
RISC-based architectures for 
multiple robot systems 

G Jimenez, J L Sevillano, A Civit-Balcells, F Diaz and A Civit-Breu outline 
several multi-layered approaches to multiple robot system control 

Several approaches to multiple robot system control a r e  

discussed. In order to simplify the study a multilayered 
model is proposed: a control layer which directly acts on 
the dynamics of the manipulators, a coordination/ 
communication layer which makes all the manipulators 
work together and a programming layer which interfaces 
with the user. For the first layer two architectural altematives 
are studied: a centralized single processor system and a 
distributed multiprocessor with static task assignmenL For 
the second case an implementation based on the i960 
family of RISC processors is introduced. For the second 
layer three possibilities are considered: serial interface, 
parallel bus and local area network. The latter is carefully 
studied and a low cost alternative to the standard 
deterministic network MAP is introduced. This cell network 
is based on the CSMA/DCR protocol implemented on the 
i82596 coprocessor. Two alternatives are discussed for the 
programming layer: a parallel programming language 
based on a scene approach and a C extended language 
used to program elementary tasks in a robot independent 
way coupled with an intelligent scheduler used to assign 
these tasks to the robot arms at run time. 

multiple robots multiprocessor control systems RISC LANs 
intelligent task scheduling 

As industrial processes grow more complex and com- 
petitiveness increases the use of multiple robots in work 
cells (which also include sensors, feeders, machine tools 
etc.) is becoming more common. The main problem in 
these systems is the precise synchronization of the 
elements that make up the cell. Thus the robot arms must 
be coordinated not only among themselves but also with 
the information that comes from vision and other sensors 
and with the rest of the machines in the system. The 
controllers that are currently used for robots do not 
include facilities to perform these functions. This is mainly 
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caused because these controllers are designed for single 
robot systems or very lightly coordinated systems. 
Although I/O signals are readily accesible from user 
programs they are wholly insufficient if any coordination 
that requires a certain ammount of data communication is 
necessary. It is a fact, and in our opinion one element that 
strongly opposes robot growth, that many controllers only 
permit the programming of a robot in a machine-specific 
language. The situation is so bad that is not uncommon 
that the same manufacturer uses one language for some 
of its robots and a different one for others 1. 

Turnkey solutions 2 include the use of serial RS232 (or 
similar) channels usually available in robots to implement 
the coordination of complex systems. This architecture 
may not have the bandwidth required to support the 
coordination traffic in the cell but, what is more important, 
it limits the design of flexible systems which could be 
used in many different applications. 

These reasons have led several universities and 
research centres to develop controllers that allow the 
implementation of sophisticated multiple robot systems 2' 3. 
An example of these is the Robotic Instruction Processing 
System (RIPS) from the University of California, Santa 
Barbara (Figure 1). 

In general the implementation of a multiple robot 
system requires: 

• The design of new controllers that permit a better 
monitoring of robots as well as effective dynamic 
control which improves system performance. 

• The development of coordination and communication 
systems between the individual robot controllers. 
Several altematives can be considered according to the 
required degree of coordination. Among these are: 

Serial communication. This is the simplest altemative 
and should be used whenever its performance is 
acceptable 
Parallel bus interface (e.g. IEEE 488, VME, Multibus 
II) 

Network interface (e.g. MAP, Ethemet) 
• The development of software packages that manage 

the set of robots and their interface to the rest of the 
cell in an efficient way. 
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It is convenient to divide the study of multiple robot 
systems into several layers as is done in other areas of 
computer science 4' s. The main advantage of this approach 
is that every layer can be studied and designed separately 
from the others. Figure 2 shows our division of a multiple 
robot system. In this paper each layer is studied con- 
sidering its interfaces with the ones above and below it. 

