p4 as it can contribute much
more intersection computations than p3. The difficulty lies in that it is difficult to determine the
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number of intersection computations that a patch can contribute especially when the patch is
occluded by other patches. We adopt the following heuristic to minimize possible processor idle
time.

1. Preprocessing

A breadth-first search in the low-density ray casting brings about lists of patches roughly
ordered shellwise and, most importantly, in a consistent way. By consistent, we mean that
the ordering of patches in different shells correlates with the way we traverse the space
consistently. During clustering, patches on each cluster are given descending priorities
according to the order of finding them in the low-density ray casting. Consider the example
in Fig. 4.15. By following the scan-line ordering, we traverse the two-dimensional space
from the right to the left. First of all, patches in shell 2 (i.e., p3, pI) must be found earlier
than patches in shell 3 (i.e., p4, p2 ). Secondly, in shell 2, patch p3 should be found
earlier than p/. Similarly, in shell 3, patch p4 should be found earlier than p2. Thus it is
reasonable to assume that patches are given descending priorities as p3, pl, p4, and p2
instead of a contradicting ordering given as p3, pI, p2, and p4.

2. The Local Scheduling Algorithm

Based on the speculative strategy, each ray frustum of a patch will be split into one or more
subshells. This can be understood as follows. The regions defined by patches found in
low-density ray casting are termed highly probable hit regions as rays most probably hit
patches there (the shaded regions in Fig. 4.15). The other regions are termed low probable
hit regions as they are most probably empty. Consider the example in Fig. 4.15 again. As
explained in the above, patches are given descending priorities as p!, p3, p2, and p4. For
patch p3 or p4, only one subshell is defined as the region is assumed to be empty. In
contrast, the ray frustum of p2 is split into two subshells, say subshelll, subshell2, due to
the existence of the highly probable hit region defined by patch pl. By virtue of the
specular strategy, subshelll and subshell2 attempt a depth-first and breadth-first searches,
respectively. The consistency in the ordering of finding patches is of prime importance to
processor idle time. To demonstrate this, consider the contradicting ordering given as p3,
pl, p2, and p4 in the above example. In this case, processor might be idle due to the data
communication requirements representing rays flow from the subshell defined by p/ to the
subshell (i.e., subshell2) defined by p2. This is because a ray's behavior in one shell will
depend on the computational results of that same ray in previous shells. To overcome this,
we should delay the execution of subshells defined by p2 as late as possible by executing
the subshell defined by p4 instead. This leads to the ordering given as p3, p/, p4, and p2
as we suggested in the preprocessing step.
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(b) room16.27

Figure 4.16: The resultant clusters for two practical scenes.

4.5. Concluding Remarks

We have present in this chapter an application-specific runtime scheduling (ASRS) for mapping
the shelling technique onto a pipelined parallel architecture. ASRS consists a set of heuristics
which are simple but efficient, including: (1) runtime information gathering, (2) clustering, (3)
assignment and (4) local scheduling. Finally, we demonstrate with two practical scenes, lobby
and rooml16.27 as shown in Plate | and Plate 2 to end this chapter. Figs. 4.16a and 4.16b
show the resultant clusters viewing from a sample point on the ceiling of scenes lobby and
room16.27, respectively. The 4 clusters and patches (actually patches’ SBBs) found in the low-
density ray casting are displayed as cubes in spherical coordinate system. To show the effects
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of applying the patch classification algorithm, patches are orthographically projected on to the
bottom plane and the shaded parts represent their portions inside a cluster. Several desirable
features can be observed as follows:

1. Scene lobby has a few patches (227) which can be seen plainly through the sample point.
As a result, the space is partitioned almost equally into 4 clusters (see Fig. 4.16a). In
contrast, scene rooml6.27 has 1297 patches stacked each other in the space, particularly in
the lower left section (see Fig. 4.16b). The clustering takes effect clearly in this case.

2. As can be seen from the figure, patches are assigned to clusters where their major portions
reside. This justifies the patch classification algorithm.



116 Chapter 4



Chapter 5

The Radiosity Engine

5.1 Introduction

Many algorithms from computer graphics lend themselves to parallel implementation. Parallel
architectures can be divided into two classes: (1) Single Instruction stream Multiple Data stream
machines (SIMD), and (2) Multiple Instruction stream Multiple Data stream machines (MIMD).
Usually, there are two reasons for pursuing SIMD machines: (1) it is more cost-effective in any
given technology because of the saving in the instruction and decode hardware, and (2) it is
conceptually easier to program and debug. However, it is very difficult to keep all processors
doing useful work all the time, and so processor utilization is often very low. One noted
example is Pixel-Planes 4 [Fuc85]. It is an array of 512 x 512 pixel-processors. The front end
of the system first transforms a polygon into the eye coordinate system, and encodes the
polygon's edges in linear equations of the form Ax + By + C = 0. Pixel-processors then
evaluate the linear expression F(x, y) = Ax + By + C simultaneously for all pixels. All the
pixels outside the bounding lines (i.e., the sign of F is negative) will be disabled. Only those
inside participate the further visibility and shading calculations. Pixel-Planes 4 offers massive
parallelism in terms of a processor per pixel. However, it turns out to be rather low utilization
of pixel-processors. When rendering 100-pixel polygons, Pixel-Planes 4 disables all the pixels
outside a polygon, and hence all these pixels' processors remaining idle until the next polygon
arrives. The utilization of pixel-processors is as low as 0.04% (i.e., 100/512 x 512) fora 512 x
512 pixels display screen. Consider a complex scene that is composed mostly of very small
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polygons, and in which many polygons cover only a handful of pixels. The situation becomes
even worse. The same problem arises when one attempts to use the Connection Machine
[TMC87] for computer graphics.

MIMD machines useful for graphics span a wide range of spectrum: (1) mainframe computers
connected by wide area networks, (2) workstations connected by local area networks, (3)
multiprocessors consisting of processors communicating through a shared memory, and (4)
multiprocessors consisting of processors each with a local memory, communicating through an
interconnection network. We shall discuss some typical examples along this line.

1. Unlike the massively parallel SIMD machines, all current graphics workstations, e.g., the
Silicon Graphics IRIS workstation [AJ88] [Aki89], the HP 835 SRX [McL&8], the Alliant
visualization system [Tor87], the Titan graphics supercomputer [DHM88], the Stellar GS
1000 [ABM88] and Apollo DN10000 [KV90], can only support tens or even fewer
processors. For instance, the Silicon Graphics IRIS workstation [AJ88] [AkI89] makes
use of a tree of hardwares: (1) A Polygon Processor decomposes a polygons into vertically
oriented trapezoids; (2) Edge Processors determine the ends of the various vertical spans of
the trapezoids, and broadcast them to 5 Span Processors making interpolations; (3) Each
Span Processor handles every fifth column of pixels, and broadcasts them to 4 Image
Engines making hidden-part elimination (Z-buffer algorithm); (4) In all, there are 20 Image
Engines, each of which manages the twentieth of the pixels in the frame buffer. Although
the utilization of processors is generally very high, the scalability of the system is low due
to the limited bandwidth provided by the single bus and the memory structure.

2. Pixel-Planes 5 [FPE8Y] is the successor of Pixel-Planes 4, and tries to overcome the low
utilization problem. The basic unit of the system is an array of 128 x 128 pixel-processors
called Render. The display screen is partitioned into a number of disjoint subscreens, each
assigned to a separate Render. Although polygons lying in different subscreens can be
processed simultaneously by multiple Renders, the utilization of processors still can be
quite low (0.6% for 100-pixel polygons). This system can support 8-10 Renders
connected by a high-speed ring network (160 Mword per second).

3. Links- 1 [NOK83] is perhaps the first massively parallel MIMD machine used for computer
graphics. It consists of 64 unit computers interconnected with a root computer. A number
of unit computers constitute a pipelined computer and such pipelined computers works in
parallel, all controlled by the root computer. A pipeline consists of: (1) a sorting process to
find all the objects penetrated by a ray and to sort them in depth, (2) a ray-tracing process
to calculate the ray-object intersection point, and (3) a shading process to compute the
shade of the corresponding pixel on the display screen. The whole image data is partitio.ied
into subsets such that each is to be processed on a distinct pipeline. The root computer then
broadcasts the code to be executed and the partitioned image data to the unit computers
configured in the parallel pipelined scheme. Images produced on this machine generally



5.1. Introduction 119

took on the order of a minute or more. When using 64 processors, 30-fold speedup over a
single processor has been reported. The 256-processor Links-1 has been built at Osaka
University.

4. Others are massively parallel MIMD machines consisting of hundreds or even thousands
processors communicating over networks with multiple connections per processor
[HMS86] [Sei85]. However, they will not achieve their potential until better programming
environments emerge.

From the above discussion, we can conclude that:

1. The existing SIMD machines provide orders of magnitude more processors than other
machines. However, they offer very little power per pracessor and often very low
processor utilization.

2. The existing MIMD machines offers orders of magnitude greater power per processor but
supports orders of magnitude fewer processors.

We have chosen a combined radiosity and ray-tracing algorithm for high quality rendering.
However, this approach is demanding orders-of-magnitude more processing power for a single
processor if we wish to make a state-of-art image in real-time or even interactive time. An
obvious answer to this dilernma lies in parallel processing. In the first place, we are faced with
the two fundamental issues for any parallel machine, that is, latency and synchronization.
Secondly, existing graphics algorithms already posed some difficulties to both SIMD and
MIMD architectures. In this work, considerable effort has been devoted to finding a highly
efficient and effective parallel implementation of the target algorithm. We came up with a good
algorithm-architecture pair, that is, the shelling technique and a pipelined parallel architecture.
The shelling technique has been discussed in great details in chapter 3. In this chapter, we shall
discuss some essential issues of the target architecture such as memory structure, network
design, synchronization mechanism and the functionalities of the system.
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5.2 System Architecture

5.2.1. System Configuration

The target system is made of a host computer and the radiosity engine [SD92] . The application
program and the scheduler are running on the host. The application is a combined ray-tracing
and radiosity algorithm that proved to be a powerful method for high-quality rendering. The
ray-casting based rendering algorithm can be suitably decomposed into two separate tasks:
shading and form-factor computations. In the radiosity pass, the shading task initiates
hemisphere shooting and updates patches' radiosities. In the ray-tracing pass, the shading task
initiates primary and secondary rays, performs local light reflection, texture filtering, and anti-
aliasing, and is responsible for pixels' final shading. In both passes, the form-factor
computations are best suited for parallel processing on the radiosity engine due to the huge
amount of inherent parallelism. However, having a large amount of parallelism in computations
is not sufficient to guarantee good speed-up. Parallelism in computations can only be realized
by appropriate utilization of concurrency in the underlying hardware. Once a particular
architecture is determined, concurrency utilization depends totally on how hardware resources
are allocated and managed. This is a resource management problem. For this purpose, a
scheduler is running together with the application in the host. In order to prepare for runtime
information for the scheduler, a low-density version of form-factor computations should be
carried out by the host. Based on the runtime information gathered, the scheduler partitions the
computations into a number of clusters in such a way that workloads can be more or less
balanced and inter-cluster communication can be reduced. Meanwhile, the scheduler partitions
the problem data domain into data segments and distributes them over processors on the
radiosity engine. This pre-loaded data scheme is supported by the system bus interface
connecting the radiosity engine and the host. The system bus interface provides the
communication protocols to distribute data over the local bus, to allow the addressed processor
to read the data. For global memory references, processors can send requests to the system bus
interface via the local bus. In this case, the system bus interface first checks the cache before
directing the requests to the host.

The radiosity engine consists of a set of processors connected by a mesh network. The
individual shaded boxes in Fig. 5.1 represent single processors. Each processor contains a
Cell Traversal Unit (CTU), a Memory Unit (MEM), an Intersection Computation Unit (ICU), a
local bus interface and a network bus interface. The terms processor and cluster will be used
interchangeably when appropriate.

