University of
Hertfordshire

Static Instruction Scheduling for the

HARP Multiple-Instruction-Issue Architecture

S. M. Gray, R. G. Adams, G. J. Green and G. B. ‘Steven

October 1992

School of Information Sciences
Division of Computer Science
Technical Report No.142

Static Instruction Scheduling for the

HARP Multiple-Instruction-Issue Architecture

S. M. Gray, R. G. Adams, G. J. Green and G. B. Steven
Division of Computer Science,
The University of Hertfordshire

College Lane, Hatfield, Herts AL10 9AB, UK

ABSTRACT

HARP is a new multiple-instruction-issue architecture developed at The University of
Hertfordshire. This paper describes the essential features of the HARP machine model
and presents two compile-time scheduling techniques, called local and conditional

compaction, which have been developed for the architecture.

Local compaction schedules the. instructions within a basic block. Conditional
compaction uses HARP's conditioﬁal execution mechanism to schedule instructions
across basic block boundaries. This paper reports perfo‘rmance measurements obtained
using simulations of the model. These results indicate that a HARP processor will
achieve sustained instruction execution rates in excess of two sequential instructions

per cycle for compiled, integer, general-purpose computations.

INTRODUCTION

Scalar RISC processors use efficient instruction pipelining and compiler optimisations
to achieve instruction execution rates approaching the upper limit of one instruction

1

per oyc|e1. Hence there is now a growing’interest in machines which exploit
instruction level concurrency to boost performance beyond the one instruction per
cycle barrier. Processors which provide parallel pipelined functional units in order to
fetch, decode and execute several instructions per cycle are generally referred to in the
literature as multiple-instruction-issue machines2. Multiple-instruction-issue
processors can be divided into two categories: superscalar processors which provide
hardware for the run-time detection of parallelism3'5 and VLIW machines which rely
on the compiler to schedule concurrent instructions into very long instruction

words6-8,

Many of the early multiple-instruction-issue machines®-7.9-11 are targeted at
scientific code. In contrast HARP12-13 is one of several more recent projects14-15
which have attempted to exploit the low-level parallelism available in general-purpose
computations. Numeric applications are characterised by a high ratio of computations to
dynamic branches. Furthermore a large percentage of the branches are do-loop
branches which can be resolved early. Hence techniques such as loop unrolling!® and
software pipelining!7, which are targeted at scientific applications, concentrate on
exposing the parallelism between successive loop iterations. Non-numeric applications
are characterised by a high proportion of data dependént branches, small loop bodies
and low loop iteration counts. Hence the conditional compaction technique, which is
targeted at general-purpose computations, aims to remove the dependencies caused by

branch instructions, rather than focusing on the parallelism available within loops.

The objective of the HARP project is to develop a VLIW processor/compiler system
which will achieve sustained instruction execution rates in excess of two instructions
per cycle for integer, general-purpose code. The project began with the specification of
a machine model18 and has since developed on two fronts: the first centred around
compiler development and the second concerned with the design ‘and testing of iIHARP, a

2

VLSI integrated circuit implementation of the machine model!9-20. This paper is
primarily concerned with the scheduling techniques of local and conditional compaction

which have been developed for the architecture?1.

Local compaction schedules the short instructions within a basic block. The local
compaction program constructs a directed acyclic graph to represent the partial
ordering imposed on the short instructions in a basic block by data dependencies. A
first-come-first-served heuristic is then used to list schedule the short instructions
in each block into long instruction words. Various studies!5:22 have shown that
fine-grained parallelism is limited to a factor of two within basic blocks of
general-purpose code. Hence the technique of conditional compaction was developed to
extend the scope of scheduling across basic block boundaries. General-purpose
programs are charapterised by a high proportion of dynamic branches which impede tﬁe
parallel execution 'of instructions from before and after the branch. Conditional
compaction is a global scheduling technique which uses HARP's conditional execution
mechanism to remove the dependencies caused by branch instructions. Conditional
execution allows the scheduling of instructions from the sequential and branch
destinations without the requirement .for global data flow analysis or a branch

prediction scheme.

Both these techniques have been implemented in the HRC compiler which generates code
for a set of software simulations with different numbers of instruction pipelines23.
These simulations were used in conjunction with the compiler to obtain performance
measurements for a set of short, general-purpose, integer benchmark programs. This
paper presents an overview of the essential features of the machine model, describes
the local and conditional compaction techniques and presents the results of experiments
used to evaluate the combined performance of the architecture and the scheduling

techniques.