CONTROLLERS FOR MULTIPLE ROBOT SYSTEMS 

As robots have been assigned more difficult tasks and the 
performance constraints have grown their control units 
have become increasingly sophisticated 6. The first 
industrial robots were controlled by s imple j r fono-  
processors and their dynamic behaviour and user inter- 
face were very poor. Controllers have evolved toward 
multiprocessors as, for example, Silma's Adept One, 

which is controlled by two Mb8000 ;~, and those developed 
at Stanford 8, the University of Pennsylvania <~, MIT l n ~  
Brown University 12, IBM 1~ etc. The main motive for thi~ 
evolution has been the possibility of increasing the 
computational performance of the controller and thus 
more powerful algorithms can be implemented in them. 

Nowadays the trend is to use advanced processors 
(mainly RISC 14'1s, DSP 16-19 or specific VLSI robotic 

processors 3'2°) in these controllers so that the most 
complex control policies can be implemented in low (ost 
controllers. 

In general multiple robot controllers are extensions of 
single robot controllers but with a greater throughput and 
I/O capabilities. These systems can be distributed or 
centralized. 

Centralized multiple robot control systems 

In this kind of system the control algorithms for all the 
robot arms are implemented in a single processing 
system, mono or multiprocessor, without a fixed assign- 
ment of processors to the arms. The centralized control 
systems can be divided into those that use a single global 

control algorithm and those that have separate processes 
for the control of each arm. 1his last case is, from the 
software point of view, equivalent to a distributed system 
but with the maximum number of arms limited by the 
computing capabilities of the processing system. If a 
single CPU is used then an upper limit on the number of 
arms is the quotient of the required sampling period and 
the time taken by the processor to implement the control 
algorithm for each arm. If a m ultiprocessor is used the load 
balancing algorithms can represent an important overhead 
and if the system distributes the processing dynamically 
among CPUs then execution times are difficult to predict 
and thus it is difficult (or impossible) to use this 
configuration in real-time controllers. As a consequence, 
global control with a single processor or several processors 
with a static task assignment is the only option where 
centralized control becomes attractive. 

We define a completely centralized control as a system 
where all the arms are considered as a single robot whose 
degree of freedom is the sum of those of the individual 
arms. A good term for this type of system is multiple arm 
robot. The controller for this robot can be, in principle, 
like that of a traditional single arm but with two important 
characteristics: it must be capable of interfacing with a 
great number of actuators and it must be powerful 
enough to run both the control and the coordination 
algorithms. The first requirement implies an important I/O 
handling capability while the second imposes a lower 
limit on the processing throughput of the system for a 
certain number of arms. 

A system where these requirements are fulfilled is 
described in Reference 21. This system, which is currently 
under development, is a heterogeneous RISC multi- 
processor. An i860 with 80 MFLOPS single precision peak 
performance is used to implement the control and 
coordination algorithm. This processor is not intended for 
real-time applications and, thus, its I/O capabilities are 
very poor. A good companion for this processor is the high 
performance I/O oriented i960CA superscalar micro- 
controller with very short interrupt response times. This 
system has been simulated running multiple copies of a 
single arm adaptive controller 22 and it has been shown 
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that, in this way, up to eight SCARA arms (4 DOF) can be 
easily controlled. In the test a sinusoidal trajectory with a 
1 ms sampling period has been used. The vector cap- 
abilities of the i860 processor are well suited for this 
algorithm which does not use matrix inversion and where 
the inner loop is a matrix product in which the i860 can 
reach its peak FP performance 23. An interesting fact is that 
a C vectorizer is not available for this processor (at least to 
the authors' knowledge) and this requires writing part of 
the code in Fortran (using the VAST-2 Fortran Vectorizer 
for the i86024) or coding the calls to the vector maths 

library by hand. 
The main difficulty for experimenting with global 

control is that there are no computationally efficient 
algorithms available. 

In the case of completely centralized control there is 
little independence between the layers in Figure2. 
Coordination and control can be considered as a single 
layer and the communication sublayer is unnecessary. 

Distributed multiple robot control systems 

In these systems there is a controller for each arm. One of 
the advantages of these systems is that they are easily 
expandable. From the hardware point of view adding a 
robot only requires the addition of a new controller. From 
the software side it is usually a very simple task also. This 
type of system permits the implementation of a centralized 
or a distributed control policy. In the latter case co- 
ordination requires the transmission of the status of every 
controller to all the others. As we will see later centralized 
coordination is easier to implement, although the hard- 
ware that we will introduce is equally suited for the 
distributed approach. 