S



5.2. System architecture

outer]

The Host
I System Bus
System Bus Interface
Cache
Local Bus
<“@4P|Routerfs
A
Network Interface Network Interface
CTU MEM ICU CTU MEM ICU
Local Bus Interface Local Bus Interface
a»{Routerfg
Network Interface Network Interface

CTU MEM ICU

Local Bus Interface

CTU MEM ICU

Local Bus Interface

Figure 5.1: The system configuration.

outer]

121



122 Chapter 5

5.2.2. Memory Structure

In most conventional computers with virtual-memory management systems, cache memories
are often used as high-speed buffers between processors and main memory to capture those
portions of the contents of main memory which are currently in use. Since cache memories are
typically 5 to 10 times faster than main memory, they can reduce the average memory access
time if properly designed. The success of cache memories is attributed to the property of
locality of reference. Locality of reference has two components: temporal locality and spatial
locality. In temporal locality, there is a tendency for a process to reference in the near future
those elements of the reference string referenced in the recent past. In spatial locality, there is a
tendency for a process to make references to entries in the neighbourhood of the previous
reference. In the ray-tracing algorithm, an analogous situation arising from a new manifestation
coherence called data coherence was exploited. When tracing rays by following a scan-line
order, the phenomenon is in evidence that rays traced through adjacent pixels will traverse
similar regions of space, and give rise to references to similar subsets of the model database.
The effect of spatial locality arises from the data structures used for acceleration because
successive references of the ray-tracing program are made to entries contained in a local
neighbourhood of the object space. In [GP89], a hierarchical memory which is divided into a
resident set’, cache, and main memory was proposed for exploiting data coherence. In this
case, the use of data coherence is at a rather low level which is known as a single-ray process.
Yet another level of data coherence can be exploited in the shelling technique, as is explained
below.

In order to reduce the impact of runtime overhead on the overall performance, each stable phase
must be kept as long as possible. To achieve this, we organize the execution of a number of
ray-casting procedures pertaining to neighbouring sample points (in radiosity pass) or patch-
based intersection points (in ray-tracing pass) as one phase. It appears that the half spaces seen
through neighbouring sample points or patch-based intersection points convey similar
appearance (see Fig. 5.2). Thus, it is advantageous to pre-load patches found in low-density
ray casting to the local memories of processors. This is because: (1) those patches remain to
stay locally until a new phase starts and can account for a large percentage of references made
during a phase, and (2) local memory references are much faster than main memory references.

7 A resident set is a memory which is faster than a cache as it can be addressed directly and with minimum
overhead. Nomnally, this set should contain the most referenced subset of the model database.
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5.2.2.1. Basic Terms

The success of our memory structure is attributed to the data-coherence property which is
analogous to the property of locality of reference in virtual memory systems. With these
similarities, we borrow some terminologies from there to facilitate the description our memory
structure.

Definition 5.1 (Reference String): In virtual memory systems, the sequence of
references made by a program in execution can be represented by a reference string RS(T) =
r(1) r(2)...r(T), where r(¢) is the virtual address generated at time ¢. ]

Suppose that a database contains a set of N patches, denoted as P = {Py, P2, ..., Py}, and let
RS(T) = P(I) P(2)...P(T) be a reference string that represents the sequence of references made
in the course of a ray-casting procedure, where P(#) is a patch referenced at time r.

Definition 5.2 (Frequency Function): A frequency function f. P -> Z, where Z is the set
of all positive integers, returns the number of occurrences of a patch in RS(7). |

Definition 5.3 (Usage Function): A usage function U: J -> P, where J ={jlje Z and I
<j £ N}, returns the usage sequence of a patch in P. That is, U(]) is the most frequently used
patch in P and U(¥) is the least frequently used patch in P. |
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5.2.2.2. A Hierarchical Memory System

In order to take advantage of the data-coherence property at all levels, a hierarchical memory
system has evolved in which a very fast register that acts as the first level of the hierarchy (see
Fig. 5.3) [SD92]. Access to this register is very fast because it is on the processor chip. Each
patch in a cell opened by a CTU is retrieved and stored in the internal register of an /CU.
Afterwards, each remaining ray within the SBB of the patch accesses this high-speed register
that allows the ICU to perform at its peak. At the second level, between the processor and
slower main memory, is a local memory and a cache. We assume that a local memory is faster
than a cache as it can be addressed directly and with minimum overhead. Each cluster is
physically associated with a local memory which is pre-loaded with a small subset of the model
database that can account for a very large fraction of the references made during a phase.
Similar to [GP89], we identify the patches found by the low-density ray casting as the resident
set to be stored in local memories. Besides, a cache which is global to all the clusters is used for
caching patches read from main memory. In this scheme, local memories account for long-term
behaviour in the data-coherence property, whereas a cache accounts for short-term behaviour in
the data-coherence property. The third level of the hierarchy is main memory where the
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application program and the model database is stored. Typically, this memory is much larger
than local memory/cache but also slower than local memory/cache. The fourth level of the
hierarchy is mass storage. It is used to implement a so-called virtual memory system, which
gives the processor the illusion that main memory is much larger than is the case. For a big
scene containing millions of patches, mass storage can be used to store the complete model
database in case main memory is insufficient for this purpose.

We first describe how to select the resident set to be stored in local memories. Next, different
policies in the cache design will be discussed.

At the beginning of each phase, a unit hemisphere is placed over a reference point which is the
center of a source patch. A low-density ray casting is then invoked to gather runtime
information. We could identify patches found by the low-density ray casting as the resident set
to be stored in local memories. Those patches are often large because they were found by low-
resolution rays. Hence, they can account for a large fraction of the references made to local
memories when casting high-density rays from other sample points during the same phase.
There is a basic attribute to measure the goodness of a resident set, called the effectiveness of
the resident set. Suppose that the frequency function fp with regard to all the instances of high-
density ray casting in a phase is known, and let Uy, be the usage function derived from fp. If we
are allowed to select the resident set based on Uy, then an optimum solution can be obtained. In
general, this will not be the case. Let f; and U be the frequency function and the usage function
with regard to the low-density ray casting, and let N be the total number of patches found in the
low-density ray casting. Instead of selecting the optimum resident set Rp(k) = {Un(1), Un(2),
vy Up(k)}, only Ry(k) = {Ui(1), Uf2), ..., Uk)} can be selected by the low-density ray
casting, where 7 <k < N. Then, the effectiveness E(k) of Ry(k) is defined as

k
g‘,lf,w,(i))

E(k):k— for/ <k <N. 5.1
PRAUAC)

i=1

Note that the E(k) is a measurement of the goodness of a resident set during a phase. Because
the resident set is selected based on a so-called reference point, the E(k) may become to be
ineffective if a sample point in the phase is fairly far away from the reference point.

5.2.2.3. Cache Design

In general, there are four placement policies: direct, fully associative, set-associative, and sector
mappings, used in designing a cache (see [HB84]). We have implemented the first two policies
in our cache design. Direct mapping is the simplest one in the sense that a simple rule: address i
in main memory maps to the frame i modulo § of a cache with size §, is applied for both
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placement and replacement policies. Furthermore, it does not rely on special hardware for an
associative search of address tags. On the contrary, fully associative mapping is the most
flexible one in the sense that an address in main memory can map to any frame of a cache and
almost any replacement policy can be implemented. However, its performance relies on a fast
associative search of address tags.

5.2.3. Network Design

A data-parallel algorithm partitions its problem data domain into data segments and distributes
them among the processors, and let each processor work on the data segment assigned to it
independently. The benefit of this pre-loaded data scheme is performance. After data pre-
loading, all memory references become local memory references which are much faster than
global memory references. Our target system consists of the host and a number of processors
connected by an interconnection network. The local memory of each processor is pre-loaded
with a subset of the model database that is determined by a low-density ray casting. Some
relevant patches which are too small may not be captured in the low-density ray casting due to
the limited number of rays used. Some relevant patches which are too large may be wanted by
many processors but can only be stored in one processor due to the limited capacity of local
memories. This incurs communication requirements between the host and the radiosity engine
or between two processors on the radiosity engine. In the current implementation, the use of a
high bandwidth system bus (100 Mbytes/sec) together with a global cache in the System Bus
Interface may satisfy the former requirement. We shall now discuss the latter case.

If the data required by one processor is stored in a remote processor, inter-processor
communication is required to move in the data via an interconnection network. The performance
of the interconnection network is therefore essential to the performance of the system. The
performance of an interconnection network is greatly influenced by the routing algorithm and
the switching technique used in the network, as well as by the topology of the network. Our
discussion of these issues concentrates on network topologies since the others are
implementation issues.

In general, network design decisions are to be made by analyzing and comparing a large
number of possible network topologies. However, it is possible to correlate certain
interconnection topologies with certain traffic patterns to yield better performance. For instance,
a linear array is an ideal choice for a program consisting of cascaded tasks. In our case, it turns
out that a mesh-connected network is a good choice. Due to the limited size of a patch, it
occupies a contiguous and bounded region in space. In case the granularity of a partitioning is
not very fine, a patch most probably belongs to one or a few contiguous partitions. As
discussed in section 4.4.2.3, the assignment algorithm assigns neighbouring clusters to
neighbouring processors so that most traffic requirements are only issued to neighbouring
processors. This implies that an interconnection network like mesh that supports moderately to
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processors. This implies that an interconnection network like mesh that supports moderately to
highly localized traffic patterns would be appropriate.

For comparison purpose, we choose ring, mesh, torus, and hypercube as our network
candidates. Although the ring network, predictably, is outperformed by most networks, it is the
most appropriate interconnection for those applications most concerned with board space. At
the other extreme, the hypercube network supplies high bandwidth at all network sizes and any
traffic pattern, but requires significant board space to implement, which grows with the size of
the network. List below is a discussion of the characteristics of those network candidates:

1. The ring network

The ring network is a simple ring, where each processor is connected to its two neighbours
by independent half-duplex bidirectional links, as shown in Fig. 5.4a.

2. The Illiac network

The Hliac network is a two-dimensional mesh on which each grid represents a processor
connected with its Up, Down, Right, and Left neighbours by half-duplex bidirectional
links. The boundary links wrap around to connect processors on the other side, in the
manner of the Illiac IV, as opposed to the torus topology discussed in the below. Fig. 5.4b
shows a 16-processor mesh network.

3. The torus network

The torus network is also a two-dimensional mesh similar to the Illiac network but with the
boundary links connected in a different manner, as shown in Fig. 5.4c.

4. The hypercube network

An n-dimensional hypercube (n-cube) consists of N = 2% processors constructed as
follows: the processors are addressed distinctly by n-bit binary numbers, by, - jby . 2 ...
b by, form 0 to 2" - ]; two processors are directly connected via half-duplex bidirectional
link if and only if their binary addresses differ in exactly one bit position. Note that the
hypercube network has recently received increased interest due to the commercial
availability of multiprocessor systems based on this topology (Intel iPSC, NCUBE, etc.).
Fig 5.4d shows a 16-processor hypercube network.

Another important characteristic of the above two-dimensional mesh (i.e., Illiac or Torus) is
that their boundary wraparound connections are consistent with the boundary wraparound
sections built by the scheduler. As described in section 4.4.2.2, the BSP algorithm for building
sections bisects the space by taking alternatively constant-@ and constant-8 partition planes.
This results in sections which are wrapped around and touched at the ¢ = 0 partition plane. It
would be adequate to wrap around the boundary links to meet the traffic requirement there.
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5.2.3.1. Network Performance

We have experimented on a number of practical scenes to investigate the traffic patterns
between each pair of clusters for a partition. It turns out that most traffic requirements are
issued to neighbouring processors. For comparison purpose, we introduce a network
performance metric to measure the static performance of the network candidates. Note that this
comparison is based on static measurements. In section 6.2, we shall discuss the effects of
different network topologies on the system performance, which is consistent with the
comparison made here.
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We first describe the test conditions for two practical scenes, lobby and roomi6.27, as depicted
in Plate | and Plate 2. We partition the ceiling into 64 elements by using binary partition, then
define 64 sample points at the center of each element. A static partition is determined by the
scheduling based on the first sample point (called reference point) near the center of the ceiling
and a specified number of clusters. The other 63 sample points keep on using the same partition
to amortize the scheduling overhead over many computations. In this way, patches are pre-
loaded to the local memories based on the static partition. If the data wanted by one processor is
stored in a remote processor, inter-processor communication is required to move in the patch.
The situation may become even worse when the granularity of a partitioning is very fine and/or
a sample point is far-away from the reference point.

We use the sum of the number of hops for each message must traverse to reach its destination
node to measure the performance of a network. Another metric would be the number of
network cycles required, which is the sum of the number of hops each message must traverse
to reach its destination divided by the total number of links in the network. However, it can
only be viewed as an upper bound on the performance as 100% utilization for each link is rarely
achieved. This is particularly true when the routing chip can only support a simple routing
strategy, which is generally the case for VLSI implementation. Moreover, a larger number of
links often retlects a higher physical cost. Figs. 5.5 and 5.6 show the total number of hops
required for scenes lobby and rooml16.27, respectively. The network types are labelled by
following the sequence of the curves shown in the figures.

