
In Proc. of the Second Intl. Workshop on Network and Operating System Support for Digital Audio and Video,
Heidelberg, Germany, November 1991, Lecture Notes in Computer Science, Springer-Verlag, Vol. 614, pp.
10-21, Springer-Verlag, Heidelberg, 1992. Republished in Computer Communications, Vol. 15, No. 6,
(July/August 1992) pp. 388-395.

Kernel Support for Live Digital Audio and Video*

 Kevin Jeffay Donald L. Stone F. Donelson Smith

University of North Carolina at Chapel Hill
Department of Computer Science

Chapel Hill, NC, USA 27599-3175
{jeffay,stone,smithfd}@cs.unc.edu

Abstract: We have developed a real-time operating system kernel which has
been used to support the transmission and reception of streams of live digital
audio and video in real-time as part of a workstation-based conferencing
application. An experimental environment consisting of a number of
workstations interconnected with a 16 Mbit token ring has been created and
used to evaluate quantitatively the performance of the kernel and conferencing
application, as well as the quality of the conferences they are capable of
supporting. Our early experiences with these systems are described.

Introduction

Recent advances in video compression algorithms –– and their realization in silicon –– have

made it possible to consider introducing streams of digitized audio and video into the

processing workload of workstation operating systems. For example, by outfitting

workstations with off-the-shelf video cameras, microphones, audio amplifiers, and digital

video and audio acquisition and compression hardware, it is possible to construct multimedia

applications such as integrated voice/video/text document editors and browsers [Hopper 90] as

well as communication services such as workstation-based video and/or audio conferences

[Terry & Swinehart 88, Jeffay & Smith 91].

While the hardware for such systems is readily available, existing operating systems and

network communication protocols are inadequate for supporting multimedia applications such

as browsing a video document or conferencing. This is due to the real-time processing

requirements of digital audio and video, specifically, rigid throughput and latency

* This work supported in parts by grants from the National Science Foundation (numbers CCR-9110938 and
ICI-9015443), and by the Digital Equipment Corporation and the IBM Corporation.

2

requirements. For browsing or conferencing in a distributed system, frames of video must be

acquired at a remote workstation (either from a camera or from a disk file) and transmitted so

as to arrive at the local workstation to be displayed at the (precise) rate of one frame every 33

ms. Problems such as these have stimulated research in basic issues of operating system

design such as file system design [Rangan & Vin 91], and scheduling and inter-process

communication [Anderson et al. 90, Govindan & Anderson 91, Jeffay et al. 91].

Our interest lies in the development of operating system infrastructure for the processing of

live digital audio and video, specifically, workstation-based conferencing. Applications

requiring live digital audio and video, such as conferencing, are unique in that their real-time

throughput and latency requirements are particularly demanding. A conferencing application

fundamentally requires that the audio and video data be processed as it is generated (i.e., with

zero or one buffer). To do otherwise implies that either portions of the conference will not be

reproduced (e.g., frames will be dropped) or that artificial latency is imposed between

acquisition and display processes. In order for a system to be usable as a conferencing tool,

we should minimize, if not avoid altogether, the occurrence of these events. Ideally a

workstation-based conferencing system should be indistinguishable from the more traditional

analog (i.e., non-computer based) system.

We have constructed an experimental network of workstations capable of processing live

digital audio and video and are using this system to experiment with operating system and

network support for continuous-time media. In this note we describe some early experiences

with a prototype conferencing application constructed on top of an operating system kernel we

have built. The kernel provides real-time computation and communication services that enable

a programmer to both specify real-time throughout requirements and to assess end-to-end

latencies. Moreover, the kernel supports a tasking model for which it is possible to determine

a priori if sufficient processing resources are currently available to meet an application’s

requirements.

In designing the conferencing application, our approach has been to view the problem as one

of real-time resource allocation and control. We hope to demonstrate by example that much of

the technology developed within the real-time systems community is directly applicable to the

problem of supporting applications that manipulate digital audio and video. Although we have

chosen to focus on live digital audio and video, we believe the infrastructure we have

developed is applicable to applications that manipulate both live and recorded media.