The multiple arm controllers can reuse an important 
part of the design of traditional single arm controllers, but 
two important aspects must be modified: 

• Control software should allow supervision by the 
coordination layer 

• The hardware implementation should include an 
adequate communication channel. 

The first requirement makes the implementation of a 
multiprocessor for the control of each arm attractive (as in 
Figure 1). In our case we have adopted a biprocessor 
structure. One of the processors implements the control 
algorithm while the other handles the communications 
with the coordination layer. This processor interprets the 
received messages and translates trajectories into a form 
that can be easily used by the control processor. 

The kind of algorithms that should be implemented is 
an important factor in the selection of the processors for 
the controller. We decided that the control processor 
should be able to execute advanced algorithms such as 
adaptive, learning control or mixed techniques 21 . This led 
us to choose RISC processors that were specially suited 
for embedded applications such as those in the i960 
family. It is impo-rtant to point out that the task of the 
controllers requires 'environment sensitive' processors. 
This means that interrupt latency and processing overhead 
have to be kept to a minimum. A microcoded CISC 
requires several cycles to complete its current instruction 
and save its environment. The RISC philosophy of very 
short instructions and a larged framed register set makes it 

possible to finish the instruction and save the state in one 
or, at least, very few cycles. In an early design the control 
processor was implemented with an i960KB and an 
i960CA was used to handle communications with the 
coordinator. The controllers were connected to the 
coordinator through a Mult ibusll (Figure 4). The system 
was used to control four-axis SCARA robots. 

The i960CA superscalar processor is optimized for data 
communication and is very well suited to control the MBII 
interface. This RISC is interesting mainly for two reasons: 
its great processing power and its quick interrupt 
mechanism. The processing power is due to a simple but 
highly efficient instruction set together with a micro- 
architecture that permits up to three instructions/clock 
(up to 120 native MIPS). An internal 1 k instruction cache 
together with a 1 k internal RAM from which four 32-bit 
words can be read in a single cycle contribute to the 
speed of this processor. 

The i960KB is not superscalar and thus it is limited to 
one instruction/clock (up to 33 native MIPS). The reason 
for selecting this processor for control is that it includes an 
internal FP unit which is essential for some control 
algorithms. The FP instructions as well as the memory 
references can be overlapped with other instructions, 
thus contributing to program speed up. 

For the implementation of our system two commercially 
available boards have been used: 

• XCRC/KB, a modification of an Intel i960KB board 
specially adapted to SCARA robot control. 

• MIB II 960/110 (RISC Development Board), an MBII 
board based on the 960CA with a prototyping area for 
user expansion. 

Both processors have to communicate in an efficient 
form. Our approach is to use a dual-port memory for this 
purpose. In this memory the i960KB leaves trajectory 
data and the i960CA checks for possible conflicts. All this 
must be done in real time. The arm controller is shown 
in Figure 3. 

If the i960CA has to run with zero wait states (not really 
necessary in our application) the memory access time 
must be under 40 ns. Dual port 32k memories with 35 ns 
access times are currently available 25 and thus inter- 
processor communications are very simple from the 
hardware side. These communications are completed by 
the use of interrupts. 

This system has been designed for centralized co- 
ordination where the coordinator sends, among other 
messages, trajectory information. This information is 
received by the arm communication controller (i960CA) 
and passed to the arm dynamic controller (i960KB). In this 
case there are six types of messages between the 
controllers 26. 

From KB to CA: 

1) STOP__D: Tells the communications controller that 
the trajectory cannot be completed (usually due to an 
obstacle interrupt). 

2) TRAJECTORY END: Tells the communications con- 
troller that the trajectory has ended. 

3) TRAJECTORY__POINT: Tells the communications 
controller that a trajectory point has been calculated 
and must be checked for possible conflicts. 