Fig. 5.7 shows the number of processors at a certain distance (i.e. hops) away from a source
node in a 16-processor network. In case traffic only issued to closest two neighbours, these
networks would all generate the same number of hops, because they all have at least two
neighbours within one hop. However, for uniformly distributed traffic, the ring network would
generate much higher network load than in the others because it doesn't provide as a dense
interconnection. This explains why it is outperformed by all networks with all configuration
sizes. The situation becomes even worse when the number of processors is increased. So we
dropped the ring network.

The hypercube network shows good performance for all cases because it provides a smaller
depth (closer processor proximity, higher locality). A major problem of this network is its large
waist (i.e., interfaces per processor), which grows with the size of the network, possibly
taking away board space from the processors.

The two-dimensional mesh (i.e., Iiliac or Torus) shows reasonable performance as expected.
This is because it can absorb the network load due to the moderately to highly localized traffic
generated. Furthermore, the two-dimensional mesh provides the best performance of all
candidates for smali configurations (up to 8-processor network). We conclude that the two-
dimensional mesh is a good choice. In the following, we shall focus on some design issues of a
mesh-connected network.
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5.2.3.2. Design Issues for a Mesh-Connected Network

The primary design requirements for a mesh-connected network are low latency and deadlock
free.

1. Low Latency

It has shown that low dimension k-ary n-cubes along with wormhole routing meets the
goal of low latency [Dal87]. For this reason, it becomes the most promising switching
technique and has been adopted in more advanced multicomputers. Wormhole routing
breaks a message into flits. As soon as the header flit(s) has been received, the next
channel on the route can be selected and the remaining flits of the message can be
forwarded down the channel in a pipeline fashion. It is possible for the first flit of a
message to arrive at the destination node before the last flit of the message has left the
source. Because most flits contains no routing information, the flits in a message must
remain in contiguous channels of the network and cannot be interleaved with the flits of
other messages. When the header flit of a message is blocked, all of the flits of a message
stop advancing and block the progress of any other message requiring the channels they
occupy. This can be solved by breaking a long message into a number of packets. Each
packet has a header carrying routing information. This allows packets from ditferent
messages to be interleaved on the same channel. The second generation transputer IMS

o
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T9000 uses this scheme that provides a total of 80 Mbytes/sec bidirectional bandwidth.
Another example is the Caltech mesh routing chip (MRC) developed at the Caltech that can
support a total of 240 Mbytes/sec bandwidth.

2. Deadlock Free

Deadlock in an interconnection network occurs when no message can advance toward its
destination because the queues of the message system are full. It can occur in a network
unless the routing algorithm is designed to avoided it. For regular networks like trees,
hypercubes and meshes, optimal deadlock free routing algorithms have been developed. A
detailed description is beyond the scope of this thesis.

In the current implementation, we propose to use MRC to build a mesh-connected
network. The MRC routes messages moving through the mesh at high speed. As soon as
the MRC examines the routing information of a message, it selects the direction in which
the packet is routed. If the MRC finds the X displacement specified in a packet is nonzero,
it forwards the packet to the next MRC in the X direction. The MRC continues routing the
packet in the X direction until the X displacement goes to zero. Then it begins with routing
the packet in the Y direction until the Y displacement goes to zero, then the MRC routes the
packet to the connecting processor. With this simple routing scheme, a single mesh
network cannot meet the requirement for deadlock free routing of requests and replies. To
avoid deadlock, it is necessary to have two completely separate networks for requests and
replies. Note that the two networks need not be physically separate, but must contain
dedicated resources (buffers, handshake lines, etc.) so that blockage of the request network
does not affect the reply network. This is supported by another chip called mesh interface
module (MIM) that provides an 8-bit interface to the MRC and a 32-bit interface to the
processor. It includes separated transmit and receive FIFOs and separated handshake lines,
etc.

5.2.4. Synchronization Mechanism

A parallel algorithm is a set of concurrent processes which may operate simultaneously and
cooperatively to solve a given problem. To ensure that a parallel algorithm works correctly and
effectively to solve a given problem, processes interact to synchronize and exchange data. A
typical situation happens in a concurrent loop with data dependencies across iterations. One
iteration must wait, if necessary, until the corresponding data has been written by another
iteration. In our case, what's synchronized is at control level. Because only remaining rays will
be used for cell traversal and intersection computation, cell traversal and intersection
computation have to synchronize at some point to enforce those control dependencies. So the
rule of synchronization is not as stringent as it's general stated.
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5.2.4.1. A Fine-Grained Synchronization Mechanism

In the shelling technique, the use of barrier synchronizations at shell level allows parallel
execution of all the remaining rays within a shell. There are some difficulties with this
approach: (1) It is difficult to exploit this run-time changing parallelism by assigning a separate
processor to each ray stream; (2) The amount of parallelism could be drastically reduced for
outer shells as rays may die successively; and (3) The parallelism in computation may become
insignificant due to the high communication overhead from resource conflicts. Pipeline
processing seems more appropriate because it can handle changes in the number of ray streams
in a natural way. In addition, the communication overhead can be amortized over a large
number of intersection computations. Due to the property of object coherence: local
neighbourhoods of space tend to be occupied by the same object, multiple processors can be
used for processing distinctly different subspaces to achieve higher system performance. This
leads to a highly pipelined parallel architecture. It is undesirable to use the barrier
synchronization at shell level due to the high latency time of a pipeline circuit. Instead, we
define subshells as local processes that have to be synchronized by using the barrier. Moreover,
a fine-grained event synchronization is introduced that can support fine-grained parallelism with
low cost.

subshell

subshell
(L1)

©,1)

subshell
(1,0)

A Sector Task Precedence Graph

Figure 5.8: Task Precedence Graph for subshells.
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The fine-grained event synchronization is supported by an I-structure® memory [AI87] [AT80].
Each I-structure memory location has presence bits indicating whether it is full or empty. Each
location is permitted to be written only once and any read of an empty location is deferred until
the corresponding write occurs.

It is this concept that allows us to initiate many subshells in parallel. This can be explained by
using a Task Precedence Graph® for subshells as shown in Fig. 5.8. When the processing of
the current subshell (0,0) is completed, we can start with both subshell (0,1) and subshell
(1,0). A patch found in subshell (0,1) can only test against the rays leaving subshell (0,0) but
must leave the part of rays that have left subshell (1,0) to be determined through the use of the
I-structure memory as shown in Fig. 5.9. The presence bit of a ray in subshell (1,0) remains
empty until subshell (1,0) is completed. The ray is stored in Deferred Ray Memory and will be
reactivated and tested against the accompanying patch when the presence bit becomes full.

presence|  yalues

bits
&ray!
ray >
<rayl,-> full <rayl,->
&ray2 >

&ray2 empty | <ray2,->~
—>

7‘%

Deferredl-read lists

syncv &ray2
>
<ray2,-> <ray2,-2
< <ray2,-> end

Figure 5.9: I-structure memory.

8 |-structure means a structure with Incremental nature of production and consumption.

9 In Task Precendence Graph, a parallel program is modeled as a collection of tasks with explicit execution

dependences expressed in the form of precedence relations.
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5.2.4.2. Synchronization for Cell Traversal

By convention, a signal « in iteration i of a loop can be referred to as afi] where i is the index of
variable a. Similarly, a cell-traversal ray or an intersection-computation ray can be named by
different versions in the course of its lifetime in different shells. For this purpose, a ray r is
associated with a shell_id flag representing its current version, and can be referred to as r-
>shell_id. As stated previously, a subshell is a local process for synchronization. Its process
identifier is denoted as subshell->subshell_id. Similarly, a subshell is associated with a shell_id
flag representing in which shell it resides, and can be referred to as subshell->shell_id. We now
discuss the synchronization for cell traversal. Our design requirements are the following:

1. At any time instant, only one copy of a cell-traversal ray is allowed.
2. For each version of a cell-traversal ray, we can only start with cell traversal once.
3. A cell-traversal ray traverses the space in depth order.

4. Only remaining rays are allowed to continue traversing.

if ray->shell_id < subshell->shell_id then
begin
if ray->presence_bit = TRUE then
begin
ray->presence_bit := FALSE;
ray->shell_id := subshell->shell_id,;
copy(ray)
end;
else defer(ray)

end;

Figure 5.10: Synchronization for cell traversal.

The synchronization for cell traversal is shown in Fig. 5.10. When defining a subshell, we first
compare the version of each ctray (i.e., cell-traversal ray) within the subshell with the version
of current subshell. In case ctray->shell_id is larger than subshell->shell_id, we ignore ctray
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because it already traversed to a higher numbered shell. Otherwise, we copy or defer ctray
depending on its presence_bit. If ctray->presence_bit is set, we reset ctray->presence_bit,
upgrade ctray->shell_id to be subshell ->shell_id and copy ctray into a queue waiting tor cell
traversal. Otherwise, we defer the decision of copying ctray to be made at a later time. The
concept of using presence_bit for synchronization is inspired by the concept of I-structure
memory. However, the deferred memory in our case is much simpler than that used in I-
structure memory., When deferring a ctray, it suffices to only store subshell->subshell_id and
subshell->shell_id.

Finally, we can mention that our approach satisfies the above-mentioned requirements: on the
one hand ctray can be kept from duplication in the current version by upgrading ctray->shell_id
to be subshell->shell_id, on the other hand it allows to continue traversing only when its icray
counterpart is not hit by checking ray->shell_id against subshell->shell_id when ctray-
>presence_bit is set.

5.2.4.3. Synchronization for Intersection Computation

The requirements for the synchronization of intersection computation are the following:
1. Multiple copies of an intersection-computation ray are enforced.

2. Only remaining rays are used for intersection computation.

if ray->shell_id <= patch->shell_id then
begin
if ray->presence_bit = TRUE then
copy(ray);
else defer (ray)
end;

else copy (ray);

Figure 5.11: Synchronization for intersection computation.
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Similar to cell traversal, a synchronization algorithm for intersection computation is given in
Fig. 5.11.

1. As stated previously, subshells are defined by patches found in the low-density ray
casting. For each subshell, if the presence_bit of an icray within the subshell is set, we
reset icray->presence_bit, and upgrade icray->shell_id to be subshell ->shell_id. If this
happens, we say the icray has been defined by the subshell. This allows icray to have
multiple copies for intersection computations, which is essential to the pipeline efficiency
of an ICU.

2. The speculative strategy is elegantly implemented in the algorithm. If an icray has been
defined by a subshell, its shell_id should be upgraded to be subshell->shell_id. Otherwise,
its shell_id is kept unchanged. When determining intersection computation rays for a patch,
we first compare the shell_id of an icray within the SBB of patch with patch->shell_id. As
is apparent, if icray has never been defined by a subshell before, it will be copied directly.

Notice that the overhead of deferring intersection-computation rays are quite high. When
deferring a ray, its accompanying patch must be stored together with the ray in the deferred ray
memory. This implies that the parch must be referenced many times if many rays defined by its
SBB have been deferred. In current implementation, we suggest to use a lazy isolation as given
in Fig. 5.12 to filter out unnecessary rays, where ray->intd represents the current intersected
distance for ray and patch->r_min represents the minimum distance from the sample point to

patch.

if ray->intd > patch->r_min then copy(ray);

Figure 5.12: Lazy isolation for intersection computation,
5.3 Outlining Functionality

5.3.1. Introduction

Performance evaluation and trade-off analysis are the central issues in the design of a
computing system. For this purpose, we often build a model that is used to try to gain some
understanding of how the corresponding system behaves. If the relationships that constitutes
the model are simple enough, it may be possible to use mathematical methods (such as algebra,
calculus, or probability theory) to obtain exact information on questions of interest; that is called
an analytic solution. However, most real-world systems like the one we have are too complex

-
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to allow realistic models to be evaluated analytically, and these models must be studied by
means of simulation. A mixed-level simulator called the Block Oriented Network Simulator
(BONeS®) is chosen for simulation-based analysis and design of the target system.