The following section briefly describes the operating system kernel used to support real-time

digital audio and video conferencing. We follow with a description of the architecture of the

3

conferencing prototype itself and describe our initial experiences using this system. We

conclude with a brief discussion of the appropriateness of the performance guarantees

provided by the kernel and assess how well the kernel’s programming model responds to the

real-time processing needs of the conferencing application.

Kernel Overview

Operating system support for our conferencing application is provided by an operating system

kernel we have developed called YARTOS (Yet Another Real-Time Operating System) [Jeffay

et al. 91]. This kernel was developed to experiment with a paradigm of process interaction

called the real-time producer/consumer (RTP/C) paradigm [Jeffay 89]. The RTP/C paradigm

defines a semantics of inter-process communication that provides a framework for reasoning

about the real-time behavior of programs. This semantics is realized through an application of

some recent results in the theory of deterministic scheduling and resource allocation. We

believe YARTOS to be a “general purpose” real-time operating system kernel. In addition to

the conferencing application, YARTOS prototypes have been used in a 3-dimensional

interactive graphics system used for research in virtual realities, and a HiPPI data link

controller.

The programming model supported by YARTOS is an extension of Wirth’s discipline of real-

time programming [Wirth 77]. In essence it is a message passing system with a semantics of

inter-process communication that specifies the real-time response that an operating system

must provide to a message receiver. This allows us to assert an upper bound on the time to

receipt and processing of each message. The exact response time requirement is a function of

such factors as the rate with which a process receives messages on a given input channel.

Ultimately, these rates are functions of the rates at which data arrives from external sources.

These semantics provide a framework both for expressing processor-time-dependent

computations and for reasoning about the real-time behavior of programs. The programming

model is described in greater detail elsewhere [Jeffay 89].

YARTOS itself supports two basic abstractions: tasks and resources. A task is an independent

thread of control (i.e., a sequential program) that is invoked in response to the occurrence of

an event. An event is a stimulus that may be generated by processes external to the system

(e.g., an interrupt from a device) or by processes internal to the system (e.g., the arrival of a

message). We assume events are generated repeatedly with a (non-zero) lower bound on the

duration between consecutive occurrences of the same event. Each invocation of a task must

complete execution before a well-defined deadline. The invocation intervals and deadlines for

4

a task are derived from constructs in the higher-level programming model. During the course

of execution, a task may require access to some number of resources. A resource is a

software object (e.g., an abstract data type) that encapsulates shared data and exports a set of

procedures for accessing and manipulating the data. Like a monitor, resources guarantee

mutually exclusive access to the data they encapsulate. Resources are accessed indirectly

through the kernel. Support for resources is included to ensure priority inversions do not

occur –– a phenomena in which low priority processes exclude high-priority processes from

accessing time-critical data, thus causing the high priority processes to miss deadlines [Sha et

al. 90].

For a given workload (a set of tasks and resources), the goal of YARTOS is to guarantee that

(1) all requests of all tasks will complete execution before their deadlines and (2) no shared

resource is accessed simultaneously by more than one task. We have developed an optimal

(preemptive) algorithm for sequencing such tasks on a single processor [Jeffay 90]. The

algorithm is optimal in the sense that it can provide the two guarantees whenever it is possible

to do so. Moreover, an efficient algorithm has been developed for determining if a workload

can be guaranteed a correct execution. This algorithm forms the basis for a resource

reservation protocol that is executed prior to the start of a video conference by workstations

participating in the conference. In addition to its academic value, the optimality of the

YARTOS resource allocation policies are important for effectively trading-off processing

requirements for guaranteed response time. If YARTOS cannot guarantee a correct execution

to a process, feedback can be provided on why the guarantee is not possible. A programmer

can typically achieve a compromise guarantee by either relaxing the response time constraint or

by improving the execution time of one or two specified processes. The optimality properties

ensure that the reasons for the lack of a guarantee are fundamental in nature.

Workstation-Based Conferencing

Motivation

Our emphasis on workstation-based conferencing arises from an interest in using computers

and communication networks to facilitate collaboration among scientific and technical

professionals [Smith et al. 90]. From a technological standpoint, the goal is to support

multiple, concurrent streams of digital audio and video in a distributed network of computer

workstations. These streams may either form disjoint conferences within the network or

involve one workstation in multiple simultaneous conferences.