From CA to KB: 

4) STOP_C: Tells the dynamic controller to stop the arm. 
This can be due to an emergency stop (sent as a 

Vol 16 No 4 1992 179 



X C R C  B O A R D  

] s12 xR ! 

DRAM HENORY ] 

1-4 ~ r r E s ,  r 
STATIC COLUMN[ 

I960KB 

PROCESSOR 

SERVO-HOTORS 

L CONTROL 

I 

ENCODERS 
INTERFACE 

TO POWER 
STAGE 

I / 0  PROTOTYPING 

AREA 

I~JAL-PORT RAM 

DRAN NENORY 

2 HBYTES 

I960CA 

PROCESSOR 

MIR I I  9 6 0 / 1 1 0  

II 
PSB 

INTERFACE 

(~=C) 

11~3B 

Figure 3 

DATA & CONTROL BUS 

_ _ I  ADDRESS BUS 

broadcast message) or the detection by the com- 
munication controller of the entrance into an unavailable 

interference zone. 
5) TRAJECTORY: Tells the dynamic controller that a 

trajectory description is available in a mail box in 

shared memory. 
6) CONTINUE: Tells the dynamic controller to continue a 

trajectory that was stopped by STOP_C. 

These messages can be implemented through structures 

in shared memory and interrupts. 
The overall controller process is as follows. Once a 

trajectory is received by the KB it starts calculating points 
and leavingthem in shared memory. For each point atype 
three interrupt is generated, telling the CA to check for 
possible conflicts. The calculation/checking/control is 
pipelined i.e. when the KB is calculating point i, the CA is 
checking point i-I and the KB control is acting over point i- 
offset. The value of the offset variable depends on the 
maximum speed, the inertial parameters of the robot and 

the characteristics of the actuators (the robot cannot 
stop instantaneously). The points involved in the pipeline 
are stored in a circular queue of length offset +2. 

C O O R D I N A T I O N  

Several degrees of coordination are possible 27. Applica- 
tions usually require a certain degree of coordination but 
this degree can also be limited by system characteristics. 
We now consider two main cases: tight and loose 

coordination. 

T ight  coordinat ion 

A tightly coordinated system requires that the kinemati< 
variables of the arms (position, velocity and acceleration> 

should be coordinated at every instant. This means, as 
stated, that the system can be considered as a multiple- 
arm robot. In such a system a trajectory is defined as the 

temporal evolution of the coordinates of all the arms in 
the system. The control should use a centralized approach 
and the processing system should be able to handle 
matrix operations, where the dimension of the matrices is 

the sum of the degrees of freedom in the system. 
The biggest advantage of tight coordination is that it 

permits adequate modelling of all the dynamic couplings 

in the system and, thus, the flexibility is a maximum. As an 

example, two arms could manipulate objects by estab- 
lishing a constraint in the system matrix or this matrix 
could be used to determine the physical interference of 

any arms. 
The problem with this type of coordination is the huge 

amount of calculations that must be carried out in real 
time. One must always bear in mind that in the robot 
environment the only processors that can realistically be 
used are single or clustered microprocessors. 

L o o s e  c o o r d i n a t i o n  

In this case the object of coordination is to prevent 
physical interference between the arms, thus permitting 

their cooperation by sharing resources (tools or working 
zones). In our approach the global working zone (i.e. the 
total of all the robot working zones) is divided into logical 
subzones. These subzones can change with time but we 

impose the condition that this change will only take place 
when all the robots are stopped. All zones that may be 
used are defined before the system starts operating and 

later they are activated or deactivated at run time. 
There are two main types of shared resource manage- 

ment: 

• Exclusive use: In this case resources can only be used 
by one robot at a time. Thus a robot would not be 

allowed to enter a zone that is already owned by 
another. Of course, it would also be impossible for a 

robot to use a tool if it was already being used by 

another. 
• Simultaneous use with restrictions: In this case several 

robots can share a zone but only one of them at a time 
can move inside it. Tools are, of course, always 

exclusive resources. 