BONeS® uses a hierarchical data flow block diagram as the modelling paradigm. You construct
a model by specifying the data structures flowing in the model, and the data flow firing rule
governs the movement of the data structures. This allows the data-driven execution of the
radiosity engine to be modelled easily. Another important reason to use BONeS® is that it
provides a mixed-level simulation, that is, the level of modelling for blocks can be detailed or
abstract. Detailed models provide accurate results but may take a long time to develop and
consume large amounts of computer resources to generate results. Abstract models typically
generate results much more quickly, but their results may not be useful if too many simplifying
assumptions have been made in the abstraction. The radiosity engine has been completely
modelled by using BONeS®. As we shall see, some key components of the system, e.g..,
Geometry Transformation, Cell Traversal and Intersection Computation etc. are modelled in
detail, while the Memory System and the Interconnection Network etc. are build in abstract. In
summary, the integrated BONeS® environment allows you to:

1. Describe data structures, functions and connections in a hierarchical fashion.

2. Translate the model into a C program, and execute an event-driven simulation of the
model.

3. Perform statistical analysis of the simulated data, extract performance measures and display
the analysis results.

4. Perform design iterations and trade-off analysis.
5. Document models and results.

For modelling the complete system, we have built over 160 modules including some primitives.
Certainly, we cannot give a detailed description for all the modules we built. In this section, we
describe the functional behaviour of some major modules that allows the system to be operated
without knowing the detailed implementation. To construct a computing system according to a
hierarchical design principle, at each level of description, the details of some modules may be
irrelevant at that level and can be deferred to a lower level. If we manage to choose some critical
modules which are functionally defined at some level and implement their details only when
they are meaningful at that level. This leads to the idea that different computing models can be
chosen for different levels so that each model may best suit the level it serves. This recognition
of functional behaviour is very helpful for the practice of system design. Fortunately, the
labelling of a module most of time can self explain its functionality. Potential users can just
open down to the lowest level of a module, where the detailed description can be obtained
through the commands for Help. For instance, (Help) Describe command produces a read-only
text dialogue for each selected object, with a description of the object in the dialogue. In
addition, (Help) Show Primitive Code command displays a read-only dialogue containing the C
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source code for the primitive module being edited.

5.3.2. Data Structures

The first thing to be considered in designing a BONeS® model is the data structure. Although
the data structures created are sometimes used as an aid to the simulation, they should conform
to the physical implementation of the system.

In the following, the data structures used for the radiosity engine model are described.
1. Ray Frustum

In radiosity algorithms, the hemisphere rays used for form-factor computations form a ray
frustum with the sample point as origin. The primary rays in ray tracing form a ray frustum
with the viewpoint as origin. Ray frustums are further used for shadow rays and specular
rays with an intersection point as origin, in which a subset of hemisphere rays is defined
by the SBB of light sources and the specular reflectivity of surfaces, respectively. The Ray
Frustum data structure is used to characterize a ray frustum representing hemisphere rays,
primary rays, shadow rays or specular rays. This data structure contains the following

fields:

or The origin of a ray frustum. It can be a sample point, a viewpoint or an
intersection point.

normal The normal of a ray frustum. It can be the normal of a hemisphere or the
viewing direction from a viewpoint.

noc The number of constant-8 circles on the surface of a hemisphere or the
number of pixels on each column of the display screen.

nor The number of constant-¢ circles on the surface of a hemisphere or the
number of pixels on each row of the display screen..

| 2. Section

\

| For concurrent processing, the problem data domain is partitioned into data segments
which are distributed among the processors. Accordingly, the set of hemisphere rays or
primary rays is partitioned and distributed over a network of processors. The Section data
structure defines the subset of hemisphere rays or primary rays assigned to an ICU. As
described previously, a hemisphere ray or a primary ray can be addressed by a two-
dimensional index (A g, Ag) or (Ay, Ay), respectively. So the fields necessary for this data
structure are:

A pmintAxmin The minimal @ or x index for addressing the subset of hemisphere rays
or primary rays, respectively.

o
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A pmaxiAxmax The maximal ¢ or x index for addressing the subset of hemisphere rays
or primary rays, respectively.
A gmintAymin The minimal 6 or y index for addressing the subset of hemisphere rays
or primary rays, respectively.
AomaxiAymax The maximal 6 or y index for addressing the subset of hemisphere rays
or primary rays, respectively.
3. Sector

The Sector data structure defines the subset of hemisphere rays or primary rays assigned to
a CTU.

4. Subshell

A subshell is a local process that determines an appropriate way of searching the space.
Instead of searching the space blindly, it defines a possibly non-empty space for cell
traversal. Hence, many useful intersection computations may fill up the intersection-
computation pipe quickly instead of introducing bubbles. The data structure which
represents subshell is Subshell. It contains the following fields:

SBB/IPBB SBB/IPBB used tfor defining cell-traversal rays.

shell_id Shell identifier that denotes the Shell to which cell-traversal rays should
traverse.

subshell_id Unique identification number for a subshell (i.e., process ID) assigned

in order of creation.
5. CT Ray

The data structure which represents cell traversal ray (ctray) is CT Ray. The fields of the
data structure are:

ctray_id Identifier for the ctray.
or The origin of the ctray, which is represented in the G-coordinate system.
dir The direction vector of the ctray, which is represented in the G-

coordinate system.

lambda The largest intersected distance to a cell.

shell_id Shell identifier that identifies the Shell on which the ctray is currently
working.

subshell_id Subshell identifier that identifies the subshell on which the ctray is

currently working.
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6. IC Ray

Chapter §

The data structure which represents intersection-computation ray (icray) is IC Ray. The
fields of the data structure are:

icray_id
dir

intp_id
intd

u, v
shell_id

subshell_id

7.CellID

Identifier for the icray.

The direction vector of the icray, which is represented in the R-

coordinate system.

Identifier for the patch intersected by the icray.

The distance between the origin and the intersection point of the icray.

The local coordinate for the intersection point of the icray.

Shell identifier that identifies the Shell on which the ctray is currently
working. It will be handed over to the last subshell so that cell traversal
can continue.

Subshell identifier that identifies the subshell on which the icray is
currently working.

The fields of the data structure are:

cell_id

destination_id

count

pointer

subshell_id
8. Cell Request

Identifier for the cell. It is used to address the contents of the cell.

Cluster identifier that identifies in which processor (including the host)
the patch address list of the cell is stored.

A number that denotes the total number of patches stored in the cell.

A pointer indicating the start of a patch address list stored in the Patch
Address Table.

Subshell identifier that identifies the subshell where the cell was found.

In case a cell traversed has not been stored in the radiosity engine, a request must be sent
out to the host to ask for the contents (i.e., a patch address list) of the cell. The Cell
Request data structure is used for this purpose. This data structure contains the following

fields:
cell_id
source_id

memory_type

Identifier for the cell. It is used to address the contents of the cell.
Identifier that indicates which processor sending out the request.

Flag indicating which kind of memory the requested cell is found. It is
set to 0/1 if the requested cell is found in the global/cache memory.
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Otherwise, it is set to 2, indicating the local memory. This field is used
to model the memory access time.

9. Patch ID
The fields of the data structure are:
patch_id Identifier for the patch. It is used to address the contents of the paich.

destination_id ~ Cluster identifier that identifies in which processor (including the host)
the surface property and geometry information of the patch is stored.

subshell_id Subshell identifier that identifies the subshell where the patch was
found.

10. Patch Type

The Patch Type data structure represents the patch-type and the surface-type of a patch.
The patch-type indicates whether a patch is a polygon or a bezier. The surface-type
indicates the surface property of a patch. It can be diffuse-only, specular-only or both. It
contains the following fields:

patch_type Flag indicating whether a patch is a polygon or a bezier.

surface_type Flag indicating whether the surface property of a patch is diffuse-only,
specular-only or both.

1. Patch Request

In case a patch found by cell traversal has not been stored in the radiosity engine, a request
must be sent out to the host to ask for the surface property and geometry information of
the patch.

12. Polygon

This data structure represents the patch geometry information of a polygonal patch. It
contains the following fields:

vertex[0] - The four vertices of the polygonal patch in the G-coordinate system.
vertex[3]
tr_vertex|[0] - The four vertices of the polygonal patch in the R-coordinate system.

tr_vertex| 3]

SBB/IPBB The SBB/IPBB of the polygonal patch.
patch_id Identifier for the polygonal patch.
subshell_id Subshell identifier that identifies the subshell where the polygonal patch

was found.
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13. Bezier

This data structure represents the patch geometry information of a bezier patch. It is similar
to the Polygon data structure. The only difference is that 16 control points are used instead
of 4 vertices.

5.3.3. Radiosity Engine System

The top level in the hierarchical model of the radiosity engine is shown in Fig. 5.13. To
simplify the discussion, consider only one instance of the ray-casting procedure to compute
form-factors. First, the radiosity engine is supplied with required information from the host by
reading some files on Init System Memory module. These include:

1. Ray Frustum

Ray Frustum gives the definition of a ray frustum in terms of the origin, the normal and
some resolution-related settings. It is stored as a Ray Frustum data structure in the Ray
Frustum Memory. The radiosity engine makes use of the Ray Frustum to define a set of
rays conforming to a certain distribution function.

2. Section

Section gives the definition of the portion of a ray frustum assigned to an ICU. It is stored
as a Section data structure in the Section Memory.

3. Sector

Sector gives the definition of the portion of a ray frustum assigned to a CTU. It is stored as
a Sector data structure in the Sector Memory.

4. Subshell List

Subshell List is a patch address list. Each entry in the patch address list will define a
Subshell after reading a Polygon from the Patch Geometry Memory.

5. Cell Address Table

The Cell Address Table stores the location of the patch address list, describing the contents
of a cell. It is built up of: (1) a cluster identifier indicating in which cluster (or the host) the
patch address list of a cell is stored, (2) a count indicating the total number of patches in a
cell, and (3) a pointer indicating the start of the patch address list.

6. Patch Address Table

The Patch Address Table stores the cell contents in the form of patch address list. One
entry in the patch address list is built up of: (1) a cluster identifier indicating in which
cluster (or the host) the patch address list is stored, (2) a patch identifier to identify the
patch and (3) a pointer indicating the start of the patch type and patch geometry

o
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information, that is stored in the Patch Type Memory and the Patch Geometry Memory,
respectively.

7. Patch Type

Patch Type identifies the patch-type and the surface-type of a patch. The patch-type
indicates whether a patch is a polygon or a bezier. The surface-type indicates the surface
property of a patch. It can be diffuse-only, specular-only or both. It is stored as a Patch
Type data structure in the Patch Type Memory.

8. Patch Geometry

For polygons, this means four vertices. For Beziers, this is a list of 16 control points. It is
stored as a Polygon/Bezier data structure in the Patch Geometry Memory.
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Figure 5.13: Radiosity Engine System.

When the Init System Memory module completes it will initiate 4 Clusters to start with form-
factor computations. The Local Bus Interface module receives global cell/patch requests from
the 4 Clusters. Upon receiving, they are packed into Bus Requests and queued in the module
waiting to be sent. The Local Bus Interface module interfaces with the Arbiter module for the
granting usage of the local bus. When the local bus is free, a Bus Grant signal is received
immediately. The Bus Request will then be sent out the Local Bus Interface module, on the
Local Bus, and enter the System Bus Interface module. When the local bus is busy, requests
only come into the Arbiter when the local bus has been released. The System Bus Interface
module first checks to see whether the Bus Request is in the cache memory. If so, this module
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continues granting the usage of the local bus and sends out the Bus Reply by delaying a certain
amount of time to model the communication cost of the local bus and the cache memory access
time, goes back to the source cluster where the request was sent. Otherwise, the Bus Request is
queued in the System Bus Interface module waiting to be transmitted to the Host module and
the local bus can be released. When the system bus is free, the Bus Request is instantly granted
use of the system bus, and flows to the Host module via the System Bus Delays module where
the communication cost of the system bus is modelled. The Bus Reply finally goes back the
System Bus Interface module after delaying the global memory access time and the
communication cost of the system bus. Again, it will be queued in the System Bus Interface
module waiting for the granting usage of the local bus. When the local bus is free, the Bus
Reply will then be sent out the System Bus Interface module, on the Local Bus, and goes back
to the source cluster where the request was sent.

5.3.4. Cell Traversal Unit

The CTU module traverses the space shellwise by using cell-traversal rays and outputs a set of
Cell IDs. Fig. 5.14 shows an expansion of this module. The right output, Cell ID, outputs the
Cell ID of each cell found. All the other outputs are used for synchronization purpose.

STV, |136ep-1043 185028 |

Figure 5.14: The CTU module.