5

While the requirements for media in conferencing systems could be met using a combination

of conventional digital and analog (audio/video) technology (e.g., a workstation with an

adapter for analog video such as the Parallax card), by manipulating audio and video in an

entirely digital format we leverage existing communications infrastructure (e.g., local-area

networks) to construct new and powerful tools for collaboration with remote colleagues.

Moreover, digital formats admit the possibility of writing software to implement functions that

now require specialized hardware in teleconferencing systems (e.g., voice-activated controls

to put the current speaker’s image in a window; multi-image windows “quad-split” so that up

to four participants are simultaneously visible).

Experimental Set-Up

We have built a private network to experiment with live digital audio and video. Currently we

have a small number of IBM PS/2 workstations (Intel 80386 processor) interconnected with a

16 Mbit token ring network. We use IBM-Intel ActionMedia 750 adapters (based on Intel’s

Digital Video Interactive (DVI) technology) for the acquisition, compression, decompression,

and display of digital audio and video [Luther 90].1 The compression component of the

ActionMedia system can be programmed to perform any of a number of compression

algorithms that trade-off execution time for image size and quality. We use an algorithm

capable of supporting real-time (i.e., full-motion –– 30 frames per second) compression or

decompression of full color images at a resolution of 256×240 but with considerable loss of

image quality. Newer high-performance versions of the display and image processors should

provide larger and better quality images at 30 frames per second [Harney et al. 91].

Each workstation is configured with a set of ActionMedia adapters and is connected to a video

camera, microphone, audio amplifier, and video monitor. Two ActionMedia adapters are

required to acquire digital audio and video: (1) a capture adapter that digitizes RGB signals

from a video camera along with two channels of analog audio inputs, and (2) a delivery

adapter that provides (along with many other functions) capabilities for video compression,

decompression, display control, and audio signal processing. The capture adapter alone is

required for playback of an audio and video stream. With a pair of ActionMedia adapters, a

given workstation may be either the originator or receiver of a audio/video stream, but cannot

be both concurrently. With the addition of a second delivery adapter, a workstation can

1 ActionMedia are Digital Video Interactive are registered trademarks of the Intel Corporation.

6

transmit and receive video streams simultaneously. In the following we consider only a single

unidirectional audio/video stream between two workstations.

In our experiments we have used a frame-independent compression algorithm (i.e., one in

which the compression of a frame is not influenced by the compression of previous frames).

In our present configuration, the resulting bandwidth requirement for transmitting a stream of

compressed audio and video over a local area network is approximately 2 Mbits per second.

A compressed audio frame is approximately 0.5 Kbytes and a compressed video frame is,

depending on the scene, approximately 6.5-7.5 Kbytes.

In addition to the digital system, we have also constructed a separate analog video

conferencing system using an existing in-house CATV system. The output from the

workstation camera simultaneously supplies the digital and analog systems with video input

thereby providing a convenient mechanism for assessing the (qualitative) latency and image

quality of the digital system. A preliminary comparison of the two systems is reported below.

Software Architecture

The conferencing application runs as a user program on top of the YARTOS kernel. There are

separate applications for originating and receiving a conference. Figure 1 shows the design of

the video processing portion of the conference origination application. The conference

reception application is similar. The origination application is responsible for acquiring,

compressing, and transmitting a video stream. As shown in Figure 1, the application consists

of 5 tasks (represented by circles) and 2 resources (represented as a collection of shaded

circles). In Figure 1 single headed arrows indicate message channels. In YARTOS these

provide control flow information. Double headed arrows indicate global data flow. Omitted

from Figure 1 are the kernel-level interrupt handlers.

The origination application is controlled by two externally generated signals: network and

ActionMedia interrupts. The network adapter signals an interrupt for one of two events. The

Transmit Ready interrupt, TR, is generated sometime after an application initiates a network

transmit. This signals that the network adapter is ready for the outgoing data. The Transmit

Complete interrupt, TC, is generated when a packet has been transmitted. The ActionMedia

hardware signals an interrupt for one of three events. Two Vertical Blanking Interrupts, VBI0

and VBI1, are generated after each half of a frame of video has been scanned. A

Compression Complete interrupt, CC, is generated after a frame of video has been

compressed.