This division can be simplified if we redefine the concept 
of resource and consider that the movements inside a 

zone can be treated as one. 
Each of the cases has associated problems. In the first 

all the necessary conditions for deadlock 28 hold so it is 
necessary to consider this possibility and handle it 
adequately. In the second case logical deadlock is not 
possible because if a robot that has the ownership of 
movement in its zone wants to enter another and it is not 
granted the resource it will stop at the border of the zones 
and liberate the resource that it already owned. Thus it is 
not necessary for any robot to hold two movement 
resources at a time and so one of the conditions for 
deadlock does not hold. Of course this system can block 
for other reasons: 
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• Tool deadlock: Tools are still exclusive use shared 
resources. 

• Geometric deadlock: A robot that has movement 
permission may not be able to move using the desired 
trajectory if there are stationary robots that interfere 
with it. In this case an alternative trajectory should be 
calculated. This approach is suitable for most assembly 
tasks but is completely inadequate for welding or 
gluing. 

In loose coordination robots are considered as 
independent units and thus it is necessary to establish 
which information they must share for the synchronization 
and coordination of the system. This information depends 
on the coordination structure that is used. There are two 
possibilities: 

• Centralized coordination, in which every element in 
the system demands information from a central 
coordinator which makes the decisions on resource 
allocation and global synchronization. 

• Distributed coordination, in which every element 
needs to know the information about those that may 
interfere with it. 

In any case communications are through messages that 
include trajectories and coordination traffic. 

Even though both options can be justified, distributed 
coordination is more complex. The causes for this are: 

• It requires higher coordination traffic. In case of conflict 
every robot asks its neighbours for their status. 

• It is more difficult to alter in run time the tasks that have 
been sent to robots. 

• The cost and complexity are higher because functions 
that would otherwise be centralized have to be 
repeated in all elements. 

In any case, a system with enough communication 
bandwidth can easily support distributed coordination. 
From now on we will limit the discussion to the easier 
centralized coordination scheme. It is important to note 
that having a central coordinator does not mean that 
control cannot be distributed in the system. Both layers 
(Figure 2) are independent. There could also be different 
levels of centralization according to the functions assigned 
to the coordinator. 

For all these reasons we propose a system based on 
centralized loose coordination which considers movement 
in the interference zones as a shared resource. Thus, in 
this system, the coordinator may have to compute an 
alternative trajectory if the originally programmed one 
would cause a collision. Experience from other areas of 
computer science (like operating systems and multi- 
processors) in resource sharing can be applied in this type 
of system. Communications will be handled by a small set 
of messages 21. These include: 

From robot controller to coordinator'. 

• Request to move in a shared zone (includes zone 
selection). 

• Position information. This message is transmitted by 
robot controllers when they stop inside a shared zone 
in a position different from the end point of their 
assigned trajectory. 

• Zone release. Robots send this message when they 
leave a conflict zone. 

• Trajectory end. 
• Alarm. 

From coordinator to robot controller: 

• Trajectory description and start command. Sends the 
definition of a trajectory that should be immediately 
executed. 

• Sleep. Tells the controller that the zone movement 
requested is not available and thus the robot should 
stop at its border. If a robot is already in a zone and a 
trajectory is sent to it by the coordinator this implies 
that it has permission to move within that zone. 

• Wake up. Tells a robot that has received a stop 
message that it can continue its trajectory. 

• Shared zone grant. Tells a robot that it can move in the 
requested zone. 

• Active zone grant. This message is used to change the 
active zones. 

• Alarm. 

COMMUNICATIONS 

In this part of the paper we will study the three altematives 
presented before for multiple robot communications. 

Serial interface 

In the simplest systems serial lines can be used for the 
robots to communicate with the central coordinator 2. Its 
simple implementation using commercial controllers and 
its low cost make this type of system the most common in 
current industrial applications. Two types of organization 
can be considered: 

• Star topology. In this approach a dedicated serial line 
connects each robot to the coordinator. This is the 
most common case and is suitable for systems with a 
small number of arms and low speed and response 
time requirements. 

