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Abstract

The transputer hardware (the T8 series) allows a process to be interrupted mo-
mentarily but not preempted and saved away for later execution. The latter implies
that the context of the preempted process must be completely extracted from the
system. There is difficulty in doing so in the T8 transputer because parts of the
context of a preempted process are not so accessible. We present a technique, which
we have successfully implemented in several versions of a scheduler, that can get
around the problem by forcing a process to save the context by itself before giving
up the CPU. Although the technique takes five context switches, the time (referred
to as the scheduler overhead) turns out to be rather small—less than 50 us in a
25 MHz transputer. We also present a method for adding a process control block
(PCB) to a transputer process, which can be used to hold the saved context of a

preempted process. This requires solving the “floating workspace pointer” problem.
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ing. transputer.
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1 Introduction

The transputer [3. 9] is a rare kind among existing microprocessor designs: it has com-
munication cupabilities and process scheduling built into the chip. The former makes
convenient the construction of parallel systems out of multiple transputer chips. and the
latter is the basis for highly efficient execution of concurrent processes in a single chip.
In fact, the notion of concurrent processes is well represented in the instruction set. and
because of the transputer’s high efficiency in handling processes, high level languages
{e.g., Occam [14}) for the transputer could afford to provide concurrency as a language
primitive. Much has been said about the communication capabilities of the transputer
{13, 15]. This paper concentrates on aspects related to processes, in particular, pre-
emption of processes. The software solutions we present here apply to the T8 series of
the transputer which, at the time of writing, is the de facto representative (in terms of
market quantities and its wide acceptance) of the transputer family. The latest series,
T9000 {11], has just begun to emerge and has retained most of the design elements found
in the T8 series. We comment at the end on what changes are necessary for porting our
solutions to the T9000 transputer.

The efficiency of concurrent processes execution can be attributed to the simplistic
design of the hardware scheduling mechanism. The major design elements that concern

us here are as follows.

o There are two priorities, denoted HIGH and LOW, for processes; and there are two

queues of ready processes, one for each priority.

» A HIGH priority process executes continuously until it gives up the CPU voluntarily

(e.g., exit, wait for communication. or wait for timer).

* A LOW priority process executes only when there is no HIGH priority ready process;
when a HIGH priority process becomes ready, it preempts {interrupts) the LOW
priority process.

o LOW priority processes execute in a round-robin fashion through a timeslicing

mechanism of the hardware.

» When a LOW priority is descheduled by a timeslice, its general registers are not

saved.



While such a design is adequate for general applications involving multiple processes, it
is too simple for time-critical applications in which multiple levels of priorities might be
necessary. In these applications, low priority processes must give way to high priority
processes without unduly delay. In fact, the provision of two hardware priorities, HIGH
and LOW, was never meant to support this type of applications; processes belonging to
the application are expected to run strictly in LOW priority, with the HIGH priority
reserved for special system tasks. Therefore, in order to create a multi-priority environ-
ment in which to execute time-critical applications, software-defined priorities must be
introduced. To distinguish between hardware priorities and software-defined priorities,

we use the following terminology.

HIGH transputer’s high priority
LOW transputer’s low priority

high/higher /highest software-defined priorities
low /lower /lowest software-defined priorities

What needs to be done is similar to process scheduling in traditional operating systems:
to add a priority level to every application process (which is a LOW priority process in
this case), and to implement a software scheduler (a HIGH priority process) to schedule
the application processes according to their priority levels. Within the transputer com-
munity, quite a few researchers have worked on this subject of multi-priority scheduling
for the transputer {e.g., [2, 3, 18, 1]). In our work, we have concentrated on the problem
of optimizing the overhead incurred by our scheduler’s intrusion into the operation of the
hardware scheduling [16, 17, 6]. To make multiple priorities work, we must implement
preemptions among the LOW priority processes, the success of which is measured in
terms of the preemption latency and the scheduler overhead (see Figure 1). In the final
version of our scheduler, we successfully achieved a preemption latency of less than 100
s, of which only a small percentage is overhead due to the scheduler |6]. In this paper.
we discuss in detail the technique we used in our scheduler to do preemptions among
the LOW priority processes which have been accorded a software-defined priority. We
also present the way we attach a process control block (PCB) to a transputer process,
in which the process’ priority, its interrupted state, and perhaps other information are
to be stored. Both the preemption technique and the attachment of the PCB turned
out to be somewhat tricky to come up with, which is due to the rather peculiar design

of the transputer hardware.
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Figure 1: Preemption latency and scheduler overhead
2 Preemption of a transputer process

There are four possible situations in which the execution of a LOW priority process is

temporarily halted:

1. It executes a “wait” (for communication or timer).
2. Its timeslice expires; it is inserted into the ready process queue.