The CTU module operates as follows. After filling up some required information on the Init
Sector memory, the Subshell Generator module generates a set of Subshells by reading a patch
address list from the memory named Subshell List Memory. Each entry in the patch address list
will define a Subshell by addressing the memory named the Polygon Memory. The Subshell
SBB Generator module computes the SBB field of the Subshell. Notice that the SBB should be
clipped against the Sector of the CTU module stored in the memory named Sector Memory.

S
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The CT Ray Generator module searches the bundle of cell-traversal rays addressed by an
address window computed from the SBB. A CT Ray will be pushed into the CT Ray Queue
module if it has not been traversed yet. Each CT Ray popped out of the CT Ray Queue module
starts with cell traversal on the Cell Traversal module. The Continue Traversing module decides
to continue cell traversal or pop out the next CT Ray, depending on whether the Shell boundary
is reached or not. The Shell boundary is defined by the r_max field of the SBB. The Cell ID of
each cell found goes out the right output to the MEM module.

5.3.4.1. Init Sector memory

The host supplies the required information for the CTU module by reading two files on Init
Sector Memory module. The first is the Sector definition of the CTU module, which is stored
in the memory named the Sector memory. The second is the patch address list, which is stored
in the memory named the Subshell List memory.

5.3.4.2. Subshell Generator

The Subshell Generator module generates a set of normal Subshells based on the patches found
in the low-density ray casting. Besides, an extra one called the last Subshell is appended to the
normal Subshells in order to cover the whole space. This is because the space defined by the
normal Subshells are possibly incomplete.
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Figure 5.15: The Subshell Generator module.

This module is expanded in Fig. 5.15. The Read Subshell List Memory module reads a patch
address list from the memory named the Subshell List Memory. Each entry of the patch address
list creates a normal Subshell by reading a Polygon from the Home Patch Geometry Memory
module. The Create Last Subshell creates and appends the last Subshell defined by the Sector
definition of the CTU module to the normal Subshells. Note that the last Subshell is always the
last to be processed. This is because not too much coherence can be exploited there as it is
composed of the fragments of space. For synchronization purpose, an unique process identifier
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subshell_id is assigned to each Subshell popped out of the Subshell Queue module before
sending to the Subshell output.

5.3.4.3. Subshell SBB Generator

The Subshell SBB Generator module takes the 4 transformed vertices (i.e., represented in R-
coordinate system) of a polygon, computes the SBB, and clips the SBB against the Sector
definition of the CTU module. The expansion of this module is shown in Fig. 5.16.
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Figure 5.16: The Subshell SBB Generator module.

The Subshell SBB Generator module operates as follows. When a Polygon enters the left input
from the Read Subshell List module, the Construct SBB module computes the SBB of the
Polygon based on the method described in section 3.4.1.3. Basically, it computes the Om;p,
Omax> Omin, and @mgyx from the 4 transformed vertices of the Polygon. Based on the AQ = Qmgx
- @min, the Oy is adjusted by subtracting an error term £g(A@) (refer to Eq. 3.6) from it, that
iS, Omin = Omin - £(A@). This is because the minimal 8 angle doesn't happen at the vertices.
The Section Bounding Box module clips the computed SBB against the Section definition of
the CTU module. The Sector definition is defined in the Sector data structure stored in the
memory named the Sector Memory.

5.3.4.4. CT Ray Generator

The CT Ray Generator module searches the bundle of cell-traversal rays addressed by an
address window computed from the SBB of a Subshell. It decides whether a cell-traversal ray
can be sent out or if it must be discarded or deferred.

o
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An expansion of this module is shown in Fig. 5.17. The bottom left input accepts a Subshell
data structure from the Subshell Generator module. Because cell-traversal rays are stored on the
basis of local addresses. So the above-mentioned address window is computed based on the
SBB field of the Subshell data structure and the Sector definition of the CTU module. More
precisely, we have to offset the boundary addresses computed by the SBB by subtracting the
base addresses computed by the O, and @piy of the Sector from them. All the addresses
within the address window are generated in the CT Ray Address Generator module by simply
using two Int Do modules. Each address generated goes to the CT Ray Memory module.

»
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Figure 5.17: The CT Ray Generator module.
In section 5.2.4.2, we discussed the synchronization for cell traversal subprocess and proposed
a synchronization algorithm (refer to Fig. 5.10) to meet the following requirements:
1. At any time instant, only one copy of a cell-traversal ray is allowed.
2. For each version of a cell-traversal ray, we can only start with cell traversal once.
3. A cell-traversal ray traverses the space in depth order.
4. Only remaining rays are allowed to continue traversing.

Actually, the CT Ray Memory module implements the synchronization algorithm completely.
This module is expanded in Fig. 5.18. A Ray Address and a Subshell data structure enter the
two bottom left inputs. Three different situations can happen to the cell-traversal ray addressed
by the Ray Address:

1. This module first checks the shell_id of the cell-traversal ray stored in the memory named
the Ray shell_id Mask against the shell_id field of the Subshell data structure. If the latter is
larger than the former, then the cell-traversal ray can be discarded because it has already
been traversed before.
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2. In case the cell-traversal ray has not been traversed yet, this module continues to check its
presence_bit stored in the memory named the Ray presence_bit Mask. If the presence_bit is
set, then the cell-traversal ray must be deferred as it is still computing intersection in the
ICU module. Then the subshell_id together with the shell_id of the deferred cell-traversal
ray must be stored in the CT Deferred Ray Memory module.

3. Otherwise, a CT Ray data structure is read from the memory named the CT Ray Memory
and goes out the upper right output.

CTRay Memory_ [ 12-8ep-1083 14:57:57 |

v Pcd! Tewa l I Tnwert T ey
.';:—L Insert lambdal -un“_u subshell_id +-—-——o

Figure 5.18: The CT Ray Memory module.

5.3.4.5. Cell Traversal

The Cell Traversal module is the core of the CTU module. It is used to open relevant cells by
traversing the space in a certain way. What we built is a flexible module that can serve different
cell structures like octree, macro region and voxel. It can also support the grid-ray approach.

The expansion of this module is shown in Fig. 5.19. It consists of two primitives labelled
_Generate Starting Cells and _Generate Cells. For each new CT Ray enters the bottom left
input, the _Generate Starting Cells primitive generates its starting cell. This primitive
determines the starting cell for cell traversal. For this purpose, we first determine the starting
point for cell traversal as follows. The ray is defined by an origin O and a unit direction vector
das O+24d. So the starting point is given by multiplying the lambda field of the CT Ray
with the dir field of the CT Ray, then adding the or field of the Ray Frustum data structure to
the result. For uniform grid data structure, the Cell ID of the starting cell can be obtained by
dividing each coordinate of the starting point with the cell size, then taking the ceiling function
of the result. In order to find the next cell, it requires to update the lambda and the direction

.
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tields of the CT Ray. To find the new lambda, we first intersect the CT Ray with the three pairs
of parallel bounding planes of the starting cell. For each pair of parallel bounding planes, there
is one maximal intersected distance. Then the new lambda is the minimal of the three maximal
intersected distances. Normally, the new direction is just a unit vector perpendicular to the
bounding plane where the new lambda happens. If the new lambda happens at an edge sharing
by two bounding planes or a point sharing by three bounding planes, then the new direction is a
unit vector determined by adding the unit vectors perpendicular to those bounding planes.

After updating, the CT Ray goes to the Continue Traversing module. The Continue Traversing
module checks to see if the CT Ray reached the Shell boundary or the environment boundary.
If this is the case, the CT Ray is done after updating its lambda. Otherwise, it goes to the
_Generate Cells primitive and continues to do cell traversal. This primitive is exactly the same
as the _Generate Starting Cells primitive. The reason of doing this is that we can assign
different delay time for each primitive. This is necessary because the _Generate Starting Cells
primitive generally takes more time than the _Generate Cells primitive due to some initialization
steps [TI86].

Cell Traversal_ [ 12-Sep-1993 14:53:53 ]
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Figure 5.19: The Cell Traversal module.

5.3.5. Intersection Computation Unit

The ICU module computes the intersection points between a polygon and the bundle of
intersection-computation rays determined by the SBB of the polygon.
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The expansion of the JCU module is shown in Fig. 5.20. This module operates as follows.
When a Polygon enters the left input of the JCU module from the MEM module, it is queued in
the Polygon Queue module due to the changing of data rate. Because the intersection
computation is done in the R-coordinate system, the vertices of a Polygon popped out of the
Polygon Queue module undergoes a G to R coordinate transformation in the G2R Geometry
Transformation module. The SBB of the Polygon is then computed by using the transformed
vertices (i.e., in the R-coordinate system) on the Polygon SBB Generator module. The IC Ray
Generator module searches the bundle of intersection-computation rays addressed by an
address window computed from the SBB. An IC Ray will be pushed into the IC Ray Queue
module if its intd field is larger than the r_min field of the SBB. Each IC Ray popped out of the
IC Ray Queue module together with its defining Polygon flow into a pipelined Intersection
Computation module to compute intersection point. When all the /C Rays defined by the SBB
have been consumed, the Count Match module generates a signal to pop out the next Polygon
from the Polygon Buffer module.

ICU - Pipelined_ 12-80p-1993 15:00:49 )

Figure 5.20: The /CU module.

5.3.5.1. G2R Geometry Transformation

The G2R Geometry Transformation module transforms the four vertices of a Polygon from the
G-coordinate system (i.e., vertex[0] - vertex[3]) to the R-coordinate system (i.e., tr_vertex{0] -
tr_vertex{3]). The top level of this module is shown in Fig. 5.21a. When a Polygon enters the
left input, it triggers the Read Ray Frustum module to read the or and the normal fields of the
Ray Frustum data structure stored in the memory named Ray Frustum Memory. They
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altogether go into the TransformPatch2R module to perform the geometry transformation.

G2R Geometry Transformation_ [ 12-Sep-1993 14:59:07 ]
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(a) The G2R Geometry Transformation module.
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(c) The TransformPoint2R module.

Figure 5.21: Geometry transtormation modules.
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The TransformPatch2R module is expanded in Fig. 5.21b. It operates as follows. The normal
comes in the DetermineAnglesR module where its @ and @ angles in the G-coordinate system
are computed. The computed 8 and @ angles together with the or and each vertex of the
Polygon go into the TransformPoint2R module.

The TransformPoint2R module is responsible for translating and rotating each vertex of the
Polygon to the R-coordinate system. The expansion of this module is shown in Fig. 5.21c. It
translates each vertex of the Polygon according to the or by using the VecSub module, rotates
the translated vertex along the z-axis through an angle -¢ and then rotates along the y-axis
through an angle -6. The latter two rotations are performed in the RotateZ and the RotateY
modules, respectively. The transformed vertex goes out the right output and is used to insert the
transformed vertex field (i.e., tr_vertex[0] - tr_vertex[3]) of the Polygon.

5.3.5.2. Polygon SBB Generator

The Polygon SBB Generator module, as shown in Fig. 5.22, is much like the previously
described Subshell SBB Generator module. The only difference is that the computed SBB is
now clipped against the Section definition of the JCU module instead of the Sector definition of
the CTU module.

Polygon 888 Generator_ [ 12-8ep-1903 16:04:08)

Figure 5.22: The Polygon SBB Generator module.

5.3.5.3. IC Ray Generator

The IC Ray Generator module searches the bundle of intersection-computation rays addressed
by an address window computed from the SBB of a polygon. It decides whether an
intersection-computation ray has to be taken or if it can be discarded.

This module's expansion can be seen in Fig. 5.23. It consists of the IC Ray Address Generator
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module and the IC Ray Memory module. It is much like the previously described CT Ray
Generator module. The only major difference is that a cheap lazy isolation (refer to Fig. 5.12) is
used instead of deferring intersection-computation rays. The IC Ray Memory module is
expanded in Fig. 5.24. This module accepts a Ray Address and a Polygon from the left two
inputs. As you can see, the lazy isolation is simply done by comparing the current intd field of
the IC Ray addressed by the Ray Address with the r_min of the Polygon. If the latter is larger
than the former, then the JC Ray can be discarded. Otherwise, the IC Ray data structure is read
from the memory named IC Ray Memory, and goes out the upper right output.

IC Ray Generator_ [ 12-Sep-1993 14:59:30 ]
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Figure 5.23: The IC Ray Generator module.