7

Each video frame propagates through a three stage pipeline: digitization of the video frame,

compression of the digitized image, and transmission of the compressed data over the

network. The results of a stage in the pipeline are communicated to later stages through two

buffer pools (two YARTOS resources) that are shared between software tasks (as shown in

Figure 1) and hardware tasks (as described in Table 1). One buffer pool holds digitized

frames, the other holds compressed frames.

At any given time, there are three video frames in the pipeline. The pipeline is initiated by a

VBI1 signal. A digitize is initiated (“scheduled”) by providing an address of a buffer to the

capture adapter. Two VBI0s later (the first VBI0 signals that the digitize has begun –– the

second VBI0 signals that it is complete) the frame has been digitized. After the second VBI0,

the compression is initiated. As the frame is compressed, the hardware reads digitized video

data from one buffer and deposits compressed video data into another. The CC interrupt

signals the end of this operation. At this point, the transmission over the network is initiated.

Lastly, when the network adapter is ready to transmit, it raises the TR interrupt and network

packets are transferred onto the adapter.

The timing of the execution of all tasks is critical to the functioning of the pipeline. The

response time guarantees provided by the YARTOS kernel are used to ensure correct operation

of the pipeline. For example, since a digitize always begins at a VBI0, the Schedule Digitize

task (invoked by VBI1 messages) must be completed before the next VBI0. VBI interrupts

occur at intervals of 16.5 ms, so this task must complete within 16.5 ms. of its invocation.

Table 1 summarizes the sequence of hardware and software operations required to acquire,

compress, and transmit a frame of video and specifies the response time requirements of the

software tasks and the assumed hardware timing characteristics.

Experimental Results

We have run a number of experiments with unidirectional conferences (one origination

application and one reception application) to test both the performance of our system and the

qualitative nature of the conference. (For unidirectional digital conferences, we have the

capability of providing audio and video channels in the reverse direction with our analog

system.) The measures of interest are the intra-workstation and intra-network latency for a

frame of video and the effect of dropped or missed frames on the perceived quality of the

conference.

For the conference origination application we define the intra-workstation latency for a frame

of video as the difference between the time a network packet containing the data for a frame is

8

Table 1: Hardware/Software pipeline for transmitting a video frame.

Operation HW/SW Function Timing Properties

Schedule
Digitize

SW Get a free digitize buffer a and initiate the
digitization of the next frame of video.

Must complete
within 16.5 ms.

Digitize HW Scan a frame of video into a digitizing buffer. Completed in 33 ms.

Schedule
Compress

SW Get a digitizing buffer and initiate the compression
of the most recently digitized video frame.

Must complete
within 16.5 ms.

Compression HW Compress a frame of video from a compress source
buffer into a compress sink buffer.

Completed in 20 ms.

Transmit SW Get a compress sink buffer, make it into a network
packet, and initiate a network transmit.

Must complete
within 20 ms.

Initiate
Transmit

HW Signals that a buffer is available on the token ring
adapter.

Completed in less
than 1 ms.

Network
Driver

SW Copy data from a compress buffer onto the token
ring adapter.

Must complete
within 16.5 ms.

Transmission HW Physically transmit data. A function of
network load.

(physically) transmitted and the time the digitization of the frame started. We can demonstrate

analytically that the worst case intra-workstation latency is 3.5 frame times (approximately 116

ms.) for this application. (This assumes an otherwise idle network.) The conference

reception application is structured similarly and has similar latency. Figure 2 illustrates the

worst case interleaving of the software and hardware operations for the origination

application. In Figure 2, hardware processes execute throughout the intervals shown for

hardware processes. Software tasks execute somewhere between the left and right endpoints

of the intervals shown for software tasks.