THE MACHINE MODEL

The machine model!8 describes a class of RISC architectures with a variable number of
instruction pipelines. Multiple ALUs, a Boolean Unit, a PC unit and a maximum of two
address units allow several ALU operations, one Boolean operation and a maximum of
two memory reference and two branch instructions to be executed in parallel. The
compiler's sequential component translates source programs into short instructions
which specify typical RISC operations; the instruction scheduler then selects short
instructions which can be executed in parallel and packs them into long instruction
words. The model fetches one long instruction word per cycle from an instruction cache,

and passes the component short instructions through the multiple pipelines (see Figure

1).

The model provides 64, 32-bit, general-purpose registers and 32, 1-bit, Boolean
registers. There are five types of short instruction: computational, relational, Boolean,
branch and memory reference (see Table 1). The Boolean registers are used to store the
results of relational and Boolean instructions, and are tested by conditional branch
instructions. Only load and store instructions reference memory, and only two
addressing modes are provided: register indirect with 4index and register indirect with

displacement.

In order to achieve HARP's performance objective it is important that the vast majority
of short instructions are executed in a single cycle. To this end the model provides
several distinctive features specifically designed to minimise the performance
penalties due to data dependencies and branch instructions. Minimising the number of
wasted cycles is also particularly important for a long instruction word processor
where the empty long instruction words, which arise because of result latencies and
branch delays, use up some of the available parallelism. Consequently the model uses a

4

compact four-stage instruction pipeline which combined with unrestricted register

bypassing and an ORed addressing mechanism ensures that almost all instructions have

an operational latency of one cycle.

RF

ALU / MEM

wB

Fetch long instruction from Icache (Instruction cache)
Instruction decode

Fetch registers from GP and Boolean register file
Calculate branch addresses in PC unit

Calculate memory addresses in address units

ALU operation for computational or relational instructions
Cglculate Boolean result in Boolean unit

Wait for data from memory for a load instruction

Output data for a store instruction

Write result of computational or load instruction into the
general-purpose register file

Write the result of a relational, Boolean or

Boolean load instruction into the Boolean register file

The HARP address units compute memory addresses by ORing the two address

component524. The compiler guarantees that the OR operation is equivalent to an addition

by ensuring that the base register always contains a multiple of a power of two and that

the offset is always less than this power of two. Removing the need for an addition in an

address calculation allows memory addresses to be made available at the end of the

register fetch stage of the pipeline. ALU operations and memory accesses can then be

carried out in the same pipeline stage. Compute delays and load delays are removed by

bypassing the result of the ALU/MEM stage of a short instruction directly to the

ALU/MEM stage of the next instruction.

The model uses a two instruction branch mechanism which results in a branch delay of
one cycle. The result of an instruction which performs a relational or Boolean operation
is stored in a Boolean register. This result is then tested by a subsequent branch
instruction. Using a set of single bit Boolean registers to store the results of comparisons
avoids the resource bottleneck of a single set of condition codes and thus increases the

potential for parallelism.

Parallel execution is supported by the multiple functional units and a conditional
execution mechanism. All short instructions may be conditionally executed on the value of
a Boolean register specified in the instruction. For example the instruction

F B3 SUB R21, R20, #3
is executed if and only if the Boolean register B3 contains the value FALSE. Condiliénal

execution is fundamental to the technique of conditional compaction.

INSTRUCTION SCHEDULING

The HRC compiler consists of two components: the sequential component and the
instruction scheduler. The sequential component tranélates a subset of Modula-2 into
unconditionally executed short instructions. The instruction scheduler schedules short
instructions onto the HARP pipelines by packing them into long instruction words. The
compiler is parameterised to produce code for a set of software simulations with a
variable number of instruction pipelines. In HRC the compaction process is divided into
two phases: first local compaction is used to schedule the unconditionally executed short
instructions within each basic block into long instruction words, then conditional
compaction is used to schedule conditionally executed instructions from each block's

successors in the flow graph into the existing schedule for the locally compacted block.

Local Compaction

There are three types of dependencies between instructions which determine whether
they can be scheduled in parallel: data dependencies, resource dependencies and control

dependencies.