IC Ray Memory_ [ 12-Sep-1993 15:00:04 )
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Figure 5.24: The IC Ray Memory module,
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5.3.5.4. Intersection Computation

The Intersection Computation module is the core of the ICU module. It is used to compute
intersection points between a bundle of intersection-computation rays and a polygon in a
pipelined fashion. There are many different ways of building this module. The one shown in
Fig. 5.25 is our current implementation. It consists of two primitives labelled _Screen and
_Subdivide, and three modules labelled Xproduct, PreDistance and Update IC Ray Memory.
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Figure 5.25: The Intersection Computation module.

The Intersection Computation module operates as follows. When a Polygon enters this module
from the lower left input, the Xproduct module computes the normal vectors of the four
bounding planes!® (sce Fig. 5.26) of the Polygon by taking the cross product of two vectors

W:. and 0V,~, where i =0, ..., 3 and j = (i + 1) modulo 4. This can be seen by expanding the
Xproduct module in Fig. 5.27. Each VecCrossProd module takes two contiguous transformed
vertices of the Polygon and computes their cross product.

We use the pseudo-distance from an icray to a bounding plane to decide on which side of the
bounding plane the intersection point lies. The pseudo-distance delta;; from the icray to the
bounding plane OV,V] is defined as the inner product of the direction vector of the icray and
the normal vector of the bounding plane OV;V;. The _Screen primitive computes the pseudo-
distances deltagy, deltaj;, deltass and deltazg by taking the inner product of the dir field of the
IC Ray and the four normal vectors of the bounding planes computed in the Xproduct module.
It checks to see if any pseudo-distance is less than zero. If this the case, the JC Ray will not
intersect the Polygon, and can be screened out. Otherwise, the IC Ray cannot be screened out
and two more auxiliary pseudo-distances deltap; and delta;3 are computed. This screening is

10 The bounding plane for two contiguous vertices, say V; and Vj, of a polyogn is defined as the plane
containing the origine O and the two vertices V; and V;, and is denoted as OV;V;.
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quite effective because the SBB of a polygon generally overestimates 50% of the number of
rays hit the polygon. Note that the scan conversion used in the Pixel-Planes [Fuc85] [Pou85] is
a degenerate case (i.e., a two-dimensional case) of this method. This can be understood as
follows. After transforming a polygon into the eye coordinate system, the polygon's edges are
encoded in linear equations of the form Ax + By + C = 0. The Pixel-Planes scan-converts the
polygon by checking the sign of the linear expression F(x, y) = Ax + By + C, where x, y is the
pixel's location on the screen. All the pixels outside the bounding line (i.e., the sign of F is
negative) will be disabled. Only those inside participate the further visibility and shading
calculations.

Figure 5.26: The bounding plane OV,V; and one subdivision step in # direction.

For determining the (u, v) coordinates of the intersection point, the intersection point and the
distance to the intersection point, we rely on a subdivision procedure. The _Subdivide primitive
is responsible for the subdivision of a polygon. Basically, the subdivision of a polygon is to
bipartite the original polygon into two new polygons by taking alternatively « and v direction.
The two new polygons are then tested to decide in which one the intersection point lies. The
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one intersected will be chosen for the next subdivision procedure. This is repeated until a
certain level is reached such that the resultant polygon is accurate enough to be treated as the
intersection point. The (%, v) coordinates of the intersection point can be derived directly by the
decision made in each subdivision step. To clarity this, we illustrate with one subdivision step
in u direction. As shown in Fig. 5.26, we bipartite a polygon VpV;V,V3 into two polygons,
VoV4VsV3 and V4V V,Vs, where V4 and Vs are the midpoints of the edges VgV, and V,V3,
respectively. Based on the pseudo-distances deltay;, delta;;, deltays, deltazg, deltay, and
delta; 3 computed in the _Screen module, the pseudo-distance deltays can be derived as follows:

delta 5= (-delta ot delta 13 ¥ delta02 +delta , 2)/4.

If deltays = 0, then the left polygon VoV4Vs5V3 is selected. Otherwise, the right polygon
V4V V2 Vs is selected. Upon deciding which polygon is taken, the new pseudo-distances must
be updated accordingly. Then we take another subdivision step in v direction. After a number
of steps, the algorithm converges such that the resultant vertices approach the intersection point.
The distance to the intersection point can be derived in a similar way as the intersection point
but the distance from the origin O to each vertex is used instead of the vertex. The PreDistance
module computes the distance from the origin O to each vertex of the original polygon. For
more details about the subdivision procedure, we refer to [Hek93a].

Xprod_ [ 12-Sep-1993 15:08:49 ]

Polygon |
" P Select
tr_vertexf0
boundnormal{o]
E YecC ',:l '
boundnormal(1]
E o >
p Teraree]
Ve rod B
'E VlchuProdﬂ‘—D
boundnormai{4]
E o} >
© el
E v-.:cmaPmdD}—P

Figure 5.27: The Xproduct module.

5.3.6. Memory System

The expansion of the MEM module is shown in Fig. 5.28. The left input accepts Cell ID from

e
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the CTU module. The right bottom four signal ports are used to interface with the System Bus
Interface module for sending or receiving global requests or replies. The right output sends
Polygon to the ICU module.

The MEM module operates as follows. When a Cell ID enters the MEM module from the CTU
module, it is queued in the Cell ID Queue module due to the changing of data rate. If a cell has
already been opened, it is masked in the Cell Filter module. Otherwise, it enters the Cell
Address Table module where a Cell Request is created after reading the Local Cell Address
Table. Based on the destination_id field of the Cell Request, the Local/Global Cell Request ?
module decides whether it is a local or global request. If the Cell Request is global, it is packed
into Request message in the Local Bus Interface module and sent out to the System Bus
Interface module. Otherwise, it goes to the Local Patch Address Table module where a Patch ID
is created by reading the Patch Address Table. The Patch ID is queued in the Patch ID Queue
module, and then checked to see if it has already been found or not in the Patch Filter module.
If it is a new Patch ID, a Patch Request is created after reading the Patch Type Memory in the
Patch Type Memory module. A global Patch Request will be packed into Request message in
the Local Bus Interface module and sent to the System Bus Interface module. A local Patch
Request goes to the Local Patch Geometry module, where a Polygon is created and sent to the
ICU module. A global Cell Reply or Patch Reply enters the Local Bus Interface module, where
a Patch ID or a Polygon is unpacked and sent to Patch ID Queue module or the JCU module,
respectively.

MEM_  [12-5ep199216:02:34]

meplyin  Local Bus Gram

Figure 5.28: The MEM module.

5.3.6.1. Local Bus Interface

The Local Bus Interface module is used to interface a processar on the radiosity engine to the
Local Bus. It packs global requests to be transmitted to the Local Bus and unpacks global
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replies received from the Local Bus. Furthermore, it interfaces with the Arbiter module for the
granting usage of the Local bus.

This module's expansion can be seen in Fig. 5.29. It consists of the Cell Bus Interface
module, the Patch Bus Interface module and the Request Queue module. The top two inputs
accept global Cell Request and global Patch Request, respectively. The right bottom input
receives Reply from the System Bus Interface module. The left bottom four signal ports are
used for bus arbitration.
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Figure 5.29: The Local Bus Interface module.

The Local Bus Interface module operates as follows. When a global request enters the Cell Bus
Interface or the Patch Bus Interface module, it is packed into a Request message by inserting
the request_type and the source_id fields. The Request is then queued in the Request Queues
module. Each time a new request comes into the Request Queues module, the current time also
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goes out the Local Bus Request output if the Local Bus is not busy. The arbitration scheme
guarantees that if the Local Bus is not busy, a Local Bus Grant signal is received immediately.
The Request queued will then be released from the Request Quenes module, sent out the Local
Bus Interface module, and on the Local Bus, goes to the System Bus Interface module. If the
Local Bus is busy when the Request comes into the Request Queues module, it is placed in the
queue and will only be released when the Local Bus is granted to it.

The Local Bus Interface module also receives Reply message coming from the System Bus
Interface module via the Local Bus. The Reply only comes into the Local Bus Interface module
of a processor whose processor_id is matched with the source_id field of the Reply. The Local
Bus Interface module unpacks the Reply into Cell Reply or Patch Reply according to the
reply_type field of the Reply. The Cell Reply or Patch Reply goes into the Cell Bus Interface or
the Patch Bus Interface module, respectively, to create the Patch ID or Polygon.
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Figure 5.30: The System Bus Interface module.

5.3.7. System Bus Interface

The radiosity engine is connected to the host via the System Bus Interfuce module. The System
Bus Interface module provides the communication protocols to receive and transmit data and
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commands. Besides, a global cache memory is built in this module to reduce the effective
memory access time of reading patch address list, patch type and patch geometry.

The expansion of the System Bus Interface module is shown in Fig. 5.30. The left input
accepts Request from the Cell Bus Interface module or the Patch Bus Interface module. The
bottom three signal ports are used for system bus arbitration. The two signals on the right side
are used to send Cell Reply or Patch Reply back to the Cell Bus Interface module or the Patch
Bus Interface module requesting the system bus.

The System Bus Interface module operates as follows. When a Reguest enters the Request In
input, it is either sent to the Cell Cache Search/Update module or to the Patch Cache
Search/Update module to check if it is in the cache memory, depending on the request_type
field of the Request. If it hits, then the Reply goes back to the Cluster module where the
Request was sent. Otherwise, the Request goes to the Request Out output and the Local Bus
can be released immediately. The System Bus Interface module also receives the Reply coming
from the Host via the System Bus. When a Reply enters the Reply In input, it is queued in the
Reply Queues module. Each time a Reply comes into the Reply Queues module, the current
time also goes out the Local Bus Request Out output if the Local Bus is not busy. The
arbitration scheme guarantees that if the Local Bus is not busy, a Local Bus Grant signal is
received immediately. The Reply queued will then be released from the Reply Queues module,
sent out the Reply Out output, and on the Local Bus, goes to the appropriate component. If the
Local Bus is busy when the Reply comes into the Reply Queues module, it is placed in the
queue and will only be released when the Local Bus is granted to it.

Cache SearchUpdate_ [ 12:Sep-1993 14:39:33 |

Figure 5.31: The Cache Search/Update module.
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5.3.7.1. Cache Search/Update

This module checks to see if a request is in the cache memory and updates the cache by
including the new request and removing the one that has been referenced the least number of
times.

The expansion of the Cache Search/Update module is shown in Fig. 5.31. A tag (cell_id or
patch_id) of the request requiring a cache status check enters the left input. The left 8 modules
determine if the request is in the cache by comparing the tag with the contents of the memory
named Cache Tag Memory on the /== module. If the tag is found to be equal to any content of
the Cache Tag Memory, it means the request is in the cache. In this case, we increment the
number of times the request has been referenced that is stored in the memory named Cache
Count Memory and set the Hit output to 1. Otherwise, we update the cache by using the Cache
Full? module, the Replace LFU Block in Cache module and the Place Block in Cache module,
and set the Hit output to 0. ‘
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Figure 5.32: The Arbiter module.

5.3.8. Arbiter

An expansion of the Arbiter module is shown in Fig. 5.32. This module receives Request bus
requests from the 4 Cluster modules and Reply bus requests from the System Bus Interface
module. If a request is valid and the Local Bus is not busy, a bus grant signal is immediately



164 Chapter 5

sent back to the Cluster or the System Bus Interface module where the request was sent and the
memory named Local Bus Status is set to | by the IConst I module and the Write Integer
(System Bus Status) module. Otherwise, the Pick Smallest Real module picks the request
which has been in the queue the longest and issues a bus grant signal to the appropriate
component. If none of the requests is valid, the Local Bus is returned to the free state by
sending a signal to the IConst 0 module. A request is invalid if no request is in the queue that
can be transmitted when the bus is being released.
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Performance Measurements

The previous chapter described the system configuration and outlined the functionality of the
target system modelled in BONeS®. This chapter quantifies the performance of such a system
by uging Monte Carlo simulation. The performance measurements in this chapter are broken
into three major sections. The first section examines the effects of different network topologies
on the system performance. The second section summarizes the performance metrics of the
memory system. The final section discusses the overall system performance.

6.1. Network Performance

In section 5.2.3.1, we compared different network topologies in terms of the number of hops
required. In this section, we shall examine the effects of different network topologies on the
system performance. We first describe how to model the communication time over the
interconnection network.