In practice we estimate the end-to-end latency in a conference to be between 6 to 7 frame times

(200 ms. - 230 ms.). This latency in the digital system is easily noticeable when compared

side-by-side with the analog system. However, when the system is used for conferencing,

specifically, when users are physically separated and there there is no reference standard, we

have found the digital system to be adequate. We conjecture that this is because in

conferencing there is little physical movement in front of the camera and often only one

individual speaks at a time. We further conjecture that without synchronizing the sending

camera and the receiving display, it is not possible to achieve a worst case end-to-end latency

of less than 5 frame times in the present generation ActionMedia system. (A latency of 5

frame times would require an infinitely fast processor and network.)

9

Although we are limited in our present experimental configuration to only originating or

receiving 30 frames of video per second,2 we are confident that the latency guarantees

provided by YARTOS for a single video stream would remain unchanged as the number of

video streams manipulated by a workstation increases –– provided that the processor does not

become saturated. This is because if a task with a minimum inter-invocation time of p time

units is guaranteed a response time of p time units, then YARTOS is effectively reserving c/p

of the processor, where c is the cost of executing the task, for the execution of this task. So

long as YARTOS does not over commit the processor, the task will be guaranteed a response

time of p time units independent of the number and processing requirements of other tasks in

the system.

We have run a number of experiments on our network to determine how the quality of a

conference degrades as a function of the delay in the network. Our primary measure of

network delay is the time required for a token to return to a station after it has transmitted a

packet of data (the token rotation time). In the initial experiments reported here we use do not

use any of the priority reservation mechanisms of the token ring.

Conference quality is assessed in terms of the number of “frame incidents” observed in an

interval. A frame incident occurs at the conference receiver when a previously played frame

has to be replayed. This occurs when either a frame is discarded by the origination application

(because the network adapter has not transmitted frame n by the time frame n+1 is ready for

transmission), or when a frame arrives “late” at the receiver. Frame incidents are caused

solely by large token rotation times.

In assessing the quality of a conference, it should be noted that for our use of the ActionMedia

system, faithful reproduction of the audio component is paramount. This is because audio

data is acquired in fairly large blocks (33 ms. worth). In the conferencing application, an

observer can (easily) detect a single dropped or replayed audio frame whereas several

consecutive video frames need to be dropped in order for a user to notice. Since we currently

transmit audio and video frames in the same network packet it is not possible to drop/replay

one frame without doing the same to the other. Therefore, while our emphasis is primarily on

audio frames, we will speak only of dropped/replayed frames.

2 We simulate multi-person conferences by displaying video images at a receiving station at a reduced rate (e.g.
15 frames per second for displaying two remote conferees) and replaying the audio from only one stream at a
time. (Two streams of audio can be played simultaneously by playing one channel from each stream.)

10

In the current implementation of a unidirectional conference, there is no explicit

synchronization of the sending and receiving workstations. (To add synchronization would

fundamentally add latency.) The conference origination application delivers frames to the

network adapter at an aggregate rate of 1 frame every 33 ms. (with a measured jitter of ±2

ms.). The display tasks on the receiving workstation are driven off (local) VBI interrupts. On

each VBI0, a frame from a queue (typically of length one) of received frames is inserted into a

decompression/display pipeline. If the receiving side of the conference is ahead of the sending

side, i.e., a frame arrives late, then the receiver replays the previous frame. Such an event

typically occurs at most once (and typically within the first few frames) for a light to

moderately loaded network.

Our preliminary observations indicate that a frame incident rate of more than 2-4 incidents per

1000 frames is noticeable (i.e., annoying).3 Moreover, we observe that as the delay in the

network (in our case due to artificially generated traffic) as seen by a workstation originating a

conference, approaches 16 milliseconds, the occurrence of frame incidents increases

dramatically and hence the audio quality and the quality of the conference itself deteriorates

rapidly. This can be explained by noting that some of the latency in the conference is due to

the fact that the (hardware) video processes generating VBI interrupts on the originating and

receiving machines are not synchronized. If there were no delay in the network then one

would expect that on average a frame of audio and video would be queued for 16 ms. (i.e.,

half a frame time) at the receiving workstation before entering the decompression/display

pipeline. Therefore, on average, the receiving workstation should be immune to substantial

delays in the network. (For a 16 Mbit token ring, a 10 ms. delay would correspond to a

utilization of the network bandwidth of approximately 75% [Bux 89].)