3. It is interrupted by a HIGH priority process and returns to execution as soon as

there is no more ready HIGH priority process.

4. It is interrupted by a HIGH priority process (e.g., our scheduler) and is inserted
into some queue.

(1)~(3) are normal operations of the transputer hardware. (4) is the situation of a
process preemption, which is to be handled by our software scheduler. In this case, the
interrupted (preempted) process is not necessarily the next LOW priority process to
return to execution; it is inserted into some queue maintained by the scheduler, and the
scheduler will then pick the one with the highest priority to run. This is similar to (2),
but in (2), the descheduling, by design, will not take place until the next j (jump) or
lend (loop end) instruction. These instructions do not leave any result in the registers
and so saving of register contents is not necessary when the process is swapped out to
the ready queue. For (4), however, register contents must be saved in order for the
process to resume execution later on when its turn comes. This is where the difficulty

lies. To understand the difficulty, we have to have the picture in mind of an executing



process as it is found inside the transputer hardware. Figure 2 shows such a picture of an

active process. Its data is contained in a per-process workspace and is being pointed at
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Figure 2: Makeup of a transputer process

by the workspace pointer, Wptr. The special locations below the Wptr are for holding
information related to the process when the process is in a waiting or ready state. If
the process is involved with floating point operations. the registers in the floating point
unit might contain valid cdata. The evaluation registers in the main (integer) processor

are for non-floating point operations and integer arithmetics.

When the currently executing process is preempted (situation (4}), its state is saved in
some temporary areas by the hardware. The contents of the main processor’s registers.
including the workspace pointer, the instruction pointer. and the evaluation registers,
are saved in some locations near the bottom of the transputer’s memory map. As these
locations are addressable, these saved values can be easily retrieved, such as by our
scheduler. However, this is not the case with the floating point registers whose contents
are copied into some “save registers” insicle the floating point unit when interrupt occurs.
These saved values are not retrievable by other processes. as these save registers because
of efficiency are hidden deep inside the floating point unit (see Sections 7.10 and 9.5
of [10]). The challenge then is how to switch an interrupted process out completely



(including the contents of the floating point registers) and save it 1n our scheduler’s data
structure.

The solution 1s to let the process. the one that 1s being preempted due to some event
(let’s call it a preemption event) that nught cause the readiness of a higher prionty
process. to switch itself out voluntarily. The process, before it gives up the CPU, can
certainly access and save its floating register values i some safe place {1ts PCB). To force
the process to cairy out the necessary context saving and then relinquish the CPU. we
have to replace the next instruction (the one following the interrupt) by an instruction

that would invoke a context saving subroutine (Figure 3). This idea 1s borrowed from
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Figure 3: An mterrupt

breakpoint implementation in debugging. Figure 4 outlines the steps involved, from the
moment the preemption event occurs till the moment the highest priority process begins

execution.

A preemption event {Step 1) could be a timer interrupt as in the second version of our
scheduler [17]. There we used a timer to wake up the scheduler periodically. When the
scheduler wakes up, 1t would execute a queue manipulation algorithmn (detail of which
can be tound in [16]) to select the highest priority ready process to run. As the timer is
a built-in device of the transputer, the period of waking up the scheduler can be easily
adjusted, thus tuning the preemption latency. The other type of preemption events
can be found i our third scheduler [6] in which we wrapped all potential preemptive
actions. such as process creation, communication. timer expiry, and change of priority,
with special code including a switch to HIGH priority. so that when they occur they

would preempt the executing process immediately. Without having to rely on a timer,
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this approach can result in very short preemption latency (less than 100 us).

We denote the process to be preempted L, and the highest priority process that is
chosen to run at the end H. The scheduler is actually divided into two parts and run as
two processes—a HIGH priority part (HPS) and a LOW priority part (LPS). LPS is a
dummy whose function is just to wake up HPS, as will be explained below. When the
preemptive event occurs, HPS wakes up. thus interrupting L. In order to let L save its
own context, HPS will let L return from interrupt, but before it does so. HPS has to
first save L's registers (Step 2) which have been pushed to low memory by the hardware.
These values might be ruined upon return from interrupt and so the saving must be
done at this point. The next action of HPS is to modify the next instruction of L (see
Figure 3) before it gives up the CPU (by waiting for a communication with LPS) and let
L return from interrupt. Now process L returns from interrupt (Step 3). Should the last
instruction executed by L before the interrupt be an interruptible instruction (e.g., a
block move), L would finish it first, which increases the preemption latency. It is almost
impossible to try to save the state of the process at this point. without letting it finish
the interrupted instruction, as state information regarding the unfinished instruction is
not so accessible. It is also possible that the instruction in question is an interruptible
instruction whose action would deschedule L (e.g., a send message instruction). If L
finds this to be the case, it would simply restore the replaced instruction and proceed
on. and there is no need to deschedule itself a second time. If this is not the case, which
is what the figure shows, L would execute the next instruction which is the modified
instruction. The modified instruction invokes a save.and.restore routine. This routine
is divided into two portions. The first portion restores the replaced instruction. saves
the process state and relinquishes the processor. When L resumes execution later on,
the second portion of this routine is executed which would restore the saved state of L.
As soon as L finishes the first portion and relinquishes the CPU, LPS, which has been
arranged to be at the front of the LOW priority ready queue, would gain control and
wake up HPS (Step 4). HPS then executes the queue manipulation algorithm to switch
in the highest priority ready process (Step 5). HPS would also put LPS back in the
front of the LOW priority ready cueue: as such, no two application processes may run
consecutively without any invocation of our scheduler in between.