Let 05 = Ogs + Osq be the node-to-node communication latency, where Ogg is the time spend at
source to initiate a communication and Ogy is the time spend at destination to terminate a
communication. Furthermore, let 7, be the channel transmission time per byte, and let 7, and 7
be the time required to make a routing decision for store-and-forward and wormhole routings,
respectively. Consider an s-byte message passing from a source node ng to a destination node
ng with the distance 4 hops. The time required for store-and-forward routing is:
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t=0;+h-D1+h1s

=h(t,+ rts)+A,

where A = 05 - 7, does not depend on the number of hops, 4, in the communication. For the
case of wormhole routing, the time required is:

t=as+(h-1)r,'+rts+(h-1)tts’

=h(7,'+7,5)+ 4,

where s' is the size in byte of the header flit (i.e., address field) of the message and A'= 7 (s -
5) + (05 - 1) does not dependent on the number of hops, 4, in the communication. Note that
7' << Ty and s' << s. Thus, %'+ 7 §' << T, + 7y 5, which implies that the wormhole routing is
much faster than the store-and-forward routing.

The Compute LM Delay module, shown in Fig. 6.1, is used to model the communication time
discussed in the above. As you can see, the Routing Delay module is used to model 7, or 7.,
the Network Delay module is used to model 7; s or 7 s’ and the Network Bus Set_up Delay
module is used to model A or A",

| Compute LM Delay  {12-8ep-1983 14:35:49 ]

GM Delay
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D LM Delay D}

Compute LM Delay

Figure 6.1: The Compute LM Delay module.

Two test scenes, lobby and room16.27 (see Plate 1 and Plate 2 in Color Section), are chosen
for evaluating the performance of different network topologies. The scene lobby contains a
number of large patches, while the scene room16.27 constitutes of the scene lobby and many
more small patches. Test conditions are listed in Table 6.1. We choose a large cell size (0.5) so
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that most cell/patch data can either be referenced from local clusters!! directly or from remote
clusters via the interconnection network. Tables 6.2 and 6.3 show the overall computation time
for the four network candidates: Illiac, Torus, Hypercube and Ring. It turns out that the two-
dimensional mesh (i.e., Illiac or Torus) provides a good performance for both 8-processor and
16-processor configurations. The Ring network is only acceptable for small configurations.
When using 16 or more ICUs, the overall computation time for the Ring network is almost
twice as other networks. For a 16-processor configuration, the Hypercube network becomes a
torus but with different wrap-around as the Torus network. The performance of the Torus

network appears to be better than the Hypercube network because the wrap-around at boundary
links meets the traffic requirement.

Table 6.1: Test Conditions for Network Performance Measurement.

Scene # of patches #of ic rays cell size
lobby 227 16384 0.5
rooml6.27 1297 16384 0.5

Table 6.2: The overall computation time for scene lobby.

# of ICUs Illiac Torus Hypercube Ring
8 7390.2 7390.2 - 7444.1
16 4425.7 4425.7 4425.7 6178.2
Table 6.3: The overall computation time for scene rooml16.27.
# of ICUs Iiliac Torus Hypercube Ring
8 10937.2 10937.2 - 11083.6
16 16938 14201.2 15661.4 26163.4

L1 A local cluster is the cluster that contains the processor which issued the memory request. Otherwise, it is

called a remote cluster.
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6.2. Memory Performance

Memory performance is measured in terms of the effectiveness and the cumulative usage
frequency of resident set, and the number of patch requests issued to different hierarchies of the
memory system in the course of a ray-casting procedure. Five test scenes, lobby, room16.27,
array of cubes, man, and phone, as depicted in Color Section (Plate | to Plate 5), are chosen
for this purpose. In order to investigate the effects of different sample points on the memory
performance, we partition the ceiling of a scene into 16 elements by using binary partition, then
define 16 sample points (see Fig. 6.2) at the center of each element. Sample Point 1 is chosen
as the reference point where we proceed with the scheduling task. Once a partitioning is
determined by the scheduler, it is kept unchanged for all other sample points in the same phase.
The test conditions for memory performance measurement are listed in Table 6.4.
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Figure 6.2: The 16 sample points defined on the ceiling of a scene.




6.2.

Memory performance 169

Table 6.4: Test Conditions for Memory Performance Measurement.

Scene # of patches # of ic rays cell size Hi_Low_Ratio
lobby 227 16384 0.0625 16, 64, 256
rooml6.27 1297 16384 0.0625 16, 64, 256
array of cubes 3079 16384 0.0625 16, 64, 256
man 3315 16384 0.0625 16, 64, 256
phone 4103 16384 0.0625 16, 64, 256

1.

The Effectiveness of Resident Set (refer to Figs. 6.3 and 6.4)

We only show the results of lobby and room16.27 for 4 sample points as labelled 4, 7,10
and 13 in Fig. 6.2. Other scenes actually show similar results. In general, the effectiveness
of resident set decreases with the increased Hi_Low_Ratio, in particular when a scene
contains many small patches like room16.27. Fig. 6.3 indicates that E(k) decreases from
0.8 to 0.6 when Hi_Low_Ratio increases from 16 to 256. As for scene lobby, the
influence of Hi_Low_Ratio on E(k) is much less than the case of roomi16.27 because
patches in the scene are generally large. In both cases, E(k) is going off when a sample
point is moving away from the reference point. However, the effectiveness of resident set
can be as high as 0.7 for all sample points when Hi_Low_Ratio is chosen as 64 (i.e., 256
low-density rays). As compared with the high-density rays (1M or more for antialiasing),
we conclude that a highly effective resident set can be selected by low-density ray casting
with a small overhead relative to the cost of high-density ray casting.

. The Cumulative Patch Usage Frequency (refer to Tables. 6.5 and 6.6)

The cumulative usage frequency of resident set is defined by replacing the k in the
denominator of Eq. 5.1 with the total number of patches in a scene. It indicates the
percentage of references issued to processor memories constituting of local memories and
working registers (see Fig. 5.3) in the course of a ray-casting procedure. Due to the
medium-sized cells, cell requests will incur much less communication overhead as
compared with patch requests. From now on, our emphasis will be on patch requests. We
assume that all the patches found in the low-density ray casting can be stored in local
memories. When Hi_Low_Ratio is chosen as 64, about 70% - 80% of references goes to
processor memories by storing only 4% and 25% of the model databases for lobby and
room16.27, respectively. This implies that relatively small subsets of model databases will
account for a large proportion of the references made during a ray-casting procedure and a
highly effective resident set can be selected by the low-density ray casting. Note that N'is
the total number of patches found in the low-density ray casting and CUF; is the



170 Chapter 6

cumulative patch usage frequency referring to Sample Point i.
3. Number of GM/CM/LM Patch Requests (refer to Figs. 6.5 and 6.6)

For complex scenes containing hundreds of thousands or even a million patches, it is not
practical to store all patch data in local memories. Moreover, patches stored in the local
memories are determined by casting low-density rays from a reference point. Only some
percentage of relevant cells/patches will be captured during the low-density ray casting and
pre-loaded to local memories. Consequently, patch requests may be issued to global
memory, cache memory or local memories for a ray-casting procedure referring to the
reference point. Fig. 6.5 shows the number of patch requests issued to those memories. It
turns out that the number of patch requests issued to global memory remains to be the same
as the system grows by adding more clusters, which may become a fundamental bottleneck
to the system scalability. To avoid this bottleneck, a cache memory is introduced by
caching most frequently referenced patch data during a phase. The cache memory takes
effects on other sample points in the same phase. Instead of retrieving patch data from the
low bandwidth global memory, most of them can be referenced from the cache memory
due to the data-coherence property. As can be seen from Fig. 6.6, most global memory
requests in Fig. 6.5 become to be cache memory requests. Since the cache memory is
faster than the global memory, some improvement in system performance can be expected.
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Figure 6.3: The Effectiveness E(k) vs k for scene roomi16.27.
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Figure 6.4: The Effectiveness E(k) vs k for scene lobby.
Table 6.5: Cumulative Patch Usage Frequency for scene lobby.
Hi_Low_Ratio N’ CUF4 CUF, CUFjp CUFjg
16 142 0.8934 0.9281 0.913 0.9105
64 97 0.7919 0.836 0.8574 0.7985
256 80 0.7122 0.7367 0.816 0.7367

Table 6.6: Cumulative Patch Usage Frequency for scene roomli6.27.

Hi_Low_Ratio N' CUF4 CUFy CUF)y CUFyg
16 855 0.8549 0.8036 0.8672 0.807
64 325 0.7671 0.7628 0.8163 0.6882
256 190 0.6363 0.713 0.6563 0.5632
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Figure 6.5: Number of patch requests issued to different memories (the reference point).
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Figure 6.6: Number of patch requests issued to different memories (Sample Point 2).
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The system performance is measured in terms of overall computation time, speedup and
pipeline efficiency. The test conditions for system performance measurement are listed in Table

6.7.

Table 6.7: Test conditions for system performance measurement.

Scene # of patches # of ic rays cell size
lobby 227 16384, 196608 | 0.5, 0.0625
rooml6.27 1297 16384, 196608 | 0.5, 0.0625
array of cubes 3079 196608 0.0625
man 3315 196608 0.0625
phone 4103 196608 0.0625
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Figure 6.7: Toverall vs # of ICUs (cell size = 0.5; number of rays = 16384).
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Figure 6.8: Toverall vs # of ICUs (cell size = 0.0625; number of rays = 196608).

6.3.1. Overall Computation Time

The time interval between starting the first computation and finishing the last computation of a
problem is called the overall computation time, denoted by Toyerall. Figs. 6.7 and 6.8 show
the overall computation times for the five test scenes. Although scene room16.27 has 6 times
the number of patches in scene lobby, the overall computation time is only 20% - 50% more
than that of scene lobby. The same situation can be observed from other scenes. This is very
promising because the performance of the shelling technique is a weak function of the scene
complexity.

6.3.2. Speedup

The speedup is the ratio of the overall computation time of one processor to that with p identical
processors. It represents, in fact, the number of processors effectively used during the parallel
processing of an algorithm. The ideal speedup is never achievable, since some processors are
idle at a given time because of conflicts over memory access or communication links, inefficient
utilization of concurrency in the underlying hardware. We shall analyze the speedup from the

o
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following three different perspectives.

1. First of all, we examine the effects of intercluster communication and local memory latency
on the system performance. In order to do this, we choose a large cell size (0.5) so that
most patch requests are issued to local clusters directly or to remote clusters via the mesh
network. Figs. 6.9a and 6.9b show the speedups of two test scenes lobby and rooml16.27
when using 1 to 16 ICUs, respectively. As can be seen from the figures, scene lobby
achieves a reasonable speedup up to 16 ICUs, while there is a fall-off in speedup for scene
rooml6.27 as the number of ICUs is increased. This fall-off is due to the fact that the
latency for local patch requests dominates the useful computation. It is shown in Table 6.9
that the Estimated Degree of Ray Coherence (EDRC!2) for scene rooml16.27 dropsto 3 - 5
when using 16 ICUs, or equivalently there are on average 3 - 5 rays tested against a patch.
Since each local patch request will take 10 intersection-computation time units, this
certainly degrades the system performance. In contrast, the EDRC of scene lobby is still
larger than 10, that's the reason why it continuously offers a reasonable speedup up to 16
ICUs. In order to guarantee high quality and high resolution rendering, the number of
intersection-computation rays required is generally much larger than what has been used
for simulation. From this sense, higher scalability of the system can be expected. What is
worth noting is that a satisfactory speedup has been observed while preserving a highly
effective computation. This can be understood as follows. The total number of intersection
computations is k x R (k is equal to 2.6 and 4.1 for lobby and room16.27, respectively) as
compared to N x R (N is equal to 227 and 1297 for lobby and room16.27, respectively) of
the naive algorithm, where R is the total number of intersection-computation rays. This
represents two-orders-of-magnitude improvement in terms of meaningful computations.