On Performance Guarantees

The notion of a response time or other performance guarantee is central to our work and is

indeed essential for supporting applications that manipulate live digital audio and video. As

one example, if the Schedule Digitize task does not complete execution within 16 ms. of

receiving a VBI1 message, then a frame of video and audio necessarily will be lost. Through

careful attention to processor scheduling, YARTOS provides the desired response time

guarantees. Moreover, we can demonstrate both analytically and empirically that frames are

3 These experiments were performed using a CD player as the audio input source on the originating machine.
It is not clear how the threshold on frame incidents would differ for voice. We plan to perform additional
experiments with live voice input.

11

not dropped by a workstation originating a conference because of the workload in the system.

There are, however, two aspects of these performance guarantees that need to be examined in

closer detail to determine how well YARTOS supports the real-time requirements of the

conferencing application.

The first concerns the usefulness of the guarantees. For a given programming model that

includes repetitive real-time processing constraints, it is typically not very difficult to derive

sufficient conditions on the operating environment –– called schedulability conditions –– that

will ensure that the real-time response requirements of tasks will be met. The more interesting

question to consider is how accurate these conditions are. That is, if a set of tasks do not

satisfy the schedulability conditions then does this necessarily imply that a deadline will be

missed if the tasks are executed? Moreover, if this is indeed the case then how can the

programmer ameliorate this situation? For the YARTOS programming model, it is the case

that if a set of tasks does not satisfy the schedulability conditions, then it is possible to list all

sub-sequences of events (i.e., message arrivals) that will necessarily lead to a missed

deadline. If the programmer is willing to certify that none of these sub-sequences of events

can occur then no deadlines will ever be missed. (All sub-sequences of interest are of finite

length.)

The second, and likely more important issue, concerns the fit between the programming model

exported by YARTOS and the processing needs (both real-time and non-real-time) of the

conferencing application. Although YARTOS can provide meaningful real-time guarantees,

these guarantees come at a cost of a fairly restrictive programming model. YARTOS was

designed to to support applications whose real-time processing constraints arise from the need

to process data at a precise rate. Therefore, each task has a notion of a minimum inter-arrival

time of activation messages and a deadline based on this inter-arrival time. This meshes nicely

with the processing required to respond appropriately to VBI interrupts –– i.e., it is periodic

and has a well-defined deadline. It is not well suited, however, to support some of the

processing required to respond to a CC interrupt. This is because there are several logical

operations that are executed in response to a CC interrupt but not all of these operations have

the same deadline. In particular, some of these deadlines are not a function of the inter-arrival

time of the CC interrupt. One important function has been omitted from Figure 1: the

movement of digitize and compress buffers from the compress source and transmit queues

respectively, back to their corresponding free queues. In the case of digitize buffers on the

compress source queue, at the occurrence of a CC interrupt, a digitize buffer on the compress

source queue may be moved to the free queue.

12

A careful analysis of Figure 2 reveals that the conference origination application can, in

principle, work with three digitize buffers. This can be seen by noting that at the fourth VBI0

in Figure 2 (the start of the digitization of the unshown fourth frame), the hardware

compression of frame 1 must have completed and hence the digitize buffer used for frame 1

can be reused for frame 4. If, however, the operation to free the digitize buffer is performed

as part of the Transmit task, it is possible that the free operation for the digitize buffer used for

frame n may not take place before execution of the Schedule Digitize task for frame n+3. This

is because under YARTOS the deadline for the Transmit task can be expressed only in terms

of the when the next CC message is expected to arrive. In general, this deadline is insufficient

for ensuring that a digitize buffer can be freed before the next invocation of the Schedule

Digitize task (i.e., before the next VBI1). Therefore, if the buffer free operation is performed

by the Transmit task then the implementation of the digitize buffer resource must provide four

buffers.

Abstractly, this is solely an issue of efficient resource utilization since the addition of a fourth

digitize buffer would have no impact on the real-time performance of the application. In the

current configuration of our system, however, this is a critical issue as digitize and compress

buffer resources are implemented in memory on the ActionMedia adapter and there is

insufficient space for four digitize buffers.