For each basic block the local compaction program builds a directed acyclic graph (DAG)

to represent the partial ordering of short instructions which the scheduler maintains in

order to preserve data integrity. Given two short instructions s; and sj, where s;

precedes s; in the sequential code, this partial ordering is expressed informally in Table
2. Parallel execution is possible in the case of a register use-definition dependency as the

old value of the data used by s; is read from the register file in the register fetch stage of

the pipeline, one cycle before the new value is computed by Sj in the ALU stage. The DAG

is constructed by scanning backwards through the block comparing each instruction to
each of its predecessors. Register dependencies are detected by comparing the input and
output registers of each pair of instructions. No attempt is made to disambiguate memory
references. The scheduler simply assumes that all mémory addresses are potentially
equivalent; and thus maintains the order of store instruétions with respect to other loads

and stores.

In the HARP model each slot in a long instruction word is dedicated to a particular
pipeline. Hence potential resource conflicts over functional units are detected by
comparing the set of slots in which a short instruction may be scheduled with the set of

empty slots in a long instruction word.

Finally branch instructions which determine a program's flow of control must, by

definition, be scheduled in the penultimate long instruction word of a compacted block.

7

Hence a branch instruction and its associated NOP are scheduled last, taking into account

data and resource dependencies.

The local compaction program builds a list of long instruction words, one long instruction

at a time, in sequential order, using the following algorithm:

WHILE there are still instructions to be scheduled (excluding a branch and NOP) DO
Generate the current long instruction word (CLIW)
Compute data available set
REPEAT
Find the instruction in the data available set, with the highest priority, which
will fit into the CLIW
IF such an instruction exists THEN
Schedule the instruction in the CLIW
Update the data available set
END
UNTIL No more instructions can be scheduled in the CLIW
Add the CLIW to the long instruction word list
END

Schedule the branch and NOP

To form the current l.ong instruction word (CLIW) the program generates an empty
long instruction and uses the information in the DAG to compute the set of short
instructions which can be scheduled in the CLIW without violating data integrity. These
instructions are referred to as the data available set. Since two short instructions
cannot be scheduled in the same long instruction word if they both require the same
slot, each short instruction in the block is assigned a priority. The scheduler uses a
first-come-first-served heuristic, where the priority of an instruction reflects its

8

position in the sequential code. The scheduler selects the instruction in the data
available set with the highest priority which does not have a slot conflict with any
instruction already in the CLIW. If such an instruction exists it is scheduled in the
CLIW. This process is referred to as list scheduling25. Since the HARP pipeline allows
two short instructions which have a register use-definition dependency to be scheduled

in parallel, the local compaction program updates the available set of instructions each

‘time it adds a new short instruction to the CLIW. The process of scheduling the

instruction with the highest priority and updating the available set is repeated until no
more short instructions from the available set can be scheduled in the CLIW. The CLIW
is then added to the long instruction word list, a new long instruction word is generated
and the whole process is repeated until all the short instructions in the block have been
scheduled. Finally the branch instruction and its associated NOP are scheduled subject

to data and resource dependencies.
Conditional Compaction

Conditional compaction is a scheduling technique developed to increase the performance
of the HARP architecture by extending the scope of the scheduler beyond basic blocks.
Conditional compaction is targeted at non-numeric apblications, and hence seeks to
remove the scheduling restrictions imposed by control dependencies, rather than

concentrating on utilising the parallelism available between successive loop iterations.

A locally compacted block is conditionally compacted by moving short instructions from
its branch destination and sequential successor blocks into the empty slots in its
schedule. Instructions which are moved across conditional branches are conditionally
executed on the value of the Boolean variable which would result in entry to their
native block. This effectively removes the control dependencies caused by branch
instructions, and makes global scheduling relatively straightforward.

9

The blocks in a procedure which are candidates for conditional compaction are held in
the compaction list. The block at the head of this list is selected for conditional
compaction. This block is referred to as the C_block. The compaction list is initialised
to contain all the blocks in the current procedure. Initially the ordering of the blocks in
the list corresponds to their static ordering in the locally compacted code. Thereafter
blocks are added to the head of the list. The scheduler removes the C_block from the
head of the list, and conditionally compacts the C_block with each of its successors in
the flow graph. Any block which has been removed from the compaction list is returned
to the list if the conditional compaction process results in changes to its successors
which may permit further compaction to take place. The process of removing the
C_block from the head of the list and conditionally compacting it with each of its

successors in the flow graph is repeated until the compaction list is empty.

If the C_block is terminated by a backward conditional branch the scheduler attempts to
schedule instructions from the branch target block before considering the sequential
successor block. This should favour the compaction of code within a loop. If the C_block
is terminated by a forward conditional branch the scheduler attempts‘to schedule
instructions from the sequential successor block, before considering the branch target

block. This should favour the removal of short forward branches wherever possible.