• Bus topology. This is much less common because not 
all serial interface devices permit this configuration. 
The bandwidth of the serial channel (usually around 
10 kb s-1 ) is shared among all the devices and thus this 
approach is not suitable for any type of multiple robot 
system. 

Parallel interface 

Nowadays very high performance multiple robot systems 
use parallel buses. Although the most popular is VME 
(Figure 1 ), Multibusll is, in our opinion, the best altemative 
for this type of message based application 29. Mult ibusll  
has a separate address space for message passing and the 
standard interface chip for this bus (MPC, message 
passing coprocessor) handles communicatins using this 
space with very little assistance from the processor. Other 
important characteristics of this bus are its synchronous 
nature and its high bandwidth (40 Mbyte s -1). An interesting 
possibility is that several operating systems can be run on 
a single bus. There is a standard message passing protocol 
(Intel transport protocol) that is used by all system 
software in the multibus system and thus messages can be 
easily passed between processors running different 
operating systems, or kernels 3°, 31. 
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A Multibus II based multiple robot system is shown in 
Figure 4 and described extensively in Reference 26. This 

system uses the boards that have already been discussed. 
Although the system was originally designed for SCARA 

robots there is no reason why it could not be used with 

other types of system. 
Unsolicited packets (intelligent interrupts) are used to 

transmit coordination messages. These messages have 20 
bytes for user information, which is more than enough for 
our purpose. Trajectories have to be sent using solicited 

messages due to the large amount of data that they 
require (type, parameters, initial and final point, linkage 
conditions etc.). For information from sensors and I/O 

devices the type of message would depend on the 
amount of information that must be included in the 

message. For alarms, unsolicited broadcast messages are 

used. 

Network interface 

The local area network that is commonly used for 
industrial applications is the standard IEEE 802.4 'Token 
Bus' which is the protocol specified in the manufacturing 
automation protocol (MAP) ]2. However, its cost and 

complexity make it very difficult to use in a multiple robot 
system. The simplified version MiniMAP, in which the 
delay is limited by eliminating the high level protocol 
layers, is still inadequate: the problem is that the 
underlying token bus access protocol is too slow in 
itself 33. Another widely used network, Ethernet ]4, is non- 
deterministic and therefore it is not suited for these 

applications. 
We consider that a good solution is the use of a new 

access protocol (CSMA/DCR deterministic collision 
resolution) which is implemented on the Intel i82596 
family of LAN coprocessors 3s. This protocol is equivalent 
to that of Ethemet (CSMA/CD IEEE 802.3) but with a 
different approach to collision resolution. In Ethernet a 
probabilistic algorithm (exponential backof0 is used to 
compute the retransmission delays, while in CSMA/DCR 
the collision resolution period is divided into slots (units 
of time) and each station is assigned one of them 

(Figure 5). After a collision is detected, and the jam period 
is over, every station transmits only in its (orresponding 
slot. This means that stations transmit in a predefined 

order in a way that is very similar to that used in token 
passing nets (Figure 5). Of course, this method is not 
optimal in the sense that mean delays are higher than in 
the probabilistic Ethemet approach. What happens is that 
these delays are upper bounded because, in the worst 
case, collision resolution periods follow one another with 
no idle period between them. 

In a collision the time between the first transmission 

and the moment when all stations sense the channel idle 

is y + ~-, y = 2~- + jam + ~', with ~ representing the end to 
end propagation delay in the bus and c the estimated 
collision detection time in every station 36. Thus the 
maximum delay is: 

Dma x = N + r + IFS + IFS + ~" + r 

where N is the number of stations, X the length of the 

packets and R the data rate of the network. 
This enables calculation of the maximum delay of a 

message in our system. Also, from a hardware point of 
view, the great experience with design and support of 

Ethernet networks can be used with the CSMA/DCR 

protocol. As a result this low cost, fully deterministic 
network is a very interesting alternative for multiple robot 
systems. In order to verify this we must check the 
maximum delay and required bandwidth for any system 

configuration. As a worst case we could consider a system 
made by 10 stations, one coordinator and nine robots 
connected by a 100 m bus. This is not a realistic multiple 
robot system nowadays but it can be used as a worst case 
to see if the network suits our requirements. The longest 
possible message transmitted by the coordinator is a 

trajectory, while in the case of a robot it is a point. 
Supposing this situation we have: 