The root of the problem is that the true deadline of the buffer free operation is not a function of

the interarrival time of CC interrupts and hence cannot be directly supported with a YARTOS

task. The solution we have adopted is to associate an eventcount [Reed & Kanodia 79] with

each message port in the system. Whenever a message is sent to a task the eventcount is

incremented. The eventcount is then used for producer/consumer synchronization on events

as described in [Reed & Kanodia 79]. In the case of the digitize buffer-free operation, this

operation can now be performed when it is needed as a side effect of the resource call to

remove a free digitize buffer. When this call is made, the kernel is invoked to check the

eventcount for the Transmit task. The value of this event count indicates the number of CC

interrupts that have occurred and this corresponds to the number of times digitize buffers have

been freed. If the CC eventcount differs from the VBI1 eventcount (indicating the number of

times free digitize buffers have been removed) by less than the number of digitize buffers in

the system there is indeed a free digitize buffer.

In general, the eventcount mechanism must be a kernel provided function because the

recognition of the event and the increment of the eventcount must be indivisible in order to

preserve the semantics of eventcounts.

13

Future Directions

In the near term we will be experimenting with alternate conference application designs and

measuring their performance. The goal is to characterize the cost of an “acceptable” quality

conference in terms of the observed rate of frame incidents and the latencies induced by (a

generic model of) the video hardware, the operating system and the network. We then hope to

demonstrate how fluctuations in the values of parameters describing one component affect

both other components and the quality of the conference itself.

With regard to the conferencing application itself, of particular interest is the separation of

audio and video into independent network packets. In the ActionMedia system, compressed

audio data for a frame is available 33 ms. before the corresponding compressed video data and

hence could be transmitted significantly earlier than the video data. Given that the quality of

the audio in a conference is the primary indicator of overall conference quality, by transmitting

audio as soon as it is available we should be able to tolerate substantial network delays (e.g.,

delays on the order of 80 ms.). This is, of course, an artifact of the 200 ms. end-to-end

latency for video data in our system.

Given that our emphasis on workstation-based conferencing arises from an interest in using

such systems to facilitate collaboration among scientific and technical professionals, we are

striving to integrate our kernel and conferencing applications into a computing environment

that includes UNIX workstations. To this end, we are currently adding ethernet support and

porting a TCP/IP implementation to the YARTOS kernel. The token ring network (and

hopefully its FDDI successor) will remain primarily a private network for experiments with

real-time communications protocols. In addition we are working on porting an X server to

YARTOS. In essence we hope to construct a real-time multimedia workstation that provides a

window onto existing computing environments while providing new, real-time

communications and continuous media services.

Summary and Conclusions

The YARTOS programming model provides response time guarantees to tasks based on their

minimum inter-invocation time. While this basic mechanism has not supported the

conferencing application seamlessly, it has been sufficient to construct the system. In

particular, the accuracy of the YARTOS schedulability analysis has been most useful as it has

allowed us to concentrate on issues of logical correctness while ignoring efficiency

14

considerations. (For example, we have constructed, and received the desired performance

guarantees, for conferencing applications that utilize close to 80% of the CPU.)

Concerning our experiments, we have empirically determined that when the delay in the

network exceeds 16 ms. then the perceived quality of the conference falls off sharply (more

than 4 dropped/replayed frames per 1000). Therefore, for our system we posit that if

P(network delay < 16 ms.) > .996, no reservation or priority mechanisms are required to

ensure good fidelity conferences on our (token ring) network.

References

Anderson, D.P., Tzou, S.-Y., Wahbe, R., Govindan, R., Andrews, M., 1990. Support for
Continuous Media in the DASH System, Proc. Tenth Intl. Conf. on Distributed
Computing Systems, Paris, France, May 1990, pp. 54-61.

Bux, W., 1989. Token-Ring Local-Area Networks and Their Performance, Proc. of the
IEEE, Vol. 77, No. 2, (August), pp. 238-256.