Given a C_block and its successor, the scheduler determines the set of non-branch
instructions from the successor block which are candidates for scheduling in the
C_block. This set of instructions, which is referred to as the conditionally available set
(CASet), is made up of copies of the short instructions from the successor block.
Branch instructions are not included in the CASet. If the C_block contains a conditional
branch instruction the instructions in the CASet are conditionally executed on the value
which results in entry to their native block. Conditional execution places further
restrictions on the instructions which are included in the CASet. For example, if the

10

C_block ends with a conditional branch on B3, any instruction from the successor block
which defines B3, or is data dependent on an instruction which defines B3, cannot be
conditionally executed on the value of B3 which results in entry to the successor block.
More obviously, any instruction in the successor block which is already conditionally

executed cannot be included in the CASet.

The scheduler concatenates the short instructions from the C_block and the CASet into a
single unit; builds a directed acyclic graph for the unit and uses the DAG to list schedule
as many of the instructions from the CASet as possible into the existing schedule for the
C_block. The corresponding instructions are then removed from the successor block,
and the new, shorter successor is resohveduled (locally compacted). If all thve
non-branch instructions have been removed from the successor the scheduler then
attempts to move the branch instruction(s) from the successor block into the C_block's

penultimate long instruction word.

If a successor block can only be entered from the C_block, moving instructions across
the block boundary will have no effect on the program. However if a successor block has
more than one predecessor, compensation code must be introduoed to preserve the
correctness of the program. If the C_block's branch térget block has more than one
predecessor, a new block, containing the instructions which have been removed from
the branch target block, is introduced into those paths which pass through the branch
target block, but not through the C_block (see Figure 2). If the C_block's sequential
successor can be reached from other blocks, then no conditional compaction is

attempted, since a new branch instruction would be needed in the C_block to branch

over the necessary compensation code.

If during the compaction process the C_block inherits a new successor block, the
C_block is returned to the head of the compaction list and the process is repeated. For

11

example consider the statements
WHILE (testarray[j] > temp) DO
j=10-1
END;
testarray[i] := testarray[j];
which are taken from a procedure with declaration
Quicksort (VAR testarray : intarray; bot, top : INTEGER);

which quick sorts an array of type [1..10] OF INTEGER.
Translating the statements into unconditionally executed sequential code results in

three basic blocks comprising a total of 15 short instructions where, for simplicity,

the code for bounds checking has been removed. Locally compacting each block gives:

12

Assume: R14, R19 and R13 contain j, temp and i respectively. P1 contains the address
of the base of the actual parameter corresponding to testarray minus a constant

component resulting from the non zero lower array bound?6.

WhileTst: ASL R21, R14, #2
ADD R22, P1, R21
LD R23, 0(R22)
GTS B7, R23, R19

BF B7, EndWhile

NOP Block 1
BRA WhileTst SUB R14, R14, #1
NOP Block 2

EndWhile ASL R24, R13, #2 ASL R26, R14, #2
ADD R25, P1, R24 ADD R27, P1, R26
LD R28, 0(R27)

ST 0(R25), R28 Block 3

Assuming that block 1 has reached the head of the compaction list; the scheduler selects block
1 as the C_block. Block 1 branches forwards, so its sequential successér block, block 2, is
considered before its branch target block. Block 2 can only be entered from block 1 so the
scheduler computes the CASet which is {T B7 SUB R14, R14, #1}. This instruction is
scheduled in parallel with BF B7, EndWhile and the SUB instruction is removed from block
2. The conditionally executed instruction T B7 BRA WhileTst is then moved into the C_block's
penultimate long instruction word, and block 2 is eliminated. The branch from block 1 to
block 3 is then redundant and is removed. The label is removed from block 3, as it has no

13

other predecessors, and the instruction T B7 BRA WhileTst is replaced with the equivalent,

but unconditionally executed, instruction BT B7 WhileTst, giving:

WhileTst: ASL R21, R14, #2
ADD R22, P1, R21
LD R23, 0(R22)
GTS B7, R23, R19
BT B7, WhileTst T B7 SUB Ri4, R14, #1

NOP Block 1

ASL R24, R13, #2 ASL R26, R14, #2
ADD R25, P1, R24 ADD R27, P1, R26
LD R28, 0(R27)