D =  + r + IFS + ( N - l )  + r +  +lFS+y+r 
• / 

where  X t is the length of a ' trajectory information and start 

order '  while Xp is the length of a 'posit ion information'  

message. For this last message we need  to send: 

• 1 byte for message type 
• 24 bytes (six degrees of freedom * four bytes) for robot 

position 

• 26 bytes overhead. 

This means that Xp = 51 bytes. In the case of the 
'trajectory information and start order' message we need 

to send: 

• 1 byte for message type 

• 1 byte for trajectory type, velocity and continuity 
information (to inform the controller whether it should 
stop at the end of the trajectory) 

• A field that depends on the type of trajectory and 
which in the most favourable case would only include 
the end point (24 bytes). For our system the least 
favourable case is a five-point interpolated trajectory 
(120 bytes) 

• 26 bytes overhead 

Thus X t = 148 bytes and D m a  x = 604/Is, with the standard 
network parameters, which is acceptable since the typical 
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sampling period of robotic systems is about 1 ms. This 
delay can be substantially reduced by using non-standard 
parameters. For example, the slot-time must be higher 
than Jam + 2c, the higher collision fragment. The standard 
value, 51.2ps, equals the transmission time of the 
shortest message (64 bytes excludingthe preamble) and it 
is slightly higher than the maximum Jam + 2v for a 2500 m 
bus length (49.8 ps). However, a much lower value can be 
used in a shorter bus where v is much shorter. Interframe 
spacing can be reduced to 3.2/~s and the data rate can be 
increased to 20 Mb s -1 . 

These considerations have led to a modification in the 
former controller (Figure 4). The MIB II 960/110 board has 
been substituted by an EVQT960E20 with an i82596 LAN 
coprocessor (Figure 6). In Figure 7 the complete system 
configuration is shown. 

The coprocessor communicates with its associated 
CPU using shared memo,/3s. Part of this memory is used 
as a command list where the CPU writes the commands 
that should be executed by the LAN coprocessor. In 
particular, the most common command TRANSMIT 
includes the destination station, the packet length and a 
pointer to the actual data to be sent. Commands can be 
chained in memory and, thus, long data fields can be 
broken into smaller packets. Also, when the message 
queue increases, as many buffers as necessary can be 
assigned in memory. Using adequate software it is easy to 
order the TRANSMIT commands in the list according to 
the priority of their associated packet. It is important to 
know that the i82596 has a 64 byte transmission FIFO and, 
thus, part of the first packet in the queue may have been 
read into this structure. This means that if a new packet is 
generated it cannot be placed in the first position in the 
queue but at most in the second, regardless of its priority 
level. This kind of service is called non-preemptive. 

PROGRAMMING/USER INTERFACE 

The ideas behind the system software for our multiple 
arm system changed drastically during the project 
execution. The high level layers have not been imple- 
mented yet and thus further changes will probably be 
implemented in the future. 

The first step was the development of a universal 
compiler for SCARA robots, 'ALFIR '3z, which permitted us 
to have a single language interface for all the robots in the 
system. Later commercial controllers proved to be 
inadequate for the type of coordination required to 
implement our system. That meant that all arms had to be 
fitted with a special controller that directly understood a 
common intermediate language. With this decision ALFIR 
was not needed any more. 

In a later stage the idea for a complete programming 
environment for the multiple arm system (EMR 38) was 
developed. This environment included: 

• ALMA: A language for multiple arms that was supposed 
to be a Pascal-like robot language with parallel 
capabilities. 

• TDL: A trajectory description language that permitted 
learned and taught trajectories to be mixed and kept in 
a robot independent intermediate code. 

• SDL: Subzone description language. This permits the 
description of subzone walls that can be later activated 
or deactivated at run time. 