2. As stated previously, patch requests may be issued to global memory, cache memory or
local memories. Due to the long latencies for global memory requests and the limited
bandwidths provided by the system and local buses (see Fig. 5.1), its effect on the system
performance becomes critical. In Figs. 6.10a - 6.10e, the curves labelled Reference Point
indicate the speedups for a ray-casting procedure referring to the reference point. There is a
clear fall-off in speedup when the number of ICUs is increased. This is mainly due to the
following two factors: (1) workloads distributed over ICUs are not balanced, and (2) the
long latencies for global memory requests and the limited bandwidths provided by the
system and local buses. Fig. 6.11 shows the workloads in terms of the number of
intersection computations distributed over ICUs when using 8 ICUs. Since the
intersection-computation time still dominates over the communication time of requesting
patch data for lobby and room16.27 when using 8 ICUs, a higher scalability of the system
can be expected. However, workload imbalancing may degrade the system performance

12 The EDRC represents the average number of rays tested against a patch. It is equal to the total number of
intersection computations divided by the total number of patches found in the high-density ray casting.
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and it becomes even worse when adding more ICUs. All other scenes indeed suffer from
the long latencies for global memory requests and the limited bandwidths provided by the
system and local buses when using 8 or more ICUs (see also Fig. 6.5). This explains the
fall-off in speedup (Fig. 6.10).

. At the beginning of a phase, it is indispensable to filling up the cache and local memories

through data caching and pre-loading. After data caching and pre-loading, most patch data
can be referenced from the cache memory or the local memories that can avoid the long
latencies for global memory requests. In Fig. 6.10, the curves labelled Sample Point
indicate the speedups for the five test scenes for a ray-casting procedure referring to the
Sample Point 2 (see Fig. 6.2). Since the cache memory is faster than the global memory,
some improvement in speedup can be achieved. This is explained by the reduction in the
number of global memory requests as shown in Fig. 6.6. What is worth noting is that a
nearly linear speedup can be obtained for scene man. For other scenes, there might be gain
or loss in speedup as shown in Fig. 6.10.
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Figure 6.9: The Speedup vs # of ICUs (cell size = 0.5; number of rays = 16384).

Table 6.8: EDRC for two test scenes (# of ICUs = 8).

Scene ICUO [ICU1 [ICU2 {CU3 [ICU4 [ICU5 [ICU6 [ICU7

lobby 12532 51.7 422 P7.34 H7.69 RO.8  [135.24 [72.94
rooml6.27 [9.32  |19.64 R0.18 [7.93 1©9.39 R236 P.72 ]26.06

Table 6.9: EDRC for two test scenes (# of ICUs = 16).

Scene ICUO | ICUL | ICU2 | ICU3 | ICU4 | ICUS | ICU6 | ICU7

lobby 85.78 | 60.16 | 33.62 | 59.16 | 20.59 | 24.21 | 29.96 | 26.83
rooml6.27 126.46 | 872 | 7.06 | 11.13 ] 6.13 | 1235 ] 13.9 | 5.84

Scene ICUg | ICU9 |ICUI10|ICUILL {ICUI2 [ICUI3|ICUI4 | ICUIS

lobby 11.69 | 36.36 | 72.18 | 75.12 | 9.42 | 20.13 | 12.5 | 20.82
rooml6.27 | 8.88 | 14.14 } 4.7 335 ] 3.84 | 497 | 431 }| 5.01
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Figure 6.10: The Speedup vs # of ICUs (cell size = 0.0625; number of rays = 196608).
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Figure 6.11: Workloads distributed over ICUs for a ray-casting procedure referring to the
reference point (cell size = 0.0625; number of rays = 196608).
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6.3.3. Pipeline Efficiency

As discussed in chapter 5, a highly pipelined ICU plays an important role in the radiosity
engine. We use pipeline efficiency which is defined by the percentage of busy time-space span
over the total time-space span (i.e., the sum of all busy and idle time-space spans) to- measure
the efficiency of an ICU. Figs. 6.12a - 6.12e show the pipeline efficiencies of a ray-casting
procedure referring to the reference point for the five test scenes. In fact, they are just another
interpretation of those figures showing workloads distributed over ICUs (Figs. 6.11a - 6.11e).
Although scene man is the best in terms of workload balancing, the pipeline efficiency is only
0.4 when using 8 ICUs. This is due to the long latencies for global memory requests, which is
supposedly to be solved by caching most frequently referenced patch data during a phase. Fig.
6.13d shows the improvement in the pipeline efficiency (0.8) for a ray-casting procedure
referring to Sample Point 2. In contrast, scene phone has the worst workload balancing, the
low pipeline efficiency is mainly due to the heavily loaded ICU (i.e., ICU Number 5). For
other scenes, the gain or loss in speedup consistently reflects on the pipeline efficiency as
shown in Fig. 6.13.
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Figure 6.12: The Pipeline Efficiency for a ray-casting procedure referring to the reference
point (cell size = 0.0625; number of rays = 196608).
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Figure 6.13: The Pipeline Efficiency for a ray-casting procedure referring to Sample Point 2
(cell size = 0.0625; number of rays = 196608).
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Figure 6.13: The Pipeline Efficiency for a ray-casting procedure referring to Sample Point 2
(cell size = 0.0625; number of rays = 196608).
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Concluding Remarks

In this dissertation, we have explored ways to improving the performance of a ray-casting
based approach for visualizing artificial scenes with photo realism on the screen of a
workstation. The approach is simulation and the objective is high-performance and high-speed
computation, One could hardly come up with something more demanding, except perhaps for
an additional walk-through option. Surely, virtual reality comes to mind as being an order of
magnitude more complex, but this application is still in its infancy, in the stage of brute-force
super-computing. And yet, computer graphics plays a role and will play a role in the world of
virtual reality, in the world of multi-media and in fact in all applications where visualization and
simulation come into play. It is all a matter of large-scale computing, such is clear. The question
is what the computing platform should be to achieve true high-performance and high-speed
computation. Possible solutions are super-computing, distributed computing, multi-processor
computings - general purpose and special purpose - and dedicated computing. A characteristic
feature common to all those large-scale computing is that they come with massively parallel
algorithms which seem to suggest naturally massively paralle! implementations. However,
massive parallelism in hardware is an illusion, except in some rare cases, where lots of trivial
operations with local interaction can be smeared out of large silicon areas to achieve very high
throughput and low-power implementations. The ray-tracing/radiosity rendering problem that
we have tackled in this dissertation is a beautiful example of simulation technique that leads to
massive parallelism in the architecture. High performance and high speed have mainly be
attained through combined algorithm and architecture design in which a parameterized space
partitioning on the one hand has found its counterpart in a scalable network of clusters on the
other hand. The result is not a special purpose graphics computer but a semi-dedicated graphics
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co-processor which is attached to a standard workstation. The complete algorithm runs on both
the host and its graphics mate in a true shared/distributed manner. This mate in turn is partly
programmable and partly dedicated to speed up the execution of the tremendous amount of
primitive operations. To summarize, we have focused on an application-specific solution that
allows us to fine tune an algorithm-architecture pair. This recognition is very helpful for the
practice of system design because a general-purpose solution is not conceivable.

The overhead of latency and synchronization for a paralle]l machine can be mitigated by
exploiting data coherence at various levels. At the algorithmic level, two solutions have been
proposed as follows:

L. In chapter 2, we presented a proximity enforced algorithm based on the following strategy:
(1) First of all, we should store most referenced data in fast memory, while keeping less
referenced data in slow memory; (2) Secondly, the execution of the program (i.e., the ray
casing based approach) should be enforced so that the data stored in fast memory allow to
be referenced as often as needed.

2. In chapter 3, we proposed a new space partitioning technique called the shelling technique.
By relying on ray-frustum casting, the long latencies of retrieving patch data can be
amortized over many useful computations.

To support the above algorithmic demands, some architecture requirements have been
necessary.

1. In chapter 5, a memory structure which is divided into working register, resident set, cache
memory, and global memory has been described. This allows to store most referenced data
in fast memory such as working register or resident set, while keeping less referenced data
in slow memory such as cache and global memory.

2. To support the ray-frustum casting, we have assumed a highly pipelined Intersection
Computation Unit. Through pipelining, communication with the external world only
occurs at the start and end of the pipeline.

In chapter 4, we have presented an application-specific runtime scheduling (ASRS) for
mapping the shelling technique onto a pipelined parallel architecture. Although ASRS was
shown to be sound and useful, it is limited to this specific application. In fact, many
applications exhibit dynamic and data-dependent runtime behavior, including sparse matrix
problems, adaptive PDE solvers, particle simulations and many combinatorial optimization
problems, etc. This work laid the foundation of a compiler-directed runtime resource
management. To broaden the domain of applications, we should combine compilation
techniques and runtime system techniques to handle resource management automatically. By
analyzing the static syntax of an application program (e.g., a ray-casting procedure), the
compiler creates special runtime routines (e.g., low-density ray casting) to gather program-
specific runtime information. This runtime information is made available to the runtime resource
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management system during program execution. The runtime resource management system also
keeps track of the availability of resources. With all this information, the runtime resource
management system manages available resources and schedules subsequent concurrent
execution (e.g., clustering, assignment and local scheduling).

The radiosity engine has been described in chapter 5, including system configuration, memory
design, network design, synchronizaton mechanism and its functionality. It has been
recognized as a pipelined parallel architecture featuring the following:

1. It is a parallel machine made of a mesh-connected network of processing nodes (see Fig.
5.1). Each processing node consists of some interface chips, memory chips, possibly
some general-purpose chips, and dedicated VLSI chips. All processing nodes work on
assigned computations simultaneously and asynchronously.

2. It is a ray-frustum based machine that achieves highly efficient and effective parallel
computing. Possible applications include: (1) radiosity preprocessing for projective (depth-
buffer) display, (2) ray tracing with a radiosity preprocessing and (3) ray tracing without a
radiosity preprocessing. In this dissertation, we have compared ray-frustum casting with
single-ray casting. Let us to use this opportunity to also compare ray-frustum casting with
standard projective algorithms (depth-buffer, scan-line, etc.). First of all, the SBB
computation is an alternative to the screen-space projection of a patch. The former is more
flexible because patches are not restricted to polygons as in the latter case. Secondly,
intersection computation in ray-frustum casting can be accelerated by exploiting the
coherence property [Hek93b] as in scan-conversion algorithms [SSS74]. The radiosity
engine is ray-tracing based, while preserving most desirable features in standard projective
algorithms, and so lend itself to fast and realistic image synthesis.

The radiosity engine has been completely modelled in BONeS®, and we have evaluated its
performance for a set of practical scenes. Promising results have been observed, including the
following:

1. The performance of the shelling technique is a weak function of the scene complexity. The
computational complexity of the shelling technique is k x R (k is about 2 - 5) as compared
to N x R (N is the total number of patches) of the naive algorithm, where R is the total
number of intersection-computation rays.

2. A reasonable speedup has been observed up to 8 clusters. The limiting factors in speedup
are workload imbalancing, the long latencies for global memory requests and the limited
bandwidths supported by the system and local buses. To achieve a higher scalability of the
system, further improvement in the front-end system together with the use of a dynamic
workload balancing scheme would be necessary.

3. The performance of software intersection computation on HP720 is about 0.2M/sec. The
radiosity engine provides two-orders-of-magnitude more processing power than this
software approach per cluster.
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Further investigation is required for the following issues:

1. Ray-frustum casting is mainly intended for undirect shooting. As pointed out in [JKV92]
[WEHS89], it is possible that a small patch when viewed from a sample point will not
receive any contribution. Therefore, it may look black even it is viewed from a close
distance. This artifact due to undersampling may be solved by casting ultrahigh-resolution
rays together with jittering the ray directions. Further investigation is required in order to
tune the ray-density as per patch or ray frustum.

2. In the ray-tracing pass, we proposed a patch-based ordering for shooting. By following
the scan-line ordering, intersection points pertaining to the same patch can be grouped
together for shadow ray casting and/or reflection/transmission ray casting. In this way, the
relevant data required by an intersection point (to start with a shadow ray casting and/or a
reflection/transmission ray casting) can be stored in fast memory, and most of them will be
reused by other intersection points in the same group due to the data-coherence property. In
general, the amount of data coherence for the primary rays will be large, but it will drop
quickly for a higher-generation rays. From this point of view, it is better to take a breadth-
first ordering in the ray tree instead of a depth-first. We could first shoot all the primary
rays, then the secondary rays, and so on. However, this may require a large memory to
store intermediate results. The question is how to exploit the data coherence to a maximum
extent as long as intermediate results will not swamp the entire memory.

We have travelled the whole trajectory from algorithm, architecture and down to the electronic
design. We are now developing a 4-cluster prototype system in corporation with TPD-TNO at
Delft. Meanwhile, we are developing VLSI chips for some critical blocks such as Cell Traversal
and Intersection Computation. Finally, we conclude that the radiosity engine is a very efficient
and effective parallel machine that can serve as a rendering accelerator attached to various
standard workstations, in particular for ray-casting based applications.
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