This implementation is “safe” in the sense that it obeys the rules in [10] regarding

the saving of registers. It is easy to prove that the implementation is correct in the sense

that it always schedules the highest priority ready process to run. Qutlines of the actual



code (in Occam) used in our implementation can be found in [3].

The time it takes to execute Steps 1 to 4 is about 30 us.!

The queue manipula-
tion algorithm takes about 10 us to execute in normal circumstances [16]. Hence, the
scheduler overhead in about 50 us. However, if the last instruction before interrupt is a
block move instruction which must run to completion before the steps of the preemption
procedure above can be completed, then the time could be much longer. Specifically.

the preemption latency is calculated as
Trespami + T:ch + Tinatr

where Trespond 18 the time between the moment a higher priority process becomes ready
and when the corresponding preemption event actually occurs. For the second version of
the scheduler which uses a timer, this is equal to the timer’s period which is adjustable.
For the third version of the scheduler, this is the time for the execution of several
instructions of the wrapping code. Ty is the overhead of the scheduler, which is bounded
by 50 us. and Tinetr is the time to complete the interrupted (interruptible) instruction.
In general, the probability of always interrupting a block move instruction that has a
very long piece of data can be assumed to be very small. To really make sure that
this problem due to Tiner will never surface, such as well dealing with a time critical
application, the programmer will have to skillfully break up long messages or data into

small pieces before they are sent or moved around.

3 Crafting the PCB

Transputer processes are very primitive, and they do not even have an identity, and
so in order to associate some extra data (in our case, the software-defined priority and
the saved context) with a particular process, we have to somehow link the data with
the process through a pointer. The data is to be placed in a block of memory known
as the process control block (PCB). A transputer process is represented entirely by its
workspace which is pointed at by the Wptr register if the process is executing, or linked
within one of the two ready queues if it is ready (Figure 5), or linked to some special
locations if it is waiting for communication or timer. Therefore, to add a PCB to a
process and connect the PCB with the process, we have to establish a link between the

PCB and the process’ workspace.

!Running in a 25 Mz T800 transputer.
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Referring to Figure 2 again. we note that the workspace behaves like a stack with the
workspace powter pointing at the top of the stack. When the process calls a procedure. a
new stack frame is pushed on top and the workspace pointer would move downward. All
local variables are addressed as positive offsets from the workspace pointer. Similarly,
a return from a procedurc would case the stack to shrnnk. and the workspace pointer
wonld move up. It is this change of the workspace pointer that makes establishing a link

hetween the process aud its PCB difficult.

One possible solution to this “floating™ workspace pointer problem is to have a fixed
workspace ponter for the entire life of a process. The PCB for the process can then be
pointed at by a pointer which is at a fixed offset from the workspace pointer. As the
workspace pointer 1s fixed. the workspace cannot grow or shrink, and therefore cannot
have any local variables. All local variables must then be placed elsewhere, such as in
the PCB. As a result, all accesses to local variables must be done indirectly through the
PCB pointer. This method obviously would decrease the performance of a program as

all local variables become non-local.

A more efficient mothod is to let the PUB pointer (Pptr) float with the workspace
pointer. as shown in Figure 6. Thw workspace remaius unchanged as before, but then
whenever the workspace pointer moves. the PCB pointer must also move with it so that
it is at a fixed offset from the workspace pointer and is therefore always retrievable. This
offset. Pptr_offset, can be defined at system’s initialization and within the compiler. In

the T8 transputer, the special locations Wptr—1 to Wptr—5 are reserved for such

10



uses as keeping the saved Iptr and a pointer to the next process in the queue, etc.

Therefore, Pptr.offset can be chosen to be just below Wptr—5. The moving of the

“‘value-added”’
ransputer process transputer process

P male

A ey
Wptr [T e o T
top o(tﬂ v::tril:‘s;ace ) ) T l( Pptr_offset
) - Pptr
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Figure 6: Adding and linking a PCB to a process

Pptr must be done carefully as the register stack might contain useful data when the
moving is performed. The following piece of code can guarantee safe moving of the
Pptr.