Govindan, R., Anderson, D.P., 1991. Scheduling and IPC Mechanisms for Continuous
Media, Proc. ACM Symp. on Operating Systems Principles, ACM Operating Systems
Review, Vol. 25, No. 5, (October), pp. 68-80.

Harney, K., Keith, M., Lavelle, G., Ryan, L.D., Stark, D.J., 1991. The i750 Video
Processor: A Total Multimedia Solution, Comm. of the ACM, Vol. 34, No. 4 (April),
pp. 64-79.

Hopper, A., 1990. Pandora –– An Experimental System For Multimedia Application, ACM
Operating Systems Review, Vol. 24, No. 2, (April), pp. 19-34.

Jeffay, K., 1989. The Real-Time Producer/Consumer Paradigm: Towards Verifiable Real-
Time Computations, Ph.D. Thesis, University of Washington, Department of
Computer Science, Technical Report #89-09-15.

Jeffay, K., 1990. Scheduling Sporadic Tasks With Shared Resources in Hard-Real-Time
Systems, University of North Carolina at Chapel Hill, Department of Computer
Science, Technical Report TR90-038, August 1990. (In submission.)

Jeffay, K., Smith, F.D., 1991. System Design for Workstation-Based Conferencing With
Digital Audio and Video, Proc. IEEE Conference on Communication Software:
Communications for Distributed Applications and Systems, Chapel Hill, NC, April
1991, pp.169-178.

Jeffay, K., Stone, D., Poirier, D., 1991. YARTOS: Kernel support for efficient, predictable
real-time systems, to appear: Proc. IFAC Workshop on Real-Time Programming,
Pergamon Press.

Luther, A.C., 1990. “Digital Video in the PC Environment,” McGraw-Hill, Second Ed.

15

Rangan, P.V., Vin, H.M., 1991. Designing File Systems for Digital Video and Audio, Proc.
ACM Symp. on Operating Systems Principles, ACM Operating Systems Review, Vol.
25, No. 5, (October), pp. 81-94.

Reed, D.P., Kanodia, R.K., 1979. Synchronization with eventcounts and sequencers,
Comm. of the ACM, Vol. 22, No. 2, (February), pp. 115-123.

Sha, L., Rajkumar, R., Lehoczky, J.P., 1990. Priority Inheritance Protocols: An Approach
to Real-Time Synchronization, IEEE Trans. on Computers, Vol. 39, No. 9,
(September), pp. 1175-1185.

Smith, J.B., Smith, F.D., Calingaert, P., Hayes, J.R., Holland, D., Jeffay, K., Lansman,
L., 1990. UNC Collaboratory Project: Overview, University of North Carolina at
Chapel Hill, Department of Computer Science, Technical Report TR90-042.

Terry, D.B., Swinehart, D.C., 1988. Managing Stored Voice in the Etherphone System,
ACM Trans. on Computer Systems, Vol. 6, No. 1, (February), pp. 3-27.

Wirth, N., 1977. Toward a discipline of real-time programming, Comm. of the ACM, Vol.
20, No. 8 (August), 577-583.

16

Token Ring
Int.

Network
Driver

Compression
Complete

Int.

Transmit

Vertical
Blanking

Int.

DVI
Control

VBI 0

Schedule
Digitize

Schedule
Compress

VBI 1

Digitizing
Compress

Source

Compress
Sink Transmit

deposit remove depositdepositremoveremove remove

Compress Buffers

Digitize Buffers

Digitize
Free

Compress
Free

Figure 1: Conference origination application.

1 1 1 1 1 1 10 0 0 0 0 0

CC CC CC
TRTR

Time

≡ Hardware function.

≡ Software function.

Digitize Compress
S Dig S Com Xmit ND

NA
NA

Digitize Compress
S Dig S Com Xmit ND

NA
NA

Digitize Compress
S Dig S Com Xmit ND

NANA

Frame 1

Frame 2

Frame 3

Compress Complete:
TRTransmit Ready:

≡S Dig Schedule Digitize

≡S Com Schedule Compress

≡ Xmit Transmit
≡ND Network Driver

VBI:

Figure 2: Execution of the conference origination application for the
processing of three frames of video.