At this moment TDL and a simplified version of SDL are 
still under development but ALMA is undergoing extensive 
modification. The causes for this are: 

• ALMA is an oriented language in the sense that any task 
is explicitly assigned to one arm. This makes the 
programming task difficult because it has to be 
decided a priori what tasks will be assigned to each 
robot. 
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• ALMA includes two possibilities for the description of 
parallel programs. The first is based in the scene idea 
where any robot included in a scene when it has 
finished its task will wait for the others to finish. The 
second approach is to use elementary tasks and 
explicitly include dependences in their description. 

• ALMA is general while our specific interests relate 
mainly to assembly. Thus ALMA does not understand 
about parts and the possibility of waiting for them. 

• ALMA is Pascal-like while in our environment C is more 
common. 

• The development of ALMA would require a huge effort 
and would not bring any significant achievement from 
a research point of view. 

These facts have made us break with our past work and 
start to develop a new idea in multiple arm programming 
which replaces the parallel multiple arm compiler with 
two new tools: a C language library for task description 
and a multiple arm task scheduler 39. The C library permits 
the description of robot independent elementary tasks 
(tasks that should be performed by a single robot). It also 
permits the execution of trajectories learned through TDL 
and the inclusion of task and part prerequisites for starting 
the task. The scheduler would be the newest and most 
difficult part of the system since it would be in charge of 
selecting when a task has to be performed and which 
robot has to be assigned to the task. 

There are many important difficulties for the develop- 
ment of the multiple arm robot scheduler. Among them 
we will highlight the fact that the robots in the system may 
have different capabilities and performance. Another 
important fact is that parts may not come in fixed order, 
times or positions. These facts, and the huge number of 
possible alternatives, make the use of many current 
scheduling tools difficult for this problem. The use of 
artificial intelligence techniques 4° for the implementation 
of the scheduler seems to be the only possibility 
considering the real-time requirements of the problem. 

Another approach would be to make the system part 
driven, in the sense that part descriptions would have 
associated prerequisites and associated tasks. This approach 
would be very attractive from a user point of view, making 
programming quite simple. The problem is that some 
tasks cannot be associated with a single part but have to 
be carried out when a set of independent parts has been 

assembled. Here we say that parts are independent if 
none of them is a prerequisite to another. 

A very important issue is the relation between low level 
coordination and high level scheduling. The scheduler 
assigns elementary tasks to arms. These tasks are com- 
posed of trajectories. When a trajectory is executed the 
arm processors continuously monitor it to find whether it 
will enter an interference subzone. When this happens a 
message is sent to the coordinator asking for the resource. 

The coordinator checks whether the zone is available and 
then checks the original trajectory for any collision with a 
static robot in the subzone. If the original trajectory led to 
a collision it is modified to a new collision-free path. Thus 
the coordinator can send three different kinds of message 
when an arm asks for the interference zone: 'stop', 
'continue' or 'continue with alternative trajectory'. Clearly 
the result of this interrogation affects task completion 
times not only of the requesting task but possibly of other 
tasks in the system. This means that, as the scheduler 
controls the assignment and execution order of tasks, it 

should include the coordination policy m its dec~sio~ 
making mechanism. In other words, if a task can be 
assigned to a robot that will not have resource or coilisior~ 
conflicts this is a favourable score for that assignment. 

This scheduling mechanism requires calculating robot 
entering points into collision zones and trajectories 
before they are actually sent to the robots. What is more 
important, calculations have to be carried out not only for 
the final task scheduling but for several other alternatives. 
If this operation has to be carried out in real time, even 
with a multiprocessor system, a strong tree-pruning 
algorithm has to be used to minimize the alternatives and 
collision detection and alternative trajectory calculations 
have to be greatly simplified. Simplifying collision detection 
and alternative trajectory calculation usually means 
operating with coarser space grids, thus reducing the 
number of possibilities but, as a side effect, making 
trajectories possible in the real world impossible for the 
system. In practice a compromise will be required 
between high speed calculation and accuracy of 
representation. 
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