ST 0(R25), R28 Block 3

Block 1 now has a new sequential successor block and a new branch target block, so it is
returned to the compaction list, where it is resélected as the C_block and the compaction
process is repeated. Block 1 branches backwards (toAitself) so the scheduler attempts to
compact instructions from the second iteration of the block which are conditionally executed
on T B7. The CASet contains the first three instructions from block 1, but only the first
instruction is scheduled, in the NOP slot, dué to the definition-use dependency with respect to
R14. Block 1 can also be entered from block 0 (not shown in the example); so a new block is
created containing the ASL instruction and block 0 is returned to the compaction list. Finally
the scheduler compacts instructions from block 1's sequential successor block, block 3,

resulting in the following conditionally compacted code:

14

0

€ yoolg

ged ‘(sgd)o LS

(2z2d)o ‘sed a1

13o01g

924 ‘Id ‘Zzd 4av /94

c#'vid ‘9gd 1SV /9 4

ved ‘Id ‘Sed aav /8 4

c# ‘eld ‘ved ISV /9 4

g# ‘vid ‘led SV L9 1 dON
#‘vld ‘vid Gns /g1 LHslelym /g 19
6lY ‘egd ‘L8 S1D
(2ed)o ‘ezd a1

led ‘Id ‘ged aav

FHISLIIUM

YOo0jg MON

1

Z# ‘viYd ‘led sV

AS191IUM

The while loop has been reduced from eight long instructions in the locally compacted
code to six long instructions on the first iteration of the loop, and five long instructions
on the second and subsequent iterations of the loop. Furthermore the new block is
subsequently removed when the compaction process continues and the ASL instruction is
scheduled in block 0. Hence there is a saving of 4 cycles over the sequential code, and 3

cycles over the locally compacted code, each time the loop is executed.

EVALUATION

The combined effectiveness of the HARP architecture and the scheduling techniques was
evaluated by comparing the performance of sequential and parallel compilations of eight
benchmark programs running on simulations of the machine model. This paper
compares program measurements obtained using the sequential simulation to those
obtained using a simulation capable of executing 4 ALU, one Boolean, two memory
reference and two branch instruction in parallel. This simulation was envisaged as
providing sufficient functional units for the amo‘unt of parallelisrﬁ detected by the
compiler and subsequently proved to be closest to the iHARP implementation in terms of
functionality. Although the simulation allows two memory reference instructions to be
executed in parallel, the compiler only schedules two memory reference instructions in
parallel if they are executed on mutually exclusive conditions. This restriction reflects
the resource limitations of the iHARP processor which provides a single data memory

port.

Table 3 lists the set of benchmark programs and shows the static instruction count and
number of useful instructions executed for the sequential code (i.e. the dynamic

instruction count excluding NOPs). The benchmarks comprise a set of short,

16

general-purpose, integer computations. The first five programs were taken from the
Stanford Small Programs Benchmark set2”, and adapted slightly to conform to the
compilers source language (a subset of Modula-2). Three other well known programs
were chosen to complete the benchmark set. Table 4 shows that an average instruction
execution rate of 0.86 instructions per cycle is achieved for the sequential code
produced by the HRC compiler, which makes no attempt to fill the branch delay slots.
This rate is increased to 0.93 instructions per cycle assuming that a simple delayed
branch scheme could be expected to fill 70% of the branch delay slots28. This result is
within sight of the goal of single cycle execution for sequential code which has been

optimised to remove pipeline hazards.

Local compaction results in execution rates ranging from 1.35 to 2.15 sequential
instructions per cycle. Table 5 shows the performance of the locally compacted code for
each of the benchmark programs. The four programs which perform best under local
compaction all spend a significant proportion of their execution time in loops which
contain large basic blocks which exhibit high degrees of compaction. The other four
programs have shorter basic blocks which limit the potential fo} paréllelism. The
performance of Quick and Fib is further restricted by a high percentage of memory
reference instructions. Since two unconditionally executed memory reference
instructions can not be scheduled in parallel the second memory reference pipeline is
never used during local compaction, and a block which contains m memory reference
instructions must locally compact to at least m long instruction words. An average
execution rate of 1.68 sequential instructions per cycle is achieved. This corresponds
to speedups of 1.94 and 1.81 over the sequential code in which 0% and 70% of the
branch delay slots have been filled. These figures are in line with Jouppi's finding322
that parallelism within basic blocks is limited to a factor of 2 for the Stanford

benchmark programs.

17

Finally Table 6 shows the performance of the conditionally compacted code for each of
the benchmark programs. Conditional compaction results in execution rates ranging
from 1.44 to 2.71 sequential instructions per cycle. In general the programs which
perform best under local compaction also perform best under conditional compaction.
The notable exceptions are BinSearch and Sieve. These programs achieve the biggest
speedups when conditional compaction is applied to the locally compacted code. This is
due to the low proportion of subroutine call and memory reference instructions
executed by the programs. Blocks which end in a procedure call or return cannot be
conditionally compacted; furthermore the second memory reference pipeline is only
used if two mutually exclusive memory reference instructions can be scheduled in
parallel (that is if a memory reference instruction from a block's branch target block
can be scheduled in parallel with a memory reference instruction from its sequential
successor). Thus if a block contains m memory reference instructions not only must it
locally compact to at least m long instruction words but conditionally executed memory
reference instructions from its successor blocks cannot be scheduled in these m words.
Conditional compaction achieves an average execution rate of 2.18 sequential
instructions per cycle. This corresponds to speedups of 2.53 énd 2.35 over the
sequential code in which 0% and 70% of the branch deléy slots have been filled and a
speedup of 1.31 over the locally compacted code. These results are encouraging and
indicate that conditional compaction can be used to achieve sustained execution rates in

excess of two sequential instructions per cycle for the HARP architecture.

CONCLUSIONS

This paper introduces local and conditional compaction; two compile-time scheduling

techniques for HARP a new long instruction word architecture. These techniques have

18

been implemented in a compiler which produces code for simulations of the HARP
machine model. This model describes a class of long instruction word architectures with
a variable number of instruction pipelines and forms the basis for the design of the

iHARP VLIW processor which is currently under development.

Unlike many multiple-instruction-issue machines which are targeted at scientific
applications, HARP is targeted at general-purpose computations. General purpose code
is characterised by a high proportion of dynamic branches which can severely limit the
potential for parallelism, even when the scope of the scheduler is extended beyond basic
blocks. Hence the model provides several distinctive features, notably a compact four
stage pipéline, an ORed addressing mechanism, unrestricted register bypassing and a
two instruction branch architecture, which are specifically designed to reduce the

number of delay slots which will effectively waste the available parallelism.

The local compaction algorithm uses list scheduling to schedule the unconditionally
executed short instructions within basic blocks. Conditional compa.ction uses a modified
version of the list scheduling algorithm to move instructions from a» block's sequential
and branch destination blocks in to the locally compacted schedule for the block.
Instructions which are moved across a conditional branch are conditionally executed on
the value of the Boolean variable which results in entry to their native block.
Conditional execution removes the need for global data flow analysis, or a branch

prediction scheme, and makes global scheduling relatively straightforward.

These techniques have been evaluated in conjunction with a simulation of the HARP
model capable of executing a maximum of nine RISC type instructions in parallel. The
experiments show that local compaction achieves an average speedup of 1.94 over

sequential code, which is increased by a further 59% to a factor of 2.563 when the

19

conditional compaction technique is used to schedule instructions across basic block
bouhdaries. This represents an average instruction execution rate of 2.18 sequential
instructions per cycle which is in line with the project objective of a sustained
execution rate in excess of two instructions per cycle. However the performance of the
scheduling algorithms is still limited by the absence of any memory reference
disambiguation and the restriction to a single data memory port. Consequently work is
now underway to to assess the effect of introducing memory reference disambiguation
into the compiler, while allowing the parallel execution of two, or possibly more,

memory reference instructions.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the other members of the HARP team: Paul
Findlay, Brian Johnson, Simon Trainis, Dave McHale and Liang Wang. They would also
like to thank Dr S. L. Stott, Professor L. C. W. Dixon, Dr P. Kaye and J. A. Davis for

their support throughout the project.

The HARP project is supported by SERC Research Grant GR/F88018. Part of this work

was also supported by a SERC studentship.

20

REFERENCES

1 Hennessy, J and Patterson, D A Computer Architecture a Quantitative

Approach, Morgan Kaufmann, San Mateo, California (1991)

2 Chang, P P, Mahilke, § A, Chen, W Y, Warter, N J'and Hwu, W W
'IMPACT: An Architectural Framework for Multiple-Instruction-Issue Processors'

Proc. 18th Ann. Int. Symp. Computer Architecture (May 1991) pp 266-275

3 Groves, R D and Oehler, R 'RISC System/6000 processor architecture'

Microprocessors and Microsystems Vol 14 No 6 (July/August 1990) pp 357-366

4 Lee, R L, Kwok, A Y and Briggs, F A 'The Floating Point Performance of a
Superscalar SPARC Processor' Proc. 4th Int. Conf. Architectural Support for

Programming Languages and Operating Systems (April 1991) pp 28-37

5 Hwu, W W and Patt, Y N 'HPSm, A High Performance Restricted Data Flow
Architecture Having Minimal Functionality' Proc. 13th Ann. Int. Symp. Computer

Architecture (June 1986) pp 330-336
6 Colwell, R P, Nix, R P, O'Donnell, J J, Papworth D B and Rodman, P K
'A VLIW Architecture for a Trace Scheduling Compiler' /EEE Trans. Comput. Vol 37

No 8 (August 1988) pp 967-979

7 Rau, B R, Yen, Y W and Towle, R A 'The Cydra 5 Departmental Supercomputer'

IEEE Computer (January 1989) pp 12-35

21

10

11

12

13

14

Labrousse, J and Slavenburg, G A 'CREATE-LIFE: A Modular Design Approach

for High Performance ASIC's' Proc. IEEE COMPCON (Spring 1990) pp 427-433

Cohn, R, Gross, T, Lam, M and Tseng, P S 'Architecture and Compiler
Tradeoffs for a Long Instruction Word Microprocessor' ASPLOS [l Boston (April

1989) pp 2-14

Smith, J E 'Dynamic Instruction Scheduling and the Astronautics ZS-1' IEEE

Computer Vol 22 No 7 (July 1989) pp 21-35

Murakami, K, Irie, N, Kuga, M and Tomita, S 'SIMP: A Novel High-Speed
Single-Processor Architecture' 16th Ann. Int. Symp. Computer Architecture (May

1988) pp 78-85

Steven, G B, Gray, S M and Adams, R G 'HARP: A Parallel Pipelined RISC
Processor' Microprocessors and Microsystems Vol 13 No 9 (November 1989) pp

579-587

Adams, R G, Gray, S M and Steven, G B ' Utilising Low Level Parallelism in
General Purpose Code: The HARP Project' Microprocessing and Microprogramming

Voi 29 No 3 (October 1990) pp 137-149

Ebcioglu, K and Nakatani, T 'A New Compilation Technique for Parallelizing
Loops with Unpredictable Branches on a VLIW Architecture' Languages and Compilers
for Parallel Computing D. Gelernter et al. (eds.), Research Monographs in Parallel

and Distributed Computing, MIT Press (1989)

22

156

16

17

18

19

20

21

Smith, M D, Lam, M and Horowitz, M A 'Boosting Beyond Static Scheduling in
a Superscalar Processor' Proc. 17th Ann. Int. Symp. Computer Architecture (May

1990) pp 344-353

Weiss, S and Smith, J E 'A Study of Scalar Compilation Techniques for Pipelined
Supercomputers' Proc. 2nd Int. Conf. Architectural Support for Programming

Languages and Operating Systems (October 1987) pp 105-109

Lam, M 'Software Pipelining: An Effective Scheduling Technique for VLIW Machines'
Proc. ACM SIGPLAN '88 Conf. Programming Language Design and Implementation

(June 1988) pp 318-327

Steven, G B and Gray, S M 'Specification of a Machine Model for the HARP
Architecture and Instruction Set - Version 3' Computer Science Technical Report No

117 Hatfield Polytechnic, UK (January 1991)

Findlay, P A, Trainis, S A, Steven; G B and Adams, R G 'HARP: A VLIW

RISC Processor' CompEuro91 Bologna (May 1991) pp 368-372
Steven, G B, Adams, R G, Findlay, P A and Trainis, P A 'iHARP: A
Multiple-Instruction-Issue Processor' IEE Part E Computers and Digital Techniques

(to appear)

Gray, S M 'Code Generation for a Long Instruction Word Architecture' PhD Thesis

Hatfield Polytechnic, UK (1991)

23

22 Jouppi, N P and Wall, D W ‘'Available Instruction Level Parallelism for
Superscalar and Superpipelined Machines' Proc. 3rd Int. Conf. Architectural Support

for Programming Languages and Operating Systems (April 1989) pp 272-282

23 Green, G J 'A Simulation of a HARP architecture in ELLA' Computer Science

Technical Report No 104 Hatfield Polytechnic, UK (July 1990)

24 Steven, G B 'A Novel Effective Address Calculation Mechanism for RISC
Microprocessors' ACM Computer Architecture News Vol 16 No 4 (September 1988)

pp 150-156

25 Davidson, S, Landskov, D, Shriver, B and Mallett, P W 'Some Experiments
in Local Microcode Compaction for Horizontal Machines' /IEEE Trans. Comput. Vol

C-30 No 7 (July 1981) pp 460-477
26 Gray, S M 'The Implementation of Arrays in the HARP Research Compiler'
Computer Science Technical Report No 116 Hatfield Polytechnic, UK (December

1990)

27 Weicker, R P 'An Overview of Common Benchmarks' I[EEE COMPUTER (December

1990) pp 65-75

28 McFarling, S and Hennessy, J 'Reducing the Cost of Branches' Proc. 13th Ann.

Int. Symp. Computer Architecture (June 1986) pp 396-403

24

Table 1. HARP Instruction Types

Instruction Type

Example

Semantics

Computational
Relational
Boolean
Branch

Memory Reference

ADD R22, R21, R20
LT B2, R21, R20
AND B4, B3, B2

BT B3, Lab1

ST (R20,R21), R22

25

R22 := R21 + R20

B2 = R21 < R20

B4 := B3 AND B2

If B3 = TRUE branch to Lab1

address (R20, R21) := R22

Table 2. Partial ordering of short instructions maintained to preserve

data integrity.

Dependency

Partial Ordering

s; defines a register or memory location used by §j
sj and s; define the same register or memory location
8 defines a memory location used by s;

sj defines a register used by s;

26

si must execute before s;
sj must execute before s;
sj must execute before s;
sj must execute before or

in parallel with 5;-

Table 3. The Benchmark Programs
Program Sequential Code Description
Static Dynamic
Instrs. Instrs.
Bubble 216 2535 Bubble sort
Quick 279 1708 Recursive quick sort
Perm 176 27129 Recursive computation of permutations
Queens 232 48320 Recursive solution of the 8 queens chess problem
[ntmm 206 6584 Integer matrix multiplication
BinSearch 90 220 lterative Binary Search
Fib 73 1046 Recursive computation of Fibonacci numbérs
Sieve 78 8217 Sieve of Eratosthenes

27

Table 4.

Performance of Sequential Code

Program Sequential Code
Cycles Instrs/Cycle Estimated Instrs/Cycle
using delayed branch scheme

Bubble 2939 0.86 0.92
Quick 2048 0.83 0.90
Perm 30238 0.90 0.96
Queens 51862 0.93 0.98
Intmm 79¢1 0.82 0.86
BinSearch 257 0.86 0.95
Fib 1256 0.83 0.92
Sieve 9679 0.85 0.95
Average 0.86 0.93

28

Table 5. Performance of Locally Compacted Code

Program Locally Compacted Code
Cycles Sequential Speedup over sequential code

Instrs/Cycle 0% branch delay 70% branch delay

slots filled slots filled
Bubble 1519 1.67 1.94 1.82
Quick 1268 1.35 1.63 1.50
Perm 14760 1.84 2.04 1.92
Queens 22430 2.15 2.31 2.19
Intmm 3292 2.00 2.44 2.33
BinSearch 139 1.58 1.84 1.66
Fib 756 1.38 1.66 1.50
Sieve 5706 1.44 1.69 1.52
Average 1.68 1.94 : - 1.81

29

Table 6. Performance of Conditionally Compacted Code

Program Conditionally Compacted Code
Cycles Sequential Speedup over sequential code Speedup over

Instrs/Cycle 0% branch 70% branch locally

delay slots delay slots compacted code

filled filled
Bubble 1212 2.09 2.42 2.27 1.25
Quick 1030 1.66 1.99 1.84 1.23
Perm 14180 1.91 2.13 1.99 1.04
Queens 18017 2.68 2.88 2.783 1.24
Intmm 2429 2.71 3.29 3.15 1.36
BinSearch 86 2.56 2.99 2.69 1.62
Fib 728 1.44 1.73 1.57 1.04
Sieve 3415 2.41 2.83 2.54 1.67
Average 2.18 2.53 _ 2.35 1.31

30

Figure 1.

Figure 2.

LIST OF FIGURE CAPTIONS

The model architecture

Introducing compensation code

31

e

8|14 Joisibay 8|14 Joisibay
asodind |elausn uesjoogd
}08UU02I8}U|
ayoeoQ
oL 8yoe9| 0]
it 22 | | Y
nun
Hun HUN L oy e nun :
$S0.IppY ssalppy mv v d uesjoog
&
suongniisuj suoljonJisu| |euongley .
aoualsey Alowspy suononiisyl youeug sl
/ |reuoneindwon uesjoog

piop uononssu; Buo