1 STL Pptr_offset ~ 1 -~ save Areg

2 LDL Pptr_offset -- get Pptr

3  STL Pptr_offset + change -- move it

4 LDL Pptr_offset ~ 1 -~ restore Areg

This segment of code must be executed before executing the instruction that causes the
workspace pointer to move. First of all, the contents of Areg which is the top register
of the evaluation stack is saved to the location below the Pptr. This leaves the stack
to be of depth 2 (i.e.. two used registers), and therefore we can use Areg to carry out
the moving of the Pptr. The distance in terms of number of bytes (change) to move

is pre-calculated by the compiler based on the instruction that is about to cause the

11



workspace pointer to move. Finally. Areg is restored. After this. the change of the
workspace pointer can take place.

The second method we just described is used in our implementation. We use the PCB
to hold the software-defined priority of a process and the saved context of the process
when it is preempted. We had to modify the compiler® so that all instructions that will
change the workspace pointer are prepended the code presented above. Some of the
library routines had to be changed as well: for example. those dealing with priorities
now use the software-defined priority in the PCB instead the the hardware HIGH and

LOW priorities. Details of these changes can be found in {5].

4 The T9000 transputer

The main difficulty we had with switching out a process was the inaccessibility of some
of the process’ context. In the T9000 transputer [12], this problem does not exist as
the context of an interrupted process is readily available in a set of special registers. the

shadow registers. There are two special instructions for manipulating these registers:

stshadow store shadow registers

ldshadow load shadow registers

For our purposes. the stshadow instruction can be used to store the entire state of the

preempted process in memory, and the ldshadow instruction to resume a process.

Other instructions that might be useful for a version of our scheduler for the T9000
transputer include swapqueuve. insertgueue. intdis/intenb, and settimeslice. The swapqueue
instruction can swap a queue of workspaces of ready processes prepared somewhere in
memory with one of the two ready process queues. The insertqueue instruction can be
used to insert a process. such as our LPS, at the front of a ready process queue safely.
The ntdis/intenb instructions are for disabling and enabling interrupt respectively: they
can allow the scheduler to manipulate the process queue safely without having to worry
about any unpredictable changes to the queue. Similarly. the settimeshice, which is for
turning on and off the hardware timeslicing. can be used by our LPS to ensure that it
will never be descheduled by a timeslice when 1t is executing. In the T8 transputer.

the only way for a LOW priority process to avoid being timesliced is to do away with

“Logical Systems C compiler. version 8 1 [T}



using timesliceable instructions completely, such as the j (jump) and the lend (loop end)

instructions.

The “floating” workspace problem still exists in the T9000 transputer, and so our
method of attaching a PCB to a process can still apply.

5 Concluding remarks

The preemption technique we presented is rather unusual in terms of the number of
context switches. Referring again to Figure 4, there are a total of five context switches
(from Step 4 to Step 5, the HPS takes over to manipulate the queue) between the
occurrence of the preemption event and the execution of the selected process. If it had
not been because of the fast context switching capability of the transputer hardware,
this number of context switches would be unacceptable. Even with five context switches,
the time for the procedure is below 50 us. This fast context switching can be attributed
to the extremely light weight of transputer processes. In the T9000 transputer, processes
become a little more sophisticated and heavy weight, but preemption can now be done in
a much simpler way, and two context switches would be sufficient (from the preempted

process to the scheduler and then to the selected process).

The design and implementation of the techniques we presented were called for in our
trying to build a real-time multi-priority scheduler in the transputer. Similar work on
multi-priority schedulers has been performed by other researchers and research groups,
which can be classified into cooperative and non-cooperative methods. In cooperative
method, a user process is modified so that it would communicate (cooperate) with a
high-level scheduler every now and then to allow the scheduler to decide whether the
process should be allow to continue right away or not. This method obviously does
not work for time-critical processes as the delay incurred due to the round-robin mode
of the underlying scheduling queue could be large and unpredictable. Our schedulers
are examples of non-cooperative methods, and we achieved the desired low overhead
and short preemption latency by manipulating the (LOW priority) ready queue directly
and using the context switching method as described in this paper. Our method is
safe as we have followed the rules as prescribed in [10] and left the saved context of the
interrupted process untouched during the interrupt. In contrast, the scheduler presented
in [4] had to modify the saved registers of the interrupted process during the interrupt.

Moreover, their scheduler cannot handle the case in which the interrupted process is

13



involved in floating point operations. In [19], a multi-priority real-time kernel for the
transputer. called TRANS-RTXc, 1s described. but the detail of how they implemented

multi-priority scheduling 1s not presented.